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Abstract

The state of the art for subteam replacement, based on
random walk graph kernels, encounter the following lim-
itations: (1) ineffective in capturing fine-grained node
feature correlations, (2) inefficient without proper prun-
ing mechanisms, and (3) limited applicability to single-
member or equal-sized subteam replacements. In this
paper, we address these limitations by proposing GE-
NIUS, a clustering-based graph neural network (GNN)
framework that (1) captures team social network knowl-
edge for subteam replacement by deploying team-level
attention GNNs (TAGs) and self-supervised positive
team contrasting training scheme, (2) generates unsu-
pervised team social network member clusters to prune
candidates for fast computation, and (3) incorporates a
subteam recommender that selects new subteams of flex-
ible sizes. We demonstrate the efficacy of the proposed
method in terms of (1) effectiveness: being able to se-
lect better subteam members that significantly increase
the similarity between the new and original teams, and
(2) efficiency: achieving more than 600x speed-up in
average running time.

Keywords— Subteam Replacement, Social Network
Analysis, Graph Neural Networks

1 Introduction

The emergence of network science of teams has revo-
lutionized the way to characterize, predict, and opti-
mize teams that are embedded in large-scale social net-
works [18]. Among others, given a team of people work-
ing on the same task (e.g., launching a targeted web
service, proceeding towards a specific research topic),
subteam replacement is dedicated to finding the opti-
mal set of people who can best perform the function
of a subset of the original team (i.e., subteam), if the
subteam becomes unavailable for certain reasons. The
applications of subteam replacement are abundant. To
name a few, in a conference organization committee,
there are always some returning members each year,
and in the meanwhile, new members should be invited;
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in a software development team, a subteam of employ-
ees might be assigned to other departments due to new
business requirements; in artistic groups like choirs or
dance troupes, a subgroup of artists might be unable
to show up in a play due to scheduling and/or staging
conflicts. In these situations, the goal of subteam re-
placement is to avoid the potential deterioration of the
team’s performance due to the absence of the leaving
subteam members.

The state of the art adopts the following two princi-
ples in designing subteam replacement algorithms. First
(structural similarity), to reduce the disruption to the
current team, the recommended new subteam should
have a similar collaboration relationship as the unavail-
able subteam in terms of the connections with the resid-
ual subteam members. Second (skill similarity), the
new members should possess a similar skill set as the
members from the unavailable subteam to optimally
meet the team-level task requirements. Most, if not
all, of the existing works leverage random walk graph
kernel [25] as the cornerstone for subteam replacement
to capture both the structural and skill match, where
the key idea is to select members that can achieve the
largest similarity between the newly constructed and
the original teams [19,21].

Although these approaches recommend reasonably
well-qualified new subteams in subteam replacement,
there are three major limitations with the graph kernel-
based methods. First, from the perspective of effective-
ness, in quantifying the similarity between teams, graph
kernel-based methods separately exploit the node at-
tributes (i.e., skills), which inevitably ignores the poten-
tial correlations between various skills. For example, in
research team replacement (e.g., on the DBLP dataset),
the researchers’ skills correspond to the research areas
in computer science (e.g., data mining, NLP, machine
learning, etc.). Graph kernel-based methods will sep-
arately evaluate the closeness between two teams re-
garding an individual research area (i.e., skill), with-
out considering the essential correlation among differ-
ent areas (e.g., machine learning versus data mining),
which will sabotage the performance of graph kernel-
based approaches. It is worth noting that we observe a
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drastic performance drop w.r.t. multiple graph similar-
ity as the skill set scales up (e.g., keywords in publica-
tions), and we have a detailed discussion in Sections 3
and 4. Second, graph kernel-based methods could incur
a high time and space cost since they iteratively calcu-
late the similarity between the original team and the
new team with candidate members from an enormous
search space. Furthermore, existing subteam replace-
ment methods generate new subteams of the same size
as the unavailable subteam. Nonetheless, in real-world
scenarios, recommending a compact set of members that
can undertake the same tasks would be preferable due
to the limited hiring budget.

