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Abstract
Graph neural networks (GNNs) have exhibited

superb power in many graph related tasks. Exist-

ing GNNs can be categorized into spatial GNNs

and spectral GNNs. The spatial GNNs primarily

capture the local information around each node,

while the spectral GNNs are able to operate on

the frequency signals of the entire graph. How-

ever, most, if not all, existing spectral GNNs are

faced with two limitations: (1) the polynomial
limitation that for most spectral GNNs, the ex-

pressive power in the spectral domain is limited

to polynomial filters; and (2) the transductive lim-
itation that for the node-level task, most spectral

GNNs can only be applied on relatively small-

scale graphs in transductive setting. In this paper,

we propose a novel spectral graph neural network

named SLOG to solve the above two limitations.

For the polynomial limitation, SLOG proposes a

novel filter with real-valued order with geometric

interpretability, mathematical feasibility and adap-

tive filtering ability to go beyond polynomial. For

the transductive limitation, SLOG combines the

subgraph sampling technique in spatial GNNs and

the signal processing technique in spectral GNNs

together to make itself tailored to the inductive

node-level tasks on large-scale graphs. Extensive

experimental results on 16 datasets demonstrate

the superiority of SLOG in inductive homophilic

and heterophilic node classification task.

1. Introduction
In the era of big data and AI (Ban et al., 2021; 2023; Wei

et al., 2023; Liu et al., 2020a;b; Roach et al., 2020; Du

et al., 2021; Lin et al., 2024; Wei et al., 2024), graph neural

networks (Hamilton et al., 2017; Veličković et al., 2018)
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(GNNs) have demonstrated strong learning ability on graph

related tasks such as node classification (Kipf & Welling,

2016; Wu et al., 2019; He et al., 2021; Yan et al., 2022a;

Liu et al., 2023; Fu et al., 2024), link prediction (Zhang

& Chen, 2018; Yan et al., 2024a;b; Wang et al., 2023a),

network alignment (Yan et al., 2021a;b; 2022b; Zeng et al.,

2023a; 2024), node clustering (Fu et al., 2020; Jing et al.,

2022; 2024; Li et al., 2022a; Zeng et al., 2023b; Fu et al.,

2023) and knowledge graph reasoning (Wang et al., 2018;

Vashishth et al., 2019; Liu et al., 2021; 2022; Wang et al.,

2022; 2023b).

Most of existing GNNs can be divided into two main cate-

gories: spatial GNNs and spectral GNNs. The spatial GNNs

are designed based on the subgraph sampling technique
and the message-passing mechanism in the spatial domain.1

The spatial GNNs sample the local topological information
around each node. For example, GraphSAGE (Hamilton

et al., 2017) samples a two-hop subgraph around the target

node for message-passing and obtains the embedding for

the node. GAT (Veličković et al., 2018) adopts the self-

attention technique to assign different weights to different

edges in the sampled subgraph. Different from the spatial

GNNs focusing on capturing the local information around

each node, the spectral GNNs pay more attention to the fre-

quency signals of the whole graph. Most spectral GNNs are

developed based on the graph signal processing technique
(Wang & Zhang, 2022) in the spectral domain, which can

capture different frequency signals of the graph. To name a

few, ChebNet (Defferrard et al., 2016) utilizes a Chebyshev

polynomial filter, GNN-LF/HF (Zhu et al., 2021b) embraces

a rational function, and BernNet (He et al., 2021) applies

Bernstein polynomials as the filter.

However, most, if not all, existing spectral GNNs are faced

with with two limitations: the polynomial limitation and the

transductive limitation. Specifically, the polynomial limi-
tation means that for most spectral GNNs, the expressive

power in the spectral domain is limited to polynomial filters,

i.e., the orders of the filters are integer-valued.2 The order

1Dealing with small-scale graphs, the spatial GNNs may di-
rectly aggregate node information from all neighbors, which can
also be seen as a full neighborhood sampling.

2The filters in GNN-LF/HF (Zhu et al., 2021b), ARMA
(Bianchi et al., 2021), CayleyNet (Levie et al., 2018), and so
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of the polynomial filters, with the only exception of (Yan

et al., 2023), needs to be fixed as a hyper-parameter before

training and lacks flexibility. For the transductive limitation,

it refers to the fact (Kipf & Welling, 2016; Liu et al., 2022;

Yan et al., 2023) that in terms of node-level tasks, most spec-

tral GNNs can only be applied to the transductive setting on

relatively small-scale graphs and can not accommodate to

the inductive setting in real-world large-scale graphs, where

new nodes keep emerging. This is because these existing

spectral GNNs have to precompute the graph signal process-

ing operators such as multiplication on the adjacency matrix

of the entire graph.

