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Abstract

Graph neural networks (GNNs) have exhibited
superb power in many graph related tasks. Exist-
ing GNNs can be categorized into spatial GNNs
and spectral GNNs. The spatial GNNs primarily
capture the local information around each node,
while the spectral GNNs are able to operate on
the frequency signals of the entire graph. How-
ever, most, if not all, existing spectral GNNs are
faced with two limitations: (1) the polynomial
limitation that for most spectral GNNs, the ex-
pressive power in the spectral domain is limited
to polynomial filters; and (2) the transductive lim-
itation that for the node-level task, most spectral
GNNSs can only be applied on relatively small-
scale graphs in transductive setting. In this paper,
we propose a novel spectral graph neural network
named SLOG to solve the above two limitations.
For the polynomial limitation, SLOG proposes a
novel filter with real-valued order with geometric
interpretability, mathematical feasibility and adap-
tive filtering ability to go beyond polynomial. For
the transductive limitation, SLOG combines the
subgraph sampling technique in spatial GNNs and
the signal processing technique in spectral GNNs
together to make itself tailored to the inductive
node-level tasks on large-scale graphs. Extensive
experimental results on 16 datasets demonstrate
the superiority of SLOG in inductive homophilic
and heterophilic node classification task.

1. Introduction

In the era of big data and AI (Ban et al., 2021; 2023; Wei
et al., 2023; Liu et al., 2020a;b; Roach et al., 2020; Du
etal., 2021; Lin et al., 2024; Wei et al., 2024), graph neural
networks (Hamilton et al., 2017; Velickovié et al., 2018)
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(GNNs) have demonstrated strong learning ability on graph
related tasks such as node classification (Kipf & Welling,
2016; Wu et al., 2019; He et al., 2021; Yan et al., 2022a;
Liu et al., 2023; Fu et al., 2024), link prediction (Zhang
& Chen, 2018; Yan et al., 2024a;b; Wang et al., 2023a),
network alignment (Yan et al., 2021a;b; 2022b; Zeng et al.,
2023a; 2024), node clustering (Fu et al., 2020; Jing et al.,
2022; 2024; Li et al., 2022a; Zeng et al., 2023b; Fu et al.,
2023) and knowledge graph reasoning (Wang et al., 2018;
Vashishth et al., 2019; Liu et al., 2021; 2022; Wang et al.,
2022; 2023b).

Most of existing GNNs can be divided into two main cate-
gories: spatial GNNs and spectral GNNs. The spatial GNNs
are designed based on the subgraph sampling technique
and the message-passing mechanism in the spatial domain.!
The spatial GNNs sample the local topological information
around each node. For example, GraphSAGE (Hamilton
et al., 2017) samples a two-hop subgraph around the target
node for message-passing and obtains the embedding for
the node. GAT (Velickovi¢ et al., 2018) adopts the self-
attention technique to assign different weights to different
edges in the sampled subgraph. Different from the spatial
GNNss focusing on capturing the local information around
each node, the spectral GNNs pay more attention to the fre-
quency signals of the whole graph. Most spectral GNNs are
developed based on the graph signal processing technique
(Wang & Zhang, 2022) in the spectral domain, which can
capture different frequency signals of the graph. To name a
few, ChebNet (Defferrard et al., 2016) utilizes a Chebyshev
polynomial filter, GNN-LF/HF (Zhu et al., 2021b) embraces
a rational function, and BernNet (He et al., 2021) applies
Bernstein polynomials as the filter.

However, most, if not all, existing spectral GNNs are faced
with with two limitations: the polynomial limitation and the
transductive limitation. Specifically, the polynomial limi-
tation means that for most spectral GNNs, the expressive
power in the spectral domain is limited to polynomial filters,
i.e., the orders of the filters are integer-valued.” The order

'Dealing with small-scale graphs, the spatial GNNs may di-
rectly aggregate node information from all neighbors, which can
also be seen as a full neighborhood sampling.

>The filters in GNN-LF/HF (Zhu et al., 2021b), ARMA
(Bianchi et al., 2021), CayleyNet (Levie et al., 2018), and so



SLOG: An Inductive Spectral Graph Neural Network Beyond Polynomial Filter

of the polynomial filters, with the only exception of (Yan
et al., 2023), needs to be fixed as a hyper-parameter before
training and lacks flexibility. For the transductive limitation,
it refers to the fact (Kipf & Welling, 2016; Liu et al., 2022;
Yan et al., 2023) that in terms of node-level tasks, most spec-
tral GNNSs can only be applied to the transductive setting on
relatively small-scale graphs and can not accommodate to
the inductive setting in real-world large-scale graphs, where
new nodes keep emerging. This is because these existing
spectral GNNSs have to precompute the graph signal process-
ing operators such as multiplication on the adjacency matrix
of the entire graph.