In this paper, we thoroughly address the aforemen-
tioned limitations and propose a novel graph neural net-
work (GNN) framework based on clustering, namely
GENIUS, to efficiently recommend effective new sub-
teams for subteam replacement. Specifically, given the
team social network within which the teams are em-
bedded, the proposed GENIUS framework first utilizes a
GNN-backboned team representation learner to encode
the knowledge of collaboration structures and skills into
member-level embeddings, which will be employed for
optimal subteam replacement. Apart from generalizing
GENIUS to all message-passing GNNs, we also desig-
nate the first structurally optimized team-level atten-
tion GNNs (TAGs) for subteam replacement to foster
more effective team embeddings. To further improve
representation learning, we design a self-supervised pos-
itive team contrasting training scheme where the key
idea is to enforce the similarity between the subteam
representation and that of the corresponding team. For
optimization, we aim to minimize the disparity between
the recommended new subteam and the original team
in both collaboration structures and skills. We further
propose a novel clustering-based method, which (1) can
speed up the subteam replacement by pruning the un-
qualified candidates, and (2) allows flexible sizes of rec-
ommended subteams without harming its performance
to meet the requirements of cases where new teams of
smaller sizes are expected. To summarize, our main
contributions are three-fold:

e Problem: we expand upon prior work on the sub-
team replacement problem [21] and extend its scope
to include replacements of flexible sizes. We formally
define the flexible-sized subteam replacement problem
in Section 2.

e Algorithms and Analysis: to the best of our
knowledge, we are the first to introduce a trainable
framework GENIUS for team member replacement
problems. We also put forward the first structurally
optimized GNNs specially cultivated for team social
networks, referred to as TAGs.

e Empirical Evaluations: we conduct extensive ex-
periments w.r.t. multiple graph similarity metrics to
fully demonstrate the superiority of our model over
the state of the art.

2 Problem Definition
Subteam replacement aims to find a set of new subteam
members to replace the unavailable members in the
original team so that the new team can perform the
same functionalities as the original team. In this paper,
the entire team social network, within which the teams
are embedded, can be denoted as either the set of all
its members G or as the combination of its adjacency
matrix A € R"™"™ and the node attribute matrix
X € R™ 4. Here, n represents the size of the team
social network, and d stands for the number of node
attributes. The original team of a group of individual
members is represented by 7, and the subteam to be
replaced is denoted as R. Different from the existing
methods that find the same number of new members
[21], we investigate the flexible-sized replacement by
recommending new team members S where |S| < |R]
from the residual individuals of G (i.e., M = G\ T),
which is more applicable in real-world scenarios (e.g.,
limited hiring budget).

We formally define the flexible-sized subteam re-
placement problem as follows:

Problem 1. Subteam Replacement

Given: (1) a team social network G = {A,X}; (2) the
original team T; (3) the subteam of individuals to
be replaced R C T.

Find: a subteam replacement model, which is capable
of capturing the team-level knowledge to replace the
unavailable subteam R by recommending a new set
of members S of flexible size where |S| < |R|. Ide-
ally, the new team should be similar to the orig-
inal team from the perspectives of collaboration
structures and skills. Formally, the objective of
the problem can be defined as the mazximization of
GraphSim(7,7 \ RUS), where GraphSim quanti-
fies the graph-level similarity between the two input
sets.

3 Proposed Approach

In this section, we introduce the details of our proposed
framework, GENIUS, for flexible-sized subteam replace-
ment. To be specific, GENIUS addresses the limitations
of existing methods by integrating a GNN-backboned
ENcoder for withIn-clUSter subteam search. We
present the two major building blocks of GENIUS, in-
cluding (1) a team network encoder that captures the
essential team social network knowledge to fulfill the re-
quirements of structural and skill match (i.e., the train-
ing phase), as well as TAGSs, a novel GNN structure
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Figure 1: Overview of the GENIUS Framework. (Left) The data flow of the team network encoder and its training
procedure. (Right) Within-cluster search performed by the subteam recommender.

cultivated for team social networks, in Section 3.1, and
(2) a subteam recommender for recommending new sub-
team members to replace the unavailable subteam mem-
bers (i.e., the inference phase) in Section 3.2. The supe-
riority of GENIUS in capturing key correlations among
node attributes, as compared to graph kernel-based
methods, is comprehensively analyzed in Section 3.3.
An overview of the proposed GENIUS framework is pro-
vided in Figure 1.

