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1. Introduction

In this paper we will be concerned with the study of homological and group-theoretical
properties of group extensions of the form

1—K-—G-51r—1, (1)
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where K and T, the fiber and base groups, are fundamental groups of closed, compact,
orientable surfaces of genus at least 2, or finitely generated nonabelian free groups. The
study of this type of extension has quite a long story, originating in the realm of free-by-
free groups and, in the broader context that includes surface groups, in several papers
of F.E.A. Johnson, see e.g. [13] and references therein.

The original motivation of our interest stems from a topological framework. Let X
be a surface bundle with fiber F' over a surface B, both having genus at least 2. Then
its fundamental group G = m1(X) is an extension as in Equation (1) with K := m (F),
I':= m(B) and where f: G — I' is the map induced on the fundamental groups (after
picking a basepoint) by the fibration X — B. This sequence is the nontrivial part of
the long exact sequence of the homotopy groups for the fibration. In this case, we will
refer to G as a surface-by-surface group. In the other cases, while the extensions are not
the fundamental group of a closed aspherical 4-manifold, they share similarities with
surface-by-surface groups. Note that when the base I' is the free group F),, G can always
be thought of as a semidirect product K x F},, while this may fail in general.

We will focus on those extensions with the property that the induced map on homology
with rational coefficients f.: H1(G;Q) — H1(I';Q) is an isomorphism. (This map is
always surjective.) This has been referred to by saying that the sequence of Equation (1)
has no excessive homology ([19]). This is a property that depends on G alone, and not
on the choice of the extension.

Given any group G as in Equation (1), we can ask whether it admits a finite-index
subgroup with excessive homology. By the work of [9,19] this is equivalent to the property
that G virtually algebraically fibers, namely a finite index subgroup of G admits an
epimorphism to Z with finitely generated kernel. Our main aim is to show that in the
case where K = 71 (F) is a surface group there is a natural relation between this question
and a conjecture by Putman and Wieland [26, Conjecture 1.2]. We refer the reader to
Section 2 and the original source for more detail. The case labeled as NFO(g,0,0) of
that conjecture posits that the action of the mapping class group Mod; of the surface F'
(where g is the genus of F') on the rational homology of finite-index characteristic covers
of F' (sometimes referred to as higher Prym representation) has no finite orbits. We will
show the following.

Theorem 3.3. For every g > 2 the Putman—Wieland conjecture NFO(g,0,0) holds if and
only if there exists a surface-by-surface or a surface-by-free group G with fiber of genus
g and no virtual excessive homology or, equivalently, that is not virtually algebraically

fibered.

Note that the surface-by-surface and surface-by-free groups mentioned in the state-
ment, if they exist, will fail to be virtually RFRS (residually finite rationally solvable)
in light of [16].

Assuming the Putman-Wieland conjecture, this theorem would differentiate the be-
havior of 3- and 4-dimensional surface bundles.
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Markovié¢ [22] has shown that the conjecture fails when the genus of the surface is 2.
Combining this with Theorem 3.3, we have the following, that gives a partial answer to
a question of Hillman ([11, Section 11, Question 4]):

Corollary 3.5. Let X be a surface bundle with fiber F' of genus 2 and base B of genus at
least 2. Then its fundamental group G = m1(X) is virtually algebraically fibered and it is
incoherent, namely it admits finitely generated subgroups which are not finitely presented.

The proof of Theorem 3.3 shows that the base of G can be assumed to be the funda-
mental group of a surface of genus 2, or the free group F,. The fact that these bases are
optimal is not quite obvious, see Proposition 3.4. Additionally, the corresponding surface
bundle over a surface X can be assumed to have signature zero.

The “only if” part of Theorem 3.3 uses an epimorphism from the base of the extension
to the mapping class group Mod,, so that we can make the construction of the groups
deciding the conjecture NFO(g,0,0) very explicit, especially in the case where g > 3.
We illustrate this in the surface-by-free case: Let F' be a surface of genus g > 3; this
admits a cyclic automorphism of order 4g + 2, and denote by II the fundamental group
of the mapping torus of this automorphism. (This is a Seifert—fibered manifold which is
finitely covered by a product.) Any two such automorphisms are conjugate in Mod,, so
that IT is uniquely determined as a group. By [17] Mod, can be generated by two such
automorphisms, related by conjugation by the automorphism 6: K — K induced by a
Dehn twist along a nonseparating curve. (See Section 3 for references and more details),

Proposition 3.6. Let v: K — K be the generator of a cyclic subgroup of order 4g + 2
of Mod, for g > 3, and denote by II the corresponding mapping torus. Let 11 x5 II be
the amalgamated free product determined by the automorphism §: K — K. Then the
Putman—Wieland conjecture NFO(g,0,0) holds if and only if the surface-by-Fs group
II %5 IT fails to virtually algebraically fiber.

