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Abstract. Scripts enable much of the functionality of the modern Web.
At the same time, attackers may utilize them in cross-site scripting
(XSS), leading to malicious code execution. Content Security Policy
(CSP) is a mechanism to prevent XSS attacks by restricting the scripts
that can be loaded on a website. Devising an e↵ective CSP policy by
hand is a daunting task due to the complexity of modern Web appli-
cations. Previous attempts to automate this process are either specific
to certain server-side programming languages, require modifications to
the Web application’s source code, fall short in mitigating XSS, or re-
quire third-party cooperation. To assist Web developers and facilitate
the adoption of CSP, we propose a server-side system that crafts a safe
CSP configuration and modifies the script content in the server response
to comply with the set configuration. EasyCSPeasy overcomes various
limitations of previous systems as it is language-agnostic, standalone,
and does not require source code modification. We evaluate our system
on six open source Web applications (five PHP-based, one Perl-based)
and show that all continue to provide their commonly interacted func-
tionalities when integrated with EasyCSPeasy. We quantify the minimal
overhead introduced by our system. We deploy known vulnerable ver-
sions of three Web applications and demonstrate that the CSP policies
automatically generated by EasyCSPeasy block known attacks against
these applications.
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1 Introduction

Cross-site Scripting (XSS) vulnerabilities are a persistent and ongoing secu-
rity issue on the Web [7]. XSS attacks occur when attackers inject malicious
JavaScript (JS) that executes on otherwise benign and trusted websites. These
malicious scripts may access session cookies (unless the HttpOnly flag is set,
which prevents JS from accessing cookies) and sensitive information used within
the website context. Researchers and Web organizations (e.g., the W3C [24])
have been battling against XSS by constructing both server-side [27,28,38,44,45]
and client-side [39,49] defenses. Mitigation techniques include filtering user input,
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encoding output, and Content Security Policy (CSP) [6]. CSP allows developers
to declare approved origins of content (images, scripts, etc.) that browsers are
permitted to load on their websites, providing protection against XSS by only al-
lowing developer-approved scripts. Consequently, adding new scripts to a website
requires the developer to update the CSP. Otherwise, the browser may block the
execution of the new scripts, leading to functionality and rendering issues. More-
over, the included scripts may also create other scripts during runtime. Hence, it
is challenging for developers to keep track of these script inclusions. This makes
creating and maintaining a CSP a burdensome and error-prone process when
done manually. As a testament to this, Roth et al. [42] found that several web-
site administrators tried to maintain their CSP for months, but eventually gave
up. Moreover, they found that 56% of the websites that deploy CSP policies do
so in an alert-only fashion, without enforcing any content limitation, likely due
to the di�culty of getting the policies right.

To overcome the issues with manually devising policies and improve CSP
adoption, researchers proposed several automated approaches that generate a
CSP and modify the server-side code or server response [30,33,34,41]. Upon our
analysis of previous work, we conclude that the studies that focus on mitigating
XSS by leveraging CSP have one or more of the following shortcomings: deriving
a single allowlist-based CSP [34,30,41,33,49], third-party dependency [30,49], be-
ing specific to certain server-side languages [34,33] or not supporting commonly
practiced [37] dynamic websites (generating JS on the fly via server-side script-
ing) [34,33,49]. In an allowlist-based CSP approach, only the sources listed by
the site-operator in the policy are allowed to execute, while all other sources are
blocked by default. However, Roth et al. [42] showed that 90% of the CSPs in
the wild are bypassable due to insecure allowlists. Moreover, Lekies et al. intro-
duced Script Gadgets [36] (developer-intended JavaScript code fragments that
can be reused to execute arbitrary JavaScript) and showed that some gadgets
can bypass all CSP configurations where a single CSP header is set, including
allowlist-based ones. Weichselbaum et al. [47] suggested that a safe solution must
have two CSPs: one that inspects the source URL of a script and one that in-
spects an assigned token (a nonce value [6]) of a script. Hence, we see a need for
a solution that can help Web developers automatically devise a safe CSP and
rewrite the pages of their website to comply with the devised CSP (i.e., ensuring
that the approved JS sources will be allowed to execute in the browser). A safe
CSP can fully utilize the capabilities of CSP to block XSS attacks propagated
by injecting JavaScript into a website.

