
Investigating WebRTC BBR as an alternative to

GCC for live video streaming

Rebecca Drucker

Stony Brook University, Furman University

rdrucker@cs.stonybrook.edu, rebecca.drucker@furman.edu

Aruna Balasubramanian, Anshul Gandhi

Stony Brook University

{arunab,anshul}@cs.stonybrook.edu

Abstract—Google Congestion Control (GCC) is the default
congestion control algorithm for WebRTC, a popular web ap-
plication used for live video streaming. BBR, also developed
at Google, is commonly used for streaming pre-recorded video
on services like YouTube. However, BBR has not been widely
deployed for real-time applications like live video streaming.
It was implemented for WebRTC in 2018, but it was later
deprecated due to poor performance. While GCC performs well
under most network conditions, it can be starved by a loss-
based TCP flow using the same bottleneck link. In this work,
we investigate the possibility of using BBR as an alternative to
GCC for WebRTC congestion control. We test it under a variety
of network conditions and find that it performs better than GCC
when competing with TCP, and it achieves bitrates comparable
to GCC’s in isolation, except when bandwidth is restricted and
the bottleneck buffer is deep. We find that this is because of
bandwidth overestimation, a problem which also exists in TCP
BBR. While modifying WebRTC BBR’s bandwidth estimation
fails to improve performance in our experiments, we do find
that disabling its recovery state, a unique loss response, improves
WebRTC BBR’s performance in underprovisioned networks.

I. INTRODUCTION

Live video streaming is a web application that is growing in

popularity. Twitch, a gaming-focused live streaming platform,

has seen its average number of concurrent viewers increase

from 102,000 to 2.42 million between 2012 and 2023 [1]. Es-

tablished social media platforms such as Facebook, Instagram,

and YouTube have added live streaming capabilities as well.

WebRTC is a popular choice for live video streaming

applications. Its default congestion control algorithm is Google

Congestion Control (GCC). Despite being designed specifi-

cally for this application, it can provide degraded video quality

when competing with loss-based TCP traffic because the TCP

flow starves the GCC flow [2], [3]. Therefore, an alternative

congestion control which can effectively share bandwidth with

TCP is needed.

TCP BBR has been used for video streaming by services

such as YouTube and Netflix. However, it has never been

deployed at a large scale for live video, so its effectiveness

for live video streaming is unknown.

WebRTC developers implemented BBR as an alternate

congestion control option to the default GCC, but they later

deprecated it due to poor performance [4]. Outside of We-

bRTC, BBR has been observed to overestimate the min RTT in

some cases [5], [6], which could impact latency-sensitive ap-

plications like live streaming. Developers observed an inflated

min RTT estimate when using BBR as the congestion control

for WebRTC [4], which resulted in poor video streaming

performance. However, our experiments suggest that WebRTC

BBR is able to achieve higher video quality than GCC when

sharing a bottleneck link with a TCP flow. Thus, if its

performance issues when run in isolation (without competing

flows) can be resolved, it may serve as a viable alternative to

GCC.

In this work, we compare the performance of BBR and

the default GCC for a live video streaming application under

a variety of network conditions. We find that, like TCP

BBR, WebRTC BBR underperforms in deep buffers due to

bandwidth overestimation. It performs especially poorly in

underprovisioned networks.

To address WebRTC BBR’s performance issues, we first

alter its RTT estimation behavior to mimic that of BBRv2,

which includes increased frequency of RTT probes and in-

creased cwnd during the probes to alleviate problems with low

throughput. Developers observed issues with RTT estimation

for WebRTC BBR as well [7]. However, this change fails

to improve BBR’s live video quality, suggesting that another

factor is responsible for the poor performance.

Next, we investigate WebRTC BBR’s bandwidth estimation,

since TCP BBR is known to underperform in deep buffers

due to inflated bandwidth estimates. We find a negative corre-

lation between BBR’s bandwidth estimate and video quality.

While both TCP BBR and WebRTC BBR expire bandwidth

estimates after a 10-RTT window, WebRTC BBR only keeps

three estimates at a time and replaces all three when a new

best (maximum) is achieved. This practice only amplifies

bandwidth overestimation when compared to TCP BBR.

We first replace all requests for the best bandwidth estimate

with requests for the third best, but this degrades performance.

We then alter the bandwidth estimation technique so that a new

best only replaces the current best, not all three estimates;

however, this also results in reduced video quality.

