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We show that a conjecture of Putman–Wieland, which 
posits the nonexistence of finite orbits for higher Prym 
representations of the mapping class group, is equivalent to 
the existence of surface-by-surface and surface-by-free groups 
which do not virtually algebraically fiber. While the question 
about the existence of such groups remains open, we will show 
that there exist free-by-free and free-by-surface groups which 
do not algebraically fiber (hence fail to be virtually RFRS).
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1. Introduction

In this paper we will be concerned with the study of homological and group-theoretical 

properties of group extensions of the form

1 −→ K −→ G
f

−→ Γ −→ 1, (1)
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where K and Γ, the fiber and base groups, are fundamental groups of closed, compact, 

orientable surfaces of genus at least 2, or finitely generated nonabelian free groups. The 

study of this type of extension has quite a long story, originating in the realm of free-by-

free groups and, in the broader context that includes surface groups, in several papers 

of F.E.A. Johnson, see e.g. [13] and references therein.

The original motivation of our interest stems from a topological framework. Let X

be a surface bundle with fiber F over a surface B, both having genus at least 2. Then 

its fundamental group G = π1(X) is an extension as in Equation (1) with K := π1(F ), 

Γ := π1(B) and where f : G → Γ is the map induced on the fundamental groups (after 

picking a basepoint) by the fibration X → B. This sequence is the nontrivial part of 

the long exact sequence of the homotopy groups for the fibration. In this case, we will 

refer to G as a surface-by-surface group. In the other cases, while the extensions are not 

the fundamental group of a closed aspherical 4-manifold, they share similarities with 

surface-by-surface groups. Note that when the base Γ is the free group Fn, G can always 

be thought of as a semidirect product K � Fn, while this may fail in general.

We will focus on those extensions with the property that the induced map on homology 

with rational coefficients f∗ : H1(G; Q) → H1(Γ; Q) is an isomorphism. (This map is 

always surjective.) This has been referred to by saying that the sequence of Equation (1)

has no excessive homology ([19]). This is a property that depends on G alone, and not 

on the choice of the extension.

Given any group G as in Equation (1), we can ask whether it admits a finite-index 

subgroup with excessive homology. By the work of [9,19] this is equivalent to the property 

that G virtually algebraically fibers, namely a finite index subgroup of G admits an 

epimorphism to Z with finitely generated kernel. Our main aim is to show that in the 

case where K = π1(F ) is a surface group there is a natural relation between this question 

and a conjecture by Putman and Wieland [26, Conjecture 1.2]. We refer the reader to 

Section 2 and the original source for more detail. The case labeled as NFO(g, 0, 0) of 

that conjecture posits that the action of the mapping class group Mod1
g of the surface F

(where g is the genus of F ) on the rational homology of finite-index characteristic covers 

of F (sometimes referred to as higher Prym representation) has no finite orbits. We will 

show the following.

Theorem 3.3. For every g ≥ 2 the Putman–Wieland conjecture NFO(g, 0, 0) holds if and 

only if there exists a surface-by-surface or a surface-by-free group G with fiber of genus 

g and no virtual excessive homology or, equivalently, that is not virtually algebraically 

fibered.

Note that the surface-by-surface and surface-by-free groups mentioned in the state-

ment, if they exist, will fail to be virtually RFRS (residually finite rationally solvable) 

in light of [16].

Assuming the Putman-Wieland conjecture, this theorem would differentiate the be-

havior of 3- and 4-dimensional surface bundles.
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Marković [22] has shown that the conjecture fails when the genus of the surface is 2. 

Combining this with Theorem 3.3, we have the following, that gives a partial answer to 

a question of Hillman ([11, Section 11, Question 4]):

Corollary 3.5. Let X be a surface bundle with fiber F of genus 2 and base B of genus at 

least 2. Then its fundamental group G = π1(X) is virtually algebraically fibered and it is 

incoherent, namely it admits finitely generated subgroups which are not finitely presented.

The proof of Theorem 3.3 shows that the base of G can be assumed to be the funda-

mental group of a surface of genus 2, or the free group F2. The fact that these bases are 

optimal is not quite obvious, see Proposition 3.4. Additionally, the corresponding surface 

bundle over a surface X can be assumed to have signature zero.

The <only if= part of Theorem 3.3 uses an epimorphism from the base of the extension 

to the mapping class group Modg, so that we can make the construction of the groups 

deciding the conjecture NFO(g, 0, 0) very explicit, especially in the case where g ≥ 3. 

We illustrate this in the surface-by-free case: Let F be a surface of genus g ≥ 3; this 

admits a cyclic automorphism of order 4g + 2, and denote by Π the fundamental group 

of the mapping torus of this automorphism. (This is a Seifert–fibered manifold which is 

finitely covered by a product.) Any two such automorphisms are conjugate in Modg, so 

that Π is uniquely determined as a group. By [17] Modg can be generated by two such 

automorphisms, related by conjugation by the automorphism δ : K → K induced by a 

Dehn twist along a nonseparating curve. (See Section 3 for references and more details),

Proposition 3.6. Let υ : K → K be the generator of a cyclic subgroup of order 4g + 2

of Modg for g ≥ 3, and denote by Π the corresponding mapping torus. Let Π ∗δ Π be 

the amalgamated free product determined by the automorphism δ : K → K. Then the 

Putman–Wieland conjecture NFO(g, 0, 0) holds if and only if the surface-by-F2 group 

Π ∗δ Π fails to virtually algebraically fiber.