In this paper, we propose and develop EasyCSPeasy, a server-side solution
to assist Web developers to automatically devise a safe CSP for their target
Web application and rewrite the pages to ensure that only the script content
intentionally included by the site-operator (i.e., developer-intended) will exe-
cute in the Web browser (i.e., ensuring compliance with the set CSP). EasyC-
SPeasy is language-agnostic, standalone (works independently of third parties),
and supports dynamic websites. Our system devises a safe CSP by visiting the
pages of a target website in a clean (i.e., uncompromised) setup which does
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not contain any attacker-injected content, and collecting the developer-intended
script sources. Then, EasyCSPeasy’s filter rewrites the server HTML response
on the server side. We built EasyCSPeasy to work with Apache Web servers.
However, our approach can be adapted to work with other Web servers with
minor engineering e↵ort. We evaluate EasyCSPeasy on six open source Web
applications (PHP-based: WordPress [23], Litecart [21], Squirrelmail [18], Ph-
pMyAdmin [15], PhpBB3 [14], and Perl-based: TWiki [19]), showing that our
approach does not break their commonly interacted functionalities (i.e., func-
tionalities that are commonly exercised by the users [26]). We also evaluate the
security aspect of our system by deploying three known-vulnerable Web applica-
tions with known XSS vulnerabilities, and showing that the safe CSP generated
by EasyCSPeasy is e↵ective in preventing them from being exploited. To encour-
age further research in this space, we will make the source code of EasyCSPeasy
open source upon acceptance of this paper.

2 Related Work

CSP is designed to control content inclusion from a single point to make enforce-
ment and security checks easier. However, adopting CSP itself is shown to be
challenging [42,29,48]. One of the first examples to facilitate the CSP adoption
is deDacota [33]. Dedacota works by securing Web applications programmed in
ASP.NET by rewriting an application so that the code and data are clearly sepa-
rated in its Web pages and then leveraging CSP. AutoCSP [34] leverages dynamic
taint analysis to identify allowed content and modifies the server-side code to
generate pages. CCSP [30] proposes a modified CSP where Web developers have
to provide upper bounds and content providers have to provide a dependency
list for each script in the website. JSCSP [49] is a client-side solution that o↵ers
a self-defined security policy that enforces essential confinements to JavaScript
functions and DOM elements etc. CSPAutoGen [41] trains templates, generates
a single allowlist-based CSP, and rewrites server responses.

Each of these previous works has limitations that EasyCSPeasy remedies.
Both JSCSP [49] and CCSP [30] require client-side modification and also depend
on third parties. EasyCSPeasy is a standalone server-side solution. AutoCSP [34]
and deDacota [33] are specific to websites programmed in PHP and ASP.NET
server-side languages respectively, whereas EasyCSPeasy is language agnostic.
Adopting a dynamic approach is a prevalent practice among site-operators [37].
However, unlike EasyCSPeasy, AutoCSP [34], JSCSP [49] and deDacota [33] are
not compatible with dynamic websites. CSPAutoGen [41] enables the execution
of any script observed during the training phase within any page of the target
Web application. This could lead to unintended or malicious behavior, akin
to exploiting script gadgets, if an attacker injects a developer-intended script
from one page of a domain into another page of the same domain where the
developer did not intend it to be included. EasyCSPeasy permits script execution
on a target page only if the script was observed on that page during training
(with potentially varying query parameters as detailed in Section 5.3). All five
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systems mentioned above [34,30,49,33,41] follow a single allowlist-based CSP
approach which makes them inherit the security issues we discuss in Section 3.2.
Most importantly, unlike all these systems, EasyCSPeasy generates a safe CSP
configuration.

3 Background and Motivation

The main building block of Web security is the Same Origin Policy (SOP). Under
the SOP, a Web page is only able to access resources or data from the same
origin as the page itself, unless the resource or data is explicitly shared through
mechanisms such as Cross-Origin Resource Sharing (CORS). XSS attacks bypass
the SOP [43] and compromise the confidentiality of cross-site data that should be
kept secret. Previous research identified three main types of XSS vulnerabilities
as Reflected, Stored, and DOM-based XSS [31]. CSP has been developed to
mitigate the risk of content injection vulnerabilities such as XSS.

3.1 Content Security Policy

Modern webpages are an amalgamation of code and resources from various ori-
gins. JavaScript code can be included directly (i.e., inline) in the HTML code
of a page, either within script tags or as part of inline event handlers. Alterna-
tively, an external script can be included by using the src argument in a script
tag (i.e., non-inline). Inline event handlers are HTML attributes (e.g., onclick)
where the attribute value contains the JS code (e.g., alert()) that will run
when the event occurs.