3.1 Team Encoder The general idea of subteam re-
placement is to select new subteam members that pos-
sess similar characteristics as the original team mem-
bers in terms of collaborations and skills. Therefore,
the quality of the replacement is considerably depen-
dent on the informativeness of the learned representa-
tions of the network. We propose a team network en-
coder composed of two sub-components, including (1) a
GNN-based team representation learner to capture the
correlations between subteams and their corresponding
original teams, and (2) a clustering layer to generate
node cluster assignments for efficient member recom-
mendation.

To construct a high-quality team network encoder,
specifically, we exploit GNNs [11, 15] to map each
node in the team social network to a low-dimensional
latent space. Specifically, we stack multiple GNN layers
in order to extract the long-range node dependencies
in the network, which can be represented as H!' =
GNNY(A,X),...,HX = GNNY(A,HL1), where HE
denotes the node embedding matrix at the L-th GNN
layer. To alleviate the over-smoothing issue in GNNs
(i.e., all nodes have similar embeddings) [5], we obtain
the final node representations by concatenating the
intermediate embeddings from each GNN layer [26]:

(3.1) Z = concat(HW, ..., H®)),

where Z € R"*?" denotes learned node embeddings from

12

the team metwork encoder and encodes the topological
and attribute information of the team social network,
with d’ representing the dimension for the node embed-
dings. In subteam replacement, the two fundamental
principles require that the recommended new subteam
members have (1) a close collaboration relationship
(i-e., structural match), and (2) similar attributes (i.e.,
skill match), as the original team members. Through
the proposed GNN-backboned encoder, we can quanti-
tatively evaluate whether the candidate subteams are
well-qualified in the embedding space by assessing the
similarity between the corresponding vector representa-
tions. It is worth noting that the team network encoder
is compatible with any standard GNN-based architec-
ture [7,12,15,24], and here we apply Graph Convolu-
tional Networks (GCNs) [15] in our implementation.
Furthermore, motivated by the principles in sub-
team replacement, we speculate that the recommended
subteam members and team members with similar rep-
resentations in the embedding space should form clus-
ters. Hence, we exploit a clustering layer to group mem-
bers in the team social network according to the gen-
erated representations. Specifically, the clustering layer
first performs a non-linear transformation on the em-
bedding matrix (i.e., Z) as
(3.2) E=0(ZW.),
where W, € R?*¢ is the learnable weight matrix and ¢
is the number of clusters. ¢ is the ReLLU activation
function. The transformed matrix will be used to
generate a (soft) cluster assignment matrix C € R"*¢
where the elements of the corresponding row i are
computed as follows:

eE[i,m]
(3.3) C[z,m] = Wy
where m € {1,...,¢},CJi,:] is the cluster assignment

vector for node v;.
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Having obtained the cluster assignment matrix, we
further compute the (hard) assignment vector h €
R"™, where h[i] = argmax;cqy .y Cli,j], and we can
construct the cluster container IC as K[m] = {v;|h[i] =
m,i € {1,2,...,n}},m € {1,2,...,¢}, which will be
further utilized for generating candidates.

The clustering layer offers two advantages. First, it
ensures that nodes with similar embeddings are grouped
together, aligning with the requirements for structural
and skill match in subteam replacement. Second, the
clustering results can be leveraged to significantly speed
up the replacements because they largely reduce the
search space of subteam recommender by pruning the
unqualified members, as illustrated in Section 3.2.
Team-level Attention GNNs (TAGs). Members
have various levels of contributions to the team’s per-
formance, and to capture their importance to the team,
an attention mechanism is applied. Specifically, we pro-
pose a novel GNN structure with team-level attention,
namely TAGSs, which generates attention vectors along
with team member embeddings. TAGs learn a vector
set A = {ar € RIVI|F € P}, where P refers to the set
of all teams F within the team social network G. To
maintain uniformity, we apply similar op[e]rations to the

