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Abstract—In the search for more effective education, there is
a widespread effort to develop better approaches to personalize
student education. Unassisted, educators often do not have time
or resources to personally support every student in a given
classroom. Motivated by this issue, and by recent advancements
in artificial intelligence, this paper presents a general-purpose
framework for personalized student support, applicable to any
virtual educational system such as a serious game or an intelli-
gent tutoring system. To fit any educational situation, we apply
ontologies for their semantic organization, combining them with
data collection considerations and multi-agent reinforcement
learning. The result is a modular system that can be adapted to
any virtual educational software to provide useful personalized
assistance to students.

Index Terms—human-machine cooperation and systems;
human-centered learning; assistive technology; computational
intelligence; personalized education; reinforcement learning;
intelligent tutoring systems

I. INTRODUCTION

In the past several years, there has been an exponential
increase in developments in artificial intelligence (Al), and
in many respects, these new developments still fall short of
the potential or creativity of human intelligence. However,
Al does have great potential to augment human intelligence
and to assist in a variety of tasks [1]. Al assistance is
especially powerful and notable in areas that cannot oth-
erwise be improved due to lack of human resources or
overall resource limitations. In this paper, we focus on
one such area; personalized education. To be specific, we
propose a general-purpose framework leveraging ontologies
as a knowledge model and multi-agent reinforcement learning
as an Al “brain” to create a modular and widely-applicable
solution to the task of personalized student support. Our
theoretical method, as written, can apply to a variety of
virtual educational systems and software with the ultimate
goal of providing students with timely and personalized
feedback.

The challenge of personalized learning has been ongoing
since at least 2008, when the National Academy of Engi-
neering declared the advancement of personalized learning
one of its 14 grand challenges in engineering [2]. And
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personalized learning does prove a challenging problem [3];
due to instructor resource constraints, limited school budgets,
and large classroom sizes [4], it is infeasible for human
intelligence to individually tutor every single student in a
way that fits their ideal preferences. Thus, typical educational
methods lean more toward a one-size-fits-all approach; that
is, a teaching method that is useful and effective for all
students. However, there are always outliers, and one-size-
fits-all methods still tend to leave students behind, especially
in situations where those students have a shaky background or
a fundamental misunderstanding [5]. And ultimately, falling
behind in lessons often leads many students to drop out from
classes, suffer poor grades, fall behind on assignments, or
resort to time-consuming self-exploration.

Fitting with AI’s ability to augment human intelligence,
Al is easily integrated into virtual educational systems such
as serious games and intelligent tutoring systems [6], [7].
With AI and virtual educational systems, students can be
given active, timely feedback, regardless of whether they are
learning in the classroom, at an after-school study group,
or at home. Furthermore, the Al can actively prompt and
engage with students, helping them to overcome situations
where they may fail to even formulate a proper question
[8]. Finally, Al can easily be integrated with a lesson plan
or educational database to answer questions or address any
misunderstandings that a student may have without the need
for instructor intervention. With Al as a study aid, well-
performing students can cover their areas of difficulty while
poor-performing students can catch up without excessive
instructor intervention.

Al integration in virtual educational systems first require
some knowledge database or lesson plan to guide education,
track students’ progress, and allow for human input to ensure
accurate lessons. For our proposed method, this knowledge
database is created with an ontology; a type of data struc-
ture used to model and organize knowledge [9]. With their
structure, ontologies are a powerful framework, usable for
organizing educational content in a hierarchical manner while
creating a format that can be easily connected with an Al
In literature, ontologies have shown effectiveness for student
modelling for recommender systems [10] and intelligent tut-



oring systems [11], simplifying lesson planning while ac-
counting for educational standards [12], and for representing
general educational content [13].

With an ontology representing the domain knowledge that
a virtual educational system intends to teach, the remaining
components of the proposed system serve as the “brain” of
the AI. We adapt multi-agent reinforcement learning (RL)
[14] to act as an adaptive Al tutor. This dynamic adaptability
both guarantees that the Al will eventually perform optimally
[15], and allows the Al system to account for shifting trends
in student behavior. In our prior work, we developed and
tested a multi-agent RL approach using experience sharing
to improve agent training performance [16]. We verified the
positive performance impact of this method [17], and have
successfully applied this method within an educational seri-
ous game, showing a positive impact on student performance
[17].

