
Combining Hard and Soft Constraints in Quantum
Constraint-Satisfaction Systems

Ellis Wilson
North Carolina State University

Raleigh, North Carolina 27695-8206

Email: ejwilso2@ncsu.edu

Frank Mueller
North Carolina State University

Raleigh, North Carolina 27695-8206

Email: mueller@cs.ncsu.edu

Scott Pakin
Los Alamos National Laboratory

Los Alamos, New Mexico 87545

Email: pakin@lanl.gov

Abstract—This work presents a generalization of NchooseK,
a constraint satisfaction system designed to target both quan-
tum circuit devices and quantum annealing devices. Previously,
NchooseK supported only hard constraints, which made it
suitable for expressing problems in NP (e.g., 3-SAT) but not
NP-hard problems (e.g., minimum vertex cover). In this paper
we show how support for soft constraints can be added to the
model and implementation, broadening the classes of problems
that can be expressed elegantly in NchooseK without sacrificing
portability across different quantum devices.

Through a set of examples, we argue that this enhanced
version of NchooseK enables problems to be expressed in a
more concise, less error-prone manner than if these problems
were encoded manually for quantum execution. We include an
empirical evaluation of performance, scalability, and fidelity on
both a large IBM Q system and a large D-Wave system.

Index Terms—circuit-model quantum computing, quantum
annealing, programming models

I. INTRODUCTION

Much like GPUs, which have become omnipresent in high-

performance computing (HPC) systems, quantum processing

units (QPUs) are intended to accelerate computational kernels.

The difference is that QPUs offer the potential of solving

computationally hard problems in shorter time than would be

possible via any form of classical computing—either by a

constant though polynomial factor (termed “quantum advan-

tage”) or in a few cases even exponentially, making classically

intractable problems tractable (termed “quantum supremacy”).

In today’s age of noisy, intermediate-scale quantum (NISQ)

computation [1], practical experiments are limited by the

number of available qubits and their high susceptibility to

noise. Consequently, quantum supremacy in particular has been

demonstrated to date on actual QPUs only for problems or input

sizes that lack practical applicability [2], [3], [4]. Nevertheless,

the hope that future, fault-tolerant quantum computers will

usher in a new era of HPC makes quantum computing an area

with significant research potential and relevance to the HPC

community.

Quantum programming requires a way of thinking that is

very unlike that of classical programming and as such can have

a high barrier of entry even for those already comfortable

with coding in a variety of classical computer languages.

Furthermore, there is substantial architectural variety among

different quantum computers—analogous to CPUs vs. GPUs vs.

TPUs [5] vs. IPUs [6] vs. RDUs [7] and the like in the classical

world—which frustrates the creation of a portable programming

model.

Currently, the two dominant architectural models for quan-

tum computers are the circuit model and the annealing

model. Most hardware vendors, including IBM, IonQ, Rigetti,

Honeywell, ColdQuanta, PsiQuantum, Quantum Brilliance, and

many more, are basing their products on the circuit model [8],

[9], [10], [11], [12]. At its core, a circuit-model program is an

enormous (2n ×2n) unitary matrix, expressed as the product

of tensor products of small (usually 2×2 and 4×4) unitary

matrices.

D-Wave [13] is the lone vendor championing the annealing

model, although Fujitsu’s Digital Annealer [14] represents a

classical analogue (same computational model but a classical

rather than a quantum implementation). Although both the

circuit model and the annealing model are ultimately governed

by the Schrödinger equation, an annealing-model program is

essentially a quadratic pseudo-Boolean function. The hardware

searches (heuristically) for the inputs that minimize this

function [15], [16].

Being tied specifically to a particular type of optimization

problem, the annealing model is more restrictive than the

general-purpose circuit model. However, the annealing model

offers an important engineering advantage: scalability. D-Wave

has manufactured annealing devices with about two orders of

magnitude more qubits than what is available today for the

circuit model. At the time of this writing, D-Wave’s largest

machine provides nearly 5,760 qubits, while IBM’s largest

machine provides only 127.

To date, there have been virtually no attempts to develop a

high-level programming model that bridges these two quantum

computational models. Because of the popularity of the

circuit model, most programming systems target that. Some

recent examples of circuit-model programming languages are

Twist [17], Silq [18], Q# [19], ProjectQ [20], QWIRE [21],

Scaffold [22], and Quipper [23]. D-Wave’s Ocean API [24]

facilitates the expression of annealing-model programs. All of

these work at a fairly low level of abstraction. The circuit-model

systems provide mechanisms for juxtaposing small unitary

matrices in a large matrix product, and the annealing-model

system provides mechanisms for specifying coefficients for a

quadratic pseudo-Boolean function.

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

A rare example of cross-paradigm quantum programming is

NchooseK [25], [26]. NchooseK is a domain-specific language

focusing on the domain of constraint satisfaction problems. It

seeks to work at a sufficiently high level of abstraction as to

both facilitate programming, even for quantum novices, and

enable execution on both circuit-model and annealing-model

devices. The fundamentals of a simplistic NchooseK abstraction

was first used for a Grover search by Khetawat et al. [25] and

developed further for simple constraint-satisfaction problems in

a workshop paper by Wilson et al. [26]. Section II elaborates

further, but a small example of an NchooseK program is

nck({a,b},{0,1})∧ nck({b,c},{1}), which is interpreted as

“Neither or exactly one of a and b must be TRUE, and,

simultaneously, exactly one of b and c must be TRUE.”

This paper presents a more generalized variant of NchooseK

for expressing complex constraint-satisfaction problems. Specif-

ically, the paper makes the following contributions:

• It introduces soft constraints—constraints, which, if bro-

ken, will incur a penalty but will not invalidate the problem.

Soft constraints are crucial for expressing minimization

or maximization problems in NchooseK.

• It evaluates a larger set of NchooseK problems, including

both hard and soft constraints, than had previous been

studied.

• It compares both the complexity of NchooseK and the

quality of the quadratic unconstrained binary optimization

(QUBO) expressions used as an intermediate representa-

tion of NchooseK, by comparing them to manually created

QUBOs for the same problems.

• It evaluates quantum computations of much larger scale

in today’s terms than previous work—of up to 65 qubits

on the IBM gate-based machines, utilizing every qubit on

the ibmq brooklyn [27], and 1163 qubits on the D-Wave

quantum annealers, even within a range where correct

answers were potentially no longer found.

II. BACKGROUND

NchooseK is a programming paradigm based on expressing

constraint-satisfaction problems over a set of boolean variables.

Each constraint in a problem specification takes the form,

“Given a variable collection of size N, a specified number of

them, K, must be TRUE.” Before elaborating we state some

relevant definitions:

Definition 1 (Variable collection). A variable collection

comprises a number of Boolean variables in which variables

can be repeated, but order does not matter. Its cardinality is the

number of elements (which can exceed the number of unique

variables due to repetitions).

Definition 2 (Selection set). A selection set comprises a set

of disjoint whole numbers, none of which can be greater than

the cardinality of a corresponding variable collection.

Definition 3 (Hard constraint). An NchooseK hard constraint,

written as nck(N,K), consists of a variable collection N and a

selection set K. It is satisfied if the cardinality of the variable

collection whose variables are TRUE equals one of the numbers

in the selection set:

nck(N,K)≡

(

∑
n∈N

n

)

∈ K,

where n ∈ {0,1} and we associate FALSE with 0 and TRUE

with 1.

Definition 4 (NchooseK program). An NchooseK program

is a conjunction of NchooseK hard constraints written as

nck(N1,K1) ∧ nck(N2,K2) ∧ ·· · ∧ nck(Nn,Kn). The result of

executing a program is either an assignment of Boolean values

to all variables over the variable collections such that all hard

constraints are honored or an indication that no such assignment

exists.