To address the above two limitations of existing spec-
tral GNNs, in this paper, we propose a novel model
named SLOG with three sub-models with different com-
ponents/layers: SLOG(B) (Base), SLOG(N) (Nolinear), and
SLOG(L) (Local). The key idea of SLOG(B) is two-fold:
firstly, to solve the polynomial limitation, SLOG(B) pro-
poses a novel filter with real-valued order to go beyond
polynomial. In detail, we elucidate that the filter with real-
valued order of SLOG(B) enjoys (1) good geometric inter-
pretability in spatial domain; (2) mathematical feasibility
in spectral domain; and (3) adaptive filtering ability for
different frequency signals (e.g., low/high/band-pass and
band-stop) (Section 3.1). Secondly, to resolve the trans-
ductive limitation, SLOG(B) creatively combines the sub-
graph sampling technique in spatial GNNs and the signal
processing technique in spectral GNNs together, which ren-
ders SLOG(B) the inductive ability on large-scale graphs
(Section 3.2). Since SLOG(B) only has one linear layer
filter, we further propose two sub-models: SLOG(N) and
SLOG(L). SLOG(N) extends SLOG(B) to multiple layers
and adds more non-linearity into the model (Section 3.2) and
SLOG(L) interpolates the global uniform filter in SLOG(B)
with local adaptive filter for each subgraph (Section 3.3).
Through extensive empirical evaluations on 16 real-world
datasets in the node classification task, we corroborate the
effectiveness of the proposed SLOG. To summarize, our
contributions are three-fold:

¢ Insight. The key idea of our paper is two-fold: (1)
designing a real-valued order filter with geometric in-
terpretability, mathematical feasibility and adaptive
filtering ability; and (2) combining the subgraph sam-
pling technique in spatial GNNs and the graph signal
processing technique in spectral GNNs together.

* Model. We propose a large-scale inductive spectral
GNN beyond polynomial filter named SLOG, which
includes three sub-models: SLOG(B) as the base sub-
model, SLOG(N) with non-linearity and SLOG(L) for
interpolating the global uniform filter in SLOG(B) with

on, are still built upon polynomial filters.

the local adaptive filter for each subgraph. While the
three sub-models are differentiated by unique compo-
nents/layers, they belong to the unified SLOG model.

* Experiments. We conduct extensive experiments on
16 datasets and empirically find that the proposed
SLOG achieves comparable or better performance than
the state-of-the-arts in the inductive homophilic and
heterophilic node classification task, which demon-
strates the superiority of SLOG.

2. Preliminaries

Notations. We utilize bold uppercase letters for matrices
(e.g., A), bold lowercase letters for column vectors (e.g.,
u) and lowercase letters for scalars (e.g., «). We use the
superscript T for the transpose of matrices and vectors (e.g.,
AT and u'). Consider a graph G = (V,€), where V =
{v; }1_, represents the set of n nodes, and &€ C V x V
denotes the set of edges. We use X € R™*/ to represent
the node features of a graph with feature dimension f. The
adjacency matrix A € R"*" is defined such that A;; = 1if
(vi,vj) € €, and A;; = 0 otherwise. The degree matrix is
D = diag({>_; Ai;}i-;). We introduce A=A +Tasthe
adjacency matrix augmented with self-loop for each node,
where 1 is the identity matrix, and D is the degree matrix of
A.

Spectral Graph Theory. The graph Laplacian matrix is
defined as L = D — A. We use Ly, = — D 2AD "2
for the symmetrically normalized graph Laplacian matrix.
Let Ly = UAU represents the eigen-decomposition
of Lgm, where U = [uy,--- ,u,] is the matrix of eigen-
vectors, and A = diag({\;}) is the diagonal matrix
of eigenvalues. The eigenvalues of Ly, are bounded by
A;i € [0,2) (Chung, 1997)*, which also applies to the eigen-
values {\;}_; of Lgym. In addition, applying a function
g(+), also known as a filter, to Lgy, is equivalent to applying
g(-) to its eigenvalues (Shuman et al., 2013):

n

9(Lgm) =Y g(\)wiu] . (1)

i=1

This is also applicable to f;sym. For a [-th layer simpli-
fied graph convolutional network (SGC) (Wu et al., 2019)
without non-linear activation function, the final node repre-
sentation matrix Z can be formulated as:

Z = (I — Lym)'XW, )

where X is the node feature matrix and W is the train-
able parameter matrix. Here, the linear graph convolu-
tional layer is equivalent to applying a polynomial function

3In this work, we only consider connected graph without bipar-
tite components (i.e., a component which is a bipartite graph).
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9(Lym) = (I — Lym)'(l € NT) to the graph Laplacian
matrix, functioning as a graph filter.

Graph Homophily and Heterophily. The concept of ho-
mophily/heterophily addresses the tendency of nodes to
connect with others of the same or different classes/labels
respectively. There are several interpretations of ho-
mophily/heterophily in existing literature, including per-
spectives at the edge scale (Abu-El-Haija et al., 2019; Zhu
et al., 2020; Luan et al., 2021), node scale (Pei et al., 2020),
and graph scale (Lim et al., 2021). This paper specifically
addresses edge heterophily, defined as the proportion of
edges connecting nodes of the different types relative to the

total number of edges: h(G) = i (""’”f)legﬁ‘yi#ya“

represents the type of node v;.