ar t

Training. The objective of our proposed GE-
NIUS framework is to recommend well-qualified new
subteam members that are close to the members of
existing teams, based on the learned node representa-
tions. To navigate the model training, we first propose
a self-supervised contrasting scheme, namely positive
team contrasting, to enhance the node representation
learning. In addition, we introduce the training objec-
tives for satisfying both structural and skill match in
subteam replacement.
Positive team contrasting. Contrastive learning aims
to empower representation learning by maximizing the
agreement between similar examples in each pair [6].
Intuitively, a subteam as well as its replacement should
be similar to the original team in terms of collaboration
structures and skills because they work on the same and
well-specified task. To address this, we propose positive
team contrasting to improve team-level representation
learning through self-contrasting. The key idea is to
minimize the disparity between the embedding of the
recommended subteam (i.e., R) and that of the residual
subteam (i.e., T\ S).

We define the team-level representation (e.g., 7) as
the weighted aggregation of the members’ embeddings:

B4 o) =S wzlt],  Sw -1,

teT teT

vectors as Equation (3.3), ar[t] =

where w; denotes the weights for aggregation. In this

paper, we set the weight w; as ﬁ for standard GNNss,
and ag[t] when deploying TAGS.

Having obtained the team embeddings from Equa-
tion (3.4), we can now define the team contrasting loss
as follows:

(35)  Leonsa = 5 3 Difl(g(Re),6(T: \ Ra))
i=1

where s is the number of sample teams, R; denotes the
sample subteam to be replaced in the i-th sample team
(i.e., T;) from the given social network G. Diff(,-) cal-
culates the first-order norm of the difference between
the two input vectors. Leontra calculates the average
difference between the replaced subteams and the resid-
ual subteams. By minimizing the team contrasting loss,
we enforce the matching among team-level embeddings
regarding collaboration structures and skills.
According to the two fundamental principles in de-
signing subteam replacement algorithms, i.e., structural
and skill match, we further define the skill loss, struc-
tural loss, and clustering loss to optimize the clustering
layer. We specify these training objectives as follows.
Skill loss. The nodes within the same cluster should
exhibit similarities in skills. We develop a skill loss
function to train the model to achieve this objective.
The basic idea is to enhance the pairwise similar-
ity among skill vectors (i.e., node attributes) in re-
lation to their cluster assignments. We first apply
a pairwise similarity measure to the attribute matrix
(i.e., X) and the cluster assignment matrix (i.e., C)
as Y1 = PairSim(X, X),Y, = PairSim(C, C), where
PairSim(P, Q) = PQ7T for P,Q € R and P
and Q denote the row-normalized P and Q, respec-
tively. The matrices Y;,i € {1,2}, represent the sim-
ilarity between all pairs of nodes regarding node at-
tributes and cluster assignments, respectively. Specifi-
cally, Y;(j, k), i € {1,2},4,k € {1,2,...,n}, denotes the
corresponding similarity between node j and k. We then
compare the two matrices Y; and Y5 using PairSim as
Y3 = PairSim(Y1,Ys), where Y3 encodes the closeness
between the similarity measures on node attributes and
cluster assignments. Therefore, by aggregating the di-
agonal elements of Y3, where Y3(i,i),7 € {1,2,...,n},
denotes the similarity between the node attributes and
the cluster assignment of node i, we can obtain the skill
similarity loss from the clustering results as follows,
(36) Lskill = —tI‘(Yg),
where tr(-) denotes the trace of the input matrix.
Through minimizing Lg, the clustering layer is op-
timized to assign nodes with similar skills (i.e., high
attribute similarity) to the same cluster.
Structural loss. Nodes that are topologically closer
should be more likely to be clustered together. Inspired
by previous studies on supervised node clustering [29],
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we exploit the structural 10ss Lgiructural t0 encode struc-
tural similarity for the cluster assignments. Specifically,
we define the objective as follows:

(37) Lstructural = ||A - CCTHF7

where || - | denotes the Frobenius norm.

