Some groups with planar boundaries
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ABSTRACT. In this expository note, we illustrate phenomena and conjectures
about boundaries of hyperbolic groups by considering the special cases of cer-
tain amalgams of hyperbolic groups. While doing so, we describe fundamental
results on hyperbolic groups and their boundaries by Bowditch [5] and Haissin-
sky [27], along with special treatments for the boundaries of free groups by
Otal [48] and Cashen [15].

1. INTRODUCTION AND BACKGROUND

A boundary of a group contains in general, a wealth of information about the
group. For example, if the boundary is a Z-set compactification, the dimension
of the boundary is one less than the cohomological dimension of the group, and if
the group is torsion-free, this boundary is S? exactly when the group is a PD(3)
group [2]. Perhaps more fundamentally, the boundary can tell us when the group
splits over a finite group [24] and when the group splits over a virtually cyclic
group [5, 28]. In this survey, we will focus on Gromov hyperbolic and relatively
hyperbolic groups, and investigate the planarity of their boundaries under specific
circumstances.

A Gromov hyperbolic group G is a group that acts geometrically (co-compactly,
properly discontinuously, and by isometries) on some proper hyperbolic space X.
The Gromov boundary of such an X is the set of all geodesic rays from a point,
where two such rays are equivalent if they have finite Hausdorff distance. The
Gromov boundary, 0G, is the boundary of any proper hyperbolic space X that
admits a geometric action by G. Crucially, for a hyperbolic group G this boundary
is well-defined up to homeomorphism. Indeed, all such spaces X are quasi-isometric,
and since they are hyperbolic, it follows that their boundaries are homeomorphic
[24]. There are several equivalent ways to define the Gromov boundary of a proper
hyperbolic metric space; for more extensive details on this definition see Section 3
and the excellent survey article [34].

A relatively hyperbolic group pair (G,P) is a group which acts geometrically
finitely on some hyperbolic space X, where the set of peripheral subgroups is P;
see Definition 3.3 for a precise definition. One of the equivalent definitions of a
geometrically finite action in the Isom(H™), when n = 2,3 is that G admits a finite-
sided fundamental polyhedron [45]. This definition was generalized to apply to
higher n in [4]. A geometrically finite Kleinian group G along with the collection of
its maximal parabolic subgroups P forms a relatively hyperbolic group pair (G, P).

The Bowditch boundary of a relatively hyperbolic group pair (G, P) is the bound-
ary of any proper hyperbolic metric space X such that (G, P) acts on X geomet-
rically finitely. Like a hyperbolic group, for a relatively hyperbolic group pair
(G,P) this boundary is well-defined up to homeomorphism. Indeed, the boundary
of a relatively hyperbolic group pair coincides with the boundary of the coned-
off Cayley graph, with the parabolic fixed points suitably used to compactify this
boundary [10, Section 7]. However, all such spaces X are not quasi-isometric, [29].
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We will denote this boundary by dp(G,P) to avoid confusion although it is often
denoted simply as (G, P).

Much of our intuition about hyperbolic and relatively hyperbolic groups comes
from studying geometrically finite Kleinian groups. If a topological space embeds
in S? we say that it is planar. The limit set of a geometrically finite Kleinian group
is planar. One may ask if hyperbolic or relatively hyperbolic groups with planar
boundaries are virtually Kleinian. The Gromov boundaries of one-ended hyperbolic
groups do not have cut points. If one wants to conjecture that every relatively
hyperbolic group pair with planar boundary is (even virtually) the fundamental
group of a 3-manifold, it is necessary to exclude cut points. Indeed there are many
examples of relatively hyperbolic group pairs with planar Bowditch boundary which
are not virtually Kleinian [31]. This can happen when the peripheral subgroups are
Z @ Z by gluing surfaces along their boundaries to a torus, as shown in [31]. This
suggests the following Planarity Conjectures:

Conjecture 1.1. (Cannon, Kapovich-Kleiner, Haissinsky) If a hyperbolic group
G has planar Gromov boundary 0G then G is virtually isomorphic to a Kleinian
group.

Conjecture 1.2. [31] If a non-elementary relatively hyperbolic group pair (G,P)
has planar Bowditch boundary that does mot have cut points, then G is virtually
isomorphic to a Kleinian group.

If (G, P) with P = (J is a relatively hyperbolic group pair, then G is a hyperbolic
group. So Conjecture 1.2 is a generalization of the more well-known Conjecture
1.1. Also see [25, Corollary 1.4] it is shown that a special and important case of
Conjecture 1.2 is implied by Conjecture 1.1, namely [38, Problem 60]. Even when
a group acts effectively on its boundary and is torsion-free, it can be virtually
Kleinian without being Kleinian “on the nose”. The first example we know of this
phenomena appeared in [37]; more recent examples are in [32]. All of these examples
split over cyclic groups, and this is a necessary condition for being both virtually
Kleinian and non-Kleinian when the group acts effectively on its boundary; see
Proposition 6.3. Here we are addressing only a small case of Conjecture 1.1, for the
case of certain amalgams of hyperbolic groups, and limit groups, and this follows
readily from known results. Relatively hyperbolic group boundaries will be used to
understand the pieces during the course of the argument.

1.1. Plan of the paper. In section 4 we give specific examples of hyperbolic and
relatively hyperbolic groups, focusing our examples on the case of geometrically
finite Kleinian groups discussed above. We show how the canonical splittings of
these groups can be seen from the Gromov boundary. In Section 3 we give more
precise definitions of hyperbolic and relatively hyperbolic groups, and in Section
5 we give a self-contained synopsis of Bowditch’s theory of splittings over 2-ended
subgroups for hyperbolic groups. We also discuss Otal’s theorem in Section 6.1
and the relation with relatively hyperbolic group boundaries. It will follow pretty
quickly from the results cataloged here that hyperbolic doubles of free groups are
virtually Kleinian exactly when their boundaries are planar.

2. BRIEF HISTORY OF CONVERGENCE GROUPS AND PROGRESS ON
CHARACTERIZATION

Convergence groups were introduced by Gehring and Martin in [21]. A con-
vergence group (called a discrete convergence group by Gehring and Martin) is a
group G of homeomorphisms of S™ such that for every sequence (g;) of distinct
elements of GG, one can pass to a subsequence where there are x and y on S™ such
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that ¢;|S™\{z} — y uniformly on compact subsets. Fuchsian and Kleinian groups
are convergence groups, and convergence groups enjoy many properties enjoyed by
these groups, such as having a classification of elements, a limit set, and domain
of discontinuity. The introduction of convergence groups was in some sense the
beginning of relatively hyperbolic groups.

The definition of convergence group was naturally extended to other compact
metric spaces, by Tukia [60]. Both hyperbolic and relatively hyperbolic groups are
specific instances of convergence groups. Let M be a perfect compact metric space.
A group G acting on M induces a properly discontinuous action on the space of
distinct triples of M exactly when the action is a convergence group action [58,
Theorem 4A]. Bowditch proved that when the induced action of G on the space of
triples of M is properly discontinuous and co-compact, then G is hyperbolic and M
is the Gromov boundary of G, [7]. Convergence groups acting co-compactly on the
space of triples of M are called uniform convergence groups. Furthermore, Tukia
proved [61] that uniform convergence groups are exactly the convergence groups G
acting on M such that every point of M is a conical limit point for the action of
G. (See also Freden [19].)

In [10], Bowditch defined relatively hyperbolic groups dynamically. Gromov
initially defined such groups in [24], and Farb [18] had a foundational definition.
A convergence group action on M is geometrically finite if every point of M is
either a conical limit point or a bounded parabolic point. Yaman [62] subsequently
characterized relatively hyperbolic groups as exactly those groups acting on some
perfect metrizable space M as a geometrically finite convergence group. In this case
M is the Bowditch boundary of (G, P), where P is the set of maximal parabolic
subgroups. Note that there are many non-geometrically finite convergence groups,
even with limit set S2. See Section 3 for exact definitions of relatively hyperbolic
group pair, conical limit point, and bounded parabolic point.