To address the above two limitations of existing spec-

tral GNNs, in this paper, we propose a novel model

named SLOG with three sub-models with different com-

ponents/layers: SLOG(B) (Base), SLOG(N) (Nolinear), and

SLOG(L) (Local). The key idea of SLOG(B) is two-fold:

firstly, to solve the polynomial limitation, SLOG(B) pro-

poses a novel filter with real-valued order to go beyond

polynomial. In detail, we elucidate that the filter with real-

valued order of SLOG(B) enjoys (1) good geometric inter-

pretability in spatial domain; (2) mathematical feasibility

in spectral domain; and (3) adaptive filtering ability for

different frequency signals (e.g., low/high/band-pass and

band-stop) (Section 3.1). Secondly, to resolve the trans-
ductive limitation, SLOG(B) creatively combines the sub-

graph sampling technique in spatial GNNs and the signal

processing technique in spectral GNNs together, which ren-

ders SLOG(B) the inductive ability on large-scale graphs

(Section 3.2). Since SLOG(B) only has one linear layer

filter, we further propose two sub-models: SLOG(N) and

SLOG(L). SLOG(N) extends SLOG(B) to multiple layers

and adds more non-linearity into the model (Section 3.2) and

SLOG(L) interpolates the global uniform filter in SLOG(B)

with local adaptive filter for each subgraph (Section 3.3).

Through extensive empirical evaluations on 16 real-world

datasets in the node classification task, we corroborate the

effectiveness of the proposed SLOG. To summarize, our

contributions are three-fold:

• Insight. The key idea of our paper is two-fold: (1)

designing a real-valued order filter with geometric in-

terpretability, mathematical feasibility and adaptive

filtering ability; and (2) combining the subgraph sam-

pling technique in spatial GNNs and the graph signal

processing technique in spectral GNNs together.

• Model. We propose a large-scale inductive spectral

GNN beyond polynomial filter named SLOG, which

includes three sub-models: SLOG(B) as the base sub-

model, SLOG(N) with non-linearity and SLOG(L) for

interpolating the global uniform filter in SLOG(B) with

on, are still built upon polynomial filters.

the local adaptive filter for each subgraph. While the

three sub-models are differentiated by unique compo-

nents/layers, they belong to the unified SLOG model.

• Experiments. We conduct extensive experiments on

16 datasets and empirically find that the proposed

SLOG achieves comparable or better performance than

the state-of-the-arts in the inductive homophilic and

heterophilic node classification task, which demon-

strates the superiority of SLOG.

2. Preliminaries
Notations. We utilize bold uppercase letters for matrices

(e.g., A), bold lowercase letters for column vectors (e.g.,

u) and lowercase letters for scalars (e.g., α). We use the

superscript � for the transpose of matrices and vectors (e.g.,

A� and u�). Consider a graph G = (V, E), where V =
{vi}ni=1 represents the set of n nodes, and E ⊆ V × V
denotes the set of edges. We use X ∈ R

n×f to represent

the node features of a graph with feature dimension f . The

adjacency matrix A ∈ R
n×n is defined such that Aij = 1 if

(vi, vj) ∈ E , and Aij = 0 otherwise. The degree matrix is

D = diag({∑j Aij}ni=1). We introduce Ã = A+ I as the

adjacency matrix augmented with self-loop for each node,

where I is the identity matrix, and D̃ is the degree matrix of

Ã.

Spectral Graph Theory. The graph Laplacian matrix is

defined as L = D −A. We use Lsym = I −D− 1
2AD− 1

2

for the symmetrically normalized graph Laplacian matrix.

Let Lsym = UΛU� represents the eigen-decomposition

of Lsym, where U = [u1, · · · ,un] is the matrix of eigen-

vectors, and Λ = diag({λi}ni=1) is the diagonal matrix

of eigenvalues. The eigenvalues of Lsym are bounded by

λi ∈ [0, 2) (Chung, 1997)3, which also applies to the eigen-

values {λ̃i}ni=1 of L̃sym. In addition, applying a function

g(·), also known as a filter, to Lsym is equivalent to applying

g(·) to its eigenvalues (Shuman et al., 2013):

g(Lsym) =

n∑

i=1

g(λi)uiu
�
i . (1)

This is also applicable to L̃sym. For a l-th layer simpli-

fied graph convolutional network (SGC) (Wu et al., 2019)

without non-linear activation function, the final node repre-

sentation matrix Z can be formulated as:

Z = (I− L̃sym)
lXW, (2)

where X is the node feature matrix and W is the train-

able parameter matrix. Here, the linear graph convolu-

tional layer is equivalent to applying a polynomial function

3In this work, we only consider connected graph without bipar-
tite components (i.e., a component which is a bipartite graph).
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g(Lsym) = (I − Lsym)
l(l ∈ N

+) to the graph Laplacian

matrix, functioning as a graph filter.

Graph Homophily and Heterophily. The concept of ho-

mophily/heterophily addresses the tendency of nodes to

connect with others of the same or different classes/labels

respectively. There are several interpretations of ho-

mophily/heterophily in existing literature, including per-

spectives at the edge scale (Abu-El-Haija et al., 2019; Zhu

et al., 2020; Luan et al., 2021), node scale (Pei et al., 2020),

and graph scale (Lim et al., 2021). This paper specifically

addresses edge heterophily, defined as the proportion of

edges connecting nodes of the different types relative to the

total number of edges: h(G) =
∣∣(vi,vj)∈E|yi �=yj

∣∣
|E| , where yi

represents the type of node vi.