Clustering loss. A cluster assignment vector with ap-
proximately equal values (i.e., a near-uniform distribu-
tion) implies a high degree of uncertainty in the cor-
responding node’s cluster assignment. Therefore, it is
preferable for cluster assignment vectors to closely re-
semble one-hot vectors. We thus define the clustering
loss as:

1< ,
(38) Lclustering = E Zl EHtI‘Opy(C[l, :D7
where  Entropy  denotes the entropy  func-
tion, which is calculated as Entropy(CJi,:]) =
— 2251 Cli, j]log C[i, jl,

We combine the aforementioned objectives as

(39) L= Lcontra + bl Lskill + b2 Lstructural + b3 Lclustcringv

where L represents the total loss and b;,i € {1,2,3} are
the regularization parameters that balance the scales of
training objectives for different team social networks.
L is applied to guide the training of the entire GE-
NIUS framework. The four losses prevent the overfitting
of one another.

3.2 Subteam Recommender Having the proposed
team network encoder model, we are equipped with
effective representations of teams and their members.
Given an original team 7 and the subteam to be re-
placed R C T, we propose a subteam recommender that
performs an efficient within-cluster search based on sub-
team representation (Algorithm 1), where ¢ is the prede-
fined function (Equation (3.4)) for calculating subteam
embeddings, and f computes the cosine similarity. Set
is a deduplication function for containers, and Product
generates Cartesian products on the assigned clusters.
When calculating new subteam embedding n in line 8,
g' = g for traditional GNNs, and ¢'(£) = ax*) . Z[t, ],
where o = ), ar[t] when deploying TAGs.

Subteam recommender generates candidates only
from clusters where subteam members to be replaced
are assigned. Compared to generating candidates across
the entire dataset, this pruning technique significantly
improves the efficiency of the algorithm (Lemma 1).
A stable number of team members within clusters,
implying a modest candidate search space, is achieved
by adjusting the number of clusters ¢ in accordance with
the size of the team social network n. This effectively
maintains the efficiency of the subteam recommender as
team social networks scale. Additionally, the proposed
GENIUS framework ensures that the optimal solution is
included in the candidate new subteams Q since nodes

Algorithm 1 Subteam Recommender

Input: (1) original team 7; (2) a subteam to be
replaced R; (3) cluster hard assignment vector h;
(4) node embedding matrix Z; (5) residual social
network M; (6) clusters .

Output: Optimal new subteam & C M, |S| < |R|.

. Initialize similarity y = 0, S = {}

Compute residual subteam embedding r < g(T\R)

Compute clusters assigned to R, ¢ < h[R]

Generate candidate subteams Q « Product(K|c])

for each candidate D in Q do
Remove original team 7 members £ <+ D \T
Deduplicate candidate £ < Set(E)
Compute new subteam embedding n + ¢'(&)
Compute similarity ¢ < f(r,n)

10: if t > y then

11: Update S «+ &, y <+t

12: end if

13: end for

with similar embeddings will be clustered together and
thus, it is valid to prune unqualified candidates through
clustering.

Lemma 1. Within-cluster search is O(c®l) more effi-
cient in time than searching over the entire dataset of
size n. The values are dependent on datasets, and the
exact figures can be referred to in Table 1 and Section
4. Typically, ¢ = 1e3, |R| ~ 5, and n =~ 2e4.

Lemma 2. The search algorithm is guaranteed to pro-
duce S where |S| < |R| by the nature of the Cartesian
product.
3.3 Analysis Instead of being limited by a fixed set
of genres, nodes with more specialized descriptions are
becoming dominant these days, highlighting the limita-
tions of graph kernel-based methods in both effective-
ness and efficiency as compared to GENIUS.
Effectiveness. As the number of node attributes in-
creases, each node attribute dimension no longer rep-
resents a general class (i.e., coarse-grained attributes)
where little correlation exists among different dimen-
sions. This remarkably increases the difficulty for graph
kernel-based methods to capture the potential correla-
tions among various node attributes.
Given two labeled graphs G; {A;,L;},i = 1,2,
random walk graph kernel [3,13,19] is computed as
Ker(Gi,G2) = y(I — aAx) 'Lyx, where Ay =
Ly (A; ® Ay), ® representing the Kronecker product
of two matrices, x and y represent starting and stop-
ping probability vectors for the random walk, which are
usually set as uniform, and a is a decay factor. Ly is a
diagonal matrix calculated as

d
(3.10) L, =Y diag(Li(:, ) @ diag(La(:, 1)),

i=1
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Table 1: Statistics of evaluation datasets.
Datasets # nodes # edges # features # teams

DBLP 26,351 54,044 7,551 7,052
IMDB 13,472 665,166 2,040 818

where diag represents the diagonalization operation.
It represents matches of labels (i.e., node attributes)
among nodes.