P. Tukia proposed that the convergence groups acting on S' are exactly those
groups of homeomorphisms of S! that are topologically conjugate to some Fuchsian
group in [59], giving an outline of a partial proof. In [58], Tukia proved this conjec-
ture in many cases, building on earlier work of Nielsen [47] and Zieschang [63] on
the Nielsen realization conjecture. This proved the convergence group conjecture
if there is a simple axis in the convergence group (which happens if if the conver-
gence group does not contain a hyperbolic turnover orbifold subgroup) or if there
is a parabolic element. The issue is the presence of triples of axes that intersect
pairwise. If the fixed points of two elements link in the circle, then their axes are
forced to intersect if the action is extended to the disk. If three such pairs of fixed
points pairwise link, there are different ways for the associated axes to intersect in
the disk. This issue was overcome by Gabai in [20], using combinatorial arguments.
Gabai characterized convergence groups acting on S' as Fuchsian groups. Casson
and Jungreis [17] gave a different proof slightly later using the quotient of the space
of distinct triples. The result that convergence groups acting on S' are Fuchsian
groups was pivotal in the theory of 3-manifolds. Using work of G. Mess and P.
Scott, it has a corollary that if a compact orientable irreducible 3-manifold has an
infinite cyclic normal subgroup, then it is a Seifert fibered space (the Seifert fibered
space conjecture).

It is not true that all convergence group actions on S? are topologically conjugate
to Kleinian groups. For example, the fundamental group of a hyperbolic 3-manifold
with totally geodesic boundary acts on S? as a convergence group with limit set
all of S2. This action is not conjugate to the Kleinian group action since there are
points on S? stabilized by hyperbolic surface groups. However, Martin and Skora
conjectured in [44, Section 6] that every convergence group acting on S? is covered
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by a Kleinian group. A group G acting on S? is covered by a Kleinian group H
acting on S? if there is an isomorphism ¢ : H — G and a cellular map v : S? — S2
such that v(h(z)) = (¢(h))(v(x)) for all h € H and x € S?. In the case above H can
be taken to be a Kleinian representation with limit set a Sierpinski carpet. Martin
and Skora proved their conjecture in some cases.

One special case of this conjecture is the Cannon conjecture [14], that a hy-
perbolic group with S? Gromov boundary acts geometrically on H?. Cannon’s
conjecture was very influential since it relates to Thurston’s geometrization conjec-
ture and the conjecture that PD(3) groups are manifold groups. Gromov hyper-
bolic groups with S? boundary are exactly the uniform convergence groups acting
on S?. Several inroads have been made on this important conjecture. Bonk and
Kleiner [3] showed that if G is a hyperbolic group with S? boundary that attains
its Ahlfors regular conformal dimension, then G acts geometrically on H3. (The
Ahlfors reqular conformal dimension of a metric space Z is the infimal Hausdorff
dimension of all Ahlfors regular metric spaces quasisymmetrically homeomorphic
to Z.) They comment that Cannon’s conjecture is equivalent to the conjecture
that any hyperbolic group with S? boundary attains its Ahlfors regular conformal
dimension. Markovic [42] proved that if G is a hyperbolic group with boundary S2,
then G acts geometrically on H? if every two points of S? are separated by the limit
set of a quasi-convex surface subgroup of GG. Another special case of Martin and
Skora’s conjecture is due to Kapovich and Kleiner [35] that a hyperbolic group with
Sierpinski carpet boundary is Kleinian. The action of such a hyperbolic group on
its boundary extends to a convergence group on S2, since the boundary circles are
the only non-separating circles. More recently, special cases of the conjecture that
convergence groups are covered by Kleinian groups where the convergence groups
are geometrically finite but not uniform are studied. Here the group is relatively
hyperbolic with Bowditch boundary S2. For example, see [25] and [57], both of
which discuss the case of relatively hyperbolic groups with boundary S2.

3. BOUNDARIES OF HYPERBOLIC AND RELATIVELY HYPERBOLIC GROUPS

3.1. Hyperbolic groups. Let X be a geodesic space, and let § be a positive
number. A geodesic triangle A is called d—slim if each side of A is contained in the
union of the d—neighborhoods of the other two remaining sides. We say such an X
is 0-hyperbolic if every geodesic triangle in X is §-slim [24].

Definition 3.1. A group is word-hyperbolic (or simply, hyperbolic) if it acts geo-
metrically (properly discontinuously, co-compactly, and by isometries) on a proper
d-hyperbolic metric space for some § > 0.

A proper geodesic space is hyperbolic if it is quasi-isometric to a hyperbolic
space [34, Proposition 2.20]. Using this observation and Schwarz—Milnor Lemma,
the hyperbolicity of a finitely generated group is equivalent to its Cayley graph
being J§-hyperbolic for some choice of a finite generating set.

The group boundary oI of a hyperbolic group I' can be defined as the set of equiv-
alence classes of based geodesic rays where two rays are declared to be equivalent
if they have a bounded Hausdorff distance. This boundary is naturally topologized
by the basis of the sets of rays that stay close for a long time. See [34, Section
2] for various equivalent definitions of the boundary and its topology. In particu-
lar, we will use the sequential boundary below. Since quasi-isometric hyperbolic
spaces have homeomorphic boundaries [34, Proposition 2.20] the above definition
is equivalent to:

Definition 3.2. The boundary JI' of a hyperbolic group I' is the topological space
0X where X is a proper geodesic space on which I' acts geometrically.
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We give a more detailed constuction from the Cayley graph, as I' naturally acts
geometrically on its Cayley graph. From mnow on, we let I" be a hyperbolic group,
and Cay(T') be its Cayley graph with a fized finite generating set.

One may extract JI' from sequences of group elements. The Gromov product for
three points x,y, z in a metric space (X, d) is defined as

(4.2 = 5 (dle,) +d(z,2) — d(y, ).

Then OT' coincides topologically with the set of equivalence classes of sequences
{z;} < Cay(T") satisfying

dim (24, 2), = 0.
1,j—00

The meaning of this equation is that the geodesics [z, z;] stay close to each other
for a longer and longer time as ¢ — c0. Two such sequences {z;}, {y;} are equivalent
if
1, —00
Here, the choice of the base point x is arbitrary and does not alter the topology. For
every pair of distinct points p, g € 0T there exists a geodesic sequence {z;} € Cay(T)
such that lim; , o x; = p and lim; ., x; = q.
By Stallings’ theorem, a group G is

e (-ended if G is finite;

e two-ended if G is virtually infinite cyclic;

e ow—ended if G nontrivially splits as a free product or an HNN-extension

over a finite group.

The group G is one-ended otherwise.

Recall a topological space is locally connected if there exists a basis of open
connected sets. A continuum is a nonempty compact connected metrizable space.
In particular, a Peano continuum is a continuum that is locally connected. It is
a result of Swarup [55] using [9, 6], [40] and Bestvina—Mess [2] (expanded upon
by Bowditch [8]) that the boundary of a one-ended hyperbolic group I" is a Peano
continuum without a global cutpoint. This means that 0I'\{x} is connected for all
xeol.

The limit set A(H) of an infinite subgroup H < T is the smallest nonempty
closed H-invariant subset of H in 0T'. The set A(H) can be realized as the set of
equivalence classes of sequences tending to infinity p = {7, } € 0T such that ~,, € H.
A subgroup H < T is called elementary if it is virtually cyclic, i.e. 0— or 2—ended.