, where y;

3. Model

In this section, we present the details of the proposed SLOG
model. We first introduce the specially designed filter with
real-valued order, which is the key component of SLOG to
solve the polynomial limitation (Section 3.1). Equipped with
the filter with real-valued order, we present how the one lin-
ear layer filter base model SLOG(B) solves the transductive
limitation by combining the subgraph sampling technique
in spatial GNNs and the frequency signal processing tech-
nique in spectral GNNs together (Section 3.2). Then, we
enhance the one layer linear SLOG(B) to multi-layer non-
linear SLOG(N) (Section 3.2). To handle the varying degree
of heterophily across different parts of the graph*, we fur-
ther propose the SLOG(L), which interpolates the global
uniform filter from SLOG(B)/SLOG(N) with the local adap-
tive filter for each subgraph in corresponding SLOG(LB)
and SLOG(LN) (Section 3.3). Moreover, a complexity anal-
ysis can be found in Appendix A.4.

3.1. Filter Beyond Polynomial

The filter in most existing spectral GNNs (e.g., ChebNet
(Defferrard et al., 2016), APPNP (Gasteiger et al., 2018),
and SGC (Wu et al., 2019)) can be summarized as follows:

K
g(Lsym) = Zakaym’ 3)
k=1

where Ly, is the symmetrically normalized graph Lapla-
cian and K is order of the polynomial. To map the filter
in the spectral domain to the K-hop subgraph in the spa-
tial domain, usually, the order K is a fixed positive integer
hyper-parameter, which lacks flexibility and can not be op-
timized as a variable during the training process. Recently,
TeDGCN (Yan et al., 2023) redefines the depth/layer of
GNNs and successfully builds a filter with real-valued order

*Please refer to Figure 3 and Section 3.3 for details.

as: g(Lgym) = (I — 1 Lgym)?, where d is a real number and
a trainable parameter. Unfortunately, this filter can only cap-
ture low/high frequency signals and is not able to function as
a band-pass/band-stop filter (Balcilar et al., 2021). Further-
more, TeDGCN has to conduct the eigen-decomposition on
Lgym, which means that it is still faced with the transductive
limitation.

In this subsection, we introduce the key component of
SLOG: a filter with real-valued order, w(-), to go beyond
the polynomial expressiveness in the spectral domain as
follows:

1
w(Loym) = (I = SLom)"(T+ (Lym = D)7, )
where p and ¢ are two trainable real-valued parameters. We
opt for the filter design in Eq. (4) for the following three
key properties: geometric interpretability, mathematical
feasibility and adaptive filtering:

P1. Geometric Interpretability in the Spatial Domain.

Proposition 3.1. The SLOG's filter with real-valued or-
der, w(+), in the spectral domain can be regarded as the
combination of two linear graph convolutional networks
in the spatial domain: w(Lyy,) = S7 - S, where S; =
lI+D 2AD %) and S, =1+ (D 2AD 2)>2,

The proof can be found in Appendix A.1. Based on Propo-
sition 3.1, the filter in Eq. (4) essentially represents the
combination of two linear graph convolutional networks
with trainable real-valued depths, which is composed of a
series of operations applied to the adjacency matrix A. This
process involves symmetric normalization of A, and addi-
tion of self-loops to both one-hop and two-hop adjacency
matrices.

P2. Mathematical Feasibility. The eigenvalues of Ly,
are confined within the range \; € [0,2). And the filter
w(Lgym) comprises two components: (I — Lgy)? and
(I + (Lgym — I)?)9. The first part, a polynomial function
of Lgyy, is positive-definite, leading to the mathematical
feasibility to compute its exponentiation by any real number
p . Likewise, the second part is also positive-definite and
enjoys similar mathematical feasibility.

P3. Adaptive Filtering. The frequency response of the
proposed filter under various parameter configurations is
illustrated in Figure 1. This demonstrates the filter’s ability
to be transformed into high-pass, low-pass, band-pass, or
band-stop filters by optimizing the parameters p and ¢ in the
real number domain.

Given the filter with real-valued order in Eq. (4), we next
introduce the details of SLOG and how it can be applied

>For a positive-definite matrix, computing the real-valued order
of the matrix is equivalent to conducting eigen-decomposition and
computing the power of the eigenvalues. (Shuman et al., 2013)
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Figure 1. The frequency responses of the proposed filter with different parameters.

to the inductive setting and run on large-scale graphs in
Section 3.2.

3.2. SLOG(B) and SLOG(N)

Algorithm 1 SLOG(B)

1: Imput: Graph G(V,); node feature X; node v € V; hop
number of subgraphs K '; maximum neighbor numbers of each
depth {N;}.

2: Output: Vector representations z, for node v.

