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Abstract

We demonstrate a new connection between e-graphs and Boolean circuits. This
allows us to adapt existing literature on circuits to easily arrive at an algorithm for
optimal e-graph extraction, parameterized by treewidth, which runs in 2O(w2)poly(w, n)
time, where w is the treewidth of the e-graph. Additionally, we show how the circuit
view of e-graphs allows us to apply powerful simplification techniques, and we analyze a
dataset of e-graphs to show that these techniques can reduce e-graph size and treewidth
by 40-80% in many cases. While the core parameterized algorithm may be adapted
to work directly on e-graphs, the primary value of the circuit view is in allowing the
transfer of ideas from the well-established field of circuits to e-graphs.

1 Introduction

E-graphs are a type of directed graph with an equivalence relation on its nodes that can
be used to compactly represent exponentially many equivalent expressions. In recent years,
this capability has found e-graphs to have many applications in formal methods, compilers,
and automated reasoning communities ([JNR02], [TSTL09], [STL11], [WNW+21]).

One important problem with e-graphs is extraction: from the compact representation,
how does one pick a minimum cost expression? E-graph extraction is known to be NP-hard
[Ste11], so applications of e-graphs often use suboptimal techniques like greedy algorithms
[WNW+21] to extract one expression out of an e-graph. If one is interested in exact optimal
extraction, integer linear programming (ILP) is sometimes used [YPW+21], but there has
been little research into specialized algorithms to solve extraction optimally.

Common algorithmic techniques for NP-hard optimization problems include approxi-
mation algorithms and parameterized algorithms. It turns out that extraction is also hard
to approximate to any constant factor [GLP24], so it is natural to turn to parameterized
algorithms: algorithms that are efficient after a particular parameter is chosen to be fixed.
One commonly used parameter is treewidth, a measure of how “close” to a tree the graph is
(a survey is available in [Bod06]).

We make three key observations:

1. E-graphs that appear in practice often have low treewidth, so it is a good choice for
parameterization. We quantify this in Section 4.2.

∗This material is based upon work supported by the National Science Foundation under Grant Nos.
CCF-1836724, CCF-2006359, CNS-2232339, and CCF-2312195. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.
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Figure 1: Overall algorithm pipeline and article organization

2. E-graphs may be considered a certain class of monotone circuits, meaning a Boolean
circuit with only AND and OR gates (no NOT gates). This allows us to draw on
existing literature about treewidth-based algorithms for circuits in order to solve
extraction.

3. The circuit view also allows us to apply circuit simplification, which is more broadly
studied and flexible than simplifying e-graphs directly.

More specifically, we will show in Section 2 that with the appropriate translation between
e-graphs and circuits, the extraction problem is nothing more than the weighted monotone
circuit satisfiability problem, with the one caveat that our circuits may have cycles. In
Section 3, we then draw on an existing algorithm for weighted acyclic monotone circuit
satisfiability given by Kanj, Thilikos, and Xia [KTX17]. Their algorithm parameterizes on
treewidth as desired, and we make only one minor change to take care of cycles. In Section 4,
we discuss simplification rules that make the main algorithm more practical.

Simultaneously and independently of our own efforts, Goharshady, Lam, and Parreaux
[GLP24] also gave a solution to the e-graph extraction problem, also through parameterization
by treewidth. They do not use circuits, but our main algorithms are actually very similar.
They include a few additional extensions and optimizations as well.

Our main contribution is the connection between circuits and e-graphs, which not only
allows us to use existing circuit algorithms but also employ simplification techniques more
effectively. Given that our main algorithm is extremely similar to the one given in [GLP24],
we will omit to give our own practical implementation, evaluation against existing extraction
methods, and proofs of correctness for the main algorithm, and direct the interested reader
to their paper. While we do have a publicly available implementation1, our focus is on the
circuit connection and simplification.

1https://github.com/glenn-sun/egg-extraction-gym/tree/glenn-treewidth/src/extract/

treewidth
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2 Circuits and e-graphs

We first show the equivalence of circuits and e-graphs. For the reader who is already familiar
with e-graphs, you may find Fig. 2 sufficient to give the intuition of the equivalence.