The group II x5 II surjects onto Modé. In a sense, the latter is “one Dehn twist away”
from being the product K x Mod,.

In analogy with Theorem 3.3 one may ask about the existence of free-by-free or free-by-
surface groups with no virtual excessive homology, or equivalently which do not virtually
algebraically fiber. In this realm we can reach in most cases an affirmative answer, which
naturally extends also to the case where the fiber group is free abelian.

Theorem 4.1. For each n > 2, and each m > 4 (respectively m > 2) there exist groups
of the form F,, x T (respectively Z™ x T), where T is a copy of F,, or the fundamental
group of a surface of genus n, with no virtual excessive homology or, equivalently, that
are not virtually algebraically fibered. Therefore these groups are not virtually RFRS.

Note, in contrast, that these groups are virtually residually p, hence virtually residually
finite solvable, see Lemma 4.2. The interest in RFRS groups stems from their role in
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various areas of group theory, including the study of 3-manifold groups ([1]) and algebraic
fibrations ([16]). Free groups are RFRS, and so are their direct products: it is not obvious
how to decide if other extensions of free (or surface) groups are RFRS. Theorem 4.1 as
well as the previous results, makes a step in that direction.

We point out that Theorem 4.1 has no implication on the suitable analog of the
Putman-Wieland conjecture in the context of automorphisms of free groups, which is
known to be true in light of [6].

This paper is organized as follows: In Section 2, we give background on the homology
of the extensions we are considering, and of their finite index subgroups, and state the
Putman-Wieland conjecture. Theorem 3.3 and Proposition 3.6 are proven in Section 3,
while Theorem 4.1 is proven in Section 4.
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2. Preliminaries

It will be useful in what follows to tie the sequence in Equation (1) with the mon-
odromy representation determined by the extension (1). Namely, we have

K G r (2)

e b
K< Aut(K) —>> Out(K).
Here n characterizes the action of I' on K, well-defined up to conjugation. The map

K — Aut(K) is given by the conjugation action, and it is injective as K has trivial
center. This allows us to identify G as the pullback

G ={(¥,7) € Aut(K) x ' [ p(¥) = n(1)},

with the group structure obtained by restriction of that on Aut(K) x I'. The fibration
map f is induced by projection onto the second factor, and the fiber subgroup is given
by the normal subgroup
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K x{lr} <G < Aut(K) x I.

With this identification, the conjugation action of G on its normal subgroup K can be
written in terms of the conjugation action of Aut(K)xTI on K x {1r}. Note that when K
is a surface group of genus g > 1, we will be interested in the case where the monodromy
representation 7: I' — Out(K) has values in Mody, <Out(K), and (: G — Aut(K) has
values in Mod; < Aut(K) (with both modular groups subgroups of index 2 determined by
orientation-preserving homeomorphisms of a surface). This condition, which is equivalent
to the fact that the corresponding surface bundle is oriented, is not too restrictive and
can be achieved by passing to an index-two subgroup of the base of the extension. In
such case, the bottom row of Equation (2) can be interpreted as Birman’s short exact
sequence.

2.1. Coinvariants and homology

We wish to understand the homology of G in terms of that of K and I'. If G is a
group and M is a G-module, the coinvariants of M, denoted Mg, is the quotient of M
obtained by taking the quotient generated by elements of the form gm —m, for all g € G,
m € M. The invariants of M, denoted M, are the largest submodule of M on which
G acts trivially.

Definition. Let 1 - K — G — I' — 1 be an extension. The excessive homology of this
extension is the kernel of the map H1(G;Q) — H1([;Q).

In the cases that we will be interested in, the excessive homology can be conveniently
expressed in terms of (co)invariant homology. Specifically, we have the following Lemma
(whose first part applies, in generality, for any semidirect product.)

Lemma 2.1. Let G be an extension as in Equation (1); assume that either

(1) G can be written as a semidirect product G = K x T'; or
(2) K is a surface group (of genus at least 2).

Then the excessive homology of G is H1(K;Q)qg. Furthermore, in the second case, it is
isomorphic to Hy(K;Q)%.