3. Model
In this section, we present the details of the proposed SLOG

model. We first introduce the specially designed filter with

real-valued order, which is the key component of SLOG to

solve the polynomial limitation (Section 3.1). Equipped with

the filter with real-valued order, we present how the one lin-

ear layer filter base model SLOG(B) solves the transductive
limitation by combining the subgraph sampling technique

in spatial GNNs and the frequency signal processing tech-

nique in spectral GNNs together (Section 3.2). Then, we

enhance the one layer linear SLOG(B) to multi-layer non-

linear SLOG(N) (Section 3.2). To handle the varying degree

of heterophily across different parts of the graph4, we fur-

ther propose the SLOG(L), which interpolates the global

uniform filter from SLOG(B)/SLOG(N) with the local adap-

tive filter for each subgraph in corresponding SLOG(LB)

and SLOG(LN) (Section 3.3). Moreover, a complexity anal-

ysis can be found in Appendix A.4.

3.1. Filter Beyond Polynomial

The filter in most existing spectral GNNs (e.g., ChebNet

(Defferrard et al., 2016), APPNP (Gasteiger et al., 2018),

and SGC (Wu et al., 2019)) can be summarized as follows:

g(Lsym) =

K∑

k=1

αkL
k
sym, (3)

where Lsym is the symmetrically normalized graph Lapla-

cian and K is order of the polynomial. To map the filter

in the spectral domain to the K-hop subgraph in the spa-

tial domain, usually, the order K is a fixed positive integer

hyper-parameter, which lacks flexibility and can not be op-

timized as a variable during the training process. Recently,

TeDGCN (Yan et al., 2023) redefines the depth/layer of

GNNs and successfully builds a filter with real-valued order

4Please refer to Figure 3 and Section 3.3 for details.

as: g(Lsym) = (I− 1
2Lsym)

d, where d is a real number and

a trainable parameter. Unfortunately, this filter can only cap-

ture low/high frequency signals and is not able to function as

a band-pass/band-stop filter (Balcilar et al., 2021). Further-

more, TeDGCN has to conduct the eigen-decomposition on

Lsym, which means that it is still faced with the transductive
limitation.

In this subsection, we introduce the key component of

SLOG: a filter with real-valued order, ω(·), to go beyond

the polynomial expressiveness in the spectral domain as

follows:

ω(Lsym) = (I− 1

2
Lsym)

p(I+ (Lsym − I)2)q, (4)

where p and q are two trainable real-valued parameters. We

opt for the filter design in Eq. (4) for the following three

key properties: geometric interpretability, mathematical
feasibility and adaptive filtering:

P1. Geometric Interpretability in the Spatial Domain.

Proposition 3.1. The SLOG’s filter with real-valued or-
der, ω(·), in the spectral domain can be regarded as the
combination of two linear graph convolutional networks
in the spatial domain: ω(Lsym) = Sp

1 · Sq
2, where S1 =

1
2 (I+D− 1

2AD− 1
2 ) and S2 = I+ (D− 1

2AD− 1
2 )2.

The proof can be found in Appendix A.1. Based on Propo-

sition 3.1, the filter in Eq. (4) essentially represents the

combination of two linear graph convolutional networks

with trainable real-valued depths, which is composed of a

series of operations applied to the adjacency matrix A. This

process involves symmetric normalization of A, and addi-

tion of self-loops to both one-hop and two-hop adjacency

matrices.

P2. Mathematical Feasibility. The eigenvalues of Lsym

are confined within the range λi ∈ [0, 2). And the filter

ω(Lsym) comprises two components: (I − 1
2Lsym)

p and

(I + (Lsym − I)2)q. The first part, a polynomial function

of Lsym, is positive-definite, leading to the mathematical

feasibility to compute its exponentiation by any real number

p 5. Likewise, the second part is also positive-definite and

enjoys similar mathematical feasibility.

P3. Adaptive Filtering. The frequency response of the

proposed filter under various parameter configurations is

illustrated in Figure 1. This demonstrates the filter’s ability

to be transformed into high-pass, low-pass, band-pass, or

band-stop filters by optimizing the parameters p and q in the

real number domain.

Given the filter with real-valued order in Eq. (4), we next

introduce the details of SLOG and how it can be applied

5For a positive-definite matrix, computing the real-valued order
of the matrix is equivalent to conducting eigen-decomposition and
computing the power of the eigenvalues. (Shuman et al., 2013)

3



SLOG: An Inductive Spectral Graph Neural Network Beyond Polynomial Filter

(a) High pass (p = −1, q = −1) (b) Low pass (p = 1, q = 1) (c) Band pass (p = 0, q = −1) (d) Band stop (p = 0, q = 1)

Figure 1. The frequency responses of the proposed filter with different parameters.

to the inductive setting and run on large-scale graphs in

Section 3.2.

3.2. SLOG(B) and SLOG(N)

Algorithm 1 SLOG(B)

1: Input: Graph G(V, E); node feature X; node v ∈ V; hop
number of subgraphs K; maximum neighbor numbers of each
depth {Ni}.