In an attempt to improve WebRTC BBR’s video quality

in bandwidth-restricted conditions, we observe that WebRTC

BBR has a loss response called a recovery state that is distinct

from the threshold-based loss response found in BBRv2.

Disabling this recovery state indeed improves BBR’s video

quality by 63%.

Finally, we confirm that, when modified to disable the re-

covery state, WebRTC BBR’s performance not only improves

when in isolation, but also outperforms GCC when competing

with a TCP flow on the same bottleneck link. These results

suggest that, with appropriate modifications, WebRTC BBR

may serve as a potential alternative to GCC, particularly for



users sharing bandwidth with TCP traffic.

The rest of this paper is organized as follows. In Section II,

we provide the necessary background on live video streaming

and the protocols and algorithms employed for live video

streaming. Section III discusses the related work on live

video streaming. We then describe our experimental setup

in Section IV, which we use to analyze the performance of

BBR and GCC for live video streaming in Sections V and

VI. Section VII details our attempts at improving the video

streaming performance of WebRTC BBR. Finally, we conclude

in Section VIII.

II. BACKGROUND

A. Live video streaming

In large-scale deployments, the broadcaster is unlikely to

stream video directly to each viewer. Instead, the broadcaster

will stream to a CDN server to which viewers will connect

and stream the video. The raw video is first uploaded to an

ingest server which transcodes it into multiple bitrates, which

are then transferred to CDN servers where clients can fetch

them.

In contrast to DASH video, live streamed video is sent to

the viewer as it is created. This means that low latency is the

main goal, and there is little time to run algorithms that choose

an appropriate bitrate for each video chunk.

B. WebRTC and RTP

While WebRTC is most commonly used for video confer-

encing, it is also used for low-latency live video streaming

because it:

1) often uses UDP, which has less overhead than TCP;

2) uses RTP, a protocol optimized for real-time data trans-

mission;

3) pushes video chunks to the client as they become avail-

able rather than having the client request each chunk [8];

and

4) supports adaptive bitrate streaming and is compatible

with many browsers and video players [9].

WebRTC is primarily able to achieve low latency by using

Real-Time Transmission Protocol (RTP) at the transport layer.

TCP is not well suited to real-time applications because it

guarantees complete and in-order delivery of all packets, but it

does not make any guarantees about latency. In contrast, UDP

makes no guarantees, but packets are never retransmitted, so

the client never waits for a packet. RTP offers a compromise

by providing sequence numbers and timestamps so that the

application can detect if a packet is missing and use data

contained in packets at the right time. RTP is used for data, and

its companion protocol RTCP is used to send QoS information

to all receivers and to keep track of participants in the session.

There are separate RTP sessions for video and audio, and

RTCP synchronizes them [10].

C. GCC

Google Congestion Control (GCC) [11] is the default con-

gestion control option for WebRTC. This algorithm, introduced

in a 2011 IETF draft [12], was designed specifically for

real-time applications. Unlike popular TCP congestion control

algorithms like Cubic, GCC uses a combination of loss and

delay signals to determine its sending rate, rather than relying

on loss alone.

GCC has been well-documented to underperform when

sharing a bottleneck link with TCP traffic [2], [3]. Because

GCC uses a combination of loss and delay signals to determine

an appropriate sending rate, in the presence of congestion, it

decreases its sending rate before loss-based TCP congestion

control algorithms. This results in bandwidth starvation for the

GCC flow in the presence of competing loss-based TCP flows.

D. BBR

BBR (Bottleneck Bandwidth and Round-trip propagation

time) is a congestion control algorithm introduced by Google

in 2016 to alleviate bufferbloat, a condition of inflated RTTs

caused by loss-based congestion control approaches such as

Reno and Cubic filling large buffers in the network. Since its

introduction, two updates to BBR, called BBRv2 and BBRv3,

have been released by Google. BBR and its variants have been

successfully deployed in Google’s networks and others’ for

applications like video streaming.

Rather than responding to loss, BBR relies on estimates of

the available bandwidth and the propagation delay (represented

by the maximum delivery rate within a 10-RTT window

and the measured RTT after draining the bottleneck buffer,

respectively) to set its sending rate, approximating the optimal

operating point of the network.

In 2018, a version of BBR was implemented for WebRTC

and introduced into its source code. It was deprecated soon

thereafter due to poor performance [4]. While TCP BBR and

WebRTC BBR operate similarly, WebRTC BBR contains some

features which do not exist in any TCP version of BBR. The

most notable of these is a unique loss response, which we

investigate in Section VII-B. WebRTC BBR also has a more

limited window for bandwidth and RTT samples than TCP

BBR, which we discuss in Section VII-A.