Random walk graph kernel bases on paths. The
Ly term in Equation (3.10) eliminates paths between
nodes where labels are different, regardless of the extent
they vary. Most importantly, random walk graph ker-
nel fails to recognize correlations among different node
attributes. Although some previous study includes skill
pair matrix in the algorithm [21], the essence of those
calculations is still a rough match of skill vectors. For
instance, in the DBLP dataset, the attributes pattern
recognition and feature extraction are strongly corre-
lated, which isn’t the case with security. However, cur-
rent methods, by the nature of the Kronecker product,
inaccurately equate such relationships, leading to less
precise team member replacements.

GENIUS, on the other hand, is capable of handling
graphs with massive node attributes. By including sam-
ple teams in training, the model learns to identify corre-
lations among node attributes in team social networks
and make optimal replacement choices.

Efficiency. With the remaining parameters (network
size n, team size, etc.) held constant and given d
node attributes, graph kernel-based methods have an
optimal time complexity of O(d?) [21], whereas the
time complexity of GENIUS is O(d). It is also worth
stressing that with the entire dataset fed into team
network encoder once, all teams and their subteams
to be replaced can be directly passed into subteam
recommender, which significantly reduces the amortized
complexity of GENIUS to a very low level.

Lemma 3. The amortized time complexity for the
training of the team network encoder is in O(”f—nT),
where E denotes the number of training epochs, and T
represents the time spent in each epoch.

Proof. The time complexity for training a team network
encoder is in O(nET), and the total number of replace-
ment is 2”. Thus, the amortized complexity for training
is in O(2EL). O
4 Experiments

In this section, we perform empirical evaluations to
demonstrate the effectiveness and efficiency of GENIUS.
4.1 Experimental Setup

Datasets. We utilize two widely employed public
real-world datasets, DBLP and IMDB, which have
consistently remained the predominant and sole choices
in prior research [19,21]. We follow similar experimental
setups, albeit with around 150x more abundant node

attributes. Table 1 summarizes the statistics of each
dataset. Detailed descriptions can be found as follows.

e DBLP! provides computer science bibliographic in-
formation. We build a graph where nodes represent
authors, edges represent co-authorship, and node at-
tributes are each author’s paper keywords. Teams
refer to the authors of each paper.

e IMDB? contains statistics of actors and movies,
where nodes represent actors, edges represent the
number of movies where actors co-starred, and node
attributes are tags of movies in which actors played.
Teams are represented by crews of actors in a movie.

Comparison Methods. We compare GENIUS with

two categories of baseline methods for solving subteam

replacement, including (1) graph kernel-based method

[20, 21], which prior investigations take as the optimal

solution, and (2) supervised encoder-based method [10],

which the capability of GENIUS to learn team- and

member- level representations is compared to. To val-
idate the superiority of TAGs, we compare the perfor-
mance of GENIUS with standard GNNs and that with

TAGs, namely TAG-GENIUS. By default, GENIUS in

this section refers to that with standard GNNs.

Implementation Details. For each dataset, 60% of

the teams are selected as training samples (number of

sample teams s = 0.6|P|), 20% are for validation while
the remaining 20% (labeled as Z,Z C G) are for test-
ing. Sample subteams R; are randomly selected from
sample teams T;, where i € {1,2,...,s}. For balancing
parameters in Equation (3.9), by,b2, and b3 are set as

100, 100, and 10 respectively for both DBLP and IMDB

to scale the losses to a uniform level and ensure they

are collectively updated for effective optimization.