CSP works by limiting the resources that the user agent (i.e., the Web
browser) is allowed to load for a target page. A CSP has the following form:
script-src <source-list>; img-src <source-list>. A CSP can be deliv-
ered as an HTTP response header (most common) or as an HTML <meta>

tag. When constructing a CSP, the developer needs to set a directive (e.g.,
script-src) to specify the type of content they want to control. Each direc-
tive in the CSP has its own <source-list> that defines the developer-intended
sources. For example, to limit script inclusions, a site-operator could set the
script-src directive. The browser will compare the script sources included in
the webpage with the sources approved in the CSP (i.e., allowlisted) and only ex-
ecute scripts that match the allowed sources, blocking all others. A site-operator
can set multiple CSP compositions instead of a single one. In that case, the Web
browser has to honor each CSP individually [5]. The script-src directive may
contain the following keywords and values:
• self: Allows the execution of non-inline scripts with src attribute values that
share the current URL’s origin.
• nonce-<value>: Matches the specific script elements that contain the correct
nonce value on the page. The nonce should be unique for each HTTP response
and should be generated using a cryptographically secure random generator [20].
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• <allowed hash>: Allows the execution of an individual inline script by al-
lowlisting its hash value.
• unsafe-inline: Allows the execution of all inline scripts and event handlers.
• unsafe-eval: Allows the usage of unsafe JavaScript function eval and other
eval-like functions (e.g., eval, new Function, setTimeout, setInterval) that
convert text to JavaScript.
• strict-dynamic: Specifies that the trust explicitly given to a script present
in the page HTML, by accompanying it with a nonce or a hash, shall be propa-
gated transitively to all the scripts loaded by that root script.
• <allowed url>: Allows the execution of a non-inline script by allowlisting its
source URL.

CSP Bypasses For CSP to mitigate XSS properly, it has to be configured se-
curely, and Web browsers should support and enforce the CSP version used. Even
so, policies that use a single CSP can still be bypassed. Open Redirects [42] and
Script Gadgets [36] can defeat the single CSP configurations. If an allowlisted
source redirects to a di↵erent target URL, browsers enforce CSP by ignor-
ing the target URL’s path. For instance, with a CSP policy like script-src

redir.com cdn.com/benign.js, an attacker can exploit an open redirect vul-
nerability on redir.com to redirect to cdn.com/evil.js. Despite not being al-
lowlisted, cdn.com/evil.js is executed due to CSP’s partial path match. Script
gadgets [36] are developer-intended script fragments within an application’s code
base. However, they can be reused by an injected HTML element, which may
result in arbitrary JavaScript execution. In their study, Lekies et al. [36] intro-
duce various types of script gadgets. Notably, two types can bypass single CSP
configurations even if unsafe-eval and unsafe-inline are not enabled: gadget
Type 1, bypassing nonce-based strict-dynamic enabled CSPs, and gadget Type
2, bypassing all single CSP configurations, including allowlist-based ones. Type
1 gadgets can be used to trigger new script element creation with potentially
malicious code. We show an example of this type in Appendix Section A. Type
2 gadgets are out of scope since they do not create new script elements and CSP
cannot detect and block them. In Section 3.2, we discuss the CSP configuration
that can e↵ectively defend against Type 1 gadgets.

3.2 Discussion on CSP Configurations

In Section 3.1, we presented the keywords o↵ered by the CSP standard. These
keywords can be combined to create di↵erent CSP configurations. However, not
all CSP configurations e↵ectively safeguard against XSS. Previous work [47]
showed that a safe solution must have two CSPs: one that inspects the source
URL of a script (an allowlist-based CSP, CSP C1) and one that inspects an
assigned token of a script (a nonce-based CSP, CSP C2). The safe CSP configu-
ration combines CSP C1 and CSP C2 to get the benefits of both worlds, specif-
ically allowlisting individual URLs and enforcing a nonce value [47] and has the
following form: script-src <allowed urls> <allowed hashes>; script-src