III. RELATED WORK

Many works investigate live streaming and protocols asso-

ciated with it. Jansen et al. conduct a performance evaluation

of WebRTC as a video conferencing tool and find cases where

it underperforms [13]. In their measurement study, Deng et al.

map out Twitch’s network infrastructure to understand how

they deliver live video to millions of users [14]. They find the

locations of servers and investigate Twitch’s strategy for allo-

cating broadcasts and viewers to the servers. Kim et al. present

LiveNAS, a system that uses machine learning to improve

live video QoE. Their video ingest server employs a deep

neural network that up-samples lower-resolution video frames

to improve visual quality without consuming the bandwidth

needed to transfer a higher-resolution chunk [15]. Salsify [16]



is a low-latency video system design that combines a com-

pressed video codec and UDP-based transport protocol with

a congestion control strategy similar to WebRTC’s GCC and

Sprout. It encodes video frames to maximize quality while

minimizing latency. Several works also focus on improving

BBR’s performance on real-time applications [17]–[19].

IV. EXPERIMENTAL SETUP

We now briefly describe our experimental setup. Figure 1

shows the WebRTC video streaming testbed used in our

experiments. One machine acts as a broadcaster, sending video

frames and audio, while the other acts as a viewer, sending

feedback to the broadcaster. The broadcaster and viewer are

connected via a Linksys WRT1900ACS router with OpenWRT

19.07.1 installed.

Large-scale live video streaming applications also use either

a STUN or TURN server to allow broadcasters inside private

networks to stream video to viewers inside their own private

networks. When a STUN server is unable to allow the broad-

caster and viewer to connect directly, a TURN server must be

used. All traffic between the broadcaster and the viewer must

be routed through this TURN server. In our experiments, we

use a STUN server.

We use the most recent version of WebRTC which includes

BBR as a congestion control option. This version was released

in 2018.

All experiments use a five-minute video. The maximum av-

erage bitrate achieved when streaming this video across all of

our experiments was approximately 1.3Mbps. All experimental

conditions were run at least ten times.

V. PERFORMANCE OF BBR AND GCC

We first compare the performance of BBR and GCC when

sharing a bottleneck link with a TCP flow to determine

whether BBR could be a suitable alternative to GCC. Then, we

compare the two congestion control options on their own under

a variety of network conditions. To the best of our knowledge,

no prior work has empirically compared the performance of

WebRTC BBR and GCC with and without TCP competition.

A. Performance under TCP competition

As early as 2013, GCC was known to perform poorly

when sharing a bottleneck link with a TCP flow [2], [3]. To

determine whether this problem still exists in more recent

versions of GCC, as well as whether WebRTC BBR has

the same issue under TCP competition, we streamed live

video using both GCC and BBR with a 100ms RTT, 5 Mbps

bandwidth, and a 1 MB buffer while running iPerf3 on the

same bottleneck link. The iPerf3 sender uses Linux default

Cubic for congestion control. Figure 2 shows the average

bitrate achieved by GCC and BBR when competing with the

TCP flow across all experiments. Each congestion control’s

achieved bitrate without TCP competition is also shown for

comparison.

While GCC and BBR perform similarly in isolation, GCC’s

bitrate decreases by 96% when sharing the bottleneck link

Fig. 1: Illustration of our experimental setup, showing the re-

lationships between broadcaster, viewer, and WebRTC-specific

servers in the testbed used in our experiments.

Fig. 2: Average achieved bitrate of GCC and BBR under 100

ms RTT, 5 Mbps bandwidth, and a 1 MB buffer, with and

without a competing TCP flow on the same link.

with a TCP flow. In contrast, BBR’s bitrate decreases by only

21% under competition. Note that some decrease in bitrate

may be necessary when sharing bandwidth with a competing

TCP flow. Furthermore, while both BBR and GCC have high

average RTTs in competition because the competing TCP flow

uses Cubic, a loss-based congestion control algorithm which

is known to fill deep buffers (resulting in inflated RTTs [20]),

we find that BBR maintains a slightly lower average RTT than

GCC (1.2 seconds for BBR vs. 1.5 seconds for GCC).