Proof. The Lyndon—Hochschild—Serre spectral sequence associated to Equation (1) [4,

problem 6, pg. 47], gives the following 5-term exact sequence for the homology with
rational coefficients:

Hy(G;Q) -1 Hy(T;Q) — Hy(K;Q)g — Hi(G;Q) -1 Hy(T;Q) — 0. (3)
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When G is a semidirect product, the extension splits, hence all maps f: H;(G; Q) —
H;(T;Q) admit a right-inverse, hence are surjective, and the statement follows. When
K is a surface group, and I is free, then the extension is split again and the previous
argument applies. Surface-by-surface groups, in contrast, do not always split. However, as
we assumed that the genus of the fiber is at least 2, the map f: Hy(G; Q) — H»(T; Q)
in the sequence in Equation (3) is surjective (see e.g. [23, Proposition 3.1]), so the kernel
of f: H1(G;Q) — H1(I'; Q) is given again by H; (K;Q)¢.

Finally, when K is a surface group, G acts on H;(K;Z) preserving its algebraic
intersection form, which extends uniquely to a G-invariant symplectic structure on
H,(K;Q) (see e.g. [7, Section 6.1.2]). The symplectic structure on H;(K;Q), be-
ing non-degenerate, induces an isomorphism of G-spaces between H;(K;Q) and its
dual Hom(H,(K;Q),Q) = H'(K;Q). Consequently, H'(K;Q)% = H,(K;Q)%. But
HY'(K;Q)% is dual to H;(K;Q)¢ (see e.g. [26, Lemma 2.1]), hence the latter is isomor-
phic (as vector spaces) to H'(K; Q)% so the last part of the statement follows. O

It is not too hard to verify that the existence of excessive homology is preserved by
passing to finite index subgroups:

Lemma 2.2. Let 1 - K — G — T' — 1 be an extension as in Equation (1), and let
G < G be a finite index subgroup. Then the excessive homology of the induced extension
on G surjects onto that of G.
Proof. There exists a commutative diagram

K¢ G r

with self-explaining notation. This entails the existence of a homomorphism

Hi(K;Q) — Hi(K;Q)

which naturally commutes with the action of G. As K < K is finite index, this homomor-
phism admits a right-inverse, a suitable multiple of the transfer map, see e.g. [4, Chapter
III]). (This necessitates the use of rational coefficients.), and it is therefore surjective. It
follows that we have a composition of epimorphisms

Hi(K;Q)g — H\(K;Q)g — Hi(K;Q)c

which means that the excessive homology of the sequence 1 - K — G — I' — 1 cannot
decrease by passing to finite index subgroups of G. O
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Lemma 2.2 implies that we can reduce the question of the existence of virtual excessive
homology to normal finite index subgroups. Therefore we will focus on these subgroups,
which are determined by an epimorphism «: G — S onto a finite group .S, completing the
sequence in Equation (1) to the following commutative diagram of short exact sequences:

LT
K¢ G I
oK) —= S —— S/a(K).

Remark. In general, the action of G on H, (f(, Q) does not extend to G, but it will do
so when K <1 K is characteristic: such action is induced by restriction of the G-action on
K, which preserves K as well as [f( , K ] whenever K is characteristic. Conversely, given
any finite index normal subgroup K<4K , it is known from [23, Lemma 4.1] that there
exists a finite index normal subgroup G < G whose intersection with K is the subgroup
K<K. ([23, Lemma 4.1] is stated only for surface groups, but the proof applies to free
groups as well. ) Again, the action of G on Hy(K;Q) may fail to extend to G, but will do
so whenever K is characteristic. As any finite index normal subgroup K < K contains
a finite index subgroup which is characteristic in K, we can further reduce the study of
excessive homology to covers of X which induce fiberwise characteristic subgroups of K.

3. Virtual excessive homology and the Putman—Wieland conjecture
3.1. The Putman-Wieland conjecture

In [26], the authors connect the study of the orbits of the mapping class group acting
on the first homology of a surface and its finite covers to the classical conjecture that
mapping class groups do not virtually surject Z. We will be interested only in a particular
case of their conjecture, so for sake of simplicity we will limit ourselves to that case,
referring the reader to [26] for the general case. Denote by Mod; (respectively Mod,)
the mapping class group of a surface Z; with genus g and 1 puncture (respectively of a
surface ¥, with no punctures). When K<dK = m1 (%) is a characteristic subgroup, the
group Mod; acts on H; (IN( ; Q). Putman and Wieland posit the following:

Conjecture 3.1. /20, Conjecture 1.2] Fiz g > 2. Let K<JK = m1(X4) be a finite-index
characteristic subgroup. Then for all nonzero vectors v € H1(K;Q) the Modél7 -orbit of
v is infinite.
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For fixed g > 2, the conjecture above will be referred to, for consistency with the
notation of [26], as NFO(g, 0, 0)

3.2. Connections with virtually excessive homology

Our first result connects virtual excessive homology of a surface-by-surface or surface-
by-free group G with the orbits on the homology of characteristic subgroups of the fiber
group K.