2: Output: Vector representations zv for node v.
# Step 1: Sampling K-hop subgraph

3: Gv(VGv , EGv ) ← SAMPLE(G, {v},K, {Ni})
# Step 2: Calculation and Filtering

4: Compute node feature XGv and symmetrically normalized
Laplacian matrix LGv of Gv

# Step 3: Obtaining node representation
5: ZGv ← ω(LGv )XGvW
6: zv ← ZGv (v)
7: return zv

# Method: Subgraph sampling strategy
8: function SAMPLE(G,Vi,K, {Ni})

9: V(0) ← Vi

10: for k = 1 to K do
11: Sample Su ⊆ N (u), s.t. |Su| ≤ Nk for each u ∈

V(k−1), where N : v → 2V is the neighbor function of
G.

12: V(k) ← (
⋃

u∈V(k−1) Su) ∪ V(k−1)

13: end for
14: return G(V(K), E(K))
15: end function

In this subsection, we present the details of SLOG(B) and

SLOG(N). To handle the inductive setting and large-scale

graphs, the key idea of SLOG is to integrate the subgraph
sampling technique from spatial GNNs with the proposed

filter with real-valued order in Section 3.1. In other words,

for a given node v, SLOG applies the filter on a sampled

subgraph centered on v, whose size is much smaller than

the whole graph. In this way, SLOG fits into the inductive

setting and avoids the eigen-decomposition of the whole

graph, which enables it to be run on large-scale graphs.

Concretely, for a target node v, as shown in Algorithm 1,

SLOG(B) contains 3 parts: (1) Firstly, we sample a subgraph

Gv around v: starting from v, we sample a K-hop graph

with random node mask. All the sampled nodes and the

edges between them form the subgraph Gv; (2) Based on

Gv, we calculate the symmetrically normalized Laplacian

matrix LGv
of Gv and apply the filter ω(·) in Eq. (4) on LGv

;

(3) Finally, the representations of nodes in Gv is obtained as

follows:

ZGv
= ω(LGv

)XGv
W, (5)

where W is the parameter matrix. An illustrative example

of SLOG(B) is shown in Figure 2(a).

From the above introduction of SLOG(B) and the filter ω(·)
in Section 3.1, we can find that SLOG(B) is able to solve

the polynomial limitation and the transductive limitation
with the help of (1) the filter with real-valued order; and

(2) the combination of the subgraph sampling technique in

spatial GNNs and the frequency signal processing technique

in spectral GNNs.

Nevertheless, this simple linear filter in SLOG(B) does not

possess non-linearity. To address this, we further propose

an enhanced sub-model, SLOG(N), which includes L layers

of SLOG(B). In addition, it not only incorporates non-linear

activation functions between filters but also introduces resid-

ual connections (He et al., 2016). Details of the structure are

illustrated in a figure provided in Appendix A.2. The resid-

ual connections make the output become an interpolation

of the embeddings from previous layer and the embeddings

after transformation by Eq. (4). Specifically, in each layer,

the representation matrix is updated by:

H
(l)
Gv

= σ(ω(l)(LGv )H
(l−1)
Gv

W
(l)
1 +H

(l−1)
Gv

W
(l)
2 ), (6)

where σ(·) denotes the activation function, ω(l)(·) denotes

the filter at the l-th layer, H
(l)
Gv

is the representation matrix at

the l-th layer, and W
(l)
1 and W

(l)
2 are the parameter matrices

at the l-th layer.
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(a) SLOG(B)/SLOG(N) (b) SLOG(L)

Figure 2. An overview of the proposed SLOG. (a) In SLOG(B)/SLOG(N), nodes ui and uj are associated with K-hop subgraphs Gui and

Guj respectively. The filter with real-valued order, ω(·), is applied to these subgraphs during model training. New nodes, depicted with

dashed outlines, are processed similarly: sampled subgraphs are generated and the established filter is utilized for prediction. For node v,

its corresponding subgraph Gv is employed for prediction. (b) In SLOG(L), the graph is partitioned into M subgraphs; for instance, two

such subgraphs are GTi and GTj . Each subgraph is expanded to restore disrupted edges, and a combination of global and respective local

filters (ωi(·) for GTi , ωj(·) for GTj ) is applied during training. Newly added nodes are assigned to the nearest subgraph, exemplified by

node v being matched with GTi , and predictions are made using the corresponding filter ωi(·).

Figure 3. The one hop edge heterophily density of two real-world

datasets: Squirrel (Rozemberczki et al., 2021) and Minesweeper

(Platonov et al., 2023). The x-axis represents the edge heterophily

(h), and the y-axis shows the corresponding density distribu-

tion. For all nodes in the graph, we sample 1-hop ego-graph

for each node, and the density of the distribution can be defined

as ρ(h) = ΔN(h)/Δh, where N(h) represents the proportion

of the subgraphs that have an edge heterophily equal to h. The

edge heterophily distribution of Squirrel is uniform, while that of

Minesweeper is varying.