However, our prior work applied the multi-agent reinforce-
ment learning to a single case, dealing with a small subset
of topics within a single domain. It wasn’t straightforward
to add new topics to the system, and furthermore, the
system wasn’t generalized for wider applications. With the
proposed work, we aim to extend the system to support
multiple connected RL agents using the ontology structure
for organization. By adapting our prior experience sharing
method, newly-added agents can boost their performance
using shared experience, giving them a jump-start at the
beginning of training to avoid a period of poor performance
at the start. The result is a modular, easily-extensible student
support system that can function in various virtual educa-
tional systems on various topics.

II. PROPOSED SYSTEM ARCHITECTURE

For the system detailed in this paper, we first provide an
overview of the various components before detailing each
component part. As shown in Figure 1, the proposed system
has 4 main components:

1) Educational Concept Ontology: The ontology is the
core of any integrated system, providing a structured
and hierarchical representation of the relevant domain
knowledge. The structure and organization of the on-
tology informs all other components.

2) Data Collection, Transformation, and Storage: With the
ontology storing a structured representation of relevant
domain knowledge, any integrated system must also
collect, transform, and store data on student perfor-
mance. As the data collected are not necessarily in
the required format for the system, converting the data
to the correct set of variables is necessary. Overall,
data are necessary to inform the system’s “’brain”, the
reinforcement learning.

3) Reinforcement Learning: The Al “brain” of the system,
the reinforcement learning agents are responsible for
adjusting system behavior and deciding what feed-
back students receive. The output of the reinforcement
learning agents informs the personalized assistance
generation module.

4) Personalized Assistance Generation: The personalized
assistance generation module pulls domain knowledge
from the ontology and, using inputs given by the
“brain”, constructs the personalized assistance that
students receive when interacting with an integrated
system.

The following sections discuss these components in greater
detail.

A. Ontologies for Education

The first component of the proposed system is an edu-
cational ontology. As was previously mentioned, ontologies
have seen application in education for student modelling,
grading, and the organization of educational material. For the
proposed system, the ontology within provides a structured
representation of the domain knowledge that a virtual edu-
cation system aims to teach. An example ontology dealing
with mathematical functions is provided in Figure 2.

For this application, ontologies were chosen due to their
past successes in educational applications, including student
modelling [10], [11], and educational content organization
[12], [13]. Furthermore, the semantic connections used al-
low for a more meaningful structure, informing the lesson
plan and educational content presentation of any connected
system. In other words, topics can be organized similarly to
a lesson plan, helping to inform both Al assistance and the
overall order of content presentation.

The ontology determines the order of operations that the
system follows when teaching a student, as well as the topics
that are assigned reinforcement learning agents. As the RL
agents are meant to specialize in topics, agent-augmented
nodes in the ontology must be granular enough where a
specialized agent can provide relevant and useful assistance,
while still being broad enough to not require a massive
number of RL agents. In the case of Figure 2, we might
assign an RL agent to the sub-classes “linear function”,
”quadratic function”, and “exponential function”, as well as
one for the properties of domain and range. Then, any topic
under the selected topics can be used to inform tutoring and
generate personalized recommendations, as will be discussed
in a later section.

Formally, an ontology for this application can be modelled
as a directed acyclic graph G = (C, E, p, D, &) such that:

o C = {¢;} is the set of concepts contained within a
given ontology, visualized as nodes in the graph. Each
concept ¢; represents a specific piece of knowledge or
topic within the ontology’s target domain.

e E = {c,cj,pr} is a set of directional edges that
connect a topic ¢; € C' to another topic ¢; € C. The
semantic relationship between these topics is defined as
a property pr. As edges are directed, concepts should
be connected in a hierarchical manner.

o p(ci) ={0j}Ve; € Cis a set of attributes or properties
0; associated with each concept ¢; € C to further
define each concept. Properties depend on application,
but could represent difficulty level, relevance to an
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Fig. 1. Full diagram of the proposed system showing all four components and connections to a virtual educational system.
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Fig. 2. A simplified example ontology that focuses around mathematical
functions, showing a few possible sub-concepts and how they’re related.

overarching educational objective, or any other useful
properties to assist system configuration.

e D is a database of educational materials such that for
each concept ¢; € C there exists a subset D, € D
that contains educational materials related to concept
¢;. Educational materials are used to tutor students,
and could be anything from simple text tutorials to
videos, example problems, or interactive simulations, for
example.

e «is a set of reinforcement learning (RL) agents assigned
to select concepts in C. For some concepts {¢;} C C
there exists an RL agent «., assigned to that concept.