The group Π ∗δ Π surjects onto Mod1
g. In a sense, the latter is <one Dehn twist away= 

from being the product K × Modg.

In analogy with Theorem 3.3 one may ask about the existence of free-by-free or free-by-

surface groups with no virtual excessive homology, or equivalently which do not virtually 

algebraically fiber. In this realm we can reach in most cases an affirmative answer, which 

naturally extends also to the case where the fiber group is free abelian.

Theorem 4.1. For each n ≥ 2, and each m ≥ 4 (respectively m ≥ 2) there exist groups 

of the form Fm � Γ (respectively Zm
� Γ), where Γ is a copy of Fn or the fundamental 

group of a surface of genus n, with no virtual excessive homology or, equivalently, that 

are not virtually algebraically fibered. Therefore these groups are not virtually RFRS.

Note, in contrast, that these groups are virtually residually p, hence virtually residually 

finite solvable, see Lemma 4.2. The interest in RFRS groups stems from their role in 
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various areas of group theory, including the study of 3–manifold groups ([1]) and algebraic 

fibrations ([16]). Free groups are RFRS, and so are their direct products: it is not obvious 

how to decide if other extensions of free (or surface) groups are RFRS. Theorem 4.1 as 

well as the previous results, makes a step in that direction.

We point out that Theorem 4.1 has no implication on the suitable analog of the 

Putman-Wieland conjecture in the context of automorphisms of free groups, which is 

known to be true in light of [6].

This paper is organized as follows: In Section 2, we give background on the homology 

of the extensions we are considering, and of their finite index subgroups, and state the 

Putman-Wieland conjecture. Theorem 3.3 and Proposition 3.6 are proven in Section 3, 

while Theorem 4.1 is proven in Section 4.
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2. Preliminaries

It will be useful in what follows to tie the sequence in Equation (1) with the mon-

odromy representation determined by the extension (1). Namely, we have

K �� ��

∼=

��

G

ζ

��

f
�� �� Γ

η

��
K

� � �� Aut(K)
p
�� �� Out(K).

(2)

Here η characterizes the action of Γ on K, well-defined up to conjugation. The map 

K → Aut(K) is given by the conjugation action, and it is injective as K has trivial 

center. This allows us to identify G as the pullback

G ∼= {(ψ, γ) ∈ Aut(K) × Γ | p(ψ) = η(γ)},

with the group structure obtained by restriction of that on Aut(K) × Γ. The fibration 

map f is induced by projection onto the second factor, and the fiber subgroup is given 

by the normal subgroup
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K × {1Γ} � G ≤ Aut(K) × Γ.

With this identification, the conjugation action of G on its normal subgroup K can be 

written in terms of the conjugation action of Aut(K) ×Γ on K ×{1Γ}. Note that when K

is a surface group of genus g > 1, we will be interested in the case where the monodromy 

representation η : Γ → Out(K) has values in Modg � Out(K), and ζ : G → Aut(K) has 

values in Mod1
g � Aut(K) (with both modular groups subgroups of index 2 determined by 

orientation-preserving homeomorphisms of a surface). This condition, which is equivalent 

to the fact that the corresponding surface bundle is oriented, is not too restrictive and 

can be achieved by passing to an index-two subgroup of the base of the extension. In 

such case, the bottom row of Equation (2) can be interpreted as Birman’s short exact 

sequence.

2.1. Coinvariants and homology

We wish to understand the homology of G in terms of that of K and Γ. If G is a 

group and M is a G-module, the coinvariants of M , denoted MG, is the quotient of M

obtained by taking the quotient generated by elements of the form gm −m, for all g ∈ G, 

m ∈ M . The invariants of M , denoted MG, are the largest submodule of M on which 

G acts trivially.

Definition. Let 1 → K → G → Γ → 1 be an extension. The excessive homology of this 

extension is the kernel of the map H1(G; Q) → H1(Γ; Q).

In the cases that we will be interested in, the excessive homology can be conveniently 

expressed in terms of (co)invariant homology. Specifically, we have the following Lemma 

(whose first part applies, in generality, for any semidirect product.)

Lemma 2.1. Let G be an extension as in Equation (1); assume that either

(1) G can be written as a semidirect product G = K � Γ; or

(2) K is a surface group (of genus at least 2).

Then the excessive homology of G is H1(K; Q)G. Furthermore, in the second case, it is 

isomorphic to H1(K; Q)G.