# Step 1: Sampling K-hop subgraph
3 G.(Vg,.€a,) + SAMPLE(G, {v}, K, {N:})
# Step 2: Calculation and Filtering
4: Compute node feature Xg, and symmetrically normalized
Laplacian matrix Lg, of G,
# Step 3: Obtaining node representation

: Zg, + w(Lg,)Xg, W

2y <+ Zg, (V)

: return z,

~ O\ D

# Method: Subgraph sampling strategy
8: function SAMPLE(G,V;, K,{N;})

9: V@
10:  fork = 1to K do
11: Sample S, C N (u), s.t. |Su| < Nj for each u €

V(kfl), where N : v — 2V is the neighbor function of

G.
V(k> — (Uuev(kfl) Su) @} V(kil)

12:

13:  end for

14:  return G(VF) £9)
15: end function

In this subsection, we present the details of SLOG(B) and
SLOG(N). To handle the inductive setting and large-scale
graphs, the key idea of SLOG is to integrate the subgraph
sampling technique from spatial GNNs with the proposed
filter with real-valued order in Section 3.1. In other words,
for a given node v, SLOG applies the filter on a sampled
subgraph centered on v, whose size is much smaller than
the whole graph. In this way, SLOG fits into the inductive
setting and avoids the eigen-decomposition of the whole
graph, which enables it to be run on large-scale graphs.

Concretely, for a target node v, as shown in Algorithm 1,

SLOG(B) contains 3 parts: (1) Firstly, we sample a subgraph
G, around v: starting from v, we sample a K-hop graph
with random node mask. All the sampled nodes and the
edges between them form the subgraph G, ; (2) Based on
G, we calculate the symmetrically normalized Laplacian
matrix Lg, of G, and apply the filter w(-) in Eq. (4) on Lg_;
(3) Finally, the representations of nodes in G, is obtained as
follows:

Zg, = w(Lg,)Xg, W, §))

where W is the parameter matrix. An illustrative example
of SLOG(B) is shown in Figure 2(a).

From the above introduction of SLOG(B) and the filter w(-)
in Section 3.1, we can find that SLOG(B) is able to solve
the polynomial limitation and the transductive limitation
with the help of (1) the filter with real-valued order; and
(2) the combination of the subgraph sampling technique in
spatial GNNss and the frequency signal processing technique
in spectral GNNS.

Nevertheless, this simple linear filter in SLOG(B) does not
possess non-linearity. To address this, we further propose
an enhanced sub-model, SLOG(N), which includes L layers
of SLOG(B). In addition, it not only incorporates non-linear
activation functions between filters but also introduces resid-
ual connections (He et al., 2016). Details of the structure are
illustrated in a figure provided in Appendix A.2. The resid-
ual connections make the output become an interpolation
of the embeddings from previous layer and the embeddings
after transformation by Eq. (4). Specifically, in each layer,
the representation matrix is updated by:

HY) = o(w(Lg,)HS "W+ HI W), (6

where o (-) denotes the activation function, w®)(-) denotes
the filter at the [-th layer, H(gl) is the representation matrix at

the [-th layer, and ng) and Wél) are the parameter matrices
at the [-th layer.
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Figure 2. An overview of the proposed SLOG. (a) In SLOG(B)/SLOG(N), nodes u; and u; are associated with K'-hop subgraphs G,,; and
Gu; respectively. The filter with real-valued order, w(-), is applied to these subgraphs during model training. New nodes, depicted with
dashed outlines, are processed similarly: sampled subgraphs are generated and the established filter is utilized for prediction. For node v,
its corresponding subgraph G, is employed for prediction. (b) In SLOG(L), the graph is partitioned into M subgraphs; for instance, two
such subgraphs are Gr; and G, . Each subgraph is expanded to restore disrupted edges, and a combination of global and respective local
filters (w;(+) for Gz, w;(+) for Gr;) is applied during training. Newly added nodes are assigned to the nearest subgraph, exemplified by
node v being matched with Gr,, and predictions are made using the corresponding filter w; (-).

[ Squirrel
[] Minesweeper

0.0

Figure 3. The one hop edge heterophily density of two real-world
datasets: Squirrel (Rozemberczki et al., 2021) and Minesweeper
(Platonov et al., 2023). The x-axis represents the edge heterophily
(h), and the y-axis shows the corresponding density distribu-
tion. For all nodes in the graph, we sample 1-hop ego-graph
for each node, and the density of the distribution can be defined
as p(h) = AN(h)/Ah, where N (h) represents the proportion
of the subgraphs that have an edge heterophily equal to h. The
edge heterophily distribution of Squirrel is uniform, while that of
Minesweeper is varying.

3.3. SLOG(L)

Actually, SLOG(B), SLOG(N), and various other het-
erophilic graph-oriented methods, such as GPRGNN (Chien
et al., 2020), HoGCN (Zhu et al., 2020), and BernNet (He
et al., 2021) employ one single uniform filter to capture the
frequency information of the whole graph. Nevertheless,
heterophily in graphs is not uniformly distributed and can
exhibit significant variation across different graph regions,
which has been exemplified by Figure 3.

Therefore, one uniform filter with the same parameters (e.g.,
same p and ¢ in Eq. (4)) for all subgraphs can not effec-
tively capture the varying local heterophily. To address this
issue, the proposed SLOG(L)’s filter contains two parts: one
global uniform filter from SLOG(B)/SLOG(N) and one lo-
cal adaptive filter for each subgraph, which is tailored to
capture the local frequency signals. The filter for SLOG(L)
is outlined in Eq. (7).