Since BBR achieves bitrates 95% higher than GCC and

maintains similar RTTs when streaming live video under



RTT Bandwidth

20 ms, 50 ms, 100 ms 500 kbps, 1 Mbps, 2 Mbps, 5 Mbps

TABLE I: Network conditions used in our experiments on each

congestion control algorithm in isolation.

competition from TCP, we posit that BBR may be a viable

alternative to GCC when a live video stream must share the

link with TCP flows. In the sections that follow, we subject

WebRTC BBR (as well as GCC, for comparison) to live video

streaming experiments under a variety of network conditions to

determine its suitability for live video streaming applications.

B. Performance in isolation

Next, we compare WebRTC BBR and GCC by studying

their performance in isolation across a variety of RTTs, band-

widths, and buffer sizes. Table I shows the network conditions

that were used in our experiments. For each combination of

the three RTTs and the four bandwidths, we chose two buffer

sizes: one which would be shallow in comparison to the BDP,

and one which would be deep.

Figure 3 shows the percentage difference in achieved bi-

trate between BBR and GCC under the network conditions

we tested. Positive values indicate that GCC achieved the

higher bitrate under a particular condition, while a negative

value indicates that BBR achieved the higher average bitrate.

Overall, GCC and BBR achieve similar bitrates across all of

our experiments, except under two sets of conditions: low

bandwidth/high BDP in the shallow buffer condition, and low

bandwidth in the deep buffer condition.

In our experiments, the maximum average bitrate achieved

in live video streams using either congestion control algorithm

we tested is approximately 1.3Mbps. Providing additional

bandwidth beyond this threshold does not increase the average

bitrate. Thus, the 500 kbps and 1 Mbps bandwidth conditions

represent an underprovisioned network, while the 2 Mbps and

5 Mbps bandwidth conditions represent an overprovisioned

network. It is only in the underprovisioned scenario that

WebRTC BBR consistently achieves lower video bitrates than

GCC.

Furthermore, under deep buffers, GCC achieves video bi-

trates up to 84% greater than those achieved by BBR for the

two lower-bandwidth conditions. Previous studies have found

that TCP BBR can underperform in deep buffers [20] due to

bandwidth overestimation associated with the max filter it uses

to choose its bandwidth estimate [21]; a similar effect may be

taking place in the deep buffer scenario for WebRTC BBR.

VI. EXPLAINING BBR’S LOW VIDEO QUALITY

We have now confirmed that while BBR outperforms GCC

when competing with TCP flows, it achieves much lower

bitrates than GCC when bandwidth is restricted, especially

when the bottleneck buffer is deep. To solve this problem, we

must first determine the root cause of BBR’s poor performance

under these conditions.

Since BBR relies on its bandwidth and RTT estimates to set

its sending rate, inaccurate estimates can lead to bandwidth

(a) Shallow buffer

(b) Deep buffer

Fig. 3: Percent difference between the average video bitrate

for GCC and BBR under (a) a shallow buffer and (b) a deep

buffer.

underutililization or excessive sending, either of which can

result in application performance degradation and a poor user

experience.

A. Inaccurate RTT and bandwidth estimation

We first investigate WebRTC BBR’s RTT estimation, which

was noted by its developers to be “inflated” for bidirectional

video streams [4]. While our tests only involve sending in one

direction (broadcaster to viewer), we suspect this problem may

exist in our experiments as well.

Since previous studies of TCP BBR have shown that it

overestimates bandwidth under deep buffers, it may be the

case that this problem also exists in the WebRTC version.

Figure 4 shows that, across all tested network conditions,

BBR’s estimated bandwidth and estimated min RTT are con-

siderably higher than GCC’s estimates of the same values

under the same conditions, suggesting that BBR is overes-

timating both values. However, as found in prior work on



(a) Estimated bandwidth and bitrate

(b) Estimated RTT

Fig. 4: (a) Average achieved bitrate and estimated bandwidth,

and (b) average estimated min RTT of GCC and BBR, across

all our experiments.

TCP BBR performance for pre-recorded video streaming, high

RTT estimates may be a symptom of the problem rather

than the root cause, which has been found to be bandwidth

overestimation [21]. The developers of WebRTC BBR also

observed “slight” bandwidth overestimation in their tests [4].

We will next determine whether the bandwidth overestimation

we observe above is responsible for the low achieved bitrates

of WebRTC BBR in Figure 3.

B. Relationship between bandwidth estimate and achieved

bitrate

Ideally, a higher bandwidth estimate should indicate that

network conditions are favorable, and a higher video bitrate

may be sent. This would be evident in a strong positive

correlation between the average bandwidth estimate and the

average video bitrate.