Lemma 3.2. Let G be a surface-by-surface or a surface-by-free group. Then the following
two properties are equivalent:

(1) G has no virtually excessive homology;
(2) for any finite index characteristic subgroup K K, and any nonzero v € Hy(K;Q),
the orbit G -v C Hy(K;Q) is infinite.

Proof. (1) = (2): Assume that there exists a finite index characteristic subgroup K < K,
and a nonzero v € Hl(f{;(@) with finite orbit G - v. As discussed before, G admits a
normal finite index subgroup G <y G whose intersection with K is the subgroup K <4K.
As G - v is finite, there is a finite index subgroup H < G such that the orbit H -v = {v}.
As K acts trivially on its own homology, K < H. We now replace G with its finite index
subgroup H N G namely, we take a finite index subgroup of G defined by the pull back
of a suitable finite index subgroup of T. Going to the normal core of H N G in G if
needed, we can assume H N G < @ is normal; this normal core will still contain K by
the assumption that the latter is characteristic in K.

Hoping that no risk of confusion arises, we maintain the notation 1 — K= G-
I — 1 for the ensuing finite index normal subgroup of G: we stress that K has not
changed in the process. With this notation in place, we have that G-v= {v}, whence
the space of invariants H; (K Q)¢ is nontrivial. As G acts on H; (K Q) preserving
its intersection form, the symplectic structure on H; (K Q) induces an 1s0morphlsm
of é—spacgs between Hl(f( ;Q) and its dual H 1(I~( ;Q); consequently, H 1(K Q)¢
H, (f(,@)ci The latter vector space is nontrivial, as it contains the span of v. But
Hl(l?; Q)¢ is dual to Hy (K; Q)& (see e.g. [26, Lemma 2.1]), hence dimHl(I?; Q)g>0
It follows that G has excessive homology.

(2) = (1): Let G be any finite index subgroup of G: we want to show that if (2)
holds, then G has no excessive homology. First, as the existence of excessive homology
is preserved by passmg to finite index subgroups, we can assume that G is normal
in G. Denote now K = K N G. Any surface group K contains a finite index subgroup
characteristic in K. Replacing G if necessary with its normal finite index subgroup whose
intersection with K is that characteristic subgroup (see the Remark in Section 2), we can
assume without loss of generality that K is characteristic itself in K. By assumption, for
any nonzero v € Hy (K; Q) the orbit G - v is infinite. As G <@ is finite index, so must be
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the orbit G -v. The space of invariants H (]~(, Q)é is trivial, and proceeding as above so
is the space of coinvariants H;(K;Q)gs, hence G has no excessive homology. O

Next, we show the equivalence of the existence of a surface-by-surface or surface-by-
free group with no virtual excessive homology and the case NFO(g,0,0) (Conjecture 1.2
of [26] for XY ;) of the Putman-Wieland Conjecture.

Theorem 3.3. For every g > 2 the Putman—Wieland conjecture NFO(g,0,0) holds if and
only if there exists a surface-by-surface or a surface-by-free group G with fiber of genus

g and no virtual excessive homology or, equivalently, that is not virtually algebraically

fibered.

Proof. Let G be an extension as in the statement. We claim that for any finite index
characteristic subgroup K < K, and any nonzero v € H; (f( Q) the orbit Mod1 v C
Hy(K;Q) is infinite. Indeed, by Lemma 3.2, we know that for any finite index Charac—
teristic subgroup K < K and any nonzero v € Hy(K;Q) the orbit G -v C Hy(K;Q) is
infinite, which shows that the orbit Mod; v D G - v is infinite as well.