1 , ,
wi(Lg,) = (I— §Lgu)p" I+ (Lg, —D)*)%, (7)
where p, = Bpgo + (1 — B)p; and ¢} = Bggo + (1 — B)gs

represent the weighted combinations of global and local
parameters. Here, 3 is a hyper-parameter that modulates the
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balance between global and local filters. The parameters pgo
and gy, are associated with the global uniform filter, while
p; and g; are adaptive to the i-th subgraph. By interpolating
the parameters of the global filter with those of the local
filter, SLOG(L) can address the varying edge heterophily
distribution across different subgraphs.

As illustrated in Figure 2(b), SLOG(L) contains the follow-
ing steps: (1) Graph partition: when the number of nodes
in the graph is extremely large, it is infeasible for SLOG(L)
to adopt the same sampling strategy as SLOG(B)/SLOG(N)
due to the growing number of parameters (i.e., one (p;, ¢;)
for one node v;). Thus, we employ the METIS graph parti-
tion method (Karypis & Kumar, 1998) to partition the train-
ing graph into M subgraphs, {Gr,(Vr,,E7,)}M,. More
details about METIS are presented in Appendix C.3; (2)
Subgraph expansion and training: for each subgraph Gr,,
the graph partition may disrupt some edge connections, thus
we augment it with nodes and edges within K -hop distance
from Gr,. This process can restore the disrupted edges
in Gr,. After this step, we pursue the same procedure in
SLOG(B)/SLOG(N) to apply the filter w;(-) in Eq. (7) on
the subgraph. The filter w;(+) is a combination of global
and corresponding local filter. We then train the model; (3)
Minimum distance subgraph search & prediction: in the
inductive setting, when a new node v emerges, SLOG(L)
calculates its distance to each subgraph, and finds out the
nearest subgraph. The subgraph with the minimum distance
and its corresponding filter are selected to obtain the rep-
resentation of v, which can be used for prediction. The
detailed algorithm of SLOG(L) is attached in Appendix A.3
due to the page limit.

4. Experiment

In this section, we evaluate SLOG on the semi-supervised
node classification task. We first introduce the datasets,
baselines and settings in Section 4.1. Next, in Section 4.2,
we experiment with SLOG(B) and SLOG(N). In Section 4.3,
we conduct experiments on SLOG(L). In addition, We con-
duct additional experiments on SLOG’s adaptive filtering
ability in Section 4.4. Due to the page limit, some addi-
tional experimental results are attached in Appendix: (1)
ablation studies (Appendix B.1); (2) results of additional
baselines (Appendix B.2); (3) experimental results on syn-
thetic datasets (Appendix B.3); (4) a convergence study
(Appendix B.4); and (5) experimental results using two
alternative optimization methods (Appendix B.5).6

®Our code is available at https://github.com/

Hsul023/SLOG.

4.1. Experiment Setup

Datasets. We adopt 16 datasets for evaluation, including 13
small-scale datasets and 3 large-scale datasets. The small-
scale datasets, sourced from (Kipf & Welling, 2016; Bo-
jchevski & Gilinnemann, 2017; Shchur et al., 2018; Rozem-
berczki et al., 2021; Platonov et al., 2023), include two cate-
gories: the heterophilic datasets include Chameleon, Squir-
rel, Squirrel-filtered, Chameleon-filtered, Minesweeper,
Tolokers, Amazon-ratings, and Questions; the homophilic
datasets include Cora, Citeseer, DBLP, Coauthor-CS, and
Coauthor-Physics. The large-scale datasets, sourced from
(Hamilton et al., 2017; Zeng et al., 2019; Hu et al., 2020),
are Flickr, Ogbn-arxiv, Reddit. These datasets are diverse,
varying in scale, domain, and heterophilic/homophilic ratios.
Detailed statistics of datasets are presented in Appendix C.1.

Baselines. We compare our method against 13 baselines, in-
cluding (1) a non-topology method: MLP; (2) general GNN
methods including GCN (Kipf & Welling, 2016), Cheb-
Net (Defferrard et al., 2016), GraphSAGE (Hamilton et al.,
2017), GAT (Velickovi¢ et al., 2018), APPNP (Gasteiger
etal., 2018), SGC (Wu et al., 2019), GATv2 (Brody et al.,
2021); (3) heterophilic graph oriented methods including
GPRGNN (Chien et al., 2020), HoGCN (Zhu et al., 2020),
FAGCN (Bo et al., 2021), BernNet (He et al., 2021), Jacobi-
Conv (Wang & Zhang, 2022).

Settings. For small-scale datasets, we employ a random
split of 60%/20%/20% for train/validation/test sets and con-
duct experiments in the inductive setting’. For large-scale
datasets, we keep the same split and the same transduc-
tive/inductive setting as those used in the original papers. It
is important to note that in the inductive setting, the models
are not exposed to validation or test nodes during training.
For evaluation, we use accuracy (ACC) with standard devia-
tion (std) as the metric, averaging the results over 5 runs.