Definition 2.1. A weighted cyclic monotone circuit (henceforth “circuit”) is a directed
graph with additional information G = (V,E, Vout, g, c). The set Vin ⊆ V is the set of
inputs, defined to be the set of vertices with in-degree 0. The set Vout ⊆ V is the set of
outputs. (These are the nodes whose values we are interested in, which may or may not have
out-degree 0.) Finally, g : V \ Vin → {AND,OR} is the gate type function and c : Vin → R
is a cost function. For any U ⊆ Vin, we denote c(U) =

∑
u∈U c(u). ⌟

Because our circuits have cycles, we need to be a bit more precise than usual about the
semantics of the circuit. In particular, there may be undefined behavior on certain inputs.

Definition 2.2. A function α : V → {0, 1} is a (valid total) evaluation of G if for all
u ∈ V , denoting the inputs to u as {v1, . . . , vk}, we have α(u) = g(u)(α(v1), . . . , α(vk)). The
evaluation satisfies G if α(u) = 1 for all u ∈ Vout. It minimally satisfies G if for every proper
subset A ⊊ {u ∈ V : α(u) = 1}, the function

α|A(u) =

{
α(u) if u ∈ A

0 if u /∈ A

is not a valid evaluation satisfying G. We denote G[α] to be the subgraph of G induced by
the set {u ∈ V : α(u) = 1}. We say that α is acyclic if G[α] is acyclic. ⌟

The key fact that allows us to have well-defined semantics with cyclic circuits is the
following:

Proposition 2.3. An acyclic evaluation α is uniquely determined by its value on the
inputs. ⌟

Proof. Let β be an acyclic evaluation which agrees with α on Vin, we will show that α(u) = 1
iff β(u) = 1. The forward and backward directions are identical. Let us treat the forward
direction.

Recall that α(u) = 1 iff u ∈ G[α]. Because G[α] is acyclic, take the vertices in topological
order. The base cases are the elements of G[α] with in-degree 0; note that these must have
in-degree 0 in G because gates cannot be 1 without at least one 1 input. Hence β agrees
with α here by hypothesis.

For the inductive step, to show that β(u) = 1, take cases based on the gate type of u. If
u is an AND gate, because α(u) = 1, all of u’s inputs in G belonged to G[α], so β is 1 there
by induction, and the only valid choice for β(u) is 1. If u is an OR gate, a similar argument
applies.

Next, let us draw the connection between e-graphs and circuits.

Definition 2.4. An e-graph is a structure G = (N, C, E , Cout, c), where N is a set of e-nodes,
C is a partition of N into e-classes, E ⊆ N × C is a directed edge relation, Cout ⊆ C is
the set of output classes, and c : N → R is a cost function. For any M ⊆ N , we denote
c(M) =

∑
u∈M c(u). ⌟
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Figure 2: An example of converting e-graphs into circuits. Note that the arrows conventionally
point to dependencies in e-graphs, but signals flow in the opposite direction in a circuit,
so we flip the arrows. Furthermore, the extraction A 7→

√
, B 7→ 2 corresponds to the

evaluation where everything on the left and the OR gate A are all 1, and the rest are 0. The
cyclic extraction A 7→ +, C 7→ 0 corresponds to the cyclic evaluation where everything on
the right and the OR gate A are all 1, and the rest are 0. The evaluation where everything
is 1 has no corresponding extraction because A can only choose one e-node in an e-graph;
however, such an evaluation is not minimal.

Definition 2.5. Let dom(φ) ⊆ C. An extraction of an e-graph is a choice function
φ : dom(φ) → N (that is, φ(C) ∈ C for all C ∈ dom(φ)) which additionally has that
whenever C ∈ dom(φ), the inputs to φ(C) are all in dom(φ) as well. The extraction is
satisfying if C ∈ dom(φ) for all C ∈ Cout. It is minimally satisfying if for every proper subset
A ⊊ dom(φ), the function φ|A is not a satisfying extraction. A selected path in φ is a finite
list of e-classes C1, . . . , Ck such that for all 1 ≤ i ≤ k − 1, we have (φ(Ci), Ci+1) ∈ E . The
extraction is acyclic if there are no selected paths from a class to itself. ⌟

Our main observation is that every e-graph can be represented as a circuit in such a way
that its semantics are equivalent. For an example, see Fig. 2.

Proposition 2.6. Given an e-graph G = (N, C, E , Cout, c), construct a monotone circuit
G = (V,E, Vout, g, c) by converting every e-class into an OR gate, every e-node into an AND
gate, and then flip every edge. Additionally, create one input for every e-node, and attach it
to its corresponding AND gate, with cost set equal to the cost of the e-node.