To prove the reverse implication, we recall that, given any finite presentation © of
Out(K), there exists a surface bundle X of fiber F' over a surface B (whose genus
equals the rank r of the presentation) induced by an epimorphism n: I' = Mod,. This
construction is due to Kotschick in [18, Proposition 4]; the map 7 is defined by sending
the first r generators of I' = m1(B) = (a1, ..., &, B1, ..., Br| [ 1, [vi, Bi]) to the set of
generators of Out(K), while the remaining r generators are sent to the trivial element.
We denote this surface bundle by Xg so that G = m(Xe) will be the desired surface-
by-surface group. Similarly, we can consider the presentation epimorphism n: I' = F,. —
Mod,, with G being the induced surface-by-free group. By construction, these extensions
are of type I in Johnson’s trichotomy (namely, the monodromy homomorphisms n: I' —
Mod, have infinite kernel and image, see [12]) and, in the surface-by-surface case Xeg
has signature zero. The virtual excessive homology is determined by the behavior of the
orbits of G on the homology of the characteristic subgroups of K. As n: I' — Mod,
is surjective, so is ¢: G — Mod] g+ 80 the G-orbits coincide with the orbits of Mod;. It
follows that NFO(g, 0,0) is true 1f and only if G has no virtual excessive homology. Note
that as there exist presentations of Mod, with two generators ([27,17]), we can assume
that r = 2, in particular the base B of the surface bundle over a surface can be chosen
to have genus 2. O

It is quite straightforward to see that the result above is optimal as far as the base
genus is concerned. In fact we have the following:

Proposition 3.4. Let F' — X i> T? be a surface bundle over a torus with fiber genus
greater or equal than 2. Then G has nonzero virtual excessive homology.
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Proof. In [8] it is proven that the fundamental group of a surface bundle of the type
described is large. In particular, this implies that vb;(X) = co. Then let X 5 Xbea
finite regular cover, as described in the diagram of Equation (5), with bl()Z' ) > 2. As B
is also a torus, the fibration F' < X — B has excessive homology. O

In [22] the author proves that NFO(2,0,0) fails. (As often happens, the case of genus 2
is special because the mapping class group is entirely composed of hyperelliptic classes.)
This entails the following:

Corollary 3.5. Let X be a surface bundle with fiber F' of genus 2 and base B of genus at
least 2. Then its fundamental group G = m1(X) is virtually algebraically fibered and it is
incoherent, namely it admits finitely generated subgroups which are not finitely presented.

Proof. The existence of a virtual algebraic fibration for G follows immediately from
Theorem 3.3. The proof of incoherence is standard, and we reproduce it for completeness.
As coherence is preserved by subgroups, we can assume that G itself is algebraically
fibered. Let ¢: G — Z be an algebraic fibration and let

1—Ker¢p —G—7—1

be the corresponding short exact sequence, where Ker ¢ < G is finitely generated. By
[10, Theorem 4.5(4)] the group Ker ¢ can have finiteness of type F P, (in particular, be
finitely presented) only if the Euler characteristic of G is zero. As both base and fiber
groups of G have nonzero Euler characteristic, this fails, hence Ker ¢ is finitely generated
but not finitely presented. O

It is quite interesting, at this point, to ask whether there exist classes of surface bun-
dles for which there is always virtual excessive homology, and hence virtual algebraic
fibrations. For instance, this is the case when the fibration is a holomorphic bundle, see
e.g. [2]. In particular, it would be interesting to decide this case for the class of Kodaira
fibrations, or of surface bundles of type IIT in Johnson’s trichotomy (injective mon-
odromy). (The surface bundles discussed in Theorem 3.3 cannot be Kodaira fibrations,
as these have strictly positive signature, see e.g. [2].)

In the case where g > 3, we can use a result of Korkmagz to give a quite explicit descrip-
tion of the type of surface bundles that are involved in the statement of Theorem 3.3.
For sake of concreteness, we limit ourselves to the surface-by-free case, that is somewhat
more striking. In [17, Section 5] Korkmaz shows that the mapping class group Mod,
can be assumed to be generated by two elements, generators of two cyclic subgroups of
order 4g + 2 of Mod,. These generators are conjugated in Mod, by a Dehn twist along a
nonseparating curve. We'll denote by d: K — K the corresponding automorphism. We
have the following:
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Proposition 3.6. Let v: K — K be the generator of a cyclic subgroup of order 4g + 2
of Mody for g > 3, and denote by Il the corresponding mapping torus. Let II x5 I be
the amalgamated free product determined by the automorphism §: K — K. Then the
Putman—Wieland conjecture NFO(g,0,0) holds if and only if the surface-by-Fs group
Il x5 IT fails to virtually algebraically fiber.