B. Data Collection and Storage

With the ontology defined, the second step in system
creation is student data collection. Given an ontology O*
and its set of concepts C*, the system collects student data
for each concept ¢; € C*. By matching student data to each
topic in the ontology, the system has a solid understanding of
a student’s performance in each of the topics. We formalize
this in the proposed system by stating that each concept in
the ontology stores a student data vector, X, such that this
vector contains a set of generic performance metrics that can
indicate a student’s performance in any given topic.

The specific performance metrics used depend on imple-
mentation, but should be general-purpose such that any topic
can use the same metrics. This shared form for every node is
important to the reinforcement learning, as will be discussed
in Section II-D. To give some examples, x., could be defined
as X¢, = (a b c), where a is a measure of competency,
such as a quiz score, b is a measure of timing, such as a time-
to-completion measurement, and c is a numerical indicator
of engagement, such as number of interactions made or time
spent idle. Ultimately, the data points chosen depend on
implementation.

C. Data Transformation

As mentioned, each data vector x., has a shared form
for every topic, and is meant to represent a general-purpose
vector (referred to here as x) of student performance metrics
that can be used for any educational topic or scenario.
However, the inherent diversity in data collection methods
also requires the proposed system to account for variation
in collected student data. Therefore, it is necessary for the
proposed system to transform incoming data from some



unknown set of collected metrics to a known list of accepted
metrics.

Connecting with other sections of the proposed system
architecture, data transformation begins with a semantic
representation of the target data metrics in x. With this
representation, it is necessary to assign a set of descriptors
to each metric in x. Then, if the system has a new vector
Y, of input data with format y, containing some varied
set of metrics each also with descriptors attached, y can
be connected within the data transformation ontology to x.
With connections formed, let f : y — x define a set
of transformation functions that map each element in y to
an element in x, performing necessary data transformation
and normalization to translate y into x. Figure 3 shows an
example of how this data transformation can be formalized.
Section III shows a more in-depth example of this data
transformation principle.

Input Transformation OSUttht to
(y) Functions ystem
) (x)

Multiple-choice

Time Spent Idle

Quiz Score @\ f1(y1, y3) = x1
X1 Competency
Completion Time
fay2) = x2
X2 Time
Number of
Errors f3(y2, ¥4) = X3
X3 Engagement

Fig. 3. An example transformation graph showing how some unknown
metrics from y with varied descriptors are mapped to xz, with appropriate
transformation functions assigned along the connecting edges.

D. Multi-agent Reinforcement Learning

Reinforcement learning [14] is a machine learning
paradigm wherein an intelligent agent interacts with some
environment. As it interacts it makes numerical observations
of the current environment, which are called states. Based on
the observed state, the agent selects one or more actions from
a set of possible actions, with those actions, in turn, having
some effect on the state. The agent is then given a numerical
reward, which is determined by the state change, the action
chosen, or even some external factor. The agent observes
the reward and the new environmental state, and repeats the
process. By applying this paradigm as our “brain”, our pro-
posed system has a set of these reinforcement learning agents
through multi-agent reinforcement learning with experience
sharing, a novel approach that we’ve proven in prior work on
the same task of personalized student assistance [16]. Each
agent in the system is then assigned to a specific topic in the
ontology.

Reinforcement learning provides a natural fit for the prob-
lem of personalized student assistance. Given the established

data vector, X¢,, that stores student data relative to a given
topic ¢; € C* in our example ontology O*, this data can rep-
resent an environmental state for an RL agent. The iterative
online learning that reinforcement learning agents provide
means that system developers do not have to encode com-
plex decision logic to provide personalized support, instead
relying on the RL agents to naturally learn optimal behavior.
Furthermore, since reinforcement learning is an ongoing,
online process, shifting trends in student preferences or slight
changes in lesson planning can be adapted to, ensuring that
students always receive appropriate personalized assistance.