Then, there exists an acyclicity-preserving bijection between minimal satisfying extractions
of G and minimal satisfying evaluations of G. ⌟

The proof is a tedious checking of these definitions that does not require any external
results. The details are contained in Appendix A. With this observation, in order to solve
the extraction problem for e-graphs, it suffices to solve the weighted satisfiability problem
for (potentially cyclic) circuits.
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3 The main dynamic programming algorithm

3.1 Preliminaries

Our main inspiration is Proposition 4.7 of [KTX17], which solved the weighted minimum
satisfiability problem for acyclic monotone circuits by parameterizing on treewidth. Based on
the reduction illustrated in the previous section, the only additional algorithmic contribution
that we need to make is to describe why the cyclic nature of the graph is not a problem and
how we enforce the extraction result to be acyclic. For completeness, we will recap the full
algorithm (with slightly different notations from the original paper).

The main technique is called treewidth, or tree decomposition. This is a classical
technique; see Chapter 7 of [CFK+15] for more information.

Definition 3.1. Given a undirected graph G = (V,E), a tree decomposition of G is a tree
T = (X , E), whose vertices are subsets of V (called bags), satisfying:

1. For all {u, v} ∈ E, there exists a bag X ∈ X such that u, v ∈ X.

2. For all v ∈ V , the subgraph of T induced by the bags that contain v forms a tree.

The width of a tree decomposition is the size of the largest bag minus one. The treewidth
of a graph is the smallest width of any tree decomposition. If T is rooted, we write TX for
the union of all bags underneath X ∈ X (including X). A nice tree decomposition is one in
which every bag X is one of 4 kinds:

1. Leaf bag: X = ∅.

2. Insert bag: X = Y ∪ {u}, where Y is the unique child of X and u ∈ V \ Y .

3. Forget bag: X = Y \ {u}, where Y is the unique child of X and u ∈ Y .

4. Join bag: X has two children, which contain exactly the same vertices as X. ⌟

A nice tree decomposition can be computed from a tree decomposition in linear time:
pick any bag to serve as the root, then for all children of a bag, first forget and insert the
difference between the child and the current bag, then join all of the copies of the current
bag, and repeat.

The core feature of tree decomposition is that as you walk up the tree, the current bag
cuts the original graph into two disconnected pieces: the set of vertices that you have already
seen (including those that are forgotten) and the set of vertices that you have not seen yet.
This property allows us to do dynamic programming and focus only on the current bag.

One last definition that we will use in the algorithm is that of a partial evaluation since
we would like to build up our evaluations at each bag incrementally. We will use the following
definition with U = TX .

Definition 3.2. A (locally valid) partial evaluation of a circuit is a function α : U → {0, 1}
where U ⊆ V , and for all u ∈ U , denoting the inputs to u as {v1, . . . , vk, w1, . . . , wℓ} where
each vi ∈ U and each wj ̸∈ U , there exist b1, . . . , bℓ ∈ {0, 1} such that α(u) is g(u) (AND or
OR) applied to (α(v1), . . . , α(vk), b1, . . . , bℓ). ⌟
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Figure 3: A nice tree decomposition of a graph, where each node is annotated whether it is
a leaf, insert, forget, or join node. This graph has treewidth 2.

3.2 The algorithm

We are given a weighted cyclic monotone circuit G = (V,E, Vout, g, c), and are tasked to
compute a minimum cost satisfying evaluation. The algorithm sketch is as follows:

1. Add a new AND gate to G, with every vertex in Vout as inputs, and call it uout.

2. Compute a tree decomposition of the undirected underlying graph of G.

3. Compute a nice tree decomposition rooted at any bag containing uout.

4. We do dynamic programming. At every bag, for every possible summary of a partial
evaluation, the program will remember the minimum cost partial evaluation producing
that summary. The summary of a partial evaluation α : TX → {0, 1} at bag X has
three parts:

• First, there is the restriction α|X .

• Second, there is the map knownα|X , where knownα(u) = 1 if and only if α(u) = 1
and that this fact can be deduced from the value of α on the inputs to u. For
example, if u is an AND gate and one of its inputs is not in dom(α), then
knownα(u) = 0.

• Lastly, there is G[α]+[X], the subgraph of the transitive closure of G[α] induced
by X. In other words, which elements in X have paths between them in G[α]?
This is what allows us to correctly handle acyclicity, remembering which vertices
in the bag are connected, even when the connections themselves have already
been forgotten from the bag, and is the only change from [KTX17].