Proof. The proof of this proposition is a specialization of an argument used in the proof
of Theorem 3.3. By [17] there exists a presentation of Mody of rank 2 in which the two
generators x,y each generate a cyclic subgroup of order 4g + 2. All these generators are
conjugate in Mod, (see e.g. [7, Section 7.2.4]), so that in particular the mapping tori
of the induced automorphisms of K are isomorphic. In the case at hand we can assume
that the conjugating element is induced by a Dehn twist along a nonseparating curve
(see [17, Section 5]). It follows that there exists a commutative diagram of the form

KcC G ! F(x,y)

-

K——» Mod}] L Mody

where n: F(z,y) — Mod, is the presentation quotient. By fiat, G is the free product of
the mapping tori of two automorphisms of K, amalgamated along K. These mapping
tori arise as the pull-back of the monodromies determined by the two generators x
and y of F(x,y), namely they are the unique (up to conjugation) cyclic monodromies
of order 49 + 2 on K. Denoting by II the resulting mapping torus, well-defined up to
isomorphism, the group G is isomorphic to the free amalgamated product IT x4 II, where
the amalgamation is determined by the automorphism §: K — K. The rest of the proof
follows exactly as the proof of Theorem 3.3. O

As aremark, note that the five term sequence of the Lyndon—Hochschild—Serre spectral
sequence tells us that Hy(Il) = Z& H(K)z,,,.,
monodromy factorizes through the quotient map Z — Z4g442. The action of Z4g42 on K

where we make explicit that the periodic
determines an orbisurface cover (or, if preferred, a branched cover) whose quotient is an

orbisphere with 3 orbifold points of order 2,2¢g + 1,4g + 2 whose orbifold fundamental
group we denote A. We have a short exact sequence

1 —K-—A—Zygy2 — 1.

As Z4g4+2 is torsion, the coinvariant homology Hi(K)z,,,, has the same rank as H;(A),
namely it is torsion. It follows that by (II) = 1 and by (II % II) = 2.
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4. Extensions with no virtual excessive homology

In this section we will show that there are extensions of free (and free abelian) groups
that have no virtual excessive homology. As we already observed, this does not imply an
analog of the NFO conjecture in the realm of free groups. However, it is interesting that
the proof hinges on Property (T) for suitable automorphism groups, a theme related with
the circle of ideas at the origin of [26]. Regarding Property (T), we recall the definitions
here; for full details see [3].

Definition. [3, Def 1.1.3, 1.4.3] A group G has Property (T), if every unitary represen-
tation of G with almost invariant vectors has a non-trivial invariant vector. A pair of
discrete groups (G, H) with H < G has Relative Property (T), if every unitary represen-
tation of G with almost invariant vectors has a non-trivial H invariant vector.

For the precise definition of almost invariant vectors see Definition 1.1 in [3]. If G
has Property (T), then any quotient of G also has Property (T). As discrete, finitely
generated amenable groups with Property (T) are finite, any amenable discrete quotient
of G must be finite. Likewise, if (G, H) has Relative Property (T), then in any amenable
discrete quotient of G the image of H must be finite. This follows since an amenable
group K has almost invariant vectors in the left-regular representation on £2(K) (Reit-
ner’s condition). In particular, this holds for abelian quotients, since abelian groups are

amenable.

Theorem 4.1. For each n > 2, and each m > 4 (respectively m > 2) there exist groups
of the form F,, x T (respectively Z™ x T"), where T is a copy of F,, or the fundamental
group of a surface of genus n, with no virtual excessive homology or, equivalently, that
are not virtually algebraically fibered. Therefore these groups are not virtually RFRS.

Proof. In [15,14,25], it is shown that Aut(F,) has property (T) for m > 4. Thus by [15,
Prop 10] we see that F,,, x Aut(F,) has property (T). Thus if Q is an abelian quotient of
a finite index subgroup H of G = F,,, x Aut(F,,), then @ is finite. In particular, any finite
index subgroup of G has finite abelianization. Similarly, the pair (Z™ xSL,,(Z),Z™) has
Relative Property (T) when m > 2 [5, Ex. 1.7.4, 4.2.2], thus given any abelian quotient
Q of a finite index subgroup H of Z™ x SL,,(Z), then Z™ N H has finite image in Q.
These are the key properties that make our proof work.

We start with the case where the fiber K is the free group F,, for m > 4. Let
n: I' — Aut(F,,) be a surjection and build the associated extension G = F},, x I'. Note
we can take I' = F,,, m1(S,) with ¢ = n = 2 since Aut(F,,) is generated by 2 elements
[24]. Thus we have a commutative diagram



R. Kropholler et al. / Journal of Algebra 651 (2024) 1-18 13

F,.© G T

C s F, x Awt(Fy,) —s= Aut(F),)

-

3

The top row of this diagram is split so we have a splitting s: I' — G.