Proof. The Lyndon–Hochschild–Serre spectral sequence associated to Equation (1) [4, 

problem 6, pg. 47], gives the following 5-term exact sequence for the homology with 

rational coefficients:

H2(G; Q)
f

−→ H2(Γ; Q) −→ H1(K; Q)G −→ H1(G; Q)
f

−→ H1(Γ; Q) −→ 0. (3)
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When G is a semidirect product, the extension splits, hence all maps f : Hi(G; Q) →

Hi(Γ; Q) admit a right-inverse, hence are surjective, and the statement follows. When 

K is a surface group, and Γ is free, then the extension is split again and the previous 

argument applies. Surface-by-surface groups, in contrast, do not always split. However, as 

we assumed that the genus of the fiber is at least 2, the map f : H2(G; Q) −→ H2(Γ; Q)

in the sequence in Equation (3) is surjective (see e.g. [23, Proposition 3.1]), so the kernel 

of f : H1(G; Q) → H1(Γ; Q) is given again by H1(K; Q)G.

Finally, when K is a surface group, G acts on H1(K; Z) preserving its algebraic 

intersection form, which extends uniquely to a G-invariant symplectic structure on 

H1(K; Q) (see e.g. [7, Section 6.1.2]). The symplectic structure on H1(K; Q), be-

ing non-degenerate, induces an isomorphism of G-spaces between H1(K; Q) and its 

dual Hom(H1(K; Q), Q) ∼= H1(K; Q). Consequently, H1(K; Q)G ∼= H1(K; Q)G. But 

H1(K; Q)G is dual to H1(K; Q)G (see e.g. [26, Lemma 2.1]), hence the latter is isomor-

phic (as vector spaces) to H1(K; Q)G so the last part of the statement follows. �

It is not too hard to verify that the existence of excessive homology is preserved by 

passing to finite index subgroups:

Lemma 2.2. Let 1 → K → G → Γ → 1 be an extension as in Equation (1), and let 

G̃ ≤ G be a finite index subgroup. Then the excessive homology of the induced extension 

on G̃ surjects onto that of G.

Proof. There exists a commutative diagram

K̃ = K ∩ G̃
� � ��

� �

��

G̃� �

��

�� �� Γ̃� �

��
K � � �� G �� �� Γ

(4)

with self-explaining notation. This entails the existence of a homomorphism

H1(K̃; Q) −→ H1(K; Q)

which naturally commutes with the action of G̃. As K̃ ≤ K is finite index, this homomor-

phism admits a right-inverse, a suitable multiple of the transfer map, see e.g. [4, Chapter 

III]). (This necessitates the use of rational coefficients.), and it is therefore surjective. It 

follows that we have a composition of epimorphisms

H1(K̃; Q)
G̃

−→ H1(K; Q)
G̃

−→ H1(K; Q)G

which means that the excessive homology of the sequence 1 → K → G → Γ → 1 cannot 

decrease by passing to finite index subgroups of G. �
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Lemma 2.2 implies that we can reduce the question of the existence of virtual excessive 

homology to normal finite index subgroups. Therefore we will focus on these subgroups, 

which are determined by an epimorphism ³ : G → S onto a finite group S, completing the 

sequence in Equation (1) to the following commutative diagram of short exact sequences:

K̃
� � ��
� �

��

G̃� �

��

�� �� Γ̃� �

��
K

��
��

� � �� G

��
��

�� �� Γ

��
��

³(K) ���� S �� S/³(K).

(5)

Remark. In general, the action of G̃ on H1(K̃; Q) does not extend to G, but it will do 

so when K̃ � K is characteristic: such action is induced by restriction of the G-action on 

K, which preserves K̃ as well as [K̃, K̃] whenever K̃ is characteristic. Conversely, given 

any finite index normal subgroup K̃ � K, it is known from [23, Lemma 4.1] that there 

exists a finite index normal subgroup G̃ � G whose intersection with K is the subgroup 

K̃ � K. ([23, Lemma 4.1] is stated only for surface groups, but the proof applies to free 

groups as well.) Again, the action of G̃ on H1(K̃; Q) may fail to extend to G, but will do 

so whenever K̃ is characteristic. As any finite index normal subgroup K̃ � K contains 

a finite index subgroup which is characteristic in K, we can further reduce the study of 

excessive homology to covers of X which induce fiberwise characteristic subgroups of K.

3. Virtual excessive homology and the Putman–Wieland conjecture

3.1. The Putman-Wieland conjecture

In [26], the authors connect the study of the orbits of the mapping class group acting 

on the first homology of a surface and its finite covers to the classical conjecture that 

mapping class groups do not virtually surject Z. We will be interested only in a particular 

case of their conjecture, so for sake of simplicity we will limit ourselves to that case, 

referring the reader to [26] for the general case. Denote by Mod1
g (respectively Modg) 

the mapping class group of a surface Σ1
g with genus g and 1 puncture (respectively of a 

surface Σg with no punctures). When K̃ � K = π1(Σg) is a characteristic subgroup, the 

group Mod1
g acts on H1(K̃; Q). Putman and Wieland posit the following:

Conjecture 3.1. [26, Conjecture 1.2] Fix g ≥ 2. Let K̃ � K = π1(Σg) be a finite-index 

characteristic subgroup. Then for all nonzero vectors v ∈ H1(K̃; Q) the Mod1
g -orbit of 

v is infinite.
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For fixed g ≥ 2, the conjecture above will be referred to, for consistency with the 

notation of [26], as NFO(g, 0, 0)

3.2. Connections with virtually excessive homology

Our first result connects virtual excessive homology of a surface-by-surface or surface-

by-free group G with the orbits on the homology of characteristic subgroups of the fiber 

group K.