Formally, the reinforcement learning problem is presented
as a multi-agent Markov decision process (MDP) such that
each agent in our ontology O*, labelled as a., € a* has an
MDP = (S, A, R,p,v):

« S is a given agent’s finite state space. In this application,

a state observation at a given time step is an observation
of X, at time step ¢, also defined as s; € S. Thus,
the total size of the state space is defined by the
dimensionality and variable range of xc;.

e A is a given agent’s finite action space. For this ap-
plication, agent actions are defined as a vector, a € A
such that each element of a represents a property of
personalized student assistance. The action chosen at a
given time step is defined as a; € A In this case, the
agent does not select a single action, but rather, assigns
a value to every property in the action vector.

Section III gives an in-depth example of how an action
vector might be defined using properties of personalized
student assistance.

e R is the reward function defined as R(s,a,s’) —
RVs, s’ € S,a € A. Reward is dependent on application,
but an ideal reward function will encourage certain
behavior. For example, defining the reward function to
return a positive reward for improvements in student
performance is a natural configuration for the proposed
system.

o P is the transition probability dynamics of the system,
defined as P(s'|s,a) — [0,1]Vs,s’ € S,a € A It
determines the probability of arriving in some new state
based on the prior observation and the action chosen.
This function is challenging to predict in a human-
centric environment like the proposed system.

e 7 is the discount factor such that v € [0, 1]. The discount
factor applies a weight to future rewards. A value of
0 makes the agent consider only the immediate first
step in its decision-making, while a value of 1 makes
the agent consider all possible future rewards with no
weight applied.

Given the possibly large dimensionality of the state space
and the continuous output format for agent actions, choosing
an appropriate reinforcement learning method is also im-
portant for successful implementation. Deep reinforcement
learning methods are useful for handling large, non-discrete
state spaces, and the method adapted here made use of Deep
Q-learning as the central reinforcement learning algorithm.
However, given the continuous nature of the action vector,



a certain subset of RL algorithms, deep policy gradient
methods fit this application better. Unlike other RL methods
which rely on estimating the outcome of discrete actions,
deep policy gradient methods can work with continuous
actions. As such, they are typically used in robotics, but
are highly applicable in the proposed system. Recently-
developed methods like deep deterministic policy gradient
(DDPG) [18], twin delayed DDPG [19], soft actor-critic [20],
or proximal policy optimization [21] all fit this application,
and would still work with our multi-agent experience sharing
method.

E. Generating Personalized Assistance

Finally, given an action vector, a*, from the RL agent
working on concept c;, the personalized assistance generation
module is responsible for translating both the action vector
and the database content subset D., into tutoring material
or assistance that can be provided to the student. Given the
wide range of possible situations the proposed system could
be applied to, the outcome of the personalized assistance
generation module could translate these inputs into some
interface, pop-up, change in a virtual environment, or other
adjustment in order to appropriately deliver the target content
to the student.

Given the wide range of possible virtual environments that
the proposed system could be applied to, the specific form
of this module will vary. A serious game might prefer a
non-player character to approach the player, offering varied
dialogue based on the given inputs. An intelligent tutoring
system, meanwhile, might offer a more direct pop-up prompt
containing a set of recommended study materials, practice
problems, and tutorial videos. This module is the most
flexible, and could even take advantage of new technologies
in dynamic content generation such as large language models
[22] or other recent methods in Al-generated content [23].
On the other hand, a more simplified approach might assign
properties to the database entries, enabling or disabling
certain pieces of content based on a*. Rule-based systems
could also apply [24], only pulling certain content from the
database determined by a set of expert-defined rules based on
a*. Ultimately, there are many approaches to translate these
two inputs into personalized student assistance, and different
integrated systems will have a different “best” solution.

III. EXAMPLE IMPLEMENTATION

Given the system definition, we now provide a brief exam-
ple of how such a system might be implemented within some
educational software. In this example educational software,
we can assume that the system provides educational material
to students and intermittently administers quizzes to gauge
each student’s content knowledge. With that in mind, we
first must consider the data collected by such a system,
defining the data input vector, y = {y1, Y2, Y3, ya, Y5} with
the following values:

e y1: A given student’s percentage of correct answers on
a quiz in range [0, 1]

o yo: The total amount of time spent on a given section,
in seconds

o y3: The amount of time spent engaging with educational
content (ex. reading material, answering questions), in
seconds

o y4: The total number of button presses or other interac-
tions the student has made within a given section

e y5: An emotional state estimated from webcam images
of the student as they play, with O indicating negative
emotions, 1 indicating neutral, and 2 indicating positive