The proof proceeds with a variation on the proof of Theorem 3.3, as we need to control
the virtual coinvariant homology of G without resorting to the invariant homology.

Let G be an arbitrary finite index subgroup of G. Then we have the short exact
sequence

1—>Fk—>§—>f—>1

where I is the image of G under f:G—T and Fy, = G N F,,. We note that T’ may not
stabilize Fj, under the action given by n(T). If this is the case, then s(I') is not contained
in G. However, s(I') NG has finite index in s(I'). Therefore we can consider the subgroup
G of G generated by Fj, and s(T) N G; this has finite index in G, hence in G as well.
Thus we obtain a commutative diagram as follows:

J RS I (6)
k)
FC——sH $>T

where H = ((G) is finite index in F, x Aut( 'n); furthermore T = f(G) = f(s(I) N G)
is finite index in T' and T, the image of I' under 7, is finite index in Aut(Fy,).

By construction, the top horizontal sequence in Eq (6) splits: any element v € f (s(T)N
G) is mapped to s(vy) € G which sits by construction in G. The image H is also a
semidirect product; it is the image of Fj X T in F,, x Aut(F,,) where the action of
¢(s(T')) on F,, stabilizes Fy < F,.

So, as excessive homology is non-decreasing over finite index subgroups by Lemma 2.2,
we can restrict ourselves to the case where the finite index subgroup of G is a semidirect
product of the form G = Fy % T for some finite index subgroup r < T, and its image
H < F,, x Aut(F,;,) is an extension of F) by a finite index subgroup T < Aut(F,,).
By Lemma 2.1 the excessive homology of G is given by the coinvariant homology group
Hy(Fy; Q)g, and as the action of T on Fy. factors through T by construction, this coin-
variant homology group coincides with H; (Fy; Q). By Lemma 2.1 again, the excessive
homology of H is given by Hy(Fj; Q) as well.

At this point we can invoke the fact that abelian quotients of any finite index sub-
groups of F,, x Aut(F,,), in particular H, are finite. This implies that H, (H;Z) is torsion,
hence Hy (Fy; Q)r is trivial (and by (G) = by (T)).
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The proof for K = Z™ is slightly different from the above, although we could have
done the proof above using Relative Property T, see remarks below. The pair (Z™ x
SL(Z),Z™) has Relative Property (T) when m > 2 [5, Ex. 1.7.4, 4.2.2], thus given
any abelian quotient @ of a finite index subgroup H of Z™ x SL,,(Z), then Z™ N H has
finite image in Q.

It is classically known that there exist presentations of SL,,(Z) with two generators
(see [24]); we can therefore again choose an epimorphism n: I' — SL,,(Z) where T is
either a free or a surface group of rank or genus at least 2 and consider the extension G
defined as the pull-back of the semidirect product Z™ x SL,,(Z) under the projection
onto the base. The groups in question fit in the commutative diagram.

zmc G T (7)

-k 3

2" I 1 SLin(Z) ——>> SLn(Z)

1R

Given a finite index subgroup G of G, we can assume as above that G has the form K xT
for some finite index subgroup I' < T" and finite index K < Z™ (where of course K itself
is abstractly isomorphic to Z™) and, much as above, we get the commutative diagram

C r (8)

T\
K
where H = ((G) < Z™ % SLp(Z). The horizontal sequence is a split extension, so by
Lemma 2.1 its excessive homology is given by the coinvariant homology of the fiber. We

T~

n
C > H —% ¢(T)

can now proceed as in the previous proof, using Relative Property (T) for the bottom
row.

To complete the proof of the statement, observe that the vanishing of virtual excessive
homology for G entails that it does not virtually algebraically fiber, as the BNS invariant
of all its covers coincide with that of a free group or a surface, hence it is empty. But
this implies by [16, Theorem 5.3] that G is not virtually RFRS as for such groups
the only obstruction to virtual algebraic fibration is the vanishing of the first £2-Betti
number, which we have since there is an infinite index normal finitely generated non-
trivial subgroup in all of our cases of G. O

Note, by contrast, that the extensions discussed in Theorem 4.1 and the potential
counterexamples to Putman—Wieland conjecture are virtually residually p, in particular
virtually residually finite solvable.
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Recall that given a prime p, a group is called residually p if the intersection of its p-
power index normal subgroups is trivial. Residually p groups are residually finite solvable

(or RFS).

Lemma 4.2. Let G be a group that fits into a short exact sequence 1 — K — G ENS NN
Suppose K has trivial center and K, T' are virtually residually p, then G is virtually
residually p.