Lemma 3.2. Let G be a surface-by-surface or a surface-by-free group. Then the following 

two properties are equivalent:

(1) G has no virtually excessive homology;

(2) for any finite index characteristic subgroup K̃ � K, and any nonzero v ∈ H1(K̃; Q), 

the orbit G · v ⊂ H1(K̃; Q) is infinite.

Proof. (1) ⇒ (2): Assume that there exists a finite index characteristic subgroup K̃ �K, 

and a nonzero v ∈ H1(K̃; Q) with finite orbit G · v. As discussed before, G admits a 

normal finite index subgroup G̃�f G whose intersection with K is the subgroup K̃ � K. 

As G · v is finite, there is a finite index subgroup H ≤ G such that the orbit H · v = {v}. 

As K̃ acts trivially on its own homology, K̃ ≤ H. We now replace G̃ with its finite index 

subgroup H ∩ G̃; namely, we take a finite index subgroup of G̃ defined by the pull-back 

of a suitable finite index subgroup of Γ̃. Going to the normal core of H ∩ G̃ in G if 

needed, we can assume H ∩ G̃ ≤ G is normal; this normal core will still contain K̃ by 

the assumption that the latter is characteristic in K.

Hoping that no risk of confusion arises, we maintain the notation 1 → K̃ → G̃ →

Γ̃ → 1 for the ensuing finite index normal subgroup of G: we stress that K̃ has not 

changed in the process. With this notation in place, we have that G̃ · v = {v}, whence 

the space of invariants H1(K̃; Q)G̃ is nontrivial. As G̃ acts on H1(K̃; Q) preserving 

its intersection form, the symplectic structure on H1(K̃; Q) induces an isomorphism 

of G̃-spaces between H1(K̃; Q) and its dual H1(K̃; Q); consequently, H1(K̃; Q)G̃ ∼=

H1(K̃; Q)G̃. The latter vector space is nontrivial, as it contains the span of v. But 

H1(K̃; Q)G̃ is dual to H1(K̃; Q)
G̃

(see e.g. [26, Lemma 2.1]), hence dimH1(K̃; Q)
G̃

> 0. 

It follows that G̃ has excessive homology.

(2) ⇒ (1): Let G̃ be any finite index subgroup of G: we want to show that if (2) 

holds, then G̃ has no excessive homology. First, as the existence of excessive homology 

is preserved by passing to finite index subgroups, we can assume that G̃ is normal 

in G. Denote now K̃ = K ∩ G̃. Any surface group K̃ contains a finite index subgroup 

characteristic in K. Replacing G̃ if necessary with its normal finite index subgroup whose 

intersection with K̃ is that characteristic subgroup (see the Remark in Section 2), we can 

assume without loss of generality that K̃ is characteristic itself in K. By assumption, for 

any nonzero v ∈ H1(K̃; Q) the orbit G · v is infinite. As G̃� G is finite index, so must be 
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the orbit G̃ · v. The space of invariants H1(K̃; Q)G̃ is trivial, and proceeding as above so 

is the space of coinvariants H1(K̃; Q)
G̃

, hence G̃ has no excessive homology. �

Next, we show the equivalence of the existence of a surface-by-surface or surface-by-

free group with no virtual excessive homology and the case NFO(g, 0, 0) (Conjecture 1.2 

of [26] for Σ0
g,0) of the Putman–Wieland Conjecture.

Theorem 3.3. For every g ≥ 2 the Putman–Wieland conjecture NFO(g, 0, 0) holds if and 

only if there exists a surface-by-surface or a surface-by-free group G with fiber of genus 

g and no virtual excessive homology or, equivalently, that is not virtually algebraically 

fibered.

Proof. Let G be an extension as in the statement. We claim that for any finite index 

characteristic subgroup K̃ ≤ K, and any nonzero v ∈ H1(K̃; Q) the orbit Mod1
g ·v ⊂

H1(K̃; Q) is infinite. Indeed, by Lemma 3.2, we know that for any finite index charac-

teristic subgroup K̃ ≤ K and any nonzero v ∈ H1(K̃; Q) the orbit G · v ⊂ H1(K̃; Q) is 

infinite, which shows that the orbit Mod1
g ·v ⊇ G · v is infinite as well.

To prove the reverse implication, we recall that, given any finite presentation Θ of 

Out(K), there exists a surface bundle X of fiber F over a surface B (whose genus 

equals the rank r of the presentation) induced by an epimorphism η : Γ → Modg. This 

construction is due to Kotschick in [18, Proposition 4]; the map η is defined by sending 

the first r generators of Γ = π1(B) = 〈³1, ..., ³r, ́ 1, ..., ́ r| 
∏r

i=1[³i, ́ i]〉 to the set of 

generators of Out(K), while the remaining r generators are sent to the trivial element. 