6



We break into cases depending on the type of bag.

1. Leaf bag: We map the empty summary to the empty evaluation.

2. Insert bag (X = Y ∪ {u}): For every partial evaluation α remembered at Y , we
attempt to extend it with α(u) = 0 and α(u) = 1. If these extensions are valid
and acyclic, compute their new summaries and remember them if they have the
smallest cost for their summary so far.

3. Forget bag (X = Y \ {u}): For every partial evaluation α remembered at Y ,
restrict the entire summary to X and remember the lowest cost evaluations per
summary.

4. Join bag: Denote this bag as X with children Y and Z (even though as sets
X = Y = Z). By property 2 of tree decompositions, TY and TZ intersect only at
X. Therefore, for all remembered α : TY → {0, 1} and β : TZ → {0, 1}, as long
as they agree on X, they can be merged into a new evaluation on TX . If it is
valid and acyclic, compute its summary and remember it if it has the smallest
cost for its summary so far.

5. At the root, output the minimum cost evaluation producing the summary corresponding
to α(uout) = 1.

The discussion within the algorithm gave some ideas to why G[α]+[X] is necessary in
the summary, but it remains to motivate knownα. Consider an OR gate u such that all but
one of its children have been forgotten. Without knownα, we might keep only the evaluation
where all of its children are set to 0, because that is cheaper, forcing us to pick the last child
to continue to this line, even if it is suboptimal.

The running time of this algorithm is roughly 2O(w2)poly(w, n), where w is the treewidth
and n = |V |. The precise coefficients and polynomial degree are dependent on the data
structures in the implementation, but the largest term comes from there being at most
2O(w2) distinct summaries for each bag, since the transitive graph has O(w2) edges. For
more details, see [KTX17] or [GLP24].

Note that when implementing this algorithm, instead of actually remembering the best
partial evaluation per summary, it is faster to just remember a pointer to the previous
summary that produced it. At the end of the algorithm, one can walk back and recover the
full evaluation using these pointers. Depending on the precise data structures, another small
optimization could be to combine α|X and knownα|X into a ternary-valued collection in the
summary, since knownα is only recorded for true vertices.

4 Circuit simplification

4.1 Rules

One natural way to improve the speed of our algorithm is to simplify the instances directly.
We found in our testing that this helps dramatically. The idea of preprocessing e-graphs to
simplify them before extraction is not new (see for example, the repository at [Han24]), but
the circuit view of e-graphs makes this process easier, more transparent, and more powerful.

Finding the most compact representation of a Boolean circuit is often known as circuit
minimization. Circuit minimization is well-known to be NP-hard, but there is an abundance
of existing software to quickly attempt a best effort, such as SIS [SSL+92] among others.
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Note that in order to use off-the-shelf software, it must support cycles. Though our
particular semantics are unique, all simplifications valid for sequential circuits are valid for
us, a type of circuits fundamental in hardware. Sequential circuits are cyclic circuits where
the “undefined” behavior is explicitly specified by propagation delay and keeping track of
the circuit’s state. A minimizer for sequential circuits will additionally ensure that these
stateful behaviors are preserved, which we can just ignore—it must also preserve behaviors
independent of state, as acyclic extractions are. Thus, we may want to do some additional
simplification afterwards specific to our own extraction semantics, but such software may be
used as a first step.

To show some basic ideas, as well as to highlight properties of extraction to make
simplifications beyond what is possible from off-the-shelf software, we implemented several
of our own heuristic rules. For all of the rules below, let G = (V,E, Vout, g, c) be a monotone
circuit. These rules are by no means an exhaustive list of all possible simplifications, they
are only an exploratory list of the kinds of rules that may be beneficial.

Proposition 4.1. When applying each of the following rules to a weighted cyclic monotone
circuit, the optimal acyclic evaluation is either retained or efficiently recoverable.

1. (Remove unreachable) For all u ∈ V , if there does not exist a path from u to some
v ∈ Vout, then it is safe to remove u from V .

2. (Contract indegree one) Suppose u ∈ V has indegree 1, in particular (v, u) ∈ E. Then
it is safe to contract the edge (v, u). The new vertex has the same gate type as v.