4.2. SLOG(B) & SLOG(N)

The performance comparison on small-scale datasets is de-
tailed in Table 1 and Table 2. Our method demonstrates
a notable superiority over all baselines in most datasets,
achieving the best performance in 11 out of 13 small-scale
datasets. Specifically, for heterophilic datasets (Table 1), our
method surpasses every baseline across all datasets. This
superiority is attributed to the method’s capability to ef-
fectively discern the graph’s heterophily, thereby flexibly
adjusting its filter to capture a diverse range of frequency
signals depending on the dataset. In contrast, for homophilic
datasets (Table 2), our method shows excellence in 3 out of
5 datasets and ranks second in the remaining two. Notably,

"For spectral methods, we build a new Laplacian matrix Lgym
when new nodes emerge in the inductive setting and inherit the old
parameters from training.
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Table 1. Evaluation results on heterophilic datasets in the inductive setting.

Datasets \ Squirrel Chameleon  Squirrel-filt. Chameleon-filt. Minesweeper  Tolokers =~ Amazon-ratings  Questions
MLP 0.336+0.014 0.469+0.004 0.3664+0.021  0.380+0.021  0.788+0.000 0.775+0.000 0.449+0.005  0.972+0.000
GCN 0.3744+0.007 0.5324+0.012 0.32940.020 0.411+£0.031 0.788+0.000 0.784+0.001  0.42040.002  0.970+0.000
ChebNet | 0.350+0.004 0.535+0.005 0.333+£0.019 0.3724+0.025 0.8234+0.001 0.783+0.003  0.393+£0.001  0.969+0.001
GraphSAGE | 0.38740.011 0.246+£0.043 0.3494+0.013  0.360+£0.041  0.810£0.002 0.794+0.003  0.436+0.005  0.9704+0.000
GAT 0.306+0.006 0.484+0.020 0.32940.017  0.34440.024  0.7874+0.001 0.776+0.000 0.392+0.001  0.97040.000
APPNP | 0.314+0.008 0.410+0.010 0.312+0.019 0.3814+0.020 0.788+£0.000 0.7784+0.001  0.429+0.002  0.97040.000
SGC 0.371+£0.005 0.486+0.002 0.3204+0.016  0.3574+0.021  0.78640.000 0.782+0.000 0.398+0.002  0.97040.000
GATV2 0.310+0.006 0.468+0.009 0.3504+0.013  0.394+0.026  0.788+0.002 0.775+0.001  0.394+0.002  0.9704+0.000
GPRGNN | 0.343£0.009 0.472+£0.020 0.364+£0.019 0.39440.038 0.7914+0.000 0.7754+0.001  0.414+0.004  0.97040.000
HoGCN | 0.35940.005 0.454+0.007 0.335+£0.025 0.3814+0.026 0.82440.001 0.788+0.001  0.442+0.002  0.97140.000
FAGCN | 0.33240.008 0.412+0.026 0.350+£0.030 0.369+0.027  0.789+0.001 0.7844+0.002  0.4334+0.009  0.970-0.000
BernNet | 0.361+0.007 0.5784+0.007 0.361+0.020 0.3744-0.030  0.788+0.000 0.772+0.007  0.398+0.002  0.969+0.001
JacobiConv | 0.221+£0.017 0.309+0.015 0.295+0.012  0.3484+0.035 0.788+0.000 0.7044+0.100 0.355+0.010  0.877+0.176
SLOG(B) |0.39240.006 0.5814+0.024 0.4274+0.013 0.420+0.023  0.822+0.009 0.796+0.005 0.45140.007  0.972+0.001
SLOG(N) |0.3554+0.010 0.520+0.022 0.37640.025  0.431+£0.026 0.844+0.008 0.810+0.006 0.456+0.006 0.972+0.001

Table 2. Evaluation results on homophilic datasets in the inductive setting.

Datasets Cora Citeseer DBLP Co.-CS Co.-Phys. Table 3. Evaluation results on large-scale datasets.
MLP | 0.695+0.017 0.68040.016 0.76940.004 0.925--0.002 0.962-:0.000 Datasets |  Flickr Ogbn-arxiv Reddit
GCN | 0.863+0.005 0.7464+0.010 0.84740.008 0.905--0.001 0.958-£0.001

ChebNet | 0.804+0.004 0.7404+0.009 0.84040.000 0.640--0.001 0.958--0.000 nodes 89,250 169,343 232,965