We denote this surface bundle by XΘ so that G = π1(XΘ) will be the desired surface-

by-surface group. Similarly, we can consider the presentation epimorphism η : Γ = Fr →

Modg, with G being the induced surface-by-free group. By construction, these extensions 

are of type I in Johnson’s trichotomy (namely, the monodromy homomorphisms η : Γ →

Modg have infinite kernel and image, see [12]) and, in the surface-by-surface case XΘ

has signature zero. The virtual excessive homology is determined by the behavior of the 

orbits of G on the homology of the characteristic subgroups of K. As η : Γ → Modg

is surjective, so is ζ : G → Mod1
g, so the G-orbits coincide with the orbits of Mod1

g. It 

follows that NFO(g, 0, 0) is true if and only if G has no virtual excessive homology. Note 

that as there exist presentations of Modg with two generators ([27,17]), we can assume 

that r = 2, in particular the base B of the surface bundle over a surface can be chosen 

to have genus 2. �

It is quite straightforward to see that the result above is optimal as far as the base 

genus is concerned. In fact we have the following:

Proposition 3.4. Let F ↪→ X
f
→ T 2 be a surface bundle over a torus with fiber genus 

greater or equal than 2. Then G has nonzero virtual excessive homology.
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Proof. In [8] it is proven that the fundamental group of a surface bundle of the type 

described is large. In particular, this implies that vb1(X) = ∞. Then let X̃ → X be a 

finite regular cover, as described in the diagram of Equation (5), with b1(X̃) > 2. As B̃

is also a torus, the fibration F̃ ↪→ X̃ → B̃ has excessive homology. �

In [22] the author proves that NFO(2, 0, 0) fails. (As often happens, the case of genus 2

is special because the mapping class group is entirely composed of hyperelliptic classes.) 

This entails the following:

Corollary 3.5. Let X be a surface bundle with fiber F of genus 2 and base B of genus at 

least 2. Then its fundamental group G = π1(X) is virtually algebraically fibered and it is 

incoherent, namely it admits finitely generated subgroups which are not finitely presented.

Proof. The existence of a virtual algebraic fibration for G follows immediately from 

Theorem 3.3. The proof of incoherence is standard, and we reproduce it for completeness. 

As coherence is preserved by subgroups, we can assume that G itself is algebraically 

fibered. Let φ : G → Z be an algebraic fibration and let

1 −→ Ker φ −→ G −→ Z −→ 1

be the corresponding short exact sequence, where Ker φ � G is finitely generated. By 

[10, Theorem 4.5(4)] the group Ker φ can have finiteness of type FP2 (in particular, be 

finitely presented) only if the Euler characteristic of G is zero. As both base and fiber 

groups of G have nonzero Euler characteristic, this fails, hence Ker φ is finitely generated 

but not finitely presented. �

It is quite interesting, at this point, to ask whether there exist classes of surface bun-

dles for which there is always virtual excessive homology, and hence virtual algebraic 

fibrations. For instance, this is the case when the fibration is a holomorphic bundle, see 

e.g. [2]. In particular, it would be interesting to decide this case for the class of Kodaira 

fibrations, or of surface bundles of type III in Johnson’s trichotomy (injective mon-

odromy). (The surface bundles discussed in Theorem 3.3 cannot be Kodaira fibrations, 

as these have strictly positive signature, see e.g. [2].)

In the case where g ≥ 3, we can use a result of Korkmaz to give a quite explicit descrip-

tion of the type of surface bundles that are involved in the statement of Theorem 3.3. 

For sake of concreteness, we limit ourselves to the surface-by-free case, that is somewhat 

more striking. In [17, Section 5] Korkmaz shows that the mapping class group Modg

can be assumed to be generated by two elements, generators of two cyclic subgroups of 

order 4g + 2 of Modg. These generators are conjugated in Modg by a Dehn twist along a 

nonseparating curve. We’ll denote by δ : K → K the corresponding automorphism. We 

have the following:
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Proposition 3.6. Let υ : K → K be the generator of a cyclic subgroup of order 4g + 2

of Modg for g ≥ 3, and denote by Π the corresponding mapping torus. Let Π ∗δ Π be 

the amalgamated free product determined by the automorphism δ : K → K. Then the 

Putman–Wieland conjecture NFO(g, 0, 0) holds if and only if the surface-by-F2 group 

Π ∗δ Π fails to virtually algebraically fiber.