3.3. SLOG(L)

Actually, SLOG(B), SLOG(N), and various other het-

erophilic graph-oriented methods, such as GPRGNN (Chien

et al., 2020), H2GCN (Zhu et al., 2020), and BernNet (He

et al., 2021) employ one single uniform filter to capture the

frequency information of the whole graph. Nevertheless,

heterophily in graphs is not uniformly distributed and can

exhibit significant variation across different graph regions,

which has been exemplified by Figure 3.

Therefore, one uniform filter with the same parameters (e.g.,

same p and q in Eq. (4)) for all subgraphs can not effec-

tively capture the varying local heterophily. To address this

issue, the proposed SLOG(L)’s filter contains two parts: one

global uniform filter from SLOG(B)/SLOG(N) and one lo-

cal adaptive filter for each subgraph, which is tailored to

capture the local frequency signals. The filter for SLOG(L)

is outlined in Eq. (7).

ωi(LGv ) = (I− 1

2
LGv )

p′
i(I+ (LGv − I)2)q

′
i , (7)

where p′i = βpglo + (1− β)pi and q′i = βqglo + (1− β)qi
represent the weighted combinations of global and local

parameters. Here, β is a hyper-parameter that modulates the
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balance between global and local filters. The parameters pglo

and qglo are associated with the global uniform filter, while

pi and qi are adaptive to the i-th subgraph. By interpolating

the parameters of the global filter with those of the local

filter, SLOG(L) can address the varying edge heterophily

distribution across different subgraphs.

As illustrated in Figure 2(b), SLOG(L) contains the follow-

ing steps: (1) Graph partition: when the number of nodes

in the graph is extremely large, it is infeasible for SLOG(L)

to adopt the same sampling strategy as SLOG(B)/SLOG(N)

due to the growing number of parameters (i.e., one (pi, qi)
for one node vi). Thus, we employ the METIS graph parti-

tion method (Karypis & Kumar, 1998) to partition the train-

ing graph into M subgraphs, {GTi
(VTi

, ETi
)}Mi=1. More

details about METIS are presented in Appendix C.3; (2)

Subgraph expansion and training: for each subgraph GTi
,

the graph partition may disrupt some edge connections, thus

we augment it with nodes and edges within K-hop distance

from GTi
. This process can restore the disrupted edges

in GTi
. After this step, we pursue the same procedure in

SLOG(B)/SLOG(N) to apply the filter ωi(·) in Eq. (7) on

the subgraph. The filter ωi(·) is a combination of global

and corresponding local filter. We then train the model; (3)

Minimum distance subgraph search & prediction: in the

inductive setting, when a new node v emerges, SLOG(L)

calculates its distance to each subgraph, and finds out the

nearest subgraph. The subgraph with the minimum distance

and its corresponding filter are selected to obtain the rep-

resentation of v, which can be used for prediction. The

detailed algorithm of SLOG(L) is attached in Appendix A.3

due to the page limit.

4. Experiment
In this section, we evaluate SLOG on the semi-supervised

node classification task. We first introduce the datasets,

baselines and settings in Section 4.1. Next, in Section 4.2,

we experiment with SLOG(B) and SLOG(N). In Section 4.3,

we conduct experiments on SLOG(L). In addition, We con-

duct additional experiments on SLOG’s adaptive filtering

ability in Section 4.4. Due to the page limit, some addi-

tional experimental results are attached in Appendix: (1)

ablation studies (Appendix B.1); (2) results of additional

baselines (Appendix B.2); (3) experimental results on syn-

thetic datasets (Appendix B.3); (4) a convergence study

(Appendix B.4); and (5) experimental results using two

alternative optimization methods (Appendix B.5).6

6Our code is available at https://github.com/
Hsu1023/SLOG.

4.1. Experiment Setup

Datasets. We adopt 16 datasets for evaluation, including 13

small-scale datasets and 3 large-scale datasets. The small-

scale datasets, sourced from (Kipf & Welling, 2016; Bo-

jchevski & Günnemann, 2017; Shchur et al., 2018; Rozem-

berczki et al., 2021; Platonov et al., 2023), include two cate-

gories: the heterophilic datasets include Chameleon, Squir-

rel, Squirrel-filtered, Chameleon-filtered, Minesweeper,

Tolokers, Amazon-ratings, and Questions; the homophilic

datasets include Cora, Citeseer, DBLP, Coauthor-CS, and

Coauthor-Physics. The large-scale datasets, sourced from

(Hamilton et al., 2017; Zeng et al., 2019; Hu et al., 2020),

are Flickr, Ogbn-arxiv, Reddit. These datasets are diverse,

varying in scale, domain, and heterophilic/homophilic ratios.

Detailed statistics of datasets are presented in Appendix C.1.

Baselines. We compare our method against 13 baselines, in-

cluding (1) a non-topology method: MLP; (2) general GNN

methods including GCN (Kipf & Welling, 2016), Cheb-

Net (Defferrard et al., 2016), GraphSAGE (Hamilton et al.,

2017), GAT (Veličković et al., 2018), APPNP (Gasteiger

et al., 2018), SGC (Wu et al., 2019), GATv2 (Brody et al.,

2021); (3) heterophilic graph oriented methods including

GPRGNN (Chien et al., 2020), H2GCN (Zhu et al., 2020),

FAGCN (Bo et al., 2021), BernNet (He et al., 2021), Jacobi-

Conv (Wang & Zhang, 2022).