Evaluation Metrics. There is no single golden crite-

rion for quantitatively evaluating the effectiveness of the

replacement results. Thus, we examine the disparity be-
tween the new teams and the original teams using mul-
tiple graph similarity metrics to ensure comprehensive
comparisons. In this paper, we employ graph disparity
calculated based on three metrics: (1) Graph Edit Dis-
tance (GED) [1], (2) Shortest Path Graph Kernel (SP)

[4], and (3) Marginalized Graph Kernel (MGK) [14,23].

Lower values indicate a higher similarity between the

original teams and the new teams.

4.2 Effectiveness Results

Overall Comparison. We first conduct experiments to

examine the general performance of GENIUS and com-

pare the results w.r.t. baselines with the same set of
test cases. The results are visualized in Figure 2. Ac-
cordingly, we have the following observations, includ-

Thttp://arnetminer.org/citation

2https://grouplens.org/datasets/hetrec-2011/
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Figure 2: Performance evaluation w.r.t. different datasets.

ing: (1) Based on various graph similarity metrics and
across different datasets, GENIUS generates results with
significantly lower graph disparity w.r.t. original teams:
for instanace, SP-based graph disparity for GENIUS in
IMDB is only 1/5 of that for the supervised encoder-
based method (Figure 2b); GED-based graph disparity
for GENIUS in IMDB is only 1/15 of that for the su-
pervised encoder-based method and 1/7 of that for the
graph kernel-based method (Figure 2a). (2) The graph
disparity of baseline models increases drastically when
the average team size increases: for instance, on IMDB
(average team size is around 17), both baselines gen-
erate results with average GED-based graph disparity
rising to around 100x higher than that of DBLP (aver-
age team size is around 3) while GENIUS has a steady
performance (Figure 2a). (3) The supervised encoder-
based method has the worst performance of the three,
indicating that training with labels is not appropriate
for team recommendation tasks. In short, GENIUS
outperforms baselines to a great extent.

Impact of team-level attention. We conduct experiments
on the DBLP dataset, and as can be viewed from
Figure 3, TAG-GENIUS generates new teams of higher
similarity to original teams than GENIUS based on all
graph similarity metrics.

Performance as the size of the skill set varies. This
part addresses our discussion on the limitations of graph
kernels as the skill set scales up in Section 3.3. We
pick DBLP as the evaluation dataset because it allows
a wider range of node attribute variations. The same ex-
periment settings are applied except that different num-
bers of node attributes are randomly selected from the
original dataset, ranging from 50(1%) to 7,551(100%).
Both GENIUS and the graph kernel-based method are
tested with the same set of skills and test cases. Fig-
ure 4 visualizes the results, where as the size of the
skill set increases, the disparity between the new teams
and original teams increases drastically for the graph
kernel-based method while GENIUS has stable perfor-
mance. The results confirm our previous statement that
the performance of the graph kernel-based method is im-

Table 2: Average time to find a solution in seconds

Methods DBLP IMDB
GENIUS 2.27 (0.04) 11.74 (0.13)
Graph Kernel 1335.20 4432.01

Supervised Encoder 7.32 (7.21) 216.36 (215.87)

* Numbers in brackets (if any) represent inference time

Table 3: Average training time for GENIUS per epoch
in seconds w.r.t. the size of skill set (DBLP)

# Node attributes 50 500 3,000 5,400 7,551
Average Training Time 3.59 2.77 3.32 2.93 3.00

Table 4: Average time to find a solution in seconds w.r.t.
the size of skill set (DBLP)

Methods 50 500 3,000 5,400 7,551
GENIUS 2.77 (0.23) 2.12 (0.15) 2.41 (0.05) 2.10 (0.03) 2.17 (0.04)
Graph Kernel 12.40 96.10 570.12 924.34 1335.20

* Numbers in brackets (if any) represent inference time

paired by its inability to recognize potential correlations
among various skills.