To create useful NchooseK constraints, a programmer must

focus on the relationships among variables. For example,

consider a collection containing the variables a and b. The

problem formulation in which a and b must both be TRUE

is given by the constraint nck({a,b},{2}). This indicates that

exactly two of a and b must be TRUE, and therefore none can

be FALSE. If they need to have the same value but it does not

matter which, this would be expressed as nck({a,b},{0,2}).
By including two numbers in the selection set, K, this constraint

will be satisfied if two variables are TRUE or if zero variables

are TRUE but not if exactly one is TRUE. If, on the other hand,

the two variables need to have different values, the constraint

would be nck({a,b},{1}), indicating that exactly one must

be TRUE, and, therefore, the other must be FALSE. If at least

one of a and b need to be TRUE, the constraint would be

nck({a,b},{1,2}). Omitting 0 from the selection set ensures

that they cannot both be FALSE.

As a more complicated example, consider satisfiability

problems, discussed more in depth in Section VI. A satisfiability

problem accepts an expression in conjunctive normal form

(conjunctions of unions of possibly negated variables) and re-

ports whether there exists a variable assignment that makes the

expression TRUE. “(v1 ∨ v2 ∨¬v3)∧ (¬v2 ∨¬v3 ∨ v4)
?
= TRUE”

is an example of a 3-SAT problem, which is a satisfiability

problem in which each clause contains at most three variables.

For a single 3-SAT clause (x∨ y∨ z) to be TRUE, at least one

of the three variables must be TRUE. This is expressed in

NchooseK with the constraint

nck({x,y,z},{1,2,3}) .

This constraint is illustrated graphically in Figure 1.

III. RELATED WORK

A number of quantum circuit languages are being developed,

either as standalone languages or as embedded domain-specific

languages. These include Q# [19], Twist [17], Silq [18],

ProjectQ [20], QWIRE [21], Scaffold [22], and Quipper [23].

D-Wave’s Ocean API [24] likewise functions as a language for

their annealing devices and simulators. While not a language

per se, Xanadu’s PennyLane is a quantum machine-learning

Fig. 1: A visual representation of a 3-SAT clause with the

variables x, y, and z. The nodes represent the Boolean variables,

and the box indicates the constraint.

software package designed to work across a number of circuit-

model systems [28]. In contrast to those efforts, which target

a single computational model apiece, NchooseK programs

run unmodified on both annealing-model and circuit-model

machines.

XACC [29] is a software infrastructure that can interface

to multiple hardware platforms, including both circuit-model

and annealing-model systems. It enables classical programs to

embed blocks of quantum code, e.g., written in Quil [30], and

designate a quantum computer on which to run it. The primary

difference with NchooseK is that NchooseK raises the level

of abstraction above that of the underlying form of quantum

computation, enabling true portability across computational

models. XACC, in contrast, enables a program to integrate

circuit-model-specific code that runs only on circuit-model

quantum computers and annealing-model-specific code that

runs only on quantum annealers. Despite defining its own

intermediate representation, XACC is not designed to run any

given piece of code on both circuit-model quantum computers

and quantum annealers. Another difference between the two

systems is that one can program in NchooseK without any

knowledge of quantum computing while XACC programmers

must be familiar with at least one quantum computational

model.

The closest related work to ours is Wilson et al. [26],

which introduces NchooseK for hard constraints. However,

their work lacks soft constraints, which are essential for

generalizing NchooseK’s applicability to maximization and

minimization problems. Our work not only fills this gap

but also presents a problem complexity analysis, considers

symmetrical constraints in doing so, and more thoroughly

evaluates success characteristics through an empirical study

involving both quantum circuit and annealing devices.

IV. SOFT CONSTRAINTS

In this work we propose a generalized NchooseK model

that additionally supports soft constraints: constraints whose

satisfaction is desired but not required. To motivate the need

for soft constraints we consider an example of a problem that

cannot be expressed in the existing NchooseK paradigm. We

attempt to solve this problem first using only hard constraints

and then, after showing how that fails, including soft constraints

to make the problem expressible.

A. Problem requirements and initial formulation

Minimum Vertex Cover is a well-known graph problem:

Given an undirected graph G = (V,E), a vertex cover is a

subset of vertices W ⊆V such that each edge in E is connected

to at least one member of W . The Minimum Vertex Cover is

the smallest W in cardinality that meets this requirement.

The first step in solving any NchooseK problem is deciding

what the variables should represent. Because the solution to

a Minimum Vertex Cover problem is formulated in terms of

vertices, we associate one variable per vertex such that the

variable is TRUE if and only if the corresponding vertex is

in W .

B. Setting up the vertex cover

As a running example, consider the graph in Figure 2, which

has five vertices and five edges.

a

b

c

d

e

Fig. 2: A graph of 5 vertices for reference

Consider first a smallest possible subgraph, e.g., the graph

G′ = ({a,b},{(a,b)}). For G′, we can easily determine a

minimum vertex cover immediately by expressing the problem

with the constraint nck({a,b},{1}). This ensures that exactly

one of the two variables will be TRUE and gives W a cardinality

of 1.

An inductive step is non-trivial. If we add to G′ vertex c and

edges (a,c) and (b,c), the resulting constraints, nck({a,c},{1})
and nck({b,c},{1}), cannot both be satisfied. For instance, if

a ∈ W then a is TRUE. In this case, b and c must both be

FALSE by the constraints nck({a,b},{1}) and nck({a,c},{1}),
which ensure that exactly one of the variables in the collections

is TRUE, and a must have the same value in all NchooseK

constraints within the same program. This leaves the constraint

nck({b,c},{1}) unsatisfiable.

Instead, we need to refine our original constraint to

allow both variables to be TRUE if necessary. Using

nck({a,b},{1,2}), as illustrated in Figure 3, not only expresses

a constraint that finds a vertex cover for our minimal subgraph

but can be extended over the entire graph to ensure that a

solution can be found.

The refined NchooseK program for five vertices is

nck({a,b},{1,2})∧nck({a,c},{1,2})∧

nck({b,c},{1,2})∧nck({c,d},{1,2})∧nck({d,e},{1,2}) ,

and this is illustrated in Figure 4. Unfortunately, this program

is incorrect in that it will be satisfied by any vertex cover of

the graph in Figure 2, not necessarily a minimum vertex cover.

The problem is that NchooseK requires all constraints to be

met, but this is not generally possible in a minimization or

maximization problem.

Fig. 3: A single edge in a vertex cover. Each node corresponds

to a vertex in the original graph and a variable in the NchooseK

program. The box represents an NchooseK constraint.

Fig. 4: A full vertex cover representation in NchooseK. This

will be satisfied by every valid vertex cover.

C. Minimization via soft constraints

To find specifically a minimum vertex cover we propose

generalizing NchooseK to support soft constraints in addition

to its existing hard constraints:

Definition 5 (Soft constraint). An NchooseK soft constraint,

written as nck(N,K,soft), acts as a desired but not required

constraint.

Definition 6 (Generalized NchooseK program). A generalized

NchooseK program is a conjunction of NchooseK hard and soft

constraints written as nck(N1,K1)∧nck(N2,K2)∧nck(Ni,Ki)∧
nck(Ni+1,Ki+1,soft)∧ nck(Ni+2,Ki+2,soft)∧ nck(Nm,Km,soft).
The result of executing a program is either an assignment of

Boolean values to all variables over the variable collections

such that all hard constraint are honored and the number of

satisfied soft constraints is maximized; or an indication that

no such assignment exists.