With those values defined, we can now determine the map-
ping functions to translate the given data into the system’s
input vector, x = {1, %2, z3}, where:

e x1: A numerical score in range [0,1] indicating a

student’s competency on the provided content

e 3. A numerical score in range [0,1] indicating a

student’s engagement with the provided content

e x3: A numerical score indicating a student’s current

emotional state in range [0, 1], where O indicates that
frustration might be present, while 1 indicates a positive
emotional state with no measured issues

And then the mapping functions can determine the rela-
tionship between the actual gathered data and the data vector
sent in to the RL system. Quiz scores (y;) can easily map
directly into the value for competence (z1), as shown in
Equation 1. Engagement (z3) can be determined based on
the student’s number of interactions with the system (y4) and
how they compare to some maximum value (y;'**) deter-
mined through testing. As shown in Equation 2, engagement
can also take into account the percentage of time a student
spends on educational content (y3) compared to their total
time in the game (y3) to provide further insight into their
engagement with the provided material. Finally, as shown
in Equation 3, emotional state can use a scaled version of
the emotional measurements (ys), but can be adjusted if the
user is spending an above-average amount of time (with y5"?
indicating average time) on a given section.

r1r =N (n
Y4 Y3
T = + = 2 (2)
( e yQ)/
. L y2 < yg? 3
- , avg
D \max (- 8, 0) > yst

Given these mapping functions, we aim to demonstrate
that the proposed system can be flexible, with a variety
of acceptable data collection methods and data inputs all
mapping to a standard format so that different systems
can use similar RL architectures. An actual implementation
could extend this basic system to include significantly more
complex mapping functions, such as neural networks, ma-
chine learning methods, or statistical analyses. With x fully
mapped, the system can use it as the RL state to generate the
action vector. In our example system, we define the action
vector a* = {ay, as, as, ayq, as }, where:



e aj is a weight for how heavily the generated assistance
should rely on visuals.

e ao is a weight for the inclusion examples, such as videos
or step-by-step guides, that should be included in the
generated assistance.

e ag is a weight for the inclusion of practice problems.

e a4 is a weight for how much guidance the provided
assistance should give to players. For example, a low
value here would mean that the player simply receives
educational material and must learn, while a high value
here would mean that the system gives significantly
more detailed guidance on what the player should study.

e ay is a weight for how encouraging and emotionally-
driven the dialogue given to the player should be.

All values are essentially treated as weights in the range
[0,1] and interpreted by the personalized assistance gen-
eration module which might combine rule-based systems
with large language models. For example, with the weights
given above, a rule-based system could first interpret a1, as,
and a3, which are the weights for visuals, examples, and
practice problems. We could then take an expert-created
set of study materials and assign threshold values to each
piece of content. Some images might only be shown to
students who were assigned an a; value of 0.9 or higher,
with similar rules in place for example problems and practice
problems. Meanwhile, a4 and a5 are more abstract, so a large
language model could be used to dynamically regenerate
existing educational content to add in more or less guidance
based on a4, and more or less encouragement based on as.
With this simple example, students would see highly varied
study material based on the RL system’s decision-making,
and student feedback on the usefulness of that material could
then feed back into the RL to inform decisions for future
students.

IV. CONCLUSIONS

In conclusion, we present a general-purpose framework
for personalized educational support in virtual educational
systems. Integrating data collection, semantic structuring
through ontologies, and multi-agent reinforcement learning,
the proposed system allows for artificial intelligence to
augment, rather than replace, human intelligence in the
classroom. By applying the proposed system to the context
of virtual education, researchers can more easily provide
intelligent, personalized feedback and recommendations to
students without the need for instructor intervention. With
the modular nature of the proposed system, educational
concepts can easily be adjusted and added, and reinforcement
learning allows for the system to adapt to shifts in student
preferences. Moving forward, we intend to focus on empirical
validation of our system in an educational context, as well as
further optimizations to the methodology, such as a deeper
look at personalized assistance generation, and additional
improvements to the reinforcement learning. Ultimately, the
proposed system sets a unique and useful model for future
researchers, advancing the field of personalized education by
making it more accessible to implement.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

REFERENCES

K.-L. A. Yau, H. J. Lee, Y.-W. Chong, M. H. Ling, A. R. Syed, C. Wu,
and H. G. Goh, “Augmented intelligence: Surveys of literature and
expert opinion to understand relations between human intelligence and
artificial intelligence,” IEEE Access, vol. 9, pp. 136744-136761, 2021.
NAE, “Nae grand challenges: Advance personalized learning,” 2009.
A.J. Bingham, J. F. Pane, E. D. Steiner, and L. S. Hamilton, “Ahead of
the curve: Implementation challenges in personalized learning school
models,” Educational Policy, vol. 32, no. 3, pp. 454-489, 2018.