Table II shows the Pearson correlation between BBR and

GCC’s bandwidth estimates and their video bitrates across

all of our experiments. Overall, there is a strong positive

correlation between estimated bandwidth and bitrate for GCC,

and a weak negative correlation for BBR.

Goodput (Mbps) overall bitrate ≥ 700 kbps bitrate <700 kbps

GCC 0.87 0.94 -0.18

BBR -0.24 0.59 -0.59

TABLE II: Pearson correlations between the average estimated

bandwidth and the average bitrate for GCC and BBR, across

all runs, and separated by runs with better (≥700 kbps) and

worse (<700 kbps) average bitrates.

We also separate experiments with higher average bitrates

from those with lower average bitrates and recalculate the

correlations. For both GCC and BBR, the correlation between

estimated bandwidth and video bitrate is positive when bitrates

are high and negative when bitrates are low. However, the

positive correlation for higher-bitrate experiments is stronger

for GCC, and the negative correlation for lower-bitrate exper-

iments is stronger for BBR. This suggests that, statistically

speaking, even when BBR performs well, its bandwidth esti-

mates are less accurate than GCC’s. High bandwidth estimates

are also more strongly related to low bitrates for BBR than

for GCC, likely due to BBR’s reliance on accurate bandwidth

estimates to set its sending rate appropriately.

This result confirms that for BBR in particular, not only are

its bandwidth estimates frequently inaccurate (specifically, that

BBR is overestimating the available bandwidth), but that these

inaccurate estimates are associated with low video bitrates.

VII. IMPROVING BBR’S VIDEO QUALITY

In Section VI, we established that under restricted band-

width and deep buffer conditions, WebRTC BBR overestimates

both the available bandwidth and the min RTT.

In this section, we make three alterations to WebRTC BBR’s

RTT and bandwidth estimation techniques in an attempt to

improve its video quality when bandwidth is restricted and

the bottleneck buffer is deep. We also investigate its recovery

state, a response to packet loss which is not found in any TCP

variant of BBR.

A. Bandwidth and RTT estimation

We must first determine which changes to make to WebRTC

BBR’s bandwidth and RTT estimation techniques to improve

its performance. For TCP BBR, an updated version called

BBRv2 has been shown to perform nearly as well as BBRv1

while maintaining desirable fairness properties [22]. Thus, a

natural first step in improving WebRTC BBR’s performance

is to mimic the behavior of BBRv2. Since WebRTC BBR

was created prior to the introduction of BBRv2 in 2019, no

WebRTC version of BBRv2 exists. We instead aim to replicate

two of BBRv2’s most prominent features: a modified RTT

estimation technique and a response to packet loss.

WebRTC BBR already responds to loss, a feature which

we will investigate further in Section VII-B. We discuss

a modification to WebRTC BBR’s RTT estimation in this

subsection.

In BBRv2, the developers of BBR altered its RTT estimation

technique. BBRv1 entered the PROBE RTT state every 10



seconds and reduced its cwnd to 4 packets. This resulted in

undesirable variations in throughput [23].

Change #1. We implement a BBRv2-like RTT estimation

technique.

We make three changes to WebRTC BBR to make its RTT

estimation behave similarly to BBRv2: first, we allow it to

choose the number of packets in flight during RTT probes

to be based on the current estimated BDP; then, we set the

cwnd during RTT probes to half of the estimated BDP; and

finally, we expire RTT estimates after 5 seconds rather than

10 seconds.

WebRTC BBR’s RTT estimation also has a component not

found in any other version of BBR: it does not initiate an RTT

probe if the most recent RTT sample is within 12.5% of the

current min RTT estimate. Thus, it will reduce the sending

rate to measure the current min RTT less often than BBRv2.

We leave this behavior in place for all of our experiments.

This results in a version of WebRTC BBR that behaves

similarly to BBRv2, except that its loss response differs.

The next two changes relate to WebRTC BBR’s bandwidth

estimation.

Change #2. We use the third-best bandwidth sample to set the

sending rate.

Like TCP BBR, WebRTC BBR uses the maximum observed

delivery rate as its bandwidth estimate. This practice can lead

to bandwidth overestimation, as we observe in our experi-

ments. One proposed solution is to use a sample lower than

the maximum as the bandwidth estimate [21]. However, rather

than keeping a window of bandwidth samples that covers the

past 10 RTTs, WebRTC BBR keeps only the top three samples

at a time. To mitigate WebRTC BBR’s overestimation, we alter

WebRTC BBR to use the third-highest bandwidth sample as

its estimate rather than the highest bandwidth sample.