In short, the semantics is that an NchooseK program

execution will satisfy all hard constraints (or fail if this is

not possible) and as many soft constraints as it can.

For a minimization problem, one wants as few variables

as possible to be TRUE. To this end, one can associate a soft

constraint with each variable: nck({v},{0},soft), to indicate

a preference but not a demand that v be 0. Consequently,

adding the following constraints to our Minimum Vertex Cover

program requests that the solution represent a minimum vertex

cover:

nck({a},{0},soft)∧nck({b},{0},soft)∧

nck({c},{0},soft)∧nck({d},{0},soft)∧

nck({e},{0},soft)

The resulting Minimum Vertex Cover program is illustrated

in Figure 5.

Fig. 5: A visual representation of a minimum vertex cover

represented in NchooseK. The filled boxes with rounded corners

are soft constraints and act to minimize the number of vertices

in the cover.

Conversely, if one wanted to maximize the variables in a

particular problem, one could incorporate a constraint with a

selection set of one, i.e., nck({v},{1},soft). Constraints like

this are among the most common soft constraints used in

solving minimization or maximization problems, but they can

take other forms as well, potentially opening up problems

to more efficient solutions. For example, with the Max Cut

problem, one solution is to add an extra variable per edge

which is set up to be TRUE if and only if the edge has

been cut, then add a soft maximization constraint to each

of these new variables. This works, but adds many unnecessary

variables and greatly increases the number and complexity of

constraints. Another option is to instead have a soft constraint of

nck({u,v},{1},soft) to every edge. This expresses a preference

that every edge be cut, and NchooseK attempts to maximize the

number of soft constraints which have been met. This solves

the Max Cut problem more efficiently.

V. IMPLEMENTATION

One of NchooseK’s design goals is to run problems on both

circuit-model devices and annealing-model devices. The imple-

mentation of NchooseK uses a quadratic unconstrained binary

optimization (QUBO) format as an intermediate representation.

A QUBO seeks to minimize a quadratic equation in which

every term comprises either one or two binary variables and a

real, constant coefficient. These equations are of the form

f (xxx) =
N

∑
i=1

aixi +
N−1

∑
i=1

N

∑
j=i+1

bi, jxix j , (1)

and the objective is to find a set of values for variables xxx =
x1, ...,xn that minimize f (xxx).

The challenge in creating QUBOs is determining ai and

bi, j coefficients such that the values of xxx that minimize f (xxx)
correspond to the constraints of the target problem. One feature

of QUBOs that facilitates the identification of appropriate

coefficients is that QUBOs are compositional with respect

to addition. If a problem can be broken into small parts

before being translated into simple QUBOs, those QUBOs

can be combined via addition to form an overall problem

QUBO. NchooseK exploits this property by translating each

nck constraint individually to a QUBO, using QUBO variables

to represent the NchooseK variables, before summing all of

them into a final QUBO. The NchooseK implementation finds

the coefficients of each per-constraint QUBO by expressing the

coefficients in terms of a satisfiability modulo theories (SMT)

problem, which it then solves using the Z3 SMT solver [31].

Once an NchooseK program has been compiled to a QUBO,

it can be run essentially natively on quantum annealers.

NchooseK targets D-Wave quantum annealers by passing the

QUBO directly to D-Wave’s Ocean API [32]. For circuit-

model devices, NchooseK expresses the QUBO as a problem

Hamiltonian suitable for use with the QAOA [33] algorithm—

a software analogue of the quantum-annealing process. To

run on IBM Q circuit-model quantum computers, NchooseK

currently invokes the QAOA function provided by IBM’s

Qiskit library [34]. In either case, each QUBO variable and

therefore each NchooseK variable is represented by a qubit,

with the state of that qubit corresponding to the value of the

variable in the solution. Both of these types of machines may

also use additional qubits; this is discussed in more detail in

Section VIII.

As an example, consider the (a,b) edge from the minimum

vertex cover, constrained by nck({a,b},{1,2}). We translate

this constraint to

f (a,b) = ab−a−b , a,b ∈ {0,1} (2)

which is minimized when at least one of a or b has a value

of 1. If both edges (a,b) and (b,c) are constrained with

nck({a,b},{1,2})∧nck({b,c},{1,2}), this expression will be

transformed into f (a,b)+ f (b,c) = (ab−a−b)+(bc−b−c),
which in turn is minimized over a, b, and c.

Soft constraints introduce additional complexity to the

implementation. There is no inherent distinction between

hard and soft constraints in QUBOs. To incorporate soft

constraints in NchooseK we consider another property of

QUBOs: a QUBO function can be scaled by any positive

real-valued factor without altering the values that minimize

it. However, when multiple QUBOs are combined, larger-in-

magnitude coefficients bias the solution towards minimizing

those coefficients’ associated variables over the variables

associated with smaller-in-magnitude coefficients.

We exploit this property in order to strengthen hard con-

straints over soft constraints. When creating the QUBO for a

hard constraint, we multiply its coefficients by a factor of one

higher than the total weight of all soft constraints. Doing so

ensures that meeting a single hard constraint reduces the overall

value of f (xxx) more than would meeting all soft constraints.

Nevertheless, the more soft constraints are satisfied, the more

f (xxx) is further reduced beyond its value from satisfying hard

constraints alone.

import nchoosek

env = nchoosek.Environment()

verts = [’a’, ’b’, ’c’, ’d’, ’e’]

edges = [[’a’, ’b’], [’a’, ’c’], [’b’, ’c’],

[’c’, ’d’], [’d’, ’e’]]

for vert in verts:

env.register port(vert)

env.nck([vert], {0}, soft=True)

for edge in edges:

env.nck([edge[0], edge[1]], {1, 2})

print(env.solve())

Fig. 6: An NchooseK program to solve the minimum vertex

cover for the graph shown in Figure 2.

NchooseK is implemented as an embedded domain specific

language written in Python. Figure 6 shows the final vertex

cover from Figure 5 as a runnable program. Other problems

have a similar code structure: the environment is set up, each

variable needs to be registered, then each constraint is added

with the same syntax as described in this paper. When executed,

this program produces the following QUBO:

f (a,b,c,d,e) =−11a−11b−17c−11d −5e+

6ab+6ac+6bc+6cd +6de

This QUBO is isomorphic in the term structure to what one

might create by hand, up to the choice of coefficients, which

could be chosen differently, e.g., by multiplying by a common

positive, real-valued factor.

VI. COMPLEXITY COMPARISON

NchooseK is intended to be more programmer-friendly

than lower-level computational models. We therefore compare

the complexity of constructing a problem using NchooseK

constraints versus directly constructing a QUBO, which is how

one would normally program a quantum annealer or set up a

QAOA problem for a circuit-model quantum computer. The

set of problems considered is summarized in Table I. Besides

distinguishing the complexity class of problems in column 2

(NP-hard and NP-complete), we assess at the number of non-

symmetric constraints (column 3) to demonstrate the simplicity

of setting up a problem using NchooseK as opposed the less

intuitive and error-prone task of formulating a QUBO with

changing coefficients dependent on problem size. We observe

that problems either fall into the group of (a) constant (1 or 2)

or (b) linear non-symmetric constraints relative to their input,

which illustrates the ease of programming with the NchooseK

abstraction.

Definition 7 (Symmetric Constraints). Two NchooseK con-

straints are considered symmetric with one another if they have

the same selection set and their variable collections have the

same cardinality.