Settings. For small-scale datasets, we employ a random

split of 60%/20%/20% for train/validation/test sets and con-

duct experiments in the inductive setting7. For large-scale

datasets, we keep the same split and the same transduc-

tive/inductive setting as those used in the original papers. It

is important to note that in the inductive setting, the models

are not exposed to validation or test nodes during training.

For evaluation, we use accuracy (ACC) with standard devia-

tion (std) as the metric, averaging the results over 5 runs.

4.2. SLOG(B) & SLOG(N)

The performance comparison on small-scale datasets is de-

tailed in Table 1 and Table 2. Our method demonstrates

a notable superiority over all baselines in most datasets,

achieving the best performance in 11 out of 13 small-scale

datasets. Specifically, for heterophilic datasets (Table 1), our

method surpasses every baseline across all datasets. This

superiority is attributed to the method’s capability to ef-

fectively discern the graph’s heterophily, thereby flexibly

adjusting its filter to capture a diverse range of frequency

signals depending on the dataset. In contrast, for homophilic
datasets (Table 2), our method shows excellence in 3 out of

5 datasets and ranks second in the remaining two. Notably,

7For spectral methods, we build a new Laplacian matrix Lsym

when new nodes emerge in the inductive setting and inherit the old
parameters from training.
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Table 1. Evaluation results on heterophilic datasets in the inductive setting.

Datasets Squirrel Chameleon Squirrel-filt. Chameleon-filt. Minesweeper Tolokers Amazon-ratings Questions

MLP 0.336±0.014 0.469±0.004 0.366±0.021 0.380±0.021 0.788±0.000 0.775±0.000 0.449±0.005 0.972±0.000
GCN 0.374±0.007 0.532±0.012 0.329±0.020 0.411±0.031 0.788±0.000 0.784±0.001 0.420±0.002 0.970±0.000

ChebNet 0.350±0.004 0.535±0.005 0.333±0.019 0.372±0.025 0.823±0.001 0.783±0.003 0.393±0.001 0.969±0.001
GraphSAGE 0.387±0.011 0.246±0.043 0.349±0.013 0.360±0.041 0.810±0.002 0.794±0.003 0.436±0.005 0.970±0.000

GAT 0.306±0.006 0.484±0.020 0.329±0.017 0.344±0.024 0.787±0.001 0.776±0.000 0.392±0.001 0.970±0.000
APPNP 0.314±0.008 0.410±0.010 0.312±0.019 0.381±0.020 0.788±0.000 0.778±0.001 0.429±0.002 0.970±0.000

SGC 0.371±0.005 0.486±0.002 0.320±0.016 0.357±0.021 0.786±0.000 0.782±0.000 0.398±0.002 0.970±0.000
GATv2 0.310±0.006 0.468±0.009 0.350±0.013 0.394±0.026 0.788±0.002 0.775±0.001 0.394±0.002 0.970±0.000

GPRGNN 0.343±0.009 0.472±0.020 0.364±0.019 0.394±0.038 0.791±0.000 0.775±0.001 0.414±0.004 0.970±0.000
H2GCN 0.359±0.005 0.454±0.007 0.335±0.025 0.381±0.026 0.824±0.001 0.788±0.001 0.442±0.002 0.971±0.000
FAGCN 0.332±0.008 0.412±0.026 0.350±0.030 0.369±0.027 0.789±0.001 0.784±0.002 0.433±0.009 0.970±0.000
BernNet 0.361±0.007 0.578±0.007 0.361±0.020 0.374±0.030 0.788±0.000 0.772±0.007 0.398±0.002 0.969±0.001

JacobiConv 0.221±0.017 0.309±0.015 0.295±0.012 0.348±0.035 0.788±0.000 0.704±0.100 0.355±0.010 0.877±0.176

SLOG(B) 0.392±0.006 0.581±0.024 0.427±0.013 0.420±0.023 0.822±0.009 0.796±0.005 0.451±0.007 0.972±0.001
SLOG(N) 0.355±0.010 0.520±0.022 0.376±0.025 0.431±0.026 0.844±0.008 0.810±0.006 0.456±0.006 0.972±0.001

Table 2. Evaluation results on homophilic datasets in the inductive setting.

Datasets Cora Citeseer DBLP Co.-CS Co.-Phys.