Change #3. We alter the sample filter to replace only the

highest bandwidth sample with the new maximum, rather than

replacing all three samples.

The default behavior of WebRTC BBR’s sample filter, when

a new sample arrives, is to replace all samples less than

or equal to that sample with the new sample. For example,

if a bandwidth sample arrives which is greater than the

current second-highest sample, but still less than the maximum

sample, the second-highest and third-highest samples will both

be replaced with the new sample. If the sample were to

exceed the current highest estimate, all three samples would be

replaced with the new sample. Thus, new samples are favored

by WebRTC BBR, and a large sample can quickly replace

all other samples in the window, potentially leading to long-

lasting bandwidth overestimation.

Change #3 alters this behavior. Instead of replacing all

samples less than or equal to a new sample, only one sample

is replaced. In our previous example, in which a sample

arrives which is greater than the second-highest sample but

less than the highest sample, the new sample will replace

the previous second-highest sample, and the previous second-

highest sample will replace the previous third-highest sample.

Fig. 5: Comparison of average bitrates achieved by altered

versions of BBR, as well as unmodified WebRTC BBR and

GCC, under a 50 ms RTT, 500 kbps bandwidth, and a (deep)

100 kb buffer.

Note that WebRTC BBR uses the same sample filter for its

bandwidth and RTT estimates. This means that any change to

the sample filter affects not only bandwidth samples, but also

RTT samples.

Figure 5 shows the results of these changes under a low-

bandwidth, deep-buffer network condition. We test each of the

changes in isolation, and we also combine changes #2 and #3,

which affect bandwidth estimation. Average bitrates for GCC

and unmodified BBR under the same network condition are

shown for comparison.

Only the version of WebRTC BBR with both of the

bandwidth estimation changes achieves a bitrate greater than

or equal to that of unmodified BBR. The other changes in

isolation achieve even lower bitrates. None of the changes

result in an improvement in WebRTC BBR’s performance in

an underprovisioned network with a deep bottleneck buffer.

B. Recovery state

Since all three changes to WebRTC BBR’s bandwidth and

RTT estimation failed to improve video bitrates in underpro-

visioned, deep buffer network conditions, we next investigate

a unique property of WebRTC BBR not found in any of its

TCP variants: the recovery state.

Like BBRv2 and BBRv3, WebRTC BBR responds to

packet loss. However, unlike those TCP BBR variants, it

does not use a threshold-based approach. WebRTC BBR’s

recovery state is a response to loss that begins on a single

packet loss. WebRTC BBR exits recovery if there are no

losses in a round. The recovery state consists of four sub-

states: CONSERVATION, MEDIUM GROWTH, GROWTH,



Fig. 6: Comparison of average bitrates achieved by the version

of BBR with the recovery state disabled, as well as unmodified

WebRTC BBR and GCC, under a 50 ms RTT, 500 kbps

bandwidth, and a 100 kb buffer.

and NOT IN RECOVERY. In the CONSERVATION state, the

cwnd is reduced by the number of bytes lost. In the GROWTH

state, cwnd increases by the number of bytes acked, and in

MEDIUM GROWTH, cwnd increases by half the number of

bytes acked.

We hypothesize that WebRTC BBR’s loss response is

especially harmful to performance in potentially high-loss

conditions such as the restricted bandwidth conditions in our

experiments. Suppose that all, or nearly all packets are lost

during a round trip. This would result in the cwnd immediately

being reduced to zero or near-zero. This possibility motivates

our next change to WebRTC BBR.

Our solution. We disable BBR’s recovery state. This is

achieved by ensuring that BBR’s recovery state is always set

to NOT IN RECOVERY.

Figure 6 compares the average bitrate achieved by GCC and

unmodified BBR with the average bitrate achieved by BBR

with the recovery state disabled (our solution). Our modified

version of BBR with the recovery state disabled outperforms

unmodified BBR. We also tested a version with the third best

bandwidth estimate used, the sample filter altered, and the

recovery state disabled (changes #2, #3, and our solution).

However, the version with changes #2 and #3 included does

not perform as well as the version with our solution alone,

suggesting that the alterations to the bandwidth estimation

essentially undo any benefits provided by the disabling of the

recovery state.