Problem Class # non-symm. NchooseK QUBO
constraints constraints terms

1. Exact Cover NP-C n n nN2

2. Min. Cover NP-H n nN nN2

3. Min. Vert. Cover NP-H 2 |V |+ |E| |V |+ |E|
4. Map Color NP-C 2 |V |+ |E|n |V |n2 + |E|n
5. Clique Cover NP-C 2 n|V |2 −|E| n|V |2 −|E|
6. k-SAT NP-H 2 n+m nm2 +n2m

7. Max. Cut NP-H 1 |E| |E|+ |V |

TABLE I: Sample problems, each listed with its complexity

class (NP-complete or NP-hard), number of non-symmetric

(different types of) constraints, total number of constraints, and

number of terms if expressed directly as a QUBO. For Exact

Cover and Minimum Set Cover, n refers to the number of the

original elements and N refers to the number of subsets.

For example, the constraints nck({a,b,c},{0,2}) and

nck({b,c,d},{0,2}) are symmetric, but nck({a,b,c},{0,2})
and nck({b,c,d},{1,2}) are non-symmetric, as are

nck({a,b,c},{0,2}) and nck({b,c},{1,2}).
When simpler to express a problem, we consider two-local

Ising Hamiltonians, in which the variables have values of −1

or 1, as opposed to QUBOs, in which the variables have values

of 0 or 1. A simple linear transformation maps between the

two problem forms.

Columns 4 and 5 indicate the worst-case complexity of

problem formulations as NchooseK constraints vs. as QUBOs,

respectively. In most cases, the number of constraints generated

by NchooseK is lower than the number of equivalent QUBO

terms, often reduced by at least one polynomial order with

few a few exceptions (minimum cover, clique cover), again a

reflection of NchooseK’s conciseness as an abstraction.

A. Number of terms and number of constraints

a) Exact set cover: The exact cover problem, which is NP-

complete, is covered in depth in a related workshop paper [26]

and will be described only briefly here. Given a set E and a set

S of subsets of E, find a subset of S such that every element of

E is included exactly once. This can be solved with NchooseK

by adding a constraint for each element of E with a variable

collection containing a variable corresponding to each subset

which contains that element, and a selection set of {1}.

For an exact cover problem with n elements and N subsets,

NchooseK requires n constraints, all of which may be non-

symmetric and could have a variable collection cardinality of

up to N. To formulate the QUBO directly one can adapt the

Ising Hamiltonian

HA = A
n

∑
α=1

(

1− ∑
i:α∈Vi

xi

)2

along the lines of Lucas [35], where α refers to an element and

Vi refers to subset i. The factor A may be omitted (A = 1) in

this context. With this equation, removing constant terms and

x2
i terms (because xi =−1 or 1, which becomes the constant 1

when squared), we have at least n terms, but realistically would

encounter more constraints as a problem where each element

is only in one subset would be trivial.

If an element is included in m subsets, however, that

element alone would introduce m(m+1)/2 terms. This direct

formulation has a worst-case complexity of nN(N + 1)/2

or O(nN2) compared to only O(n) for NchooseK. Both

formulations have the same best case.

b) Minimum set cover: The minimum set cover is NP-

hard and is the same as the exact cover problem with two key

differences: each element of E can be in the solution multiple

times, and the goal is to find the smallest subset of S which

contains every element of E. This needs the same number of

constraints using the same variable collections as the exact

set cover, with the selection set now containing every positive

integer up to the cardinality of the variable collection. It also

requires one soft constraint per subset in order to minimize

the number of subsets in the cover.

Both NchooseK and the QUBO formulation for this problem

are set up initially as in the exact cover, but require n additional

terms to express the minimization; the worst-case complexity

is therefore unchanged. It should be noted that in this case

these additional terms in the QUBO can be combined, but two

different coefficients for these terms need to be chosen and

balanced against each other.

c) Minimum vertex cover: For the minimum vertex cover,

an NP-hard problem described in Section IV, the NchooseK

solution requires |E| hard constraints and |V | soft constraints.

The corresponding Hamiltonian is formulated as the QUBO

H = A ∑
uv∈E

(1− xu)(1− xv)+B∑
v

xv

where u and v denote vertices. This results in 3|E|+ |V |
terms, the same complexity as NchooseK. The number of

mutually non-symmetric constraints for NchooseK is only two;

every constraint corresponds either to an edge of the form

nck({u,v},{1,2}) or to a vertex of the form nck({v},{0},soft).

d) Map coloring: The map coloring problem with n colors

is another NP-complete problem covered in depth by Wilson

et al. [26]. The solution uses one-hot encoding, meaning it

assigns n variables per vertex, with each variable indicating if

the vertex has the associated color. If vertex v has color options

1, 2, and 3, it has variables v1, v2, and v3. If v1 is TRUE, the

other two will be FALSE, and vertex v will have color 1. We

need one constraint per vertex to ensure that the vertex has

only one color. The variable collection contains n variables,

one for each color, and the selection set is {1}. This problem

also requires n constraints per edge. For these constraints, the

variable collection contains two variables corresponding to the

same color on each of the vertices the edge is connecting. The

selection set is {0,1}, ensuring that two adjacent vertices do

not share a color: nck({ui,vi},{0,1}). Every constraint in the

map coloring problem will be symmetric with one of these

two types.

Our NchooseK solution therefore requires |V |+ n|E| con-

straints. A QUBO using the same one-hot encoding scheme

is

∑
v

(

1−
n

∑
i=1

xv,i

)2

+ ∑
(uv)∈E

n

∑
i=1

xu,ixv, j

This uses |V |n/2(n+ 1) + |E|n terms, leading to O(|V |n2 +
|E|n) compared to NchooseK’s O(|V |+ |E|n). This same trend

is seen any time one-hot encoding is used; if n designations are

used between V vertices, the QUBO results in O(V n2) terms

while NchooseK uses only O(V) constraints.

e) Clique cover: The clique cover problem is NP-

complete. It requires the coloring of a graph with n colors such

that the nodes of each color form a clique within the color.

As in the map coloring problem, the solution to this problem

requires one-hot encoding with one constraint per vertex. It

also needs n constraints per edge absent from the graph to

ensure that two vertices that are not adjacent do not share a

color, similar to the constraints in the map coloring problem.

It also needs only two types of non-symmetric constraints.

The clique cover solutions are nearly identical in terms of

NchooseK constraints and QUBO terms. Both depend on the

number of possible edges not included in E. This is enumerated

as |V |(|V | − 1)/2− |E|. In both cases, the solution requires

O(n|V |2 −|E|) terms or constraints.

f) k-satisfiability: The NP-complete k-satisfiability prob-

lem establishes m constraints over n boolean variables, each

constraint of cardinality k. One or more variables per constraint

must have the value of either TRUE or FALSE specified by the

constraint. This is similar to how NchooseK constraints are

built, with one major exception: NchooseK requires either

twice as many variables or much more complicated constraints.

The satisfiability constraints can force variables to be either

TRUE or FALSE in their constraints without treating them any

differently, but NchooseK does not have that capability.

One solution is to create one ancilla variable per original

variable, where the ancilla has the opposite value, for example

x and ¬x. These need a constraint to ensure that they have

opposite values, with a selection set of {1}. Furthermore, one

constraint is required per satisfiability constraint with the same

variables in the variable collection. The selection set contains

every positive integer up to and including k, as seen in Figure 1

for 3-SAT. Using this solution, two non-symmetric types of

constraints are used.

The other solution is to create more complicated constraints.