3. (Contract same gate) Suppose v ∈ V has outdegree 1, in particular (v, u) ∈ E, and
suppose g(v) = g(u). Then it is safe to contract the edge (v, u). The new vertex has
the same gate type as v and u.

4. (Same gate no shortcut) Suppose (v, u) ∈ E and there exists a path (v, w1), (w1, w2), . . . ,
(wn−1, wn), (wn, u) ∈ E such that g(v) = g(w1) = · · · = g(wn−1) = g(u). Then it is
safe to delete (v, u).

5. (Factoring) Suppose we have (w, vi), (vi, u) ∈ E where g(vi) = OR for 2 ≤ i ≤ n, and
g(u) = AND. Then it is safe to delete all of these edges and replace them with two
new vertices a and b, where g(a) = AND and g(b) = OR, with the edges (vi, a) for all
i, (a, b), (w, b), and (b, u). The rule may also apply with AND and OR swapped.

6. (Remove lone OR loops) Suppose u ∈ V is an OR gate and v1, . . . , vn ∈ V are AND
gates, and (u, v1), (v1, v2), . . . , (vn−1, vn), (vn, u) ∈ E. Then it is safe to delete vn.

7. (Collect variables) Suppose u1, u2 ∈ V are variables with the same out-neighborhood,
all of which are AND gates. Then it is safe to merge u1 and u2 into a new variable
with the same out-neighborhood, with cost the sum of the originals. ⌟

Proof. 1. The optimal acyclic evaluation is minimal, so it does not set true any vertices
that do not affect the output.

2. Suppose u ∈ V has indegree 1, in particular (v, u) ∈ E. Then it is safe to contract the
edge (v, u). The new vertex has the same gate type as v.

3. Because AND and OR are associative, when two of the same gate are adjacent and
the subexpression is not reused in other situations, it is an equivalent circuit to merge
the two gates.

8



Figure 4: The factoring rule. All gates may have additional inputs/outputs, which are
preserved and not depicted here. The square denotes any vertex.

4. One may check for both AND and OR that after deleting the edge, the dependency is
still maintained through the path.

5. This rule is nothing more than observing how (w∨x1)∧· · ·∧(w∨xn) = w∨(x1∧· · ·∧xn),
generalized slightly.

(See Fig. 4 for a visualization of this rule. We note that this is the only rule that may
increase the size of the circuit. However, it is generally beneficial to apply this because
it reduces the number of cycles in the underlying undirected graph, which generally
reduces the treewidth.)

6. Suppose vn is true. Then by induction, every vi is true, as well as u. Then, this
evaluation has a true cycle. So, the optimal acyclic evaluation must have vn false, and
we can delete it.

7. Simply note that an evaluation that sets u1 to true but u2 to false is not minimal, so
u1 and u2 must be both false or both true.

Some of these rules are purely based on the circuit structure (rules 2, 3, 4, 5). These
were rules that we arbitrarily decided to implement, but in future work, one might consider
replacing with an existing general purpose circuit minimization tool. This is one potential
benefit of circuits that we have yet to explore. Other rules are more specific to extraction
(rules 1, 6, 7). We note that some rules can be generalized to all extraction algorithms, such
as rule 1.

Although there are often equivalent rules that operate on e-graphs directly without
translating to circuits, circuits can generally be smaller (not to mention unlocking the ability
to harness existing software). Recall that a direct translations of an e-graph will always
result in an alternating AND/OR pattern, with every AND gate having outdegree 1 and
one variable as an in-neighbor. Rules like rule 2 and rule 7 break this structure, and they
are valid because the algorithm works for all monotone circuits.
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Source no. of e-graphs avg. |V | avg. degree

babble 173 5336.8 2.6

egg 28 4276.5 4.1

eggcc-bril 36 20329.5 2.7

flexc 14 23620.7 3.4

fuzz 18 126.0 4.0

rover 9 21303.4 6.8

tensat 10 57969.9 3.3

Table 1: Basic characteristics of “extraction gym” dataset after circuit conversion.

4.2 Simplification evaluation

To evaluate our simplification rules, we applied them to a large set of e-graphs from various
sources, collected in the “extraction-gym” benchmarking suite [Goo24]. These are e-graphs
that were generated by real projects, such as a e-graph based general purpose compiler
(“eggcc-bril”), a compiler for specialized hardware (“flexc”), a fuzzer for automated testing
(“fuzz”), and several other sources. A basic summary of the dataset is given in Table 1.