4.3 Efficiency Results For models that require
training (GENIUS and the supervised encoder-based
method), we take total running time as the sum of train-
ing time (total training time for 2000 epochs divided by
the number of test samples, i.e., | Z]) and inference time.
For the method that does not require training (graph
kernel-based method), the total running time is taken
as the time required to obtain results. We investigate
the efficiency results from the following aspects:

The overall efficiency differences between GENIUS and
baselines (Table 2). Tt is obvious that GENIUS performs
much faster than the two baselines due to its low amor-
tized time complexity and the crucial improvements
brought by the within-cluster search algorithm. GE-
NIUS has around 600x higher efficiency than the graph
kernel-based method on DBLP and around 400x higher
efficiency on IMDB; GENIUS has around 3x higher ef-
ficiency than the supervised encoder-based method on
DBLP and around 20x higher efficiency on IMDB.
Training time differences of GENIUS as the size of the
skill set varies (Table 3). From the results, we can
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Figure 4: Performance variation w.r.t. size of skill set (DBLP).

observe tiny fluctuations in the average training time
per epoch, i.e., 3.12 £ 0.29 seconds, across different
numbers of node attributes (coefficient of variation ¢, ~
9%). Thus, although variations in the number of node
attributes give rise to different numbers of parameters to
be trained, the actual training time per epoch remains
within a small range.

Efficiency differences of GENIUS compared to the graph
kernel-based method as the size of the skill set varies
(Table 4). This part addresses our discussion on the
inefficiency of graph kernels as the skill set scales up
in Section 3.3. We can observe that as the number
of node attributes increases, the graph kernel-based
method takes a drastically increasing amount of time
to obtain results. = Meanwhile, the average inference
time to find a solution using GENIUS drops as the
number of node attributes increases. This is because
with more detailed skill information, nodes become
more scattered, resulting in fewer candidates generated
by within-cluster searches. For every size of skill set,
GENIUS finds replacements significantly faster than the
graph kernel-based method.

5 Related Work

We review the related work in terms of (1) team recom-
mendations and (2) graph neural networks.

Team Recommendations. Team recommendation
addresses forming effective teams for tasks with con-
straints. It considers skill matches, team member con-
nectivity [17,28,30], and the balance in between [9].
Individual contributions to teams have also been stud-
ied [20]. Team replacement uses graph kernels [19]
or reinforcement learning in dynamic scenarios [33] for

single-member replacement. For multiple-member re-
placements (subteam replacement), graph kernels are
the primary scheme [21]. However, these methods yield
fixed-size teams, potentially problematic in real-world
scenarios with budget constraints. Zhou et al. [31] intro-
duce influence functions [16,32] to interpret results from
graph kernel-based team recommendation algorithms.
Graph Neural Networks. Various graph neural net-
works (GNNs) [7,12, 15, 24] have been developed and
widely applied in numerous fields. Within these mod-
els, node representations are passed through layers in
a consecutive fashion [11]. Each kind of them has
its own strengths and performs well in different tasks
including social network analysis [12, 15] and graph
anomaly detection [8,22]. Graph convolutional net-
works (GCNs) [15] originate from the graph spectral
theory and generate promising results by capturing in-
formation from the entire graph to encode each node.
Graph Attention Networks (GAT) [24] is able to learn
the relationships of each node with its neighbors, and
GraphSAGE [12] successfully deals with unseen nodes.
Generalized pagerank GNN (GPRGNN) [7] and Jump-
ing Knowledge Net (JKNet) [26] further solve the prob-
lem of over-smoothing. Existing GNNs mainly focus on
the member level [2,15,27], while subteam replacement
requires effective team-level representations. We intro-
duce TAGs to address this need.

6 Conclusion

In this paper, we investigate the challenging problem
of subteam replacement. To tackle this problem, we
propose a novel framework GENIUS, which incorporates
a GNN-backboned team network encoder that learns
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essential team-level representations with positive team
contrasting, a training technique specifically developed
for team-related problems. Besides generalizing GENIUS
for all popular GNNs, we also develop TAGS, the first
GNN structure designated for team social networks. To
further improve the efficacy of GENIUS, members with
similar skills and collaboration structures are clustered
together, by which a subteam recommender performs
a within-cluster search that prunes unqualified candi-
dates. Through extensive experiments, we demonstrate
the superiority of GENIUS over existing methods. Our
model can be further extended to multiple problems, in-
cluding subgraph matching in large team social network
datasets, subgraph similarities, etc.
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