Variables can be treated differently from one another by insert-

ing additional copies of them in the variable collection. For the

satisfiability constraint {x,y,¬z}, the NchooseK specification

nck({x,y,z,z,z},{0,1,2,4,5}) establishes the same constraint,

as all instances of z must have the same value. This approach

requires fewer NchooseK variables and fewer constraints, but

the more complicated constraints run the risk of requiring more

ancillary qubits. Copying variables in this manner also changes

the number of non-symmetric constraints, giving us a worst

case of k. Copying variables further impedes simplicity of

expression, which motivated the creation of NchooseK in first

place.

When considering its complexity, the dual variable setup of

NchooseK for a satisfaction problem with n variables and m

constraints requires n+m constraints, while the same problem

with larger variable collections requires only m constraints.

QUBO formulation of this problem is more complicated. One

common solution translates the 3-SAT problem into a Maximum

Independent Set problem [36], [37], [35]. This requires km

variables, one variable for each variable within each constraint

and one term per variable. k(k − 1)m/2 terms are required

between the variables within constraints. Additional terms result

from each instance of TRUE/FALSE versions of the variables—

if there are i constraints with x and j with ¬x, i j terms would

be needed to ensure that a variable never has more than one

value. In the worst case, this amounts to m2k/4, giving the

QUBO a worst-case complexity of O(km2 + k2m), compared

to the NchooseK worst case of O(n+m).

g) Maximum cut: The NP-hard max cut problem is one of

the simplest to express in NchooseK: only one soft constraint is

needed per edge. The variable collection contains the vertices

of the edge, and the selection set is {1}. These soft constraints

ensure that as many vertices as possible have the opposite value

to their adjacent vertices. All constraints are symmetric with

one another. The max cut problem produces an equal number

of NchooseK constraints and Ising terms: O(|E|). However,

conversion from Ising to QUBO increases the complexity to

O(|E|+ |V |) for this particular problem.

B. Generated versus manually produced QUBOs

As NchooseK translates to QUBOs before solving on both

gate-based and annealing devices, an important question then is

how these translated QUBOs compare to handcrafted QUBOs

for the same problem.

QUBO creation is itself computationally difficult. NchooseK

uses the Z3 SMT solver [31] to map an individual constraint to

a QUBO. For every problem discussed in this paper with the

exception of the satisfaction problem and minimum set cover,

the QUBO used in NchooseK is the same as the handcrafted

QUBO for that problem. This holds regardless of problem size

for three reasons:

• NchooseK converts each constraint individually. In most

of the problems discussed here, extending the prob-

lem means adding additional symmetric constraints

(e.g., nck({a,b},{0,1}) and nck({c,d},{0,1})). These

additional constraints will be converted to QUBOs with

the same performance as the previous ones.

• QUBOs are compositional. Two constraints which have

been converted into QUBOs are combined with simple

addition, meaning that the number of constraints used has

no effect on the efficacy of the conversion.

• Constraints with a selection set of {1} are trivial to convert

to a QUBO, even for large variable collections. No efficacy

of conversion is lost for those problems in which extending

the problem likewise extends the size of the variable

collection, such as adding additional colors in the map

coloring problem or subsets in the exact cover problem.

Discussion: Many problems require the introduction of

ancillary variables to enable their expression as a QUBO.

For example, the NchooseK constraint nck({a,b,c},{1,3})
cannot be expressed as a three-variable QUBO; it requires a

fourth, ancillary variable for an additional degree of freedom in

computing the QUBO coefficients. In the minimum set cover

problem, constraints with a large variable collection and a large

selection set will occasionally have ancillary variables added,

whereas there are none in the handmade QUBO for the same

problem. Even in this case, the number of additional terms is

upper-bounded by O(nN2). Satisfiability problems exhibit a

similar difference in the number of ancillary variables between

NchooseK and handmade QUBOs.

C. Ease of construction

Setting up a problem in NchooseK is simpler and more

intuitive than setting up the same problem directly as a QUBO

even though the number of NchooseK constraints is often

similar to the number of QUBO terms. This is due to the fact

that constraints are often symmetric across variable sets, and

their corresponding selection sets correspond to the problem

specification. That is, a constant number of constraint forms

tend to be replicated over variable permutations. In contrast,

QUBO coefficients change as problem sizes change, and for

some constraints ancillary variables may be required. It is

not apparent from a problem formulation how many ancillary

variables, if any, will be required.

Wilson et al. [26] examine the difference in creating an

NchooseK and a QUBO for the equation A ⊕ B = C. We

reiterate their conclusions here: To write an XOR equation

c = a⊕b in NchooseK, the constraint nck({a,b,c},{0,2}) can

easily be obtained by inspection of the XOR truth table. To

write the same equation as a QUBO, a number of algebraic

transformations are needed. In addition, this equation requires

an ancillary variable. The final QUBO is given by

f (a,b,c,κ) = a+b+ c+4κ

−2ab−2ac−4aκ −2bc−4bκ +4cκ , (3)

where κ is an ancillary variable without which f (a,b,c) cannot

be expressed as a QUBO.

Not only are QUBOs difficult to create by hand, but, as is

apparent from Eq. 3, QUBOs are also not particularly human-

readable. This is especially true when ancillary variables are

used. Compared to nck({a,b,c},{0,2}), Eq. 3 is complex and

obtuse.

VII. EXPERIMENTAL SETUP

We ran a variety of experiments on IBM’s 65-qubit circuit-

based machine, ibmq brooklyn [27], and one of D-Wave’s

annealing machines, Advantage 4.1 [38]. In the case of

the circuit-based machines, running the program relies on

preparing a subroutine (a Hamiltonian function known as a

“phase separator”) for the Quantum Approximate Optimization

Algorithm (QAOA) [33]. QAOA sequentially runs multiple

circuits—in our case, 4000 times each—which produce a single

result. In contrast, the annealing machines run a single circuit

multiple times—in our case, 100. Each run produces a result.

For the experiments described in this section we consider only

the best (lowest-energy) result.

All problems in Section VI are either NP-hard or NP-

complete. They fall under three categories. (1) Problems

exclusively with soft constraints (NP-hard): max cut; (2)

Problems with a mix of hard and soft constraints (NP-

hard): minimum vertex cover and minimum set cover; (3)

Problems exclusively with hard constraints (NP-complete):

clique cover, map coloring, satisfaction, and exact cover. Of

these problems, only those without soft constraints could be

solved by the original NchooseK abstraction prior to us adding

soft constraints in this paper, and only map coloring and exact

cover had been discussed in prior NchooseK work [26] and

only for small problems.

In the world of classical computing, metrics tend to focus

on execution time. In contrast, the noise of contemporary

quantum devices forces researchers to assess which, if any, of

the provided answers are correct in the first place. To this end,

we establish the following terminology for NchooseK:

Definition 8 (Optimal, suboptimal and incorrect). An

NchooseK solution over h hard and s soft constraints is optimal

if all hard and as many soft constraints as possible are satisfied;

it is suboptimal if all hard (but less than maximum soft)

constraints are satisfied; and it is incorrect if fewer than h

hard constrains are satisfied.

The rationale here is that for problems only using hard con-

straints, an optimal solution requires full constraint satisfaction,

but more than one optimal result may exist. For mixed hard/soft

problems, suboptimal solutions still meet all hard constraints

but not the maximum number of soft ones, which provides a

solution that can be considered non-minimal.

We determined if the results with soft constraints were opti-

mal by checking against the Z3 solver, which solves the prob-

lems classically. For mixed problems run on ibmq brooklyn,

results were optimal at smaller scale before becoming subop-

timal and then incorrect at larger scale. That is, there seems

to be a discrete barrier to optimal solutions. Exposing the

same problems to Advantage 4.1 resulted in more suboptimal

solutions than optimal ones. Because we are more interested

in optimal solutions, we report how many optimal solutions

were found.