An isometry f of a hyperbolic space X is lozodromic if f acts by north-south
dynamics on 0X; in particular, f fixes exactly two points on 0X. It turns out that
every infinite order element g € ' acts loxodromically on oT'. If g € T is loxodromic,
then the limit set A(g) := A({g)) is a pair of points and T" acts on dI"\A(g) properly
cocompactly. The limit sets of two loxodromics of I" are either equal or disjoint.

When T is hyperbolic, we say a subgroup H < I' is quasi-convez if the inclusion
H — T is a quasi-isometric embedding, see [11, Corollary 3.6]. In this case we have
that H is hyperbolic [11, 3.7] and that there exists an H—equivariant homeomor-
phism 0H — AH.

If G, H are quasi-convex subgroups of I, then so is G n H [52] and moreover,

AG A H) = AG) ~ A(H).

3.2. Boundaries of 3-manifold groups. A prime motivational example of a hy-
perbolic group is a convex co-compact Kleinian group G. A discrete subgroup of
Isom(H?) is called a Kleinian group. A Kleinian group is nonelementary if it is not
virtually abelian.
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For a Kleinian group G, we define its limit set A(G) as the minimal nonempty
closed G—invariant subset in JH?. We will denote by hull(G) the convex hull of A(G)
(when A(G) contains more than one point). We define the domain of discontinuity
as the complement

Qg = IH\A(G).

A Kleinian group G is called convex cocompact Kleinian if the action of G on
hull(G) in H? is cocompact. Equivalently, the action of G on H? U g is cocompact.
In the case that G acts freely,

Mc(G) == (H? U Q¢) /G

is a compact orientable 3-manifold whose boundary consists of hyperbolic surfaces.

When G is a convex co-compact Kleinian group, G acts geometrically on hull(G).
This is a geodesic, proper, hyperbolic space, so G is a hyperbolic group. The limit
set A(G) is homeomorphic to ¢G, the Gromov boundary of G.

There are some hyperbolic 3-manifolds whose fundamental groups are not hy-
perbolic as groups. For example, the fundamental groups of hyperbolic knot com-
plements. However, these manifolds do admit geometrically finite hyperbolic struc-
tures. If a Kleinian group I' admits a finite-sided convex fundamental domain with
the side pairings, then we say M¢(T') is geometrically finite [4]. This is equivalent to
saying that M¢(T') is the union of a compact set and a finite number of “standard
cusp regions”. Another notion, which is equivalent for hyperbolic manifold groups
T [4, Definition GF2], is that every point of the limit set is either a conical limit
point or a bounded parabolic point (defined below). This is what we will use for
the general definition of a relatively hyperbolic group.

3.3. Relatively hyperbolic groups. Just as a hyperbolic group is a group which
acts geometrically on a hyperbolic metric space, a relatively hyperbolic group is a
group which acts geometrically finitely on a hyperbolic metric space. There are
many equivalent definitions of a relatively hyperbolic group, see [30].

Definition 3.3. [10, Definition 1] Let G be a group, and let P be a collection of
infinite finitely generated subgroups. We say that the group pair (G, P) is a rela-
tively hyperbolic group pair, or that G is hyperbolic relative to P if G acts properly
discontinuously and by isometries on a proper hyperbolic space X such that

(i) Every element of 0X is either a conical limit point or a bounded parabolic

point;

(ii) The elements of P are exactly the maximal parabolic subgroups of G.

In this case, we say that (G,P) acts on X geometrically finitely.

There are a couple of words that should be defined to make this definition com-
plete. A subgroup P of G is parabolic if it is infinite, contains no loxodromic, and
fixes a point of 0X. A parabolic subgroup which fixes a point x, of 0.X is bounded
if P acts cocompactly on 0X\{z,}. A point y € dX is a conical limit point of
G if there exists a sequence (g;)ieny € G and distinct points a,b € 0X such that
gi(y) — a, and such that g;(z) — b for all x € 0X\{y}.

We can immediately define the Bowditch boundary, or the relatively hyperbolic
boundary of a group pair.

Definition 3.4. The Bowditch boundary 0p(G, P) of a relatively hyperbolic group
(G, P) is the boundary of any hyperbolic space X that (G, P) acts on geometrically
finitely.

It is not true that every such space X is quasi-isometric for a given pair [29]
but nonetheless, all such 0X are homeomorphic [10, Section 9]. This defines the
boundary of a relatively hyperbolic group pair up to homeomorphism.
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Let us recall a general definition. A collection of subgroups {Hi,...H,} of a
hyperbolic group G is almost malnormal if H; n gH,;g~" is finite for g € G unless
i =7 and g € H;. There are two points about the relationship between hyperbolic
and relatively hyperbolic structures on the same group that are particularly relevant
here.

Lemma 3.5. (Bowditch, [10, Theorem 7.11] If G is a hyperbolic group and P is a
almost malnormal collection of infinite quasi-convexr subgroups consisting of finitely
many conjugacy classes then (G, P) is a relatively hyperbolic group pair.

Lemma 3.6. (Tran, [56, Main Theorem], also [22] and [43]) If G is a hyperbolic
group and (G, P) is a relatively hyperbolic group pair, then 0p(G,P) is the quotient
of 0G obtained by collapsing each of 0P for each P € P to a point.

4. EXAMPLES OF HYPERBOLIC AND RELATIVELY HYPERBOLIC GROUPS AND
THEIR MAXIMAL SPLITTINGS

Let us now give some examples of hyperbolic 3-manifold groups, explain their
canonical splitting, and illustrate how relatively hyperbolic group boundaries fit
into the picture. Here we will also give examples of Bowditch’s canonical splitting
(Theorem 5.6). Precise and complete definitions are given in Section 5.

The universal cover of a manifold or a complex, can be a useful tool to determine
the Gromov boundary of the fundamental group of the manifold or complex. As
such, we will need to deal with the components of the pre-image of certain curves.

Definition 4.1. Let W < M. If M — M is a cover, then the components of the
pre-image of W in M are called the elevations of W.

4.1. Example 1: Three surfaces glued along a circle. Let S, denote a
hyperbolic surface of genus g > 1 with one boundary component. We glue S 1,521
and S3,1 along their boundaries to one copy of the unit circle St (call it a) by degree
1 maps. Call the resulting 2-complex T (for Triple). This 2-complex 7 embeds
into R3, and one can take a regular neighborhood in R?® to obtain a 3-manifold
M with boundary. Since the fundamental group I' of 7 acts geometrically on
a hyperbolic space (the universal cover T of the 2-complex T) the group I' is
hyperbolic. Therefore M is realized as a hyperbolic 3-manifold with boundary,
and I' is a convex cocompact Kleinian group [50, Theorem 2.24]. The resulting
3-manifold M cannot be realized as a hyperbolic 3-manifold with totally geodesic
boundary, as there are many essential annuli. Both the convex hull of the limit set
of T and 7 are proper hyperbolic metric spaces on which I' acts geometrically, and
so, A(T') =~ 0T =~ oT.

The subgroups corresponding to the fundamental groups G, G2 and G3 of the
surfaces 51,1, S2,1 and S3; are free quasi-convex subgroups. Pick an elevation of a
and let its stabilizer be generated by an element g, € T".

We consider two representations of the groups G; as a discrete group of isometries
of HZ2, as this will be helpful in visualizing the universal cover 7. The Fuchsian
group G acts on H?, and acts co-compactly on a convex subset C' of H? where
the boundary curves of C' correspond to elevations of boundary curve of S;;. We
continue to denote the stabilizer of one of the elevations in H? by {g,). The conju-
gates of the cyclic subgroup {(g,) act loxodromically, and each leaves an elevation
of a invariant. In this representation, the limit set of Gy is a Cantor set. It is
naturally a subset of S' and we say that this Cantor set is cyclically ordered; see
Proposition 5.5. Also, G acts on H? as a finite co-volume Fuchsian group, where
conjugates of (g, » act parabolically. In this representation, the limit set is a circle.
The way to get from the limit set of the first representation to the limit set of
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the second representation is to collapse the endpoints of the loxodromic boundary
elements to points, just as in Lemma 3.6. The same process can be done with the
other surface groups.