MLP 0.695±0.017 0.680±0.016 0.769±0.004 0.925±0.002 0.962±0.000
GCN 0.863±0.005 0.746±0.010 0.847±0.008 0.905±0.001 0.958±0.001

ChebNet 0.804±0.004 0.740±0.009 0.840±0.000 0.640±0.001 0.958±0.000
GraphSAGE 0.835±0.005 0.724±0.010 0.840±0.003 0.907±0.002 0.970±0.001

GAT 0.852±0.010 0.739±0.008 0.848±0.005 0.938±0.001 0.958±0.001
APPNP 0.839±0.004 0.748±0.008 0.835±0.008 0.918±0.001 0.961±0.000

SGC 0.859±0.010 0.754±0.008 0.845±0.003 0.938±0.001 0.958±0.000
GATv2 0.863±0.008 0.741±0.012 0.845±0.006 0.905±0.001 0.959±0.001

GPRGNN 0.874±0.010 0.756±0.003 0.848±0.004 0.942±0.001 0.966±0.000
H2GCN 0.815±0.004 0.757±0.010 0.840±0.001 0.940±0.001 0.966±0.000
FAGCN 0.845±0.007 0.751±0.014 0.835±0.007 0.932±0.013 0.963±0.003
BernNet 0.865±0.006 0.745±0.015 0.849±0.004 0.938±0.001 0.959±0.000

JacobiConv 0.584±0.034 0.559±0.098 0.455±0.041 0.882±0.008 0.924±0.010

SLOG(B) 0.865±0.011 0.766±0.026 0.850±0.005 0.934±0.003 0.959±0.002
SLOG(N) 0.761±0.010 0.675±0.026 0.839±0.003 0.944±0.005 0.966±0.001

Table 3. Evaluation results on large-scale datasets.

Datasets Flickr Ogbn-arxiv Reddit

nodes 89,250 169,343 232,965
edges 899,756 1,166,243 114,615,892
setting inductive transductive inductive

MLP 0.474±0.001 0.539±0.001 0.702±0.001
GraphSAGE 0.502±0.002 0.717±0.002 0.944±0.001

GAT 0.509±0.001 0.676±0.003 0.944±0.002
GATv2 0.517±0.001 0.675±0.001 0.957±0.000

GPRGNN 0.508±0.002 0.684±0.002 0.950±0.000
H2GCN 0.516±0.002 0.677±0.000 OOM

SLOG(B) 0.509±0.001 0.723±0.001 0.954±0.000
SLOG(N) 0.520±0.003 0.719±0.002 0.962±0.001

in the Cora and Coauthor-Physics datasets, our method’s

performance is marginally lower than the best baseline, by

only 1.4% and 0.4%, respectively. This underscores our

method’s effectiveness in homophilic datasets as well.

For large-scale dataset evaluation, results in Table 3 illus-

trate that our method consistently outperforms others. A

notable aspect is the size of the Reddit dataset, which con-

tains 115M edges and is significantly larger than those in

most related studies. Due to the high computational cost,

some baselines meet the out-of-memory (OOM) problem in

our machine8. However, thanks to the sampling technique,

our method is able to directly run on the graph, achieving the

best performance, confirming its scalability to large-scale

graphs. It is also important to note that these experiments

adhere to the same transductive/inductive settings as used

in the original papers, further evidencing our method’s ro-

bustness across various settings.

In addition, it is observed that SLOG(N) outperforms

SLOG(B) on numerous datasets, despite its more complex

8Since some spectral GNNs can not be run on such large-scale
datasets, we do not include them in the comparison.

architecture and increased number of parameters. This

improvement is attributed to the additional non-linearity

in SLOG(N), which enhances the model’s expressiveness.

Moreover, the incorporation of residual connections in

SLOG(N) helps preserve the node embedding from previous

layer.

4.3. SLOG(L)

The SLOG(L) model, as introduced in Section 3.3, addresses

varying distributions of homophily/heterophily ratios across

a graph. In order to quantify the heterophily/homophily

balance, we introduce a metric, locality. We sample a fixed

number of nodes in the graph, obtain their 1-hop ego-graphs,

and calculate the edge heterophily of these ego-graphs. The

locality, defined as the standard deviation of all 1-hop ego-

graphs’ edge heterophily, inversely indicates the balance

level of local edge heterophily across the whole graph.

As shown in Table 4, SLOG(LB)/SLOG(LN) en-

hances performance in datasets with high locality (e.g.,

Chameleon, Chameleon-filt., Minesweeper, Tolokers), sug-

gesting its effectiveness in contexts with imbalanced ho-

7
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Table 4. Performance of SLOG(L) on datasets with different locality.

Datasets Squirrel Squirrel-filt. Chameleon Chameleon-filt. Minesweeper Tolokers

Locality/10−2 1.85 1.66 4.16 3.03 4.08 3.84

Best of baselines 0.387±0.011 0.366±0.021 0.578±0.007 0.411±0.031 0.824±0.001 0.794±0.003

SLOG(B) 0.392±0.006 0.427±0.013 0.581±0.024 0.420±0.023 0.822±0.009 0.796±0.005
SLOG(N) 0.355±0.010 0.376±0.025 0.520±0.022 0.431±0.026 0.844±0.008 0.810±0.006

SLOG(LB) 0.387±0.008 0.409±0.010 0.605±0.043 0.443±0.029 0.807±0.006 0.785±0.008
SLOG(LN) 0.355±0.012 0.375±0.028 0.535±0.017 0.453±0.041 0.848±0.007 0.814±0.004

mophily/heterophily distributions. However, in datasets

with low locality (e.g., Squirrel, Squirrel-filt.), the perfor-

mance gain is not observed, likely due to the already bal-

anced local edge heterophily of these graphs. Here, the

addition of a local component unnecessarily complicates the

model, potentially hindering the effectiveness of the model.