Note that the main algorithm’s correctness only relies on having a valid tree decomposition
of any width—a larger width only affects the running time. Thus, although we unfortunately
found that the vast majority of e-graphs in this test set were too large for computing
exact tree decomposition, approximate tree decomposition algorithms suffice. We used the
“arboretum” Rust library, which implements various heuristics but primarily relies on the
classical minimum degree heuristic to compute an upper bound on treewidth.

In order to compare the effects of our simplification scheme, such an upper bound is also
a more realistic measure to compare than the true treewidth, since the important quantity
is the width of the tree decomposition available to our algorithm. In our implementation,
we apply each of the rules in a loop until we reach a fixed point. The effect of simplification
on treewidth and |V | is shown in Fig. 5, and these effects are quantified in Table 2.

Note that every source produces e-graphs in a different way, which can dramatically
affect which optimizations are more effective. E-graphs from some sources, like “eggcc-
bril”, demonstrated extraordinary simplification with 65% reduction in treewidth and 97%
reduction in |V |, whereas e-graphs from other sources like “babble” or “flexc” demonstrated
negligible improvement in treewidth (or even slight degradation due to the non-exact tree
decomposition algorithm), although |V | continues to be reduced substantially, by 60% or
more in all but one collection.

We note that although the treewidth of most e-graphs in our dataset is small, sparsity
is likely to be the only contributing factor to low treewidth in these data, not any deeper
features of the e-graph generation process. This is because the linear relationship between
|V | and treewidth is the exact relationship predicted by random graphs of constant average
degree: In a random graph where each edge has probability c/n of appearing for c > 1, the
treewidth of the graph is Ω(n) [LLO11] and upper bounded by tn for some t < 1 [WLCX11].

Lastly, we note that these simplification methods bring many more e-graphs into the
range in which treewidth-based methods are faster than existing methods. Though we did
not develop an efficient implementation ourselves, [GLP24] claims that their implementation
of treewidth-based extraction is faster than ILP solvers for most e-graphs with treewidth
under 10, at least when not required to output acyclic extractions. Few e-graphs in our
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Figure 5: Treewidth and |V | before and after applying all simplification rules. Note that
there are some artifacts due to heuristics used in tree decomposition, e.g. in “rover”. A few
examples continued to time out after 15 seconds and are omitted from these data.

11



Source avg. ∆ treewidth avg. ∆|V | avg. ∆|E| % timeout

babble -5% -64% -57% 1%

egg -40% -72% -80% 7%

eggcc-bril -65% -97% -96% 17%

flexc 1% -74% -81% 7%

fuzz -46% -60% -73% 0%

rover 27% -42% -72% 89%

tensat -23% -63% -64% 60%

Table 2: Results of simplification, using heuristic approximate tree decomposition, so some
instances may falsely confuse an actual rise in treewidth for an instance that just happens
to be more difficult for the heuristic. A few examples continued to time out after 15 seconds
and are omitted from these data.

test set had treewidth under 10 before simplification, but especially for the egraphs in the
collections “eggcc-bril” and “fuzz”, a significant fraction of them have treewidth under 10
after simplification.

5 Future directions

Many open questions remain regarding extraction and treewidth. The largest open question
in our mind relates to more general cost functions than the simple additive ones we have
considered here. This is the one area where ILP solvers can never work—by nature of being
integer linear programs, they are not suitable for other cost functions.

In general, every e-node can be associated with a local cost function, which depends on
the costs of its children. For example, an e-node representing the operation “do my child
again” could have cost c(x) = x, in other words it would copy the cost of its child. Such
cost functions present a challenge to this present algorithm because we do not enforce the
children to be discovered before the parent. In other words, we have to decide whether or
not “do my child again” is cheap, without knowing the cost of the child, in order to decide
whether or not to keep that partial evaluation.

One potential solution would be to represent costs abstractly, and keep all minimal cost
solutions, not just one minimum cost one. In this example, we would define a symbolic
variable x denoting the unknown cost, and set the cost of “do my child again” to x. If an
evaluation has cost x and another evaluation with the same summary has, for example, cost
7, we would keep both, and then evaluations with cost 2x, x+ 5, or 8 could be thrown away.
When the vertex associated with x is inserted, these expressions would update based on the
cost of x that we now know. However, this would massively increase the running time of the
algorithm, and would generally not be polynomial with fixed treewidth. It is an interesting
open direction to hand such general cost functions efficiently.