GraphSAGE | 0.83540.005 0.724-£0.010 0.840+0.003 0.90740.002 0.970-0.001 edges 899,756 1,166,243 114,615,892
GAT 0.852+0.010 0.739-£0.008 0.848+0.005 0.938+0.001 0.958+0.001 setting inductive  transductive  inductive
APPNP | 0.839+0.004 0.748+0.008 0.83540.008 0.918--0.001 0.961--0.000 MLP 1047410001 053910001 0.70210.001
SGC  |0.859+£0.010 0.75440.008 0.845+0.003 0.93840.001 0.958-0.000 GraphSAGE | 050240002 0.71740.002 0.9440.001
GATv2 0.863+£0.008 0.74140.012 0.845+0.006 0.90540.001 0.959+0.001 GAT 0.5092-0.001 0.676--0.003 0.944--0.002
GPRGNN | 0.874-£0.010 0.756-£0.003 0.848+0.004 0.94240.001 0.966--0.000 GATY2 | 051700.001 0.67500.001 0.957-0.000
HoGCN | 0.815+£0.004 0.757+0.010 0.840+0.001 0.940+0.001 0.966-0.000 GPRGNN | 0.50850.002 0.684L10.002 0.950L10.000
FAGCN | 0.845+0.007 0.7514£0.014 0.83540.007 0.932--0.013 0.963-£0.003 H,GCN | 0.516£0.002 0.67740.000  OOM
BernNet | 0.865-£0.006 0.745+0.015 0.849+0.004 0.93840.001 0.959--0.000

JacobiConv | 0.58440.034 0.559--0.098 0.455-£0.041 0.882-0.008 0.924+0.010 SLOG(B) | 0.50940.001 0.723:£0.001 0.954-:0.000

SLOG(N) | 0.520-£0.003 0.719+0.002 0.962--0.001

SLOG(B) |0.865+0.011 0.766+0.026 0.85040.005 0.934--0.003 0.959--0.002 =

SLOG(N) |0.761+£0.010 0.675+0.026 0.839+0.003 0.944+0.005 0.966-0.001

in the Cora and Coauthor-Physics datasets, our method’s
performance is marginally lower than the best baseline, by
only 1.4% and 0.4%, respectively. This underscores our
method’s effectiveness in homophilic datasets as well.

For large-scale dataset evaluation, results in Table 3 illus-
trate that our method consistently outperforms others. A
notable aspect is the size of the Reddit dataset, which con-
tains 115M edges and is significantly larger than those in
most related studies. Due to the high computational cost,
some baselines meet the out-of-memory (OOM) problem in
our machine®. However, thanks to the sampling technique,
our method is able to directly run on the graph, achieving the
best performance, confirming its scalability to large-scale
graphs. It is also important to note that these experiments
adhere to the same transductive/inductive settings as used
in the original papers, further evidencing our method’s ro-
bustness across various settings.

In addition, it is observed that SLOG(N) outperforms
SLOG(B) on numerous datasets, despite its more complex

$Since some spectral GNNs can not be run on such large-scale
datasets, we do not include them in the comparison.

architecture and increased number of parameters. This
improvement is attributed to the additional non-linearity
in SLOG(N), which enhances the model’s expressiveness.
Moreover, the incorporation of residual connections in
SLOG(N) helps preserve the node embedding from previous
layer.

4.3. SLOG(L)

The SLOG(L) model, as introduced in Section 3.3, addresses
varying distributions of homophily/heterophily ratios across
a graph. In order to quantify the heterophily/homophily
balance, we introduce a metric, locality. We sample a fixed
number of nodes in the graph, obtain their 1-hop ego-graphs,
and calculate the edge heterophily of these ego-graphs. The
locality, defined as the standard deviation of all 1-hop ego-
graphs’ edge heterophily, inversely indicates the balance
level of local edge heterophily across the whole graph.

As shown in Table 4, SLOG(LB)/SLOG(LN) en-
hances performance in datasets with high locality (e.g.,
Chameleon, Chameleon-filt., Minesweeper, Tolokers), sug-
gesting its effectiveness in contexts with imbalanced ho-
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Table 4. Performance of SLOG(L) on datasets with different locality.

Datasets ‘ Squirrel Squirrel-filt. ‘ Chameleon  Chameleon-filt. Minesweeper Tolokers
Locality/1072 | 1.85 166 | 3.03 4.08 3.84
Best of baselines | 0.38740.011 0.366+0.021 | 0.578£0.007  0.41140.031  0.824:£0.001 ~0.794-:0.003
SLOG(B) 0.392+0.006  0.427+0.013 | 0.58140.024  0.420+£0.023  0.822+£0.009  0.796=-0.005
SLOG(N) 0.355+0.010  0.376+0.025 | 0.52040.022  0.431£0.026  0.844+0.008 0.810+0.006
SLOG(LB) | 0.387+0.008 0.40940.010 | 0.605+0.043  0.443+0.029  0.80740.006 0.785+0.008
SLOG(LN) | 0.355+0.012 0.375+0.028 | 0.535+0.017  0.453+0.041  0.848-0.007 0.814--0.004
mophily/heterophily distributions. However, in datasets .
with low locality (e.g., Squirrel, Squirrel-filt.), the perfor- s 30
mance gain is not observed, likely due to the already bal- . 25
anced local edge heterophily of these graphs. Here, the 23 z
. . . . 3 320
addition of a local component unnecessarily complicates the 2
model, potentially hindering the effectiveness of the model. : e
(i) 0 0.5 1.0 15 2.0 1.%.0 0.5 1.0 15 2.0
A A