Now consider 7 as a union of convex pieces of hyperbolic planes (each the uni-
versal cover of one of the S, 1) glued together along their boundary curves. Any
elevation of one of the S;; is isometric to a convex subset of H?, and is a convex
subset of 7. Its boundary is the limit set of a conjugate of GG;, and is a Cantor set.
This is an example of a cyclically ordered Cantor set. When we collapse the pairs
of points of this Cantor set that correspond to the endpoints of conjugates of g, in
Si1 we get a circle, and this is the largest such group with this property. This is
called a mazimal hanging Fuchsian group. When we are looking at S5 ; or S3.1, we
could have taken a subgroup of one of these groups corresponding to a lower genus
subsurface. Then the limit set of the subgroup would be a cyclically ordered Can-
tor set, and when we collapsed the boundaries of the subgroup-invariant collection
of cyclic subgroups (corresponding to the boundary of this subsurface) we would
obtain a circle. However, it would not be a maximal such subgroup. See the formal
definition of a maximally hanging Fuchsian subgroup, Definition 5.9 in Section 5.

Apart from maximal hanging Fuchsian subgroups, another important collection
of subgroups is the collection of cyclic subgroups which are conjugates of (g, ). Each
of these groups stabilizes a line in the 2-complex 7~', an elevation of a. The lines
are where the pieces of hyperbolic planes are glued together in T. Removing one
of these elevations will break the complex 7 into three pieces. The two points on
0T which are the boundary of one of these elevations will break the boundary into
three components. They will be a pair of local cut points (each of valence 3) that
forms a cut pair, which will separate the boundary into three pieces; see Lemma 5.4.

The complex 7T consists of elevations of the Si1’s, glued along elevations of a. We
can embed a bipartite tree in '7~'7 by putting a black vertex in each elevation of the
Si 1, and a white vertex in each elevation of a. Here the white vertices correspond
to elementary subgroups of this splitting, and the black vertices correspond to the
non-elementary vertices (Definition 5.1). Then we connect the associated vertices
whenever an elevation of @ meets an elevation of S; ;. The tree is exactly the tree
corresponding to the maximal splitting tree in Section 5. The associated graph of
groups will be a tripod, where the center vertex is the cyclic group corresponding
to {ga), the edge groups are all Z, and the hanging vertex groups are the maximal
hanging Fuchsian vertex groups described above.

Now 7 is not canonical for the hyperbolic group I', but the boundary is. From
this boundary, one can read a tree; see Theorem 5.6. The boundary of I' consists of
the boundaries of the elevations of the S; 1, glued together along the boundaries of
the elevations of a, compactified by the endpoints of this tree. To see this last fact
note that every sequence of points tending to infinity in I' goes through a sequence
of elevations of a and elevations of the S; ;. This sequence either terminates, in
which case the sequence is associated to the boundary of some subgroup labeled by
a white or black vertex, or it does not terminate, in which case it is associated to
the boundary of the bipartite tree.

4.2. Example 2: A hyperbolic manifold with totally geodesic boundary
glued to a surface. Suppose M is the union of two hyperbolic 3-manifolds glued
along an essential annulus as follows. Let M; be a hyperbolic manifold with a totally
geodesic boundary, and let My = S;1 x I. We glue these together by gluing the
annulus 0541 x I to a neighborhood of an essential simple closed curve b on dMy,
and denote the resulting 3-manifold as M. By the Bestvina—Feign combination
theorem [1], the resulting group I' = m(M) is hyperbolic and M is atoroidal.
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Since M # (&, we may apply Thurston’s hyperbolization of Haken manifolds.
By hyperbolization, M can be realized as a hyperbolic 3-manifold [50, Theorem
2.24], [46, Theorem A’] and I" can be realized as a convex cocompact Kleinian
group. The group I' admits a graph of groups decomposition (M) #z m1(Sg,1),
and this splitting is visible from the limit set A(T"), which is homeomorphic to the
the Gromov boundary oT'.

Instead of building a 3-manifold, we can also build a negatively curved complex
whose fundamental group is I. Let m(S,,1) act geometrically on a convex subset
Cs of H? as the surface groups do in Example 1. Recall 7y (M;) acts geometrically
on O, the convex hull of its limit set in H?. We will require that the length of the
curve bin Sy 1 is the same as the length of the curve b on the boundary of M;. Let
D be the complex obtained by gluing Sy 1, realized as a geometric quotient of the
corresponding convex hull Cy, to M, realized as a geometric quotient of Cy. Then
the universal cover D is a union of copies of C7 and Cy (elevations of M7 and Ms),
glued together along elevations of b. Call the stabilizer of one of the elevations of
b as 7y, and note that the rest of the stabilizers are exactly the conjugates of {vp).
The boundary of any copy of Cs is a cyclically ordered Cantor set, such that when
one collapses the endpoints of the quasi-convex groups corresponding to conjugates
of {1, the result is a circle, and these are maximal for the property. The end
points of the conjugates of () are local cut points of valence two, and each pair
cuts the boundary of D into two pieces as the associated elevation of b cuts the
complex D into two pieces. This splitting has three types of pieces, the cyclic
groups corresponding to the conjugates of (v;», the maximally hanging Fuchsian
groups corresponding to the boundaries of the copies of Cs, and the rigid pieces
corresponding to the boundaries of the copies of Cj.

Again we can build the bipartite splitting tree of Section 5 which embeds in the
complex D by putting a black vertex in each elevation of M7 and of Ms. These will
be the non-elementary vertices in Definition 5.1. We also put a white vertex in each
elevation of b, and these are the elementary vertices. Again we connect the vertices
when the associated elevations meet in the universal cover. The vertex stabilizers
are the same as the stabilizers of the associated elevations. In this case there are
two types of non-elementary vertices: namely, the rigid vertices associated to the
hyperbolic 3-manifold with totally geodesic boundary and the hanging Fuchsian
vertices. As in Example 1, every point of the boundary of the hyperbolic group is
either in the limit set of one of the stabilizers of a vertex in the canonical tree of
Bowditch in Theorem 5.6 or can be associated with an endpoint of this tree.

In this example, the stabilizers of each elevation of M; (which is isometric to
the convex hull of a Sierpinski carpet) is a rigid subgroup - it does not split over
any two-ended group. Note that Mj is also rigid in the sense that there is only one
hyperbolic structure with totally geodesic boundary. One can see this by doubling
M over the totally geodesic boundary, obtaining a closed hyperbolic manifold, and
applying Mostow rigidity. More relevant to the work here, is that there is one
hyperbolic structure on an elevation C of M; where the elevations of b in C; are
parabolic.

Definition 4.2. We say that a group G splits with respect to a collection of sub-
groups A if G admits a graph of groups decomposition where every subgroup in A
is contained in some vertex group of the associated Bass-Serre tree. Equivalently,
every subgroup in A is conjugate into one of the vertex groups of the graph of
groups. Let G be a hyperbolic group with connected Gromov boundary 0G, and
A a collection of two-ended subgroups. We say that a subgroup R of a hyperbolic
group G is rigid with respect to A if it does not split over two-ended subgroups with
respect to Ag = {AnR:Ae A}
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Compare the above with Definition 5.10. The rigid subgroups in our example
here do not split over any two-ended subgroup; we will see in the next example
that there are rigid subgroups which can split in many different ways, for example
a free group. However, they do not split over a 2-ended group with respect to the
collection A of prescribed virtually cyclic groups.