Proof. The proof of this proposition is a specialization of an argument used in the proof 

of Theorem 3.3. By [17] there exists a presentation of Modg of rank 2 in which the two 

generators x, y each generate a cyclic subgroup of order 4g + 2. All these generators are 

conjugate in Modg (see e.g. [7, Section 7.2.4]), so that in particular the mapping tori 

of the induced automorphisms of K are isomorphic. In the case at hand we can assume 

that the conjugating element is induced by a Dehn twist along a nonseparating curve 

(see [17, Section 5]). It follows that there exists a commutative diagram of the form

K � � ��

∼=

��

G

ζ
��
��

f
�� �� F (x, y)

η

��
��

K � � �� Mod1
g

p
�� �� Modg

where η : F (x, y) → Modg is the presentation quotient. By fiat, G is the free product of 

the mapping tori of two automorphisms of K, amalgamated along K. These mapping 

tori arise as the pull-back of the monodromies determined by the two generators x

and y of F (x, y), namely they are the unique (up to conjugation) cyclic monodromies 

of order 4g + 2 on K. Denoting by Π the resulting mapping torus, well-defined up to 

isomorphism, the group G is isomorphic to the free amalgamated product Π ∗δ Π, where 

the amalgamation is determined by the automorphism δ : K → K. The rest of the proof 

follows exactly as the proof of Theorem 3.3. �

As a remark, note that the five term sequence of the Lyndon–Hochschild–Serre spectral 

sequence tells us that H1(Π) = Z ⊕H1(K)Z4g+2
where we make explicit that the periodic 

monodromy factorizes through the quotient map Z → Z4g+2. The action of Z4g+2 on K

determines an orbisurface cover (or, if preferred, a branched cover) whose quotient is an 

orbisphere with 3 orbifold points of order 2, 2g + 1, 4g + 2 whose orbifold fundamental 

group we denote Δ. We have a short exact sequence

1 −→ K −→ Δ −→ Z4g+2 −→ 1.

As Z4g+2 is torsion, the coinvariant homology H1(K)Z4g+2
has the same rank as H1(Δ), 

namely it is torsion. It follows that b1(Π) = 1 and b1(Π ∗δ Π) = 2.
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4. Extensions with no virtual excessive homology

In this section we will show that there are extensions of free (and free abelian) groups 

that have no virtual excessive homology. As we already observed, this does not imply an 

analog of the NFO conjecture in the realm of free groups. However, it is interesting that 

the proof hinges on Property (T) for suitable automorphism groups, a theme related with 

the circle of ideas at the origin of [26]. Regarding Property (T), we recall the definitions 

here; for full details see [3].

Definition. [3, Def 1.1.3, 1.4.3] A group G has Property (T), if every unitary represen-

tation of G with almost invariant vectors has a non-trivial invariant vector. A pair of 

discrete groups (G, H) with H ≤ G has Relative Property (T), if every unitary represen-

tation of G with almost invariant vectors has a non-trivial H invariant vector.

For the precise definition of almost invariant vectors see Definition 1.1 in [3]. If G

has Property (T), then any quotient of G also has Property (T). As discrete, finitely 

generated amenable groups with Property (T) are finite, any amenable discrete quotient 

of G must be finite. Likewise, if (G, H) has Relative Property (T), then in any amenable 

discrete quotient of G the image of H must be finite. This follows since an amenable 

group K has almost invariant vectors in the left-regular representation on L2(K) (Reit-

ner’s condition). In particular, this holds for abelian quotients, since abelian groups are 

amenable.

Theorem 4.1. For each n ≥ 2, and each m ≥ 4 (respectively m ≥ 2) there exist groups 

of the form Fm � Γ (respectively Zm
� Γ), where Γ is a copy of Fn or the fundamental 

group of a surface of genus n, with no virtual excessive homology or, equivalently, that 

are not virtually algebraically fibered. Therefore these groups are not virtually RFRS.

Proof. In [15,14,25], it is shown that Aut(Fm) has property (T) for m ≥ 4. Thus by [15, 

Prop 10] we see that Fm�Aut(Fm) has property (T). Thus if Q is an abelian quotient of 

a finite index subgroup H of G = Fm�Aut(Fm), then Q is finite. In particular, any finite 

index subgroup of G has finite abelianization. Similarly, the pair (Zm
�SLm(Z), Zm) has 

Relative Property (T) when m ≥ 2 [5, Ex. 1.7.4, 4.2.2], thus given any abelian quotient 

Q of a finite index subgroup H of Zm
� SLm(Z), then Zm ∩ H has finite image in Q. 

These are the key properties that make our proof work.

We start with the case where the fiber K is the free group Fm for m ≥ 4. Let 

η : Γ → Aut(Fm) be a surjection and build the associated extension G = Fm � Γ. Note 

we can take Γ = Fn, π1(Sg) with g = n = 2 since Aut(Fm) is generated by 2 elements 

[24]. Thus we have a commutative diagram
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Fm
� � ��

∼=

��

G

ζ
��
��

f
�� �� Γ

η
��
��

Fm
� � �� Fm � Aut(Fm)

p
�� �� Aut(Fm)

The top row of this diagram is split so we have a splitting s : Γ → G.

The proof proceeds with a variation on the proof of Theorem 3.3, as we need to control 

the virtual coinvariant homology of G without resorting to the invariant homology.