’nonce-<value>’ ’strict-dynamic’. By combining both policies, safe CSP
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avoids exhibiting their vulnerabilities. In Appendix Section B, we discuss the
o↵ered protection and the challenges in real-world deployment for C1 and C2
policies in detail. For instance, unlike the C1 policy, safe CSP cannot be bypassed
by leveraging an Open Redirect vulnerability because an attacker-injected script
would also need a valid nonce to execute in the presence of the C2 policy. More-
over, unlike the C2 policy, safe CSP can protect against Type 1 Script Gadgets.
We conclude that safe CSP is the safest configuration among the discussed poli-
cies. Hence, throughout this paper, we refer to a CSP that is able to defend
against the attacks discussed (excluding Type 2 Script Gadgets which cannot
be prevented via CSP) as a safe CSP. However, this configuration inherits the
challenges in real-world applicability of C1 and C2 policies, namely, building
and maintaining a comprehensive allowlist and assigning a valid nonce to each
script. Therefore, we also conclude that it is imperative, especially for complex
websites, to have an automated system that can devise a safe CSP.

Since CSP can potentially block scripts on which website features may de-
pend, the CSP standard o↵ers unsafe-inline and unsafe-eval as compati-
bility modes that can ease deployment. These modes are not recommended for
permanent use due to potential XSS vulnerabilities [8]. An attacker can exploit
unsafe-inline by directly injecting scripts. Therefore, it is crucial to eliminate
the need for unsafe-inline in a website’s CSP. Since enforcing a CSP with-
out unsafe-inline may lead to functionality issues, it is required to ensure
compliance of the script content with the set CSP. EasyCSPeasy handles this
by modifying the server response. Exploiting unsafe-eval requires passing a
user-controlled string into an eval-expression and this text being converted to
executable JavaScript, which can be prevented with sanitization practices [29].
Hence, the presence of unsafe-eval does not automatically result in website
vulnerability. Our re-evaluation of Ste↵ens et al.’s experiments [46] on the top
10K websites from the Tranco List [1] showed an 18.3% decrease in the use of
eval (from 78.8% to 60.5%), 18 months after their experiments (results pre-
sented in Appendix Section C). Therefore, we have elected to leave the process
of removing eval (from their code) to the discretion of site-operators.

4 System Overview

In this paper, we aim to build a system that i) generates a safe CSP for a target
website and ii) ensures compliance with the set CSP to aid in the safe adop-
tion of CSP. Addressing limitations in previous work (discussed in Section 2),
we implemented EasyCSPeasy to be standalone (not dependent on third-party),
language-agnostic and dynamic-website compatible. EasyCSPeasy automatically
generates a safe CSP, allows disabling unsafe-inline, alters the server responses
to ensure the execution of benign scripts, and prevents unwanted or malicious
behavior by only allowing the execution of a script within the context of its
developer-intended page (i.e., page-based script matching). In Appendix Sec-
tion D, we compare existing systems to EasyCSPeasy on these design goals and
show that EasyCSPeasy is the only system that accomplishes all of the goals.
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We depict the architecture of EasyCSPeasy in Figure 1. EasyCSPeasy’s oper-
ation follows two phases: Learning and Rewriting. During the Learning phase, in
a clean setup of the Web application (i.e., does not contain any attacker-injected
elements), EasyCSPeasy crawls the pages of the website to observe the script con-
tent and generate the CSP. During the Rewriting phase, EasyCSPeasy receives
the server response and validates the script content received in this response by
inspecting its prior occurrence (i.e., the validation process). If an element that
contains JavaScript (i.e., JS-including element) was previously detected, EasyC-
SPeasy rewrites this element to allow its execution (i.e., the process of ensuring
compliance). Conversely, if a JS-including element was not previously observed,
it is removed from the server response or blocked by the CSP.

The Learning Phase consists of two modules: Crawler and CSP Generator.
The Crawler creates a sitemap [22] (a list of URLs) of the website. Then, the
CSP Generator visits the pages in the sitemap, records information about the JS-
including elements in those pages (referred to as element knowledge in the rest of
the paper), and generates a safe CSP. The Rewriting Phase has two stages: Filter
and Mutation Observer. The Filter fetches the element knowledge recorded in
the Learning phase, uses it to validate the JS-including elements received in the
server response, and rewrites the validated elements to comply with the set CSP.
The JS-including elements in a webpage can be pre-included [41] or runtime
generated. Pre-included elements exist in the static HTML generated by the
server, and runtime-included elements are dynamically generated in the Web
browser. The JS-including elements that may be created at runtime will not be
present in the server response received by the Filter. Hence, the Filter attaches
the Mutation Observer script to the HTML server response which monitors
runtime-generated elements.