4.3. Example 3: The double of a free group. Let F' denote a nonabelian free
group written as
F:={ay,...,an).
We fix a copy F of F, and let 0: F — F be an isomorphism. For g € F, we also
write o(g) = g. For each word w € F', we define the (Baumslag) double of F' along
w as the group
D(F,w) ={a1,a1, ..., 0n,0n, | W = W).

A word w € F is root-free if it is not a proper power of another word. The
doubles are among the earliest examples of hyperbolic groups; namely, the double
D(F,w) is hyperbolic if and only if w is root-free. This follows from Bestvina-Feighn
combination theorem [1]. One can further characterize group theoretic properties
of D(F,w) using the following terms.

Definition 4.3. Let w € F' be a word.

(1) We say w is indecomposable (or, diskbusting [12]) if there does not exist a
nontrivial free product decomposition F' = A = B such that w is conjugate
into A or B.

(2) We say w is acylindrical if one cannot write F' as the free product decom-
position F' = A #¢ B or an amalgamated HNN decomposition F' = Axg
such that C is 2-ended and such that w is conjugate into A or B.

Note that w is non-acylindrical if F' admits a nontrivial graph of groups de-
composition with two-ended edge groups such that w is conjugate into one of the
vertex groups. In other words, the word w is acylindrical exactly when F' is rigid
with respect (w). It is well-known that D(F,w) is one-ended if and only if w is
indecomposable (cf. [23, 39]]).

We will identify F' with the fundamental group of a genus n handlebody H. A
word w € F is called geometric if w can be realized by a simple closed curve on 0H.

Let us now assume w is indecomposable, acylindrical, geometric and root-free in
F, realized by a simple closed curve v € dH. In particular, D(F,w) is a one-ended
hyperbolic group. We will see how acylindricity comes into play in a moment. We
let Hy and Hs be two copies of H, and glue H; and Hj along an annulus A, on
each of 0H; with 7 as its core. Denote by M., the 3-manifold thus obtained. The
properties of the manifold will depend on properties of the word that represents ~y
up to conjugacy in the free group m (H).

The group D(F,w) is hyperbolic. By hyperbolization (as in Example 2 above,
OM # & and (M) is a hyperbolic group) M., is a hyperbolic manifold, the union
of Hy and Hj glued along the annulus A,. We can realize m1(M,) = D(F,w) as a
convex cocompact Kleinian group such that the limit set A(D(F,w)) is connected,
as D(F,w) is one-ended.

Consider the universal cover 1\7.//7 of M,. This can be realized as the convex hull
of A(D(F,w)). It consists of elevations of H; and Hs, glued along the elevations of
A.,. Each elevation of A, has two points at infinity, and these are the fixed points
of the infinite cyclic group stabilizing this elevation. Each such pair of endpoints
separates (?]\f\j.Y = A(D(F,w)) into two pieces, and each elevation of A, separates

M., into two pieces. We can form the canonical splitting tree of Theorem 5.6 by
putting a black vertex in each elevation of H; and Hs, and putting a white vertex
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in each elevation of A,. Then we connect vertices when the associated elevations
meet. We claim that all stabilizers of the black vertices are rigid with respect to
the stabilizers of white vertices that are incident, as in Definition 4.2. Indeed, each
stabilizers of an elevation of H; = G, is a free group F,, and the stabilizers of
the incident vertices are the conjugates of (w) in this F,,. Because the word w is
acylindrical, this F;, does not split over a two ended-group where (w) is conjugate
into one of the vertex groups. So each black vertex stabilizer is rigid with respect
to the stabilizers of the white vertex groups which are incident to it.

The stabilizers of the elevations of the H; are rigid in the hyperbolic manifold
sense as follows. Let H be an elevation of one of the H;. The quotient of H
by its stabilizer is a handlebody H. Let us make the stabilizers of the elevations
of the annulus A, parabolic. This results in a cusped hyperbolic structure by
Thurston’s hyperbolization for Haken manifolds (see Morgan’s article [46, Theorem
B’]) since (H, A,) is a pared manifold. We claim that there is a cusped hyperbolic
structure My = H/ Stab(H) with totally geodesic boundary. There are no essential
annuli in Mpg; indeed, if there were essential annuli in Mgy then there would be
a splitting with w conjugate into some vertex group, violating the acylindricity.
Consider the manifold My, where the conjugates of (w) are parabolic. Since w
can be realized as an essential curve v on the boundary of H;, the manifold My
has boundary component(s) which are 0H; with the curve v parabolic. This will
be a cusp on the boundary. The double of the hyperbolic manifold My along its
boundary does not contain any essential tori and so admits one (up to conjugation in
PSL(2,C)) complete finite volume hyperbolic structure by Mostow-Prasad rigidity.
This manifold admits an isometry which fixes the boundary of My. Thus the
manifold H/Stab(H) admits a unique hyperbolic structure with totally geodesic
boundary. The pair (F,, (w)) is relatively hyperbolic since (w) is root-free by [10,
Theorem 7.11]. Note that the Bowditch boundary of the relatively hyperbolic group
pair (F,,{w)) is the limit set of Stab(H) where the w conjugates are parabolic. By
Tran’s Lemma 3.6 this is obtained as a quotient of the Cantor set by pinching the
endpoints of the conjugates of w.

5. BOWDITCH’S CANONICAL SPLITTING OF HYPERBOLIC GROUPS

One of the most important tools analyzing boundaries of hyperbolic groups is
Bowditch’s canonical splitting. Let us exhibit a self-contained definition of this
splitting and summarize its key algebraic features, following [5].

5.1. Elementary splittings. A splitting of a group is often considered as a finite
graph of groups decomposition [49]. However, an equivalent definition using an
action on a tree seems more apt when one compares various splittings of a given
group [5, Section 6].

Recall an action (simplicial, by default) of a group I" on a tree ¥ is minimal if ¥
has no proper nonempty I'-invariant subtree. The action is co-finite if the quotient
%/T is finite. A graph ¥ = (V, &) is bipartite on (X,Y) if the vertex set has a
partition ¥V = X [[Y and the edge set £ is a symmetric binary relation satisfying

EC(XxY)u(Y x X).

We simply express this by saying ¥ = (X []Y, ) is bipartite. If T" acts on X, then
the stabilizer group of a vertex or an edge x is written as I'(x).

A subgroup H of a nontrivial hyperbolic group is elementary if H is 0-or two-
ended. In particular, H is mazimal elementary if it is maximal among elementary
subgroups.
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Definition 5.1. Let I" be a one-ended group. By an elementary splitting of ', we
mean a minimal, co-finite action of I' on a simplicial bipartite tree

D=V =Ve][Vae: &)
such that the following hold.
(i) (vertices) Distinct vertices have distinct stabilizer groups.
(ii) (bipartite) We have that
V. = {veV|I(v) is elementary},
Ve = {v €V | T'(v) is nonelementary}.

Furthermore, if I'(v) is maximal elementary for each v € V., then we say ¥ is a
maximal elementary splitting.

We remark that the tree is allowed to be locally infinite. The term elementary
splitting refers to the condition that each edge stabilizer group is necessarily ele-
mentary. As I' is one-ended, each I'(v) is two-ended (i.e. not 0-ended) for each
v € V, by Stallings” Theorem,

The commensurator group of a subgroup H < I is defined as

Commrp(H) ={geT |[H:Hn H <wand [HY: Hn H] < ©}.
We say H is full if Commp(H) = H. If H is quasi-convex in I', then we have that
Commr(H) = {geI' | gA(H) = A(H)},
which coincides with the unique maximal finite-index extension of H in I". More-
over, Commrp (H) is full and quasi-convex. If g € I' is loxodromic, then
Commp(g) := Commr({g)) = {heT' | hg"h~' = g*" for some n € N}.