Let G̃ be an arbitrary finite index subgroup of G. Then we have the short exact 

sequence

1 → Fk → G̃ → Γ̃ → 1

where Γ̃ is the image of G̃ under f : G → Γ and Fk = G̃ ∩ Fm. We note that Γ̃ may not 

stabilize Fk under the action given by η(Γ̃). If this is the case, then s(Γ̃) is not contained 

in G̃. However, s(Γ̃) ∩ G̃ has finite index in s(Γ̃). Therefore we can consider the subgroup 

Ĝ of G generated by Fk and s(Γ) ∩ G̃; this has finite index in G̃, hence in G as well. 

Thus we obtain a commutative diagram as follows:

Fk
� � ��

∼=

��

Ĝ

ζ
��
��

f
�� �� Γ̂

η
��
��

Fk
� � �� H

p
�� �� T

(6)

where H = ζ(Ĝ) is finite index in Fm � Aut(Fm); furthermore Γ̂ = f(Ĝ) = f(s(Γ) ∩ G̃)

is finite index in Γ and T , the image of Γ̂ under η, is finite index in Aut(Fm).

By construction, the top horizontal sequence in Eq (6) splits: any element γ ∈ f(s(Γ) ∩

G̃) is mapped to s(γ) ∈ G̃, which sits by construction in Ĝ. The image H is also a 

semidirect product; it is the image of Fk � Γ̂ in Fm � Aut(Fm) where the action of 

ζ(s(Γ̂)) on Fm stabilizes Fk ≤ Fm.

So, as excessive homology is non-decreasing over finite index subgroups by Lemma 2.2, 

we can restrict ourselves to the case where the finite index subgroup of G is a semidirect 

product of the form Ĝ = Fk � Γ̂ for some finite index subgroup Γ̂ ≤ Γ, and its image 

H ≤ Fm � Aut(Fm) is an extension of Fk by a finite index subgroup T ≤ Aut(Fm). 

By Lemma 2.1 the excessive homology of Ĝ is given by the coinvariant homology group 

H1(Fk; Q)Γ̂, and as the action of Γ̂ on Fk factors through T by construction, this coin-

variant homology group coincides with H1(Fk; Q)T . By Lemma 2.1 again, the excessive 

homology of H is given by H1(Fk; Q)T as well.

At this point we can invoke the fact that abelian quotients of any finite index sub-

groups of Fm�Aut(Fm), in particular H, are finite. This implies that H1(H; Z) is torsion, 

hence H1(Fk; Q)T is trivial (and b1(Ĝ) = b1(Γ̂)).
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The proof for K = Zm is slightly different from the above, although we could have 

done the proof above using Relative Property T, see remarks below. The pair (Zm
�

SLm(Z), Zm) has Relative Property (T) when m ≥ 2 [5, Ex. 1.7.4, 4.2.2], thus given 

any abelian quotient Q of a finite index subgroup H of Zm
�SLm(Z), then Zm ∩ H has 

finite image in Q.

It is classically known that there exist presentations of SLm(Z) with two generators 

(see [24]); we can therefore again choose an epimorphism η : Γ → SLm(Z) where Γ is 

either a free or a surface group of rank or genus at least 2 and consider the extension G

defined as the pull-back of the semidirect product Zm
� SLm(Z) under the projection 

onto the base. The groups in question fit in the commutative diagram.

Zm � � ��

∼=

��

G

ζ
��
��

f
�� �� Γ

η
��
��

Zm � � �� Zm
� SLm(Z)

p
�� �� SLm(Z)

(7)

Given a finite index subgroup Ĝ of G, we can assume as above that Ĝ has the form K̂�Γ̂

for some finite index subgroup Γ̂ ≤ Γ and finite index K̂ ≤ Zm (where of course K̂ itself 

is abstractly isomorphic to Zn) and, much as above, we get the commutative diagram

K̂ � � ��
� �

∼=
��

Ĝ� �

ζ

��

f
�� �� Γ̂� �

η

��

K̂
� � �� H

p
�� �� φ(Γ̂)

(8)

where H = ζ(Ĝ) ≤ Zm
� SLm(Z). The horizontal sequence is a split extension, so by 

Lemma 2.1 its excessive homology is given by the coinvariant homology of the fiber. We 

can now proceed as in the previous proof, using Relative Property (T) for the bottom 

row.

To complete the proof of the statement, observe that the vanishing of virtual excessive 

homology for G entails that it does not virtually algebraically fiber, as the BNS invariant 

of all its covers coincide with that of a free group or a surface, hence it is empty. But 

this implies by [16, Theorem 5.3] that G is not virtually RFRS as for such groups 

the only obstruction to virtual algebraic fibration is the vanishing of the first 
2–Betti 

number, which we have since there is an infinite index normal finitely generated non-

trivial subgroup in all of our cases of G. �

Note, by contrast, that the extensions discussed in Theorem 4.1 and the potential 

counterexamples to Putman–Wieland conjecture are virtually residually p, in particular 

virtually residually finite solvable.
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Recall that given a prime p, a group is called residually p if the intersection of its p-

power index normal subgroups is trivial. Residually p groups are residually finite solvable 

(or RFS).

Lemma 4.2. Let G be a group that fits into a short exact sequence 1 → K → G 
f
→ Γ → 1. 