Proof. Without loss of generality, we can assume that T is already residually p. By [20],
we have that if K is virtually residually p, then so is Aut(K). Let (: G — Aut(K) be the
representation of G covering the monodromy map 7: I' — Out(K) as in Equation (2).
Since K has trivial center, ¢ is injective when restricted to K. Let A < Aut(K) be a
finite index subgroup of Aut(XK) which is residually p.

Let G = ("Y(A) NG < G. There is a short exact sequence 1 — K—>G->T —1,
where K is a finite index subgroup of K.

Let g € G~ {e}. If f(g) is non-trivial then we can find a p-group quotient of T where
the image of f(g) is non-trivial. Thus we have a p-group quotient of G where the image
of g is non-trivial.

If f(g) =e, then g € K. In this case ¢(g) is non-trivial. Thus we can find a p-group
quotient of A, hence of G, under which the image of ¢ (g9) is non-trivial. Thus in either
case, we can find a p-group quotient where the image of g is non-trivial and hence G is
residually p and G is virtually residually p. O

Remarks.

(1) The core of the proof of Theorem 4.1 shows in more generality that if N is a finitely
generated group such that Aut(N) is finitely generated, and (N x Aut(N), N) has
Relative Property (T), there exists a group of the form N x I" which does not
algebraically fiber, where I" can a be non-abelian free group or a surface group of
sufficient rank.

(2) With the result [19, Theorem 6.1] that F» x F),, groups virtually algebraically fiber,
we are left with the case of whether or not all groups of the form F3 x F), virtually
algebraically fiber. It is known that Aut(F3) is large and hence does not have property
(T). However it may be the case that (F3 x Aut(F3), F3) has Relative Property (T)
and then, as remarked above, the same argument as in Theorem 4.1 could be applied.

Let G be a group as in Equation (1). In light of Kielak’s result on virtual fibering [16]
and the fact that G has an infinite normal infinite-index subgroup (hence its first L? Betti
number vanishes), G would virtually algebraically fiber if G is virtually RFRS. Although
we know that many of these groups virtually algebraically fiber, we do not know if all of
these are RFRS. More broadly, excluding the cases where the monodromy is finite (hence
the extension is virtually a product), or the extension does not admit virtually excessive
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homology, we don’t know if these virtually RFS (residually finite solvable) groups are
virtually RFRS (residually finite rationally solvable) or not. This is exemplified by the
following question:

Question 4.3. Which free-by-free groups with nonabelian base and fiber and infinite mon-
odromy are virtually RFRS?

In the hyperbolic case, cubulation would imply this. Some surface-by-free groups
were cubulated in [21], but other cases are widely unknown. Therefore the following is
of interest:

Question 4.4. Which (if any) hyperbolic free-by-free groups are cubulated?

There are some homological consequences for extensions, such as those identified in
Theorem 4.1, which do not have virtually excessive homology (or equivalently are not
virtually algebraically fibered).

Proposition 4.5. Let G be a surface-by-surface, a surface-by-free, or a free-by-free group
without virtually excessive homology. Then for any n € N and any prime p, there is a
subgroup G < G of finite index at least n such that Hy(G) has nontrivial p-torsion.

Proof. By Lemma 4.2, the group G is virtually residually p. Because of the form of
the statement, it is not restrictive to assume that G itself is residually p. Since G is
residually p, there exists a filtration {G; | ¢ > 0} of finite index normal subgroups
whose index is a power of p with (), G; = {1} and where the successive quotient maps
a;: G; = G;/Giy1 = S; factorize through the maximal abelian quotient:

623

N\ A
Hy(G;)

GH_l(ﬁ Gi Si (9)

Now let k € K be an element with the property that k € G;\ G;41; denoting K; = KNG,
and combining the diagram in Equation (5) with the residually p assumption, we get the

diagram
fi
Ki( Gq, Fi
o Hl(Ki)Fi o Hl(Gz) —_— Hl(Fz)
Oéi(Ki)( S; Sz/az(Kz)

As b1(G;) = bi(Ty), the image of Hi(K;)r, in H1(G;) is a torsion subgroup. And as
a;(k) # 1 € S;, the class [k] € H1(G;) is nonzero, hence the torsion subgroup is nontriv-
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ial. Moreover, a(k) is non-trivial in S; and has order p! for some I. We can consider the
class [] in Hq(G;), this has finite order and maps onto a(k), thus we see that [k] has
order p'r for some r. We conclude that H;(G;) contains an element of order p. O
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