With the recovery state disabled, WebRTC BBR is able to

achieve an average video bitrate only 18% less than that of

GCC; this translates to a 63% higher average video bitrate

over the unmodified WebRTC BBR. If this version of WebRTC

(a) High bandwidth

(b) Low bandwidth

Fig. 7: Average achieved bitrate of GCC, BBR, and BBR

with recovery state disabled under (a) 100 ms RTT, 5 Mbps

bandwidth, and a 1 MB buffer, and (b) 50 ms RTT, 500 kbps

bandwidth, and a 100 kb buffer, with and without a competing

TCP flow on the same link.

BBR maintains its favorable properties under competition from

TCP, it may serve as a viable alternative to GCC.

C. Improved WebRTC BBR under TCP competition

Since we are investigating WebRTC BBR as a potential

alternative to GCC under TCP competition, we next test our

modified WebRTC BBR sharing the bottleneck link with a

TCP flow, as described in Section V-A. Figure 7 shows the

average video bitrate of WebRTC BBR with the recovery

state disabled, with and without TCP competition, under high

and low bandwidth network conditions. GCC and unmodified

WebRTC BBR results are shown for comparison. While our

modified WebRTC BBR does achieve lower average bitrates

under TCP competition than unmodified WebRTC BBR in the

high bandwidth condition, it vastly outperforms GCC under

the same conditions. Our modified WebRTC BBR does not

achieve an average bitrate as high as GCC in the low band-



width condition when TCP competition is absent; however, it

outperforms unmodified WebRTC BBR by 63%. Furthermore,

in the presence of a competing TCP flow, WebRTC BBR

continues to vastly outperform GCC under low bandwidth with

our modification.

Thus, we posit that, with the recovery state disabled, We-

bRTC BBR can perform well both under competition from

TCP flows and in restricted-bandwidth, deep buffer network

conditions.

VIII. CONCLUSION AND FUTURE WORK

This work presents a modified version of WebRTC BBR as a

potential alternative to the default GCC for live video stream-

ing applications. With the recovery state disabled, WebRTC

BBR achieves an average video bitrate 6.8× higher than GCC

under competition from TCP flows, and its performance in

low-bandwidth, deep-buffer network conditions improves by

63% when compared to unmodified WebRTC BBR. However,

since the root cause of WebRTC BBR’s poor performance

is its overestimation of bandwidth, more extensive changes

to its bandwidth estimation technique would be required for

it to serve as a viable alternative to GCC. Modifications to

the bandwidth estimation might include a larger window for

bandwidth samples, similar to that used by TCP versions of

BBR.

Other future work in this space could focus on developing

an appropriate response to loss, perhaps using a threshold-

based approach such as that used in TCP BBRv2 and BBRv3.

Further studies could also evaluate video QoE for WebRTC

BBR and GCC, rather than using QoS metrics like average

bitrate and RTT, as we did in this work. Furthermore, WebRTC

BBR and any modifications to it should be evaluated under 5G

network conditions to determine whether it would be suitable

for use in modern cellular networks.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback. This

work was supported in part by NSF grant CNS-1909356.

REFERENCES

[1] “Twitch statistics and charts,” https://twitchtracker.com/statistics, Jan
2023.

[2] L. De Cicco, G. Carlucci, and S. Mascolo, “Experimental investigation
of the google congestion control for real-time flows,” in Proceedings

of the 2013 ACM SIGCOMM Workshop on Future Human-Centric

Multimedia Networking, ser. FhMN ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 21–26. [Online].
Available: https://doi.org/10.1145/2491172.2491182

[3] ——, “Understanding the dynamic behaviour of the google congestion
control for rtcweb,” in 2013 20th International Packet Video Workshop,
2013, pp. 1–8.

[4] “Question about applying bbr on video streaming,”
https://groups.google.com/g/bbr-dev/c/1EPG5UwBANo, Mar 2021.

[5] D. Scholz, B. Jaeger, L. Schwaighofer, D. Raumer, F. Geyer, and
G. Carle, “Towards a deeper understanding of tcp bbr congestion
control,” in 2018 IFIP Networking Conference (IFIP Networking) and

Workshops, 2018, pp. 1–9.
[6] K. Miyazawa, K. Sasaki, N. Oda, and S. Yamaguchi, “Cycle and

divergence of performance on tcp bbr,” in 2018 IEEE 7th International

Conference on Cloud Networking (CloudNet), 2018, pp. 1–6.
[7] “Running webrtc with bbr,” https://groups.google.com/g/bbr-

dev/c/siLJCN9DlnM/m/dLwaJPBzFgAJ, Jan 2023.