I. Y. Johnson, “Class size and student performance at a public research
university: A cross-classified model,” Research in Higher Education,
vol. 51, no. 8, pp. 701-723, 2010.

S. Goodman and H. Bohanon, “A Framework for Supporting All
Students: One-Size-Fits-All No Longer Works in Schools,” Loyola
eCommons, vol. February, 2018.

F. AlShaikh and N. Hewahi, “Ai and machine learning techniques
in the development of intelligent tutoring system: A review,” in
2021 International Conference on innovation and Intelligence for
informatics, computing, and technologies (3ICT), pp. 403—410, IEEE,
2021.

C.-C. Lin, A. Y. Q. Huang, and O. H. T. Lu, “Artificial intelligence in
intelligent tutoring systems toward sustainable education: a systematic
review,” Smart Learn. Environ., vol. 10, pp. 1-22, Dec. 2023.

C. Vrabie, “Education 3.0 — ai and gamification tools for increasing
student engagement and knowledge retention,” in Digital Transforma-
tion (J. Maslankowski, B. Marcinkowski, and P. Rupino da Cunha,
eds.), (Cham), pp. 74-87, Springer Nature Switzerland, 2023.

L. Ding, P. Kolari, Z. Ding, and S. Avancha, “Using ontologies in
the semantic web: A survey,” Ontologies: A Handbook of Principles,
Concepts and Applications in Information Systems, pp. 79—113, 2007.
H. Yago, J. Clemente, D. Rodriguez, and P. F. de Cordoba, “On-
smmile: Ontology network-based student model for multiple learning
environments,” Data & Knowledge Engineering, vol. 115, pp. 48-67,
2018.

J. Clemente, J. Ramirez, and A. de Antonio, “A proposal for student
modeling based on ontologies and diagnosis rules,” Expert Systems
with Applications, vol. 38, no. 7, pp. 8066-8078, 2011.

S. M. Rashid and D. L. McGuinness, “Creating and using an ed-
ucation standards ontology to improve education,” in Proceedings
of the Workshop on Semantic Web for Social Good co-located with
17th International Semantic Web Conference, SW4SG@ISWC 2018,
Monterey, California, USA, October 9, 2018., Monterey, California,
USA, October 9, 2018 (K. K. Waterman, ed.), vol. 2182 of CEUR
Workshop Proceedings, CEUR-WS.org, 2018.

E. L. Baker, “CRESST Ontology-Based Educational Design: Seeing is
Believing,” CRESST, Dec. 2012.

C. J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis,
King’s College, Oxford, 1989.

Y. Li, “Deep reinforcement learning: An overview,” 2018.

R. Hare and Y. Tang, “Reinforcement learning with experience sharing
for intelligent educational systems,” 2023 IEEE International Confer-
ence on Systems, Man, and Cybernetics, 2023.

R. Hare, Y. Tang, and S. Ferguson, “(in press). an intelligent serious
game for digital logic education to enhance student learning,” IEEE
Transactions on Education, 2024.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2019.

S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

C. K. Lo, “What is the impact of chatgpt on education? a rapid review
of the literature,” Education Sciences, vol. 13, no. 4, p. 410, 2023.
Z. Bahroun, C. Anane, V. Ahmed, and A. Zacca, “Transforming
education: A comprehensive review of generative artificial intelligence
in educational settings through bibliometric and content analysis,”
Sustainability, vol. 15, no. 17, 2023.

N. S. Raj and V. Renumol, “A rule-based approach for adaptive
content recommendation in a personalized learning environment: An
experimental analysis,” in 2019 IEEE tenth international conference
on technology for education (T4E), pp. 138-141, IEEE, 2019.



	Introduction
	Proposed System Architecture
	Ontologies for Education
	Data Collection and Storage
	Data Transformation
	Multi-agent Reinforcement Learning
	Generating Personalized Assistance

	Example Implementation 
	Conclusions
	References