Subsequent experiments focus on how complex NchooseK

problems can become before only incorrect answers are

returned. Scaling up the problems from Section VI, we study

how the addition of variables and constraints affects the answers

obtained. The clique cover problem and map coloring problems

require many more qubits than the others. Up to the limit of

these two problems, which varies depending on the physical

machine, all of the graph problems (Minimum Vertex Cover,

Max Cut, Clique Cover, and Map Coloring) are performed on

the same graphs.

We ran two different scaling studies: vertex scaling and

edge scaling. For vertex scaling, each iteration adds a clique

of three vertices connected to the previous iteration by two

edges up to 33 vertices. After 33 vertices the scaling continues

in larger increments until the max cut and minimum vertex

cover problems use all of the qubits on the IBM machine, and

correct (optimal/suboptimal) results are no longer found on the

D-Wave system.

For edge scaling, 12 vertices are used—this is where the

clique cover problem fails on the D-Wave system. The first

one to fail under vertex scaling is the clique cover problem

on Advantage 4.1. This problem initially has four cliques

and 18 edges. Six or seven edges are added each time up

until 48 edges, where adding a single edge between any two

disconnected vertices would allow it to be covered by only

three cliques. More edges are then added up until 63 edges, at

which point adding another edge would allow it to be covered

by only two cliques. In this region, the clique cover problem is

run with a target of both three and four cliques for comparison.

For the exact cover, minimum set cover, and satisfaction

problems, each problem is generated randomly in increasing

size with the exact cover and minimum set cover using the same

sets and subsets. The k-satisfiability problems are all 3-SAT

problems, i.e., every satisfiability constraint contains three

terms. The same problems are run on each type of machine.

VIII. RESULTS

A. D-Wave Advantage 4.1

Figure 7 presents measurements the percentage of results

(y axis) that are optimal (as opposed to suboptimal or incorrect)

over the number of qubits (x axis) on the D-Wave system. With

the exception of the exact set problem, the problems with soft

constraints generally perform worse than problems exclusively

using hard constraints. This is due to the fact that in mixed

problems hard constraints receive a higher bias (in terms of

constraint factors) than soft constraints. This makes the energy

gap relatively small between one solution and another with

an additional soft constraint satisfied. If we, instead, reported

the percentage of optimal and suboptimal results in the y axis,

mixed problems would have a higher success rate (omitted

due to space). We also observed that the total number of

optimal+suboptimal solutions for mixed problems is larger

than the number of optimal solutions for hard ones using

similar numbers of qubits.

The number of qubits and the connectivity between them for

D-Wave’s annealing devices are important considerations. First,

the Advantage 4.1 system has 5,640 qubits so any problem

that requires more will not be able to be run on that machine.

Second, problem variables (e.g., nodes of a graph) are often

coupled to many other variables. Given the physical qubit

graph topology of a D-Wave device, a variable may need to

be mapped to a chain of qubits to establish these couplings.

Hence, the more densely connected the problem, the more

qubits are required to represent each variable. This ratio tends

to become significant for larger problems.

This explains why the number of qubits used on D-Wave

systems relates not only to the number of NchooseK variables

used, but also to the number of constraints, which affect the

Fig. 7: Fraction of optimal results on D-Wave systems versus

number of qubits.

number of connections needed on the physical annealing device.

For the clique cover, 48 variables and 18 edges requires 188

qubits, but increasing the number of edges reduces the number

of constraints for this particular problem formulation. For 37

edges, optimal results are found again as only 132 qubits are

needed. At the extreme of 63 edges, still using 48 variables,

only 52 qubits are used, increasing the success rate to 65%.

In fact, reducing the number of constraints can have as great

an effect on the accuracy as reducing the number of variables

does. For the clique cover again with 48 variables, increasing

the number of constraints from 24 to 36 results in a drop in

success rate from 65% to 20%. These solutions use 52 and 55

qubits, respectively, i.e., only a small increase in the number

of qubits is imposed. Instead, if we use 27 variables and 78

constraints, 57 qubits are required with a success rate of just

39%. Decreasing the number of variables used from 48 to 27

still results in a significant drop in success rate because the

number of constraints increases dramatically, even though the

number of qubits used is similar.

B. IBM Q Brooklyn

The problems performed worse on ibmq brooklyn than on

Advantage 4.1; different problems failed to find an optimal

result at a lower number of variables and constraints than used

for annealing. Despite this, it should be stressed that using

QAOA a single result is returned and found to be optimal or

not, while using an annealer the problem is considered to be

solved correctly if any of the hundred solutions returned is

optimal.

As with annealing devices, the number of qubits is an

important consideration when utilizing circuit-model devices.

The most obvious reason is that the machine has far fewer

qubits; no NchooseK problem with more than 65 variables can

be mapped onto ibmq brooklyn. Another factor is that some

qubits and some connections between qubits are worse than

others in terms of noise. Small problems may select the best

performing qubits on a given device, while larger ones must

Fig. 8: Optimal (colored tics) and suboptimal or incorrect

(block × tics) results of the QAOA problems for ibmq brooklyn

vs. number of qubits used.

Fig. 9: Optimal (colored tics) and suboptimal or incorrect

(block × tics) results of the QAOA problems for ibmq brooklyn

vs. circuit depth. Six failed clique cover problems were omitted

for clarity; they used circuits of depth 432, 516, 537, 676, 697,

and 717.

use more error-prone ones as the fraction of utilized qubits

increases. Due to limited qubit connectivity in the physical

topology, circuit-model machines cannot directly perform two-

qubit operations on arbitrary pairs of qubits. Hence, they must

frequently swap the state of adjacent qubits in sequence to

move pairwise interactions to physical neighbors. The compiler

sometimes prioritizes a shorter but lower-quality (higher-noise)

path of swaps. This affects solution quality as the number of

qubits and circuit depth increase.

Recall from the discussion in Section VI-B that the QUBO

formulation of a problem often requires the introduction of

ancillary variables. This explains why the number of qubits

sometimes exceeds the number of variables in an NchooseK

problem.

Fig. 10: The depth of QAOA circuits with respect to the number

of constraints in the NchooseK problem.

Figure 8 depicts the number of qubits used (y axis) for

problems (x axis) from Table I indicating both optimal (colored

tics) and suboptimal (block × tics) results. We observe that

there is a correlation between the number of qubits and

obtaining optimal results. Figure 9 depicts results for the same

programs (x axis) over the circuit depth (y axis) measured as the

number of gates in the longest path of a single QAOA circuit

with the same tic mark colors as before. While each QAOA

runs around 30 different circuits (slight variations are due to

convergence properties), these circuits differ by the parameters

of the gates (qubit rotation angles), not the type or number

of gates. Circuit depth is an important considerations when

experimenting with circuit model devices. This is true not only

because each gate adds a small amount of probabilistic error

(noise) to a circuit, but also because a deeper circuit needs to

stay active on the machine longer, leading to an increase in

chance of qubits decohering before results can be measured.