We note that [GLP24] analyzed the main algorithm (that we share) closely, and iden-
tified some criteria slightly more general than additive cost functions that actually work
automatically. However, those criteria still exclude nodes like “do my child again”, so there
remains work to be done.

A second open direction is to investigate more closely if particular methods of e-graph
creation lead to smaller treewidth, and then design e-graph creation methods (or saturation,
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as it is often called) that minimize treewidth from the start. Since treewidth is often calculated
with heuristic algorithms, it would be interesting to determine if certain saturation methods
could even be designed with a particular treewidth heuristic in mind to further improve
efficiency.

A Proof of Proposition 2.6

Proposition A.1. Let G = (N, C, E , Cout, c) be an e-graph and define G = (V,E, Vout, g, c)
as follows:

1. Let V = {xu : u ∈ N} ∪ {∧u : u ∈ N} ∪ {∨C : C ∈ C}.

2. Let

E = {(∧u,∨C) : u ∈ C ∈ C} ∪ {(∨C ,∧u) : (u,C) ∈ E} ∪ {(xu,∧u) : u ∈ N} (⋆)

3. Let Vout = {∨C : C ∈ Cout}.

4. Let g map each ∧u to AND and each ∨C to OR.

5. Let c(xu) = c(u).

Then the following map is a bijection between minimal satisfiable extractions of G and
minimal satisfiable evaluations of G. We map an extraction φ to the function α defined for
all u ∈ C ∈ C:

α(xu) = α(∧u) = 1(φ(C) = u) α(∨C) = 1(C ∈ dom(φ)) (†)

The bijection also preserves acyclicity and cost. ⌟

Proof. First, we need to show that α is a minimal satisfying evaluation.

• To show that α is valid, we check the gate functions using (⋆) and (†).

1. If α(∧u) = 0, then xu is an input and α(xu) = 0, so we are good.

2. If α(∧u) = 1, then α(xu) = 1, and the other inputs are ∨C for all (u,C) ∈ E . By
definition of extraction, C ∈ dom(φ), so α(∨C) = 1 as required.

3. If α(∨C) = 0, then C ̸∈ dom(φ), so for all u ∈ C, we have α(∧u) = 0 as required.

4. If α(∨C) = 1, then C ∈ dom(φ) and φ(C) = u for some u ∈ C. Hence α(∧u) = 1
as required.

• To show that α is minimally satisfying, it is certainly satisfying from the definitions of
α and Vout, so it remains to show minimality. Suppose for contradiction that there
exists a proper subset A ⊊ {i ∈ V : α(i) = 1} such that α|A is a satisfying evaluation.

Let A = {C ∈ C : α|A(∨C) = 1}. We will show that A ⊊ dom(φ) yet φ|A is satisfying,
contradicting the fact that φ is minimal satisfying.

First, note that A is a subset of dom(φ) because α|A(∨C) = 1 implies C ∈ dom(φ)
by (†). Next, we show that it is a proper subset. Because A is a proper subset of
{i ∈ V : α(i) = 1}, there is a true vertex (by α) outside of A.

13



1. If it is ∨C , then α|A(∨C) = 1 and C is a satisfied class outside of A.

2. If it is ∧u, by our construction (†), no siblings of ∧u are true. So if ∧u ̸∈ A and
C denotes the class containing u, by validity of α|A, we have α|A(∨C) = 0, and
C is a satisfied class outside of A.

3. If it is xu, by validity of α|A, the vertex ∧u must be false in α|A, and ∧u must be
true in α by (†). Therefore, we are in case (2) and can repeat the argument to
find the desired C.

Now to show that φ|A is a satisfying extraction. First, to show that it is a valid
extraction, if φ(C) depends on C1, . . . , Ck, by validity of α|A it must be that α|A(∨Ci) =
1 for each i, so Ci ∈ A as required for an extraction. The extraction is satisfying
because α|A being satisfying implies α|A(∨C) = 1 for all C ∈ Cout, and hence C ∈ A
as required.

To prove that the map is a bijection, we define the inverse. Given a minimal satisfying
total evaluation α, let φ(C) = u if and only if α(∧u) = 1 for some u ∈ C. The inverse map
is a well-defined choice function because for every C, there exists at most one u ∈ C such
that α(∧u) = 1. This follows from minimality of α: if α(∧u) = α(∧v) = 1 for u, v ∈ C, then
taking A = V \ {∧u, xu} would allow α|A to be a satisfying evaluation, noting that the only
output of ∧u is ∨C . Now we need to show that φ is a minimal satisfying extraction.