It follows that Commp(g) is the unique maximal elementary subgroup of I' con-
taining the loxodromic element g.

Remark. More generally, if " is hyperbolic but not assumed to be one-ended, then
it is reasonable to define an elementary splitting X of I" after replacing the condition
(i) above by the following.

(i)’ If two distinct vertices have the same stabilizer group H, then H is finite.

If we further assume that each vertex stabilizer group of X is full and quasi-convex,
then the above description of commensurator groups implies that the limit sets of
distinct vertex stabilizer groups will be distinct unless those limit sets are empty.

An elementary splitting yields a usual finite graph of groups decomposition from
quotienting by T'; see [51] for instance. Conversely, if a one-ended hyperbolic group
is written as a graph of groups such that its induced Bass—Serre tree action satisfies
the condition (ii) above, then it is often easy to enforce the condition (i) after
consolidating certain vertices as follows.

Proposition 5.2. Let I' be a one-ended hyperbolic group admitting an action on a
simplicial bipartite tree

2= Ve] [Vae: 6)

such that the condition (ii) above holds and such that each vertex stabilizer group
is full. Then there exists another tree ¥’ and a surjective graph map

DI W

such that the induced action of T on X/ satisfies (i) and (ii). Furthermore, if a
vertexr v maps to a vertex v’ by this graph map then we have

['(v) =T).
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Proof. As we stated above, we may consider the condition (i)’ instead of (i). Let
us first consider two distinct vertices v and v having the same stabilizer groups. If
U € Vye, then the open geodesic interval (u,v) contains a vertex w € V.. It would
then follow that
['(u) =T'(u) nT'(v) < T(w),

which is a contradiction. Hence we have that u,v € V,. Furthermore, the same
reasoning reveals that the stabilizer group of each vertex in V, n [u,v] coincides
with T'(u) = T'(v).

We also need the following observation. Suppose two vertices u € Ve and v € Vye
satisfy that

H:=T(u)nT'(v)

is infinite. Let w € V, be the neighbor of v in the geodesic interval [u, v]; possibly,
we have u = w. Since the infinite elementary group H is contained in both of the
maximal elementary groups I'(u) and I'(w), it follows from fullness, which implies
uniqueness, that I'(u) = I'(w).

Let us identify the vertices of ¥ having the same stabilizer groups, and obtain

Vé = Ve/~7 Vrlle = ne/N .

Moreover, we declare that [u] € V. and [v] € V), are adjacent if and only if T'(u) n
I'(v) is infinite. We let

¥ =] [Vie €)
denote the resulting graph.

We see that two vertices [x] € V. and [y] € V), are adjacent in ¥’ if and only if
some representative of [z] is adjacent to y in . Moreover, adjacent vertices in X
map to adjacent vertices in ¥’ by the natural quotient map. We have an induced
action of I' on ¥, satisfying g.[u] = [g.u] for each g € T'. Let v be a vertex of . If
g €T fixes [v] in X', then by definition we have

gL (w)g™" =T(gv) = T(v).
The fullness of I'(v) implies that g € I'(v) and hence,

I'([v]) = T'(v).
Note that our construction of ¥’ is obtained from X by folding subtrees in which

elementary vertices with the same stabilizer groups are identified and preserving
the nonelementary vertices. It follows that ¥’ is a tree [53]. O

We now list key combinatorial properties of a maximal elementary splitting,
motivated by the above proposition.

Proposition 5.3. For a mazimal elementary splitting & = (Ve | [ Vae,£) of a one-
ended nonelementary hyperbolic group T, the following hold.

(1) Each edge stabilizer group is two-ended and quasi-convez.

(2) Each vertex stabilizer group is full and quasi-convez.

(8) Let u,v be distinct vertices. Then T'(u) T (v) is infinite if and only if either
u and v are adjacent, or u and v have a common elementary neighbor; in
this case, T'(u) n T'(v) is two—ended.

(4) Let e, fe&. ThenT(e) nT(f) is two-ended if and only if e and f share a
vertex from V,.

Proof. (1) This follows from Stallings’ theorem on the number of ends.

(2) Since each edge group is quasi-convex, so is each vertex group; see [5, Propo-
sition 1.2]. In order to see the fullness, we let v € V,,o and H := I'(v). For each
g € Commr(H), it suffices to show that g € H.
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Assume g ¢ H = T'(v), so that g.v # v. Then the geodesic interval [v,g.v]
in ¥ contains some u € V, such that H n gHg~' < I'(u). This contradicts the
assumption that I'(u) is elementary and that g is a commensurator of H.

(3) Suppose I'(u) N IT'(v) is infinite. Since there exists at most one maximal
elementary subgroup of I' containing I'(u) n I'(v), we see that u and v cannot be
both elementary. So, we may assume v € V.. Then the closed interval [u,v] € ¥
contains some w € V, that is adjacent to v. If v = w, then we are done. So, we
suppose u # w. Since I'(u) N T'(v) < T'(w), the uniqueness argument again implies
that u € Ve and that the interval (u,w) € ¥ does not contain elementary vertices.
It follows that w is a common elementary neighbor of v and v.

To see the converse, it suffices to consider the case that u and v have a common el-
ementary neighbor w. Then I'(u) and T'(v) both contain some two-ended subgroups
(namely, corresponding edge groups) of the maximal elementary group I'(w). Since
these two-ended subgroups are commensurable, it follows that I'(u) nI'(v) is infinite.
Furthermore, I'(u) n I'(v) is two-ended as it is contained in I'(w).

The proof of (4) is very similar. O

Remark. By part (3) above, we see that the graph structure of ¥ is uniquely de-
termined by the set of its vertex stabilizer groups.

5.2. Canonical splitting of I'. From now on, let us assume that I is a one-ended
hyperbolic group that is not quasi-itsometric to a cocompact Fuchsian group. Let us
describe Bowditch’s canonical splitting ¥ = (V, £) through the action of T on JT.

Let x € 0T'. Since dT'\{z} is locally compact, we have the valency map val: I' —
N defined by

val(x) := #ends(oT'\{x}).
We define the set of local cut points as
LC(0r) := val 2, 0).
For two points x,y € LC(JI'), we declare x ~ y if either x =y or

val(z) = val(y) = #mo(ol'\{z,y}).

In the latter case, we say {x,y} is a cut pair; since JI' has no global cut point we
then have x # y. It turns out that ~ is an equivalence relation, the corresponding
equivalence class of which will be denoted as [z]. So, it makes sense to define
val[z] := val(z).
Lemma 5.4. For each x € LC(0T), exactly one of the following holds.

(i) val(z) € [3,0) and #[z] = 2;

(ii) val(z) = 2 and #[z] = 2;

(iii) val(z) =2 and #[z] = 0.
Remark. In [5], the alternative (i) is denoted as a ~—pair and the symbol ~ was
reserved only for the other two alternatives.

We now define

O1:= {[z] [ #[z] =2}, O2:= {[z] | #[z] = 0},
and set T := ©7 U Oy. Let A, B < 0I'. We say A separates B, if B intersects at
least two distinct components of 0T\ A.
Recall a Cantor set C can be realized as
c=s"\[[5
j=1
for some countable collection of open intervals {I;}. This realization of C is also

called as a cyclically ordered Cantor set. Each pair of points 01; is called a jump of
the cyclically ordered Cantor set C.
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Proposition 5.5. Suppose x € LC(0T) satisfies val(x) = 2 and #[x] = c0. Then
there exists a homeomorphism

h: [x] >C< St
for some cyclically ordered Cantor set C such that the following hold.
(1) For some y1,ya,...€ LC(0T), we have that each hly;] is a jump and that

[2]\[2] = Liz1[yi] € val™'[3, 00).
(2) For two 0, € T, the class 6 does not separate €.
(8) For four distinct points x,y, z, w in [x] whose images by h appear cyclically
in this order on S, we have that {x, z} separate {y,w} in oT.
(4) For 0, &, neT, the class n separate 8 U if and only if there exist two points
x,y € n such that 8 and & are contained in distinct components of OT'\{x, y}.