These two figures show the trends in correctness for the

different problems. Note that the edge study and the vertex

study are both included for the map problems. This explains

the low qubit failures for the vertex cover seen in Figure 8:

Even using few qubits, a sufficient number of constraints will

add enough complexity to the problem to cause a failure. This

relationship between circuit depth, which can be thought of as

a simplistic measure of circuit complexity, and the number of

constraints is exposed in Figure 10, which depicts the number

of constraints (x axis) over circuit depth (y axis) for each

problem type. The general trend shows increasing depth as more

variables and constraints are added during problem scaling,

albeit at different rates per problem, i.e., in a problem-specific

manner. Exceptions include the minimum vertex cover: At 30

variables and 82 constraints, it uses 32 qubits with a depth of

245. At 33 variables and 90 constraints, only 33 qubits are

used with a depth of 199. Hence, depth is not always related

to the success rate (optimality) of results. This was also visible

in Figure 9, where a suboptimal solution for Max Cut at depth

able to solve each of the problems contained here in less than

three seconds. It can also solve problems much larger than

can fit on current quantum hardware, scaling quite well. The

minimum vertex cover problems we ran fit very close to a

polynomial equation as shown in Figure 12. However, when

presenting Z3 with problems after they have been translated

into a QUBO, many of them perform quite poorly: solving a

minimum vertex cover problem with 10 vertices of degree 3

takes less than a second while 20 vertices takes a minute and a

half, and 30 vertices takes multiple hours. NchooseK’s classical

Z3 back end runs faster than either of the two quantum back

ends on current quantum hardware. However, we note that the

D-Wave Advantage machine completes the optimization step

proper in a fraction of a second. This suggests that there exists

opportunities to close the performance gap between D-Wave

and Z3 through additional software optimizations.

IX. FUTURE WORK

One of the current limitations of NchooseK is its reliance

on QAOA for operation on circuit-based machines. We are

investigating different methods of converting NchooseK pro-

grams into quantum circuits. This may involve abandoning

QAOA entirely for an alternative variational quantum algorithm,

or it may involve devising NchooseK-specific or problem-

specific customizations to QAOA’s problem and mixer Hamil-

tonians. This is the basic concept underlying the Quantum

Alternating Operator Ansatz [41] (a refinement of the Quantum

Approximate Optimization Algorithm that is also abbreviated

QAOA). The custom mixers used in this version of QAOA

seem especially appropriate to NchooseK problems with both

hard and soft constraints.

X. CONCLUSIONS

NchooseK is an effective and relatively simple method

of expressing and solving NP-complete problems on both

quantum annealers and circuit-based quantum computers. Our

contribution is a generalization of NchooseK to include soft

constraints, which widens the scope of problems that can be

expressed to include NP-hard problems. We show that NP-

complete and NP-hard problems can be solved using NchooseK

on current, noisy, intermediate-scale quantum (NISQ) devices

utilizing up to 65 qubits on IBM’s devices and hundreds of

qubits on D-Wave’s annealing devices. One contribution of

NchooseK is given by its intuitive problem formulation with

(typically) only a constant or a linear number of non-symmetric

constraints, whereas manual QUBO formulations are more

complex and require computing different coefficients depending

on problem size. Another contribution is that NchooseK

enables a transformation even of soft constraints into QUBOs,

which make a suitable intermediate representation for enabling

portability across the circuit model and the annealing model.

QUBO generation is fully automated, and NchooseK produces

QUBOs that are comparable to those painstakingly developed

by hand.

ACKNOWLEDGMENTS

Research presented in this paper was supported by the

Laboratory Directed Research and Development program

of Los Alamos National Laboratory under project number

20210397ER. Los Alamos National Laboratory is operated

by Triad National Security, LLC for the National Nuclear

Security Administration of U.S. Department of Energy (contract

no. 89233218CNA000001). This work was also supported in

part by LANL subcontract 725530 and by NSF awards DMR-

1747426, PHY-1818914, OAC-1917383, MPS-2120757, and

CISE-2217020.

REFERENCES

[1] J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum,
vol. 2, p. 79, Aug. 2018.

[2] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen,
Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi,
B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin,
S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann,
T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri,
K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa,
D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà, J. R.
McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni,
J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby,
A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C.
Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.
Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,
A. Zalcman, and H. N. J. M. Martinis, “Quantum supremacy using a
programmable superconducting processor,” Nature, vol. 574, no. 7779,
pp. 505–510, Oct. 23, 2019.

[3] E. Pednault, J. Gunnels, D. Maslov, and J. Gambetta, “On ‘quantum
supremacy’,” Oct. 2019. [Online]. Available: https://www.ibm.com/blogs/
research/2019/10/on-quantum-supremacy/

[4] S. Aaronson, “Shtetl-optimized,” Sep. 2019. [Online]. Available:
https://www.scottaaronson.com/blog/

[5] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[6] T. R. Louw and S. N. McIntosh-Smith, “Using the Graphcore IPU
for traditional HPC applications,” in 3rd Workshop on Accelerated

Machine Learning (AccML), HiPEAC 2021 Conference, ser. EasyChair
preprint, no. 4986. European Network on High-performance Embedded
Architecture and Compilation, Jan. 18, 2021. [Online]. Available:
https://easychair.org/publications/preprint/ztfj

[7] R. Prabhakar, S. Jairath, and J. L. Shin, “SambaNova SN10 RDU: A
7nm dataflow architecture to accelerate software 2.0,” in 2022 IEEE

International Solid-State Circuits Conference (ISSCC), vol. 65, 2022, pp.
350–352.

[8] J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature,
vol. 453, no. 7198, p. 1031, 2008.

[9] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,”
Physical review letters, vol. 74, no. 20, p. 4091, 1995.

[10] IBM, “IBM Q Experience,” https://quantumexperience.ng.bluemix.net/qx.
[11] “Welcome to quantum cloud services—QCS documentation,” 2022.

[Online]. Available: https://docs.rigetti.com/qcs/
[12] K. Wright, K. M. Beck, S. Debnath, J. M. Amini, Y. Nam, N. Grzesiak,

J.-S. Chen, N. C. Pisenti, M. Chmielewski, C. Collins, K. M. Hudek,
J. Mizrahi, J. D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon,
M. Williams, A. M. Ducore, A. Blinov, S. M. Kreikemeier, V. Chaplin,
M. Keesan, C. Monroe, and J. Kim, “Benchmarking an 11-qubit
quantum computer,” arXiv:1903.08181, 2019. [Online]. Available:
https://arxiv.org/abs/1903.08181

[13] K. Boothby, C. Enderud, T. Lanting, R. Molavi, N. Tsai, M. H. Volkmann,
F. Altomare, M. H. Amin, M. Babcock, A. J. Berkley, C. B. Aznar,
M. Boschnak, H. Christiani, S. Ejtemaee, B. Evert, M. Gullen, M. Hager,
R. Harris, E. Hoskinson, J. P. Hilton, K. Jooya, A. Huang, M. W.
Johnson, A. D. King, E. Ladizinsky, R. Li, A. MacDonald, T. M.
Fernandez, R. Neufeld, M. Norouzpour, T. Oh, I. Ozfidan, P. Paddon,
I. Perminov, G. Poulin-Lamarre, T. Prescott, J. Raymond, M. Reis,

C. Rich, A. Roy, H. S. Esfahani, Y. Sato, B. Sheldan, A. Smirnov, L. J.
Swenson, J. Whittaker, J. Yao, A. Yarovoy, and P. I. Bunyk, “Architectural
considerations in the design of a third-generation superconducting
quantum annealing processor,” Aug. 5, 2021, arXiv:2108.02322v1 [quant-
ph].

[14] M. Aramon, G. Rosenberg, E. Valiante, T. Miyazawa, H. Tamura,
and H. G. Katzgraber, “Physics-inspired optimization for quadratic
unconstrained problems using a digital annealer,” Frontiers in Physics,
vol. 7, 2019.

[15] S. Boixo, T. Albash, F. M. Spedalieri, N. Chancellor, and D. A.
Lidar, “Experimental signature of programmable quantum annealing,”
arXiv:1212.1739, 2012. [Online]. Available: http://arxiv.org/abs/1212.
1739

[16] D. Bacon, S. T. Flammia, and G. M. Crosswhite, “Adiabatic quantum
transistors,” Physical Review X, vol. 3, pp. 021 015:1–17, Jun. 14, 2013.