• To show that φ is an extraction, simply note that whenever φ(C) is defined, by the
above construction α(∧φ(C)) = 1, so by validity of α and (⋆), all dependencies Ci must
have α(∨Ci) = 1. Again by validity, this means that for each Ci, at least one ui ∈ Ci

must have α(∧ui) = 1, so Ci ∈ dom(φ) and we are done.

• To show that φ is satisfying, simply note that because α is satisfying, α(∨C) = 1 for
all C ∈ Cout. Each ∨C can only be 1 if at least one of its children ∧u is evaluated to 1
where u ∈ C, so C ∈ dom(φ) and we are done.

To show minimality, suppose for contradiction that there exists a proper subset
A ⊊ dom(φ) such that φ|A is a satisfying extraction. Consider A = {xu,∧u,∨C :
φ|A(C) = u}. We will show that α|A is a satisfying evaluation with A ⊊ V .

To show that α|A is a valid evaluation, we need to check the gate functions.

1. If α|A(∧u) = 0, then either α(∧u) = 0, in which case this is valid by validity of α,
or the class of u did not belong to A, in which case we also have α|A(xu) = 0,
which suffices for validity.

2. If α|A(∧u) = 1, then where C is the class of u, we have C ∈ A. Because φ|A
an extraction, we conclude that the children C1, . . . , Ck of u also belong to A,
so combined with the fact that α is valid, we conclude that α|A(∨Ci) = 1 as
desired. Again because α is valid and ∧u ∈ A if and only if xu ∈ A, we also have
α|A(xu) = 1 to conclude.

3. If α|A(∨C) = 0, then either α(∨C) = 0, in which this is valid by validity of α, or
C ̸∈ A, in which case there is no u ∈ C for which ∧u ∈ A. Hence α|A(∧u) = 0 for
all u ∈ C, which suffices for validity.

4. If α|A(∨C) = 1, then we have C ∈ A. Then where u = φ|A(C) = φ(C), we have
∧u ∈ A, and hence α|A(∧u) = α(∧u) = 1, which suffices for validity.
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As mentioned above, α|A is satisfying because α is satisfying and ∨C ∈ A for all
C ∈ Cout, because φ|A is satisfying. Then A ⊊ V because if C ∈ dom(φ) \ A, then
α(∨C) = 1 whereas α|A(∨C) = 0.

Lastly, to show that inverse map is truly an inverse, we need to show that transforming φ
to α to φ is the identity, which is obvious, and that transforming α to φ to α is identity, for
which it suffices to note that α is entirely determined by its values on ∧u: vertices ∨C only
have vertices of type ∧u as inputs, so they are determined, and we must have α(xu) = α(∧u),
because α(xu) = 0 with α(∧u) = 1 is not valid and α(xu) = 1 with α(∧u) = 0 is not minimal
(take A = V \ {xu}).

To show that the bijection preserves acyclicity, we need to show both directions:

• Suppose φ is acyclic. To show that G[α] is acyclic, it suffices to show that every
directed cycle in G has at least one vertex on which α is 0. The only possible directed
cycles of G occur as alternations of edges of type (∧u,∨C) and (∨C ,∧u). So let
∧u1 ,∨C1 , . . . ,∧uk

,∨Ck
,∧uk+1

= ∧u1 be a cycle in G, where ui ∈ Ci and (ui+1, Ci) ∈ E
for all i, and it would suffice to find ui such that α(∧ui) = 0. Because φ is acyclic, there
must be some ui for which φ(Ci) ̸= ui (otherwise C1, . . . , Ck, C1 is a cycle). Therefore
by (†), α(∧ui) = 0 as desired.

• Suppose α is acyclic and suppose for contradiction that C1, . . . , Ck = C1 forms a
cycle in φ. Then for each i, denoting ui = φ(Ci), we have that α(∧ui) = 1 and
hence α(∨Ci) = 1. But then ∧u1 ,∨C1 , . . . ,∧uk−1

,∨Ck−1
,∧u1 = ∧uk

is a cycle in G[α],
a contradiction.

Lastly, for the cost, we simply note that by the bijection, xu = 1 if and only if φ(C) = u
where C is the class of u, so this is clear.
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