We let J([z]) denote the set of all jumps in [z]. Some of the jumps in J([z]) are
missing from [z] itself, while others are not. Using the notations from the above
proposition, we define

Jo([]) == {[wi] | i =1}
as the set of “missing jumps” in [z].
We say F < T is inseparable (or, null and full) if there do not exist 0, £ € F and
1 € T such that n separates 0 U&. A star is a subset F' € T which is maximal among
inseparable subsets [9]. We define O3 as the set of stars with infinite cardinality.
For convention, we often identify a star with the union of the equivalence classes in
it. In particular, each ©; is a collection of subsets of JI'.
Finally, we define ©] as the collection of sets £ < JI' satisfying both of the
following properties:
e ¢ is a jump of some @ € O, such that ¢ < 0; in other words, & € J(0)\Jo(0);
e for some star 1 € O3 containing # and for the unique component U €
mo(0T\§) not intersecting 0, we have that n\@ < U.

For A < dI', we let Stab(A) denote the setwise stabilizer of A. Let
Vi = {Stabf | 0 € ©, LU O} }.

Similarly, we let V; = {Stabf | 0 € ©,} for i =2,3. Welet V=V, U Vs U V5.

Recall an elementary splitting is uniquely determined by its collection of vertex
stabilizer groups. We note that u € V is elementary if and only if u € V; [5, Theorem
5.28]. More precisely, the main result of [5] asserts the following.

Theorem 5.6 (Bowditch’s canonical JSJ splitting). Let T' be a one-ended nonele-
mentary hyperbolic group that is not quasi-isometric to a cocompact Fuchsian group,
and let V be the collection of subgroups described above. Then V determines a maz-
imal elementary splitting; moreover, whenever I' splits over a two-ended group H,
we can find some v € Vi U Vs such that H < v.

To describe this result more precisely, we define ¥ = (V, £) as a bipartite graph
on (V1, Vo U V3) such that the adjacency relation £ is defined as follows: v € V; and
v € Vo u V3 are adjacent if and only if u N v is an infinite group (Proposition 5.3).
We let ¥ be equipped with the natural conjugation action of I' defined as

g.v = gvgil.

Under this setting, Theorem 5.6 asserts that X is a maximal elementary splitting.
The following is now immediate.

Corollary 5.7. If T is hyperbolic and oI' contains a local cut point, then T' admits
a splitting over a two-ended subgroup.

See Haulmark [28] for an extension of this to the relatively hyperbolic case.
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5.3. Algebraic and geometric features of the canonical splitting. We have
noted that every local cut point belongs to some cut pair. For a two-ended group
H < T, we define

e(H) := #mo(oT\A(H)).
For convention, we let e(h) := e((h)) for a loxodromic h. If v € V, then we let 6(v)
denote the set of incident edges on v and deg(v) := #(v).

Proposition 5.8 ([5]). The following hold for a one-ended nonelementary hyper-
bolic group T that is not quasi-isometric to a cocompact Fuchsian group and for its
canonical JSJ splitting ¥ = (V =V; uVa U Vs, E).
(1) Every local cut point x € 0T is contained in the limit set of some u € V1 UVs;
furthermore, if #[x] = 2, then u can be chosen to be 2-ended.
(2) If u € Vy, then we have e(u) = val(u) = deg(u) € [2,00); furthermore, if
deg(u) = 2, then some vertex of Vs is adjacent to u.
(3) If u € Vo U Vs, then deg(u) = oo.
(4) Every loxodromic element v € T' with e(y) > 1 belongs to some u € Vi U Vs
such that val(u) = e(7).

Definition 5.9. Each group u € Vs is called a mazimal hanging Fuchsian (MHF)
group.

For an MHF group u € Vs, one can find a discrete representation with finite
kernel
p: u — Isom(H?)
and an equivariant cyclic-order-preserving homemorphism

h: A(u) — Ap(u)) < OH?.

In particular, p(u) is naturally identified with the orbifold fundamental group of
a (not necessarily oriented) compact hyperbolic two-orbifold S. We have a finite

disjoint union
os =]Jas,
i=1

where each component ;9 is either a circle S* = R/Z or a compact interval with
mirrors R/(Zy#Zs). Let us denote by P; < u the preimage of [9;S] € 7$™(S) = p(u),
with an arbitrary choice of the base point. Then there exists a natural one-to-one
correspondence between the incident edges on u and the u—conjugates of all P;,
which maps an edge e to its stabilizer group I'(e). In particular, deg(u) = c0.

We call the collection of groups {P{ | g € wand i = 1,2,...,m} as the periph-
eral structure of the MHF group u. Each element of P! is called peripheral. This
algebraic feature of u € Vs, along with quasi-convexity and fullness, actually char-
acterizes the maximal hanging Fuchsian groups. We note that if the limit sets of
two distinct MHF groups u,v € Vs are not disjoint, then they share a common
missing jump in Jo(Au) N Jo(Av). In particular, the midpoint of the interval [u, v]
in ¥ has degree at least three.

Definition 5.10. Let ¥ = (V,€) be an elementary splitting of T'. We say a
vertex v of X is rigid (rel incident edges) if there does not exist a graph of groups
decomposition G of T'(v) in such a way that each group in the set

{T'(e) [eed(v)}
is T'(v)—conjugate into a vertex stabilizer group in ¥’ and that each edge group of
g is two-ended.

Remark. We note that I'(v) is not required to be one-ended.
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Each vertex u € V3 is a quasi-convex, full, nonelementary, non-MHF group such
that it is rigid rel incident edges in the canonical splitting of I'. This algebraically
characterizes the groups in V3. One can also see that a rigid vertex group is rigid
relative to the collection of incident two-ended edge groups, in the sense of Defini-
tion 4.2.

For a two-ended subgroup H < T, the value e(H) coincides with the maximum
number of ends of the group pair (I, H') where H' ranges over finite index subgroups
of H. In this context, one can realize V; as the collection of maximal elementary
groups containing loxodromics v such that the number of ends of a group pair
(T, (7)) is larger than 1 and such that 7 is not contained in a MHF group as a
non-peripheral element.

6. CONCRETE EXAMPLES OF THE PLANARITY CONJECTURES

In this section, we illustrate the validity of planarity conjectures for doubles and
limit groups. These results follow from (among other places) Haissinsky’s work [27]
on planar boundaries. The most relevant result to our discussion here is

Theorem 6.1. [27, Corollary 1.14] Every hyperbolic group G with a one-dimensional
planar boundary and no elements of order two is virtually Kleinian if and only if
every carpet group is virtually Kleinian. In particular, if G has no carpet subgroup,
then G is virtually Kleinian.

A carpet subgroup is a quasi-convex subgroup H of a hyperbolic group such that
OH is a Sierpinski carpet. A Sierpirnski carpet is a planar 1-dimensional Peano
continuum without local or global cut points. The Sierpiniski carpet occurs as the
boundary of a hyperbolic group that is the fundamental group of a hyperbolic 3-
manifold with totally geodesic boundary. If a hyperbolic group H has boundary
a Sierpiniski carpet, then it does not split over a finite or a cyclic group by our
previous discussion. A hyperbolic group with no elements of order two admits a
finite hierarchy over cyclic and finite groups [41].

Hyperbolic doubles of free groups and hyperbolic limit groups are examples of
hyperbolic groups which do not contain a carpet subgroup. They admit a hierarchy
over finite and cyclic groups which terminates in free groups. This hierarchy is
particularly simple for doubles. The study of relatively hyperbolic boundaries of
free groups, where some words in the free group are parabolic, was first initiated
by Otal, although he did not use this language.