[17] C. Yuan, C. McNally, and M. Carbin, “Twist: Sound reasoning for purity
and entanglement in quantum programs,” Proceedings of the ACM on

Programming Languages, vol. 6, no. POPL, pp. 30:1–32, Jan. 2022.
[18] B. Bichsel, M. Baader, T. Gehr, and M. Vechev, “Silq: A high-level

quantum language with safe uncomputation and intuitive semantics,” in
Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation. New York, New York, USA:
Association for Computing Machinery, 2020, pp. 286–300.

[19] K. Svore, A. Geller, M. Troyer, J. Azariah, C. Granade, B. Heim,
V. Kliuchnikov, M. Mykhailova, A. Paz, and M. Roetteler, “Q#: Enabling
scalable quantum computing and development with a high-level DSL,”
in Proceedings of the Real World Domain Specific Languages Workshop

2018. New York, New York, USA: Association for Computing
Machinery, 2018, pp. 7:1–10.

[20] D. S. Steiger, T. Häner, and M. Troyer. (2018, Jan. 29,) ProjectQ: An open
source software framework for quantum computing. arXiv:1612.08091v2
[quant-ph].

[21] J. Paykin, R. Rand, and S. Zdancewic, “QWIRE: A core language for
quantum circuits,” in Proceedings of the 44th ACM SIGPLAN Symposium

on Principles of Programming Languages. New York, New York, USA:
Association for Computing Machinery, 2017, pp. 846–858.

[22] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “ScaffCC: Scalable compilation and analysis of
quantum programs,” Parallel Computing, vol. 45, pp. 2–17, 2015.

[23] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: A scalable quantum programming language,” in Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design

and Implementation. New York, New York, USA: Association for
Computing Machinery, 2013, pp. 333–342.

[24] D-Wave Systems Inc. D-Wave Ocean software documentation. [Online].
Available: https://docs.ocean.dwavesys.com/

[25] H. Khetawat, A. Atrey, G. Li, F. Mueller, and S. Pakin, “Implementing
NChooseK on IBM Q quantum computers,” in Reversible Computing,
ser. Lecture Notes in Computer Science, M. K. Thomsen and M. Soeken,
Eds., vol. 11497. Springer, Nov. 2019, pp. 209–223.

[26] E. Wilson, F. Mueller, and S. Pakin, “Mapping constraint problems
onto quantum gate and annealing devices,” in 2021 IEEE/ACM Second

International Workshop on Quantum Computing Software (QCS). IEEE,
Nov. 15, 2021, pp. 110–117.

[27] IBM Quantum Services. ibmq brooklyn. Accessed 20-May-2022.
[Online]. Available: https://quantum-computing.ibm.com/services?
services=systems&system=ibmq brooklyn

[28] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M. S. Alam, S. Ahmed,
J. M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, K. McKiernan, J. J.
Meyer, Z. Niu, A. Száva, and N. Killoran, “PennyLane: Automatic
differentiation of hybrid quantum-classical computations,” 2018. [Online].
Available: https://arxiv.org/abs/1811.04968

[29] A. J. McCaskey, D. I. Lyakh, E. F. Dumitrescu, S. S. Powers, and
T. S. Humble, “XACC: A system-level software infrastructure for
heterogeneous quantum–classical computing,” Quantum Science and

Technology, vol. 5, no. 2, pp. 024 002:1–23, Feb. 2020.
[30] R. S. Smith, M. J. Curtis, and W. J. Zeng. (2017, Feb. 17,) A

practical quantum instruction set architecture. Rigetti Computing, Inc.
ArXiv:1608.03355 [quant-ph].

[31] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and

Algorithms for the Construction and Analysis of Systems, ser. Lecture
Notes in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds.,
vol. 4963. Budapest, Hungary: Springer, Mar. 29–Apr. 6, 2008, pp.
337–340.

[32] D-Wave Systems, Inc., “D-Wave Ocean software documentation, revision
6f16a2d3,” https://ocean.dwavesys.com/, accessed 2-Oct-2021.

[33] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” Center for Theoretical Physics, Massachusetts
Institute of Technology, Tech. Rep. MIT-CTP/4610, 2014.

[34] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen, C.-F.
Chen, J. M. Chow, A. D. Córcoles-Gonzales, A. J. Cross, A. Cross,
J. Cruz-Benito, C. Culver, S. D. L. P. González, E. D. L. Torre,
D. Ding, E. Dumitrescu, I. Duran, P. Eendebak, M. Everitt, I. F. Sertage,
A. Frisch, A. Fuhrer, J. Gambetta, B. G. Gago, J. Gomez-Mosquera,
D. Greenberg, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok,
H. Horii, S. Hu, T. Imamichi, T. Itoko, A. Javadi-Abhari, N. Kanazawa,
A. Karazeev, K. Krsulich, P. Liu, Y. Luh, Y. Maeng, M. Marques,
F. J. Martı́n-Fernández, D. T. McClure, D. McKay, S. Meesala,
A. Mezzacapo, N. Moll, D. M. Rodrı́guez, G. Nannicini, P. Nation,
P. Ollitrault, L. J. O’Riordan, H. Paik, J. Pérez, A. Phan, M. Pistoia,
V. Prutyanov, M. Reuter, J. Rice, A. R. Davila, R. H. P. Rudy, M. Ryu,
N. Sathaye, C. Schnabel, E. Schoute, K. Setia, Y. Shi, A. Silva,
Y. Siraichi, S. Sivarajah, J. A. Smolin, M. Soeken, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, K. Trabing, M. Treinish, W. Turner,
D. Vogt-Lee, C. Vuillot, J. A. Wildstrom, J. Wilson, E. Winston,
C. Wood, S. Wood, S. Wörner, I. Y. Akhalwaya, and C. Zoufal, “Qiskit:
An open-source framework for quantum computing,” Jan. 2019. [Online].
Available: https://doi.org/10.5281/zenodo.2562111

[35] A. Lucas, “Ising formulations of many NP problems,” Frontiers in

Physics, vol. 2, pp. 5:1–5:15, 2014.
[36] V. Choi, “Different adiabatic quantum optimization algorithms for

the NP-complete exact cover problem,” Proceedings of the National

Academy of Sciences, vol. 108, no. 7, Jan. 2011. [Online]. Available:
https://doi.org/10.1073%2Fpnas.1018310108

[37] T. Gabor, S. Zielinski, S. Feld, C. Roch, C. Seidel, F. Neukart, I. Galter,
W. Mauerer, and C. Linnhoff-Popien, “Assessing solution quality of
3SAT on a quantum annealing platform,” 2019. [Online]. Available:
https://arxiv.org/abs/1902.04703

[38] D-Wave Systems, Inc., “D-Wave Advantage system
overview,” https://www.dwavesys.com/resources/white-paper/
the-d-wave-advantage-system-an-overview/, accessed 20-May-2022.

[39] B. Johnson and G. Ben-Shach. (2022, Apr. 12,) Qiskit Runtime
primitives make algorithm development easier than ever. Accessed
23-Aug-2022. [Online]. Available: https://research.ibm.com/blog/
qiskit-runtime-for-useful-quantum-computing

[40] D-Wave Systems, Inc. Operation and timing. Accessed 20-Jul-2022.
[Online]. Available: https://docs.dwavesys.com/docs/latest/c qpu timing.
html

[41] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and
R. Biswas, “From the quantum approximate optimization algorithm to a
quantum alternating operator ansatz,” Algorithms, vol. 12, no. 2, 2019.