[8] “6 ways webrtc solves ultra low latency streaming,”
https://www.red5pro.com/blog/6-ways-webrtc-solves-ultra-low-latency-
streaming/, Dec 2019.

[9] E. Krings, “Rtmp vs. hls vs. webrtc: Comparing the best proto-
cols for live streaming,” https://www.dacast.com/blog/rtmp-vs-hls-vs-
webrtc/, Jun 2022.

[10] A. Durresi and R. Jain, “Rtp, rtcp, and RTSP - internet protocols for
real-time multimedia communication,” in The Industrial Information

Technology Handbook, R. Zurawski, Ed. CRC Press, 2005, pp. 1–11.
[11] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis

and design of the google congestion control for web real-time
communication (webrtc),” in Proceedings of the 7th International

Conference on Multimedia Systems, ser. MMSys ’16. New York, NY,
USA: Association for Computing Machinery, 2016. [Online]. Available:
https://doi.org/10.1145/2910017.2910605

[12] H. Lundin, S. Holmer, and H. T. Alvestrand, “A google congestion
control algorithm for real-time communication on the world wide web,”
Working Draft, IETF Secretariat, Internet-Draft draft-alvestrand-rtcweb-
congestion-01, October 2011.

[13] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman,
“Performance evaluation of webrtc-based video conferencing,”
SIGMETRICS Perform. Eval. Rev., vol. 45, no. 3, p. 56–68, mar 2018.
[Online]. Available: https://doi.org/10.1145/3199524.3199534

[14] J. Deng, G. Tyson, F. Cuadrado, and S. Uhlig, “Internet scale user-
generated live video streaming: The twitch case,” 02 2017, pp. 60–71.

[15] J. Kim, Y. Jung, H. Yeo, J. Ye, and D. Han, “Neural-enhanced
live streaming: Improving live video ingest via online learning,” in
Proceedings of the Annual Conference of the ACM Special Interest

Group on Data Communication on the Applications, Technologies,

Architectures, and Protocols for Computer Communication, ser.
SIGCOMM ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 107–125. [Online]. Available: https://doi.org/10.
1145/3387514.3405856

[16] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein,
“Salsify: Low-latency network video through tighter integration between
a video codec and a transport protocol,” in Proceedings of the 15th

USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’18. USA: USENIX Association, 2018, p. 267–282.

[17] R. Kumar, A. Koutsaftis, F. Fund, G. Naik, P. Liu, Y. Liu, and S. Panwar,
“Tcp bbr for ultra-low latency networking: Challenges, analysis, and
solutions,” in 2019 IFIP Networking Conference (IFIP Networking),
2019, pp. 1–9.

[18] S. Najmuddin, M. Asim, K. Munir, T. Baker, Z. Guo, and R. Ranjan, “A
bbr-based congestion control for delay-sensitive real-time applications,”
Computing, pp. 1–23, 2020.

[19] F. Chiariotti, A. Zanella, S. Kucera, and H. Claussen, “Bbr-s: A low-
latency bbr modification for fast-varying connections,” IEEE Access,
vol. 9, pp. 76 364–76 378, 2021.

[20] Y. Cao, A. Jain, K. Sharma, A. Balasubramanian, and A. Gandhi,
“When to use and when not to use bbr: An empirical analysis
and evaluation study,” in Proceedings of the Internet Measurement

Conference, ser. IMC ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 130–136. [Online]. Available:
https://doi.org/10.1145/3355369.3355579

[21] S. Vargas, R. Drucker, A. Renganathan, A. Balasubramanian, and
A. Gandhi, “Bbr bufferbloat in dash video,” in Proceedings of the Web

Conference 2021, ser. WWW ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 329–341. [Online]. Available:
https://doi.org/10.1145/3442381.3450061

[22] R. Drucker, G. Baraskar, A. Balasubramanian, and A. Gandhi, “Bbr
vs. bbrv2: A performance evaluation,” in 2024 16th International

Conference on COMmunication Systems & NETworkS (COMSNETS),
2024, pp. 379–387.

[23] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, and M. M. V. Jacobson, BBR v2: A

Model-based Congestion Control, IETF-104 : iccrg, Mar 2019.
[Online]. Available: https://datatracker.ietf.org/meeting/104/materials/
slides-104-iccrg-an-update-on-bbr-00