6.1. Otal’s results. The main result of Otal [48, Theorem 1] concerns collections
of conjugacy classes in a free group F. Let P = {1, ...,v,} be a multiword (i.e. a
collection of conjugacy classes of root-free words) such that no nontrivial powers of
two such words are conjugate to each other. Note that this implies the collection of
infinite cyclic subgroups generated by 71, ...7, form an almost malnormal collection,
as defined in Section 3. We then let P be the collection of conjugates of words in P.
Then the pair (F,P) is a relatively hyperbolic group and the Bowditch boundary
0p(F,P) is a quotient of the Cantor set JF obtained by identifying the endpoints
of conjugates of words in P. Otal denoted this Bowditch boundary dg(F,P) as
Kp, which Cashen also called the decomposition space of (F,P) [15].

We will also need the concept of a relative splitting of a relatively hyperbolic
group pair (G,P) . This is a splitting of G as a free product with amalgamation
Axc B or HNN extension Ax¢c such that every P € P is in A or B. Putting Otal’s
results in the language of relatively hyperbolic groups we have:

Theorem 6.2 ([48, 15]). Let F be free of rank at least 2 and (F,P) a relatively
hyperbolic group pair where each P € P is infinite cyclic. Suppose that (F,P) does
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not admit a relative splitting over a virtually cyclic group. Then if Op(F,P) is
planar, F is the fundamental group of a handlebody H where the conjugacy classes
of P correspond to a multicurve which is isotopic into 0H.

In other words, the collection of conjugacy classes P is geometric; see Section 4.3.

6.2. Doubles and limit groups. Let us now consider an indecomposible, acylin-
drical, root-free word w in F', such that the (hyperbolic) group boundary dD(F, w)
is planar. We will show that planarity of the boundary, along with Bowditch’s and
Otal’s results, implies that the double D(F,w) is convex cocompact Kleinian.

We let P denote the set of conjugates of (w). We have seen by work of Tran
that the Bowditch boundary dg(F, P) is obtained from JF by identifying the pair
gw®g~1 with gw=*g~! for each g € F. Fix an embedding 0D(F,w) — S?. Then
there exists a D(F, w)-equivariant collection of arcs v, joining the pair

Zg = (gwwgfl,gwfoogfl)

for each g € F in such a way that v, belongs to the component of 0D(F,w)\Z,
not containing JF. Indeed, F' is the stabilizer of a vertex in the maximal splitting
defined by Bowdtich described in Section 4, and we denote this stabilizer by F,.
The pairs Z,; are the edge groups associated to edges emanating from v. Each of
these pairs is an equivalence class of local cut points and each pair separates the
boundary into two (path connected) components, with the limit set of F,, contained
in one component. Each of these cut pairs does not separate any of the other cut
pairs by work of Bowditch, see (1) of Proposition 5.5. Therefore we can connect
each pair Z; in the path component not containing I, by a path which we call .
The other Z; pairs do not meet this path component, so the collection of arcs is
disjoint. Contracting -y, to a point for each g, one sees from a classical result of
Moore that dp(F,P) is planar as realized in Lemma 3.6. See [48] and Cashen [15]
for more details on similar arguments.

Once we see that dp(F,P) is planar, we deduce from Otal’s result that w is
geometric. We have seen in Section 4.3 that the geometricity implies that D(F, w)
is actually a convex cocompact Kleinian group.

Hyperbolic doubles of free groups are special cases of limit groups. Recall a
finitely generated group L is called a limit group (or, a fully residually free group)
if for each finite subset A € L there exists a homomorphism

¢pa: L—>F

to a fixed nonabelian free group F' such that the restriction of ¢4 to A is injective.
A torsion—ree finitely generated group G is said to admit a cyclic hierarchy (of
level at most d over free groups) if one of the following conditions are satisfied.
(1) d =0 and G is free;
(2) d > 0 and G splits as a finite graph of vertex groups {G;} with cyclic
(possibly trivial) edge groups, so that each G; admits a cyclic hierarchy
over free groups of level at most d — 1.
In particular, the double of a free group admits a cyclic hierarchy of level 1. More
generally, all hyperbolic limit groups admit cyclic hierarchies over free groups; in
fact, they are virtually free-by-cyclic [26].

Let L be a hyperbolic limit group. Then every nontrivial quasi-convex subgroup
admits a cyclic hierarchy as well. On the other hand, Sierpiriski carpet groups do
not split over cyclic groups (including trivial groups) since their boundaries are
connected and do not have local cut points. In particular, L does not contain a
carpet group. Haissinsky’s work, Theorem 6.1 here, implies that hyperbolic limit
groups with planar boundary are virtually Kleinian.
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Even when a hyperbolic group is torsion free, and hence acts effectively on its
boundary, it may be virtually Kleinian without being Kleinian. This can happen if
the action does not extend to the whole of S2. Indeed, Kapovich and Kleiner gave an
example of such phenomenon in [35, Section 8|. See [32] for more examples. All of
these examples have boundaries which split over a two-ended group, and we remark
that this condition is necessary. A virtually Kleinian group is quasi-isometric to a
Kleinian group.

Proposition 6.3. Let G be a torsion-free hyperbolic group that is quasi-isometric
to a Kleinian group. Then if G does not split over a finite or 2-ended group, G can
be realized as a Kleinian group.

Suppose that G is a torsion-free hyperbolic group that is quasi-isometric to a
Kleinian group. Note that G acts effectively on its boundary since it is torsion free.
Since any Kleinian group that is hyperbolic can be realized as a convex-cocompact
Kleinian group, its boundary is planar. If 0G ~ S', then G is virtually Fuchsian,
by work of Tukia [58], Gabai [20] and Casson—Jungreis [17], described above. In
this case G can be realized as a Fuchsian subgroup of Isom(H?) < Isom(H?).

If 0G is not S', and G does not split over a 2-ended group, then G does not
have any local cut points by Bowditch’s work (Corollary 5.7). We now have that 0G
is a planar Peano continuum without local or global cut points. Let us regard 0G
as a subspace of S2. Assume first that dim dG = 2. Then since 0G is a subset of a
2-dimensional manifold, 0G contains an open 2—disk; see [33, Corollary 1, page 46].
Since G acts on 0G with dense orbits and by homeomorphisms, this implies that 0G
is open in S2. Since G is compact, we see that 0G = S2. We have assumed that
G is torsion-free and quasi-isometric to a Kleinian group. It is a result of Cannon
and Cooper [13], using work of Sullivan [54], that G acts geometrically on H?3.

Finally, suppose that dG is 1-dimensional and not S'. See [35, Theorem 4]
for a classification of boundaries of hyperbolic groups that do not split over 2-
ended groups which are 1-dimensional. As we have noted, the boundary of G
is a Sierpinski carpet in this case. The double of G along the subgroups (one
for each conjugacy class) that stabilize the non-separating circles is a hyperbolic
group G with boundary S? [35, Theorem 5 and Section 5]. Since G is quasi-
isometric to a Kleinian group, so is G. Indeed, let G, acting geometrically on a
hyperbolic space X, be quasi-isometric to a Kleinian group K acting on X', the
convex hull of a Sierpinski carpet. Since the peripheral circles of a carpet are
the only non-separating circles, the hull of a peripheral circle in X maps within
bounded distance of a plane spanned by a peripheral circle in X’. Also the Bass-
Serre trees correcponding to the splitting as a double are the same. Then by [16,
Corollary 2.16], the groups G and the double of K are quasi-isometric. By the
above argument, G can be realized as a Kleinian group. Since G is a subgroup of
the Kleinian group C:‘, G is also Kleinian.
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