Mutation 
Observer

EasyCSPeasy 
Config File 

(config.json)

Server Config File 
(httpd.conf)

Sitemap

Request

Crawler                   

CSP Generator

Database

Filter

set safe CSP
set Filter

retrieve element 
knowledge

Learning Phase Rewriting Phase

Rewritten Response

Server Response

Python 
Crawler

Burp 
Scanner Mapper

Hash and 
AST-based 
Validation

Compliance 
Ensurance 

Script Files

Safe CSP 
Generation

Building 
Element 

Knowledge

Client
Server

Fig. 1: EasyCSPeasy System Architecture. (Dashed lines represent input to system
modules.)
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4.1 Learning Phase

In the Learning phase, EasyCSPeasy creates the sitemap of a target website.
Then, it visits the pages in the sitemap to collect the element knowledge and
devise a safe CSP. Since the Learning Phase focuses solely on JS-including ele-
ments, it only needs to be executed once after changes in script content.

Crawling and CSP Generation The format of the safe CSP generated by
EasyCSPeasy is shown in Listing 1.1. To create a comprehensive C1 policy for
a target Web application, we gather source URLs of non-inline scripts and add
them to the policy (<allowed urls>). Additionally, we compute hashes of inline
scripts and incorporate them into the C1 policy (<allowed hashes>). To collect
the inline and non-inline scripts included in a Web application, EasyCSPeasy
requires a comprehensive sitemap. The sources not seen by the CSP Generator
will not be allowlisted in the CSP. Hence, the CSP generated by EasyCSPeasy
may block the execution of these elements. Generating a comprehensive sitemap
is a di�cult task and can be influenced by many factors such as website structure
and authentication requirements [32,35]. Additionally, a website may introduce
new JS code in a page due to various reasons such as GET and POST parame-
ters, the state of the page, and script content generated after user interactions,
making it di�cult to accurately capture all possible JS code during the Learning
phase. Web developers typically create a targeted testbed tailored to their web-
site to ensure that their applications are thoroughly tested in an environment
that closely mirrors production. The sitemap coverage shortfall may potentially
be addressed by leveraging a website-specific testbed. Since we aim to evaluate
our system on multiple Web applications, we build a generic crawler to generate
sitemaps. To mitigate the sitemap coverage issues that arise from the reasons dis-
cussed above, our Crawler utilizes three independent techniques and combines
the output of these methods to capture the script content of a website (dis-
cussed in Section 5). We note that Web crawling is an open research problem.
EasyCSPeasy inherits the limitations of existing crawlers and may not generate
a fully complete sitemap. Hence, EasyCSPeasy can automatically benefit from
the advances in crawling research.

The Crawler, given a seed URL (typically the home page of a target web-
site), generates a sitemap containing the pages of the website. Our Crawler uses
authentication cookies to access behind-the-login pages and crawl a website.
Then, the CSP Generator visits every page in this sitemap, records the element
knowledge, and builds the C1 policy as described above. To build a C2 policy,
as shown in Listing 1.1 line 2, the CSP Generator declares a nonce value and
enables the strict-dynamic keyword in the C2 policy. We discuss the crawling
and the CSP generation processes in detail in Section 5.

1 C1: script-src 'self' <allowed_urls > <allowed_hashes >

2 C2: script-src 'nonce- <nonce_value >' 'strict-dynamic '

Listing 1.1: The CSP pair generated by EasyCSPeasy
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Building the Element Knowledge EasyCSPeasy must detect script con-
tent, validate that it is developer-intended, and make only the JS-including
elements that pass the validation compliant with the set CSP. To accomplish
that, EasyCSPeasy performs detection, validation, and compliance ensurance
in various stages based on the script content’s inclusion time (pre-included or
runtime included) and inclusion mechanism (inline or non-inline). We summa-
rize the responsible stages in Table 1. To help with validation and compliance,
the CSP Generator detects each JS-including element and records the element
knowledge which is later utilized by the Filter and the Mutation Observer. The
CSP Generator visits the pages in the sitemap in a clean setup of the Web
application to ensure only developer-intended elements are seen. Then, it com-
putes the hashes of the outerHTML attributes for these elements (i.e., tag hash),
and records these tag hashes to a database. When an HTML server response
is received in the Rewriting phase, the tag hashes of the received elements are
compared with the hashes in the database for validation.