4.4. Adaptive Filtering to Broad Frequency Signals

In this subsection, we present the learned filters of our
method on real datasets. The learned filters of our method
SLOG(B) on real datasets are shown in Figure 4(a) and
4(b). To compare with BernNet, we also show the learned
filters of BernNet on the same datasets in Figure 4(c) and
Figure 4(d). For the homophilic Citeseer graph, SLOG(B)
functions as a low-pass filter, capturing homophilic informa-
tion (Figure 4(a)). Conversely, for the heterophilic Squirrel
graph, it selectively filters out medium-frequency signals
and preserves high-frequency ones (Figure 4(b)). However,
BernNet’s performance on Citeseer includes not only low-
frequency signals but also some medium-frequency noise
(Figure 4(c)), indicating a potential for overfitting due to its
complex coefficients. Though BernNet learns filters similar
to SLOG(B) on Squirrel, the fluctuating signal curves imply
the capture of some extraneous signals (Figure 4(d)).

5. Related Work

Graph neural networks (GNN). GNN models can be
roughly divided into two categories, i.e. spectral-based
methods and spatial-based methods (Zhang et al., 2020).
Spectral methods are based on the spectral graph theory,
aiming to establish graph convolutional kernel in the spec-
tral domain. The notable attempt is reported in (Bruna et al.,
2013), which firstly introduces graph convolutional kernel.
After that, ChebNet (Defferrard et al., 2016) utilizes Cheby-
chev polynomials to form a convolutional kernel. GCN
(Kipf & Welling, 2016) takes the first-order approxima-
tion to simplify the kernel. SGC (Wu et al., 2019) further
changes multi-layer design to one linear transformation.
Other spectral-based methods include (Levie et al., 2018; Li
et al., 2018; Zhu et al., 2021b; Bianchi et al., 2021) and so
on. Spatial-based methods mainly focus on aggregating the
information of neighboring nodes. GraphSAGE (Hamilton

(a) Citeseer-SLOG (b) Squirrel-SLOG

3.6

3.0

12
0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
A A

(c) Citeseer-BernNet (d) Squirrel-BernNet

Figure 4. Learned filters on real dataset.

et al., 2017) studies three different aggregators to aggregate
the information of neighbors. In GAT (Velickovié et al.,
2018), attention mechanism is introduced as the aggregator.
GIN (Xu et al., 2018) deploys MLPs to model injective
functions in order to enhance the discriminative power of
the GNN. We refer readers to (Zhou et al., 2020; Wu et al.,
2020) for more details.

Heterophilic graph learning. While GNNs are mostly
based on the homophily assumption that neighboring nodes
are inclined to share the same labels, there are many real-
world graphs that do not satisfy this assumption (McPherson
et al., 2001). These graphs, which are called heterophilic
graphs, have gained an increasing attention recently. Cay-
leyNet (Levie et al., 2018) defines a complex Cayley filter
and utilize Jacobi iteration to optimize it, while ARMA
(Bianchi et al., 2021) uses auto-regressive moving average
(ARMA) filter to capture the global graph structure. Geom-
GCN (Pei et al., 2020) defines the geometric relationship in a
latent space to use neighborhood information. FAGCN (Bo
et al., 2021) utilizes the attention mechanism to seperately
learn low-frequency and high-frequency signals. ACM-
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GCN (Luan et al., 2021) adopts a linear combination of
low/high pass filters and adaptively mix the generated node
information from the two filters. CPGNN (Zhu et al., 2021a)
utilizes a compatibility matrix to model the heterophilic/ ho-
mophilic relationships between nodes. Te(DGCN (Yan et al.,
2023) utilizes a filter with real-valued order, with its learn-
able parameter as the depth of graph convolutional layers,
expressed as a real number. Other heterophilic graph learn-
ing methods include (Li et al., 2022b; Wang & Zhang, 2022;
He et al., 2022; Zheng et al., 2023; Xu et al., 2023; Guo &
Wei, 2023; Geng et al., 2023; Guo et al., 2023). We refer
readers to (Zheng et al., 2022) for more details.

6. Conclusion and Limitations

In this paper, we propose an inductive spectral graph neu-
ral network named SLOG with the expressive power be-
yond a polynomial filter. Specifically, SLOG includes
three sub-models: the base model SLOG(B), the non-linear
model SLOG(N) and the local model SLOG(L). SLOG(B)
is equipped with a filter with real-valued order, which en-
joys geometric interpretability, mathematical feasibility and
adaptive filtering. SLOG(N) adds non-linearity and residual
connections into SLOG(B). To better capture the varying
heterophily distribution, SLOG(L) conducts an interpolation
between the global uniform filter and the local adaptive filter.
Extensive experiments on 16 real-world datasets corrobo-
rate the effectiveness, scalability and robustness of SLOG
in the inductive semi-supervised homophilic/heterophilic
node classification task. One potential limitation of SLOG is
that it only focuses on node classification problem, and we
leave its extension to other tasks including link prediction
as future work.
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