Suppose K has trivial center and K, Γ are virtually residually p, then G is virtually 

residually p.

Proof. Without loss of generality, we can assume that Γ is already residually p. By [20], 

we have that if K is virtually residually p, then so is Aut(K). Let ζ : G → Aut(K) be the 

representation of G covering the monodromy map η : Γ → Out(K) as in Equation (2). 

Since K has trivial center, ζ is injective when restricted to K. Let A ≤ Aut(K) be a 

finite index subgroup of Aut(K) which is residually p.

Let G̃ = ζ−1(A) ∩ G ≤ G. There is a short exact sequence 1 → K̃ → G̃ → Γ̃ → 1, 

where K̃ is a finite index subgroup of K.

Let g ∈ G̃� {e}. If f(g) is non-trivial then we can find a p-group quotient of Γ̃ where 

the image of f(g) is non-trivial. Thus we have a p-group quotient of G̃ where the image 

of g is non-trivial.

If f(g) = e, then g ∈ K̃. In this case ζ(g) is non-trivial. Thus we can find a p-group 

quotient of A, hence of G̃, under which the image of ζ(g) is non-trivial. Thus in either 

case, we can find a p-group quotient where the image of g is non-trivial and hence G̃ is 

residually p and G is virtually residually p. �

Remarks.

(1) The core of the proof of Theorem 4.1 shows in more generality that if N is a finitely 

generated group such that Aut(N) is finitely generated, and (N � Aut(N), N) has 

Relative Property (T), there exists a group of the form N � Γ which does not 

algebraically fiber, where Γ can a be non-abelian free group or a surface group of 

sufficient rank.

(2) With the result [19, Theorem 6.1] that F2 � Fn groups virtually algebraically fiber, 

we are left with the case of whether or not all groups of the form F3 � Fn virtually 

algebraically fiber. It is known that Aut(F3) is large and hence does not have property 

(T). However it may be the case that (F3 � Aut(F3), F3) has Relative Property (T) 

and then, as remarked above, the same argument as in Theorem 4.1 could be applied.

Let G be a group as in Equation (1). In light of Kielak’s result on virtual fibering [16]

and the fact that G has an infinite normal infinite-index subgroup (hence its first L2 Betti 

number vanishes), G would virtually algebraically fiber if G is virtually RFRS. Although 

we know that many of these groups virtually algebraically fiber, we do not know if all of 

these are RFRS. More broadly, excluding the cases where the monodromy is finite (hence 

the extension is virtually a product), or the extension does not admit virtually excessive 
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homology, we don’t know if these virtually RFS (residually finite solvable) groups are 

virtually RFRS (residually finite rationally solvable) or not. This is exemplified by the 

following question:

Question 4.3. Which free-by-free groups with nonabelian base and fiber and infinite mon-

odromy are virtually RFRS?

In the hyperbolic case, cubulation would imply this. Some surface-by-free groups 

were cubulated in [21], but other cases are widely unknown. Therefore the following is 

of interest:

Question 4.4. Which (if any) hyperbolic free-by-free groups are cubulated?

There are some homological consequences for extensions, such as those identified in 

Theorem 4.1, which do not have virtually excessive homology (or equivalently are not 

virtually algebraically fibered).

Proposition 4.5. Let G be a surface-by-surface, a surface-by-free, or a free-by-free group 

without virtually excessive homology. Then for any n ∈ N and any prime p, there is a 

subgroup G̃ ≤ G of finite index at least n such that H1(G̃) has nontrivial p-torsion.

Proof. By Lemma 4.2, the group G is virtually residually p. Because of the form of 

the statement, it is not restrictive to assume that G itself is residually p. Since G is 

residually p, there exists a filtration {Gi | i ≥ 0} of finite index normal subgroups 

whose index is a power of p with 
⋂

i Gi = {1} and where the successive quotient maps 

³i : Gi → Gi/Gi+1 = Si factorize through the maximal abelian quotient:

Gi+1
� � �� Gi

����
�

αi
�� �� Si

H1(Gi)

�����
(9)

Now let κ ∈ K be an element with the property that κ ∈ Gi\Gi+1; denoting Ki = K∩Gi

and combining the diagram in Equation (5) with the residually p assumption, we get the 

diagram

Ki
� � ��

αi

��

����
��

��
Gi

��

���
��

�

fi
�� �� Γi

����
��

��

��

H1(Ki)Γi

�����
�

αi

�� H1(Gi) �� ��

		���
��

H1(Γi)

��			
		

³i(Ki)
� � �� Si

�� �� Si/³i(Ki)

As b1(Gi) = b1(Γi), the image of H1(Ki)Γi
in H1(Gi) is a torsion subgroup. And as 

³i(κ) �= 1 ∈ Si, the class [κ] ∈ H1(Gi) is nonzero, hence the torsion subgroup is nontriv-
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ial. Moreover, ³(κ) is non-trivial in Si and has order pl for some l. We can consider the 

class [κ] in H1(Gi), this has finite order and maps onto ³(κ), thus we see that [κ] has 

order plr for some r. We conclude that H1(Gi) contains an element of order p. �
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