4.4. Adaptive Filtering to Broad Frequency Signals

In this subsection, we present the learned filters of our

method on real datasets. The learned filters of our method

SLOG(B) on real datasets are shown in Figure 4(a) and

4(b). To compare with BernNet, we also show the learned

filters of BernNet on the same datasets in Figure 4(c) and

Figure 4(d). For the homophilic Citeseer graph, SLOG(B)

functions as a low-pass filter, capturing homophilic informa-

tion (Figure 4(a)). Conversely, for the heterophilic Squirrel

graph, it selectively filters out medium-frequency signals

and preserves high-frequency ones (Figure 4(b)). However,

BernNet’s performance on Citeseer includes not only low-

frequency signals but also some medium-frequency noise

(Figure 4(c)), indicating a potential for overfitting due to its

complex coefficients. Though BernNet learns filters similar

to SLOG(B) on Squirrel, the fluctuating signal curves imply

the capture of some extraneous signals (Figure 4(d)).

5. Related Work
Graph neural networks (GNN). GNN models can be

roughly divided into two categories, i.e. spectral-based

methods and spatial-based methods (Zhang et al., 2020).

Spectral methods are based on the spectral graph theory,

aiming to establish graph convolutional kernel in the spec-

tral domain. The notable attempt is reported in (Bruna et al.,

2013), which firstly introduces graph convolutional kernel.

After that, ChebNet (Defferrard et al., 2016) utilizes Cheby-

chev polynomials to form a convolutional kernel. GCN

(Kipf & Welling, 2016) takes the first-order approxima-

tion to simplify the kernel. SGC (Wu et al., 2019) further

changes multi-layer design to one linear transformation.

Other spectral-based methods include (Levie et al., 2018; Li

et al., 2018; Zhu et al., 2021b; Bianchi et al., 2021) and so

on. Spatial-based methods mainly focus on aggregating the

information of neighboring nodes. GraphSAGE (Hamilton

(a) Citeseer-SLOG (b) Squirrel-SLOG

(c) Citeseer-BernNet (d) Squirrel-BernNet

Figure 4. Learned filters on real dataset.

et al., 2017) studies three different aggregators to aggregate

the information of neighbors. In GAT (Veličković et al.,

2018), attention mechanism is introduced as the aggregator.

GIN (Xu et al., 2018) deploys MLPs to model injective

functions in order to enhance the discriminative power of

the GNN. We refer readers to (Zhou et al., 2020; Wu et al.,

2020) for more details.

Heterophilic graph learning. While GNNs are mostly

based on the homophily assumption that neighboring nodes

are inclined to share the same labels, there are many real-

world graphs that do not satisfy this assumption (McPherson

et al., 2001). These graphs, which are called heterophilic

graphs, have gained an increasing attention recently. Cay-

leyNet (Levie et al., 2018) defines a complex Cayley filter

and utilize Jacobi iteration to optimize it, while ARMA

(Bianchi et al., 2021) uses auto-regressive moving average

(ARMA) filter to capture the global graph structure. Geom-

GCN (Pei et al., 2020) defines the geometric relationship in a

latent space to use neighborhood information. FAGCN (Bo

et al., 2021) utilizes the attention mechanism to seperately

learn low-frequency and high-frequency signals. ACM-
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GCN (Luan et al., 2021) adopts a linear combination of

low/high pass filters and adaptively mix the generated node

information from the two filters. CPGNN (Zhu et al., 2021a)

utilizes a compatibility matrix to model the heterophilic/ ho-

mophilic relationships between nodes. TeDGCN (Yan et al.,

2023) utilizes a filter with real-valued order, with its learn-

able parameter as the depth of graph convolutional layers,

expressed as a real number. Other heterophilic graph learn-

ing methods include (Li et al., 2022b; Wang & Zhang, 2022;

He et al., 2022; Zheng et al., 2023; Xu et al., 2023; Guo &

Wei, 2023; Geng et al., 2023; Guo et al., 2023). We refer

readers to (Zheng et al., 2022) for more details.

6. Conclusion and Limitations
In this paper, we propose an inductive spectral graph neu-

ral network named SLOG with the expressive power be-

yond a polynomial filter. Specifically, SLOG includes

three sub-models: the base model SLOG(B), the non-linear

model SLOG(N) and the local model SLOG(L). SLOG(B)

is equipped with a filter with real-valued order, which en-

joys geometric interpretability, mathematical feasibility and

adaptive filtering. SLOG(N) adds non-linearity and residual

connections into SLOG(B). To better capture the varying

heterophily distribution, SLOG(L) conducts an interpolation

between the global uniform filter and the local adaptive filter.

Extensive experiments on 16 real-world datasets corrobo-

rate the effectiveness, scalability and robustness of SLOG

in the inductive semi-supervised homophilic/heterophilic

node classification task. One potential limitation of SLOG is

that it only focuses on node classification problem, and we

leave its extension to other tasks including link prediction

as future work.
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