A dynamic website leverages scripts that contain dynamic values (e.g., cur-
rent time, CSRF tokens). These values are set via server-side scripting then the
dynamic script is shipped to the browser (pre-included in the response). An ex-
ample of an inline dynamic script that contains such value is the following where
the time value is not static: <script>var userSettings="time":"1650395419"

;</script>. Hence, if a dynamic script is inline, it is not possible to use the
hash value of this script to validate it through hash comparison. To validate
the inline dynamic scripts, EasyCSPeasy leverages the Abstract Syntax Trees
(ASTs). The AST of a target inline dynamic script would contain the dynamic
values in this script. When the dynamic values naturally change (e.g., during
di↵erent sessions), the obtained AST for the target inline dynamic script will
change as well. Hence, it is not possible to validate this script by comparing the
ASTs directly. To overcome this issue, the CSP Generator first obtains the ASTs
of inline scripts and modifies them to remove the dynamic values (the Literal

nodes [2]). Then, it records the modified ASTs in the element knowledge (i.e.,
script ast). The ASTs are later utilized by the Filter to validate the inline
dynamic scripts (explained in detail in Section 5).

To ensure the compliance of the validated elements with the safe CSP, we
need to ensure compliance with both C1 and C2 policies. To this end, the
CSP Generator adds the source URLs of non-inline scripts and the hashes of
inline scripts (except the dynamic ones) to the C1 policy. Inline events (due
to no unsafe-inline) and inline dynamic scripts (due to everchanging hash
value) need to be converted to non-inline for compliance with the safe CSP
which is done in the Rewriting phase. To help with this, the CSP Generator
records additional data in the element knowledge along with the tag hashes
and script ASTs discussed above. The recorded element knowledge is shown in
the following and further discussed in Section 4.2: event=[tag hash, event id,
event listener script] and script=[tag hash, script ast, script id]. To
comply with the C2 policy, the Filter adds nonce values to the validated pre-
included elements. Since the safe CSP enables strict-dynamic, transitive script
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inclusions are allowed by default. Hence, runtime-included scripts (either by self
or by third-party) inherit the nonce from their validated parent script.

Validation Compliance with the safe CSP

Stage Method Stage Method Stage Method

Pre-included

Inline Event
Handlers

Filter tag hashes CSP Generator self in C1 Filter convert to non-inline,
add nonce

Inline Scripts Filter tag hashes CSP Generator hash in C1 Filter add nonce
Inline Dynamic
Scripts

Filter modified ASTs CSP Generator self in C1 Filter convert to non-inline,
add nonce

Non-inline Scripts Filter tag hashes CSP Generator source URL in C1 Filter add nonce

Runtime
Included

Inline Event
Handlers

Mutation
Observer

tag hashes CSP Generator self in C1 Mutation
Observer

convert to non-inline,
inherits nonce

Inline Scripts N/A N/A CSP Generator hash in C1 N/A inherits nonce
Non-inline Scripts N/A N/A CSP Generator source URL in C1 N/A inherits nonce

Table 1: EasyCSPeasy phases that handle the validation and compliance ensurance of
script content. Detections are done by the CSP Generator during the Learning phase.

4.2 Rewriting Phase

In the Rewriting phase, EasyCSPeasy receives each server response generated
by the Web application before it reaches the client to validate and rewrite script
content for compliance. Hence, the Rewriting phase is run for each page re-
quest. The Filter executes the validate() function shown in Listing 1.2 for
each JS-including element in the server response. This function first validates
the elements and then removes any element that has failed the validation pro-
cess from the HTML response. Then, we execute the comply() function shown
in Listing 1.3 on all remaining elements to ensure compliance with the safe CSP.

Validation The validate() function calculates the tag hash of the received
element (receivedEl) and attempts to find this hash value among the recorded
element knowledge of the requested URL. If it finds a match, it labels the received
element as benign. As discussed in the previous section, the inline dynamic
scripts cannot be validated with this method. Any script that could not be
matched by the hash comparison is treated as a potential inline dynamic script.
For the potential inline dynamic scripts, the Filter calculates the modified ASTs
(described in Section 4.1) and makes an AST comparison. If this script’s modified
AST is observed during the Learning Phase, the script is labeled as benign and
dynamic (via isDynamic that will be utilized for compliance). Finally, the Filter
removes the elements that are not labeled as benign from the response.

1 def validate(receivedEl , [recordedEls ]):

2 receivedEl.label = 'non -benign '
3 if receivedEl.compare_hash ([ recordedEls ]):

4 receivedEl.label = 'benign '
5 else if receivedEl.isInlineScript ():

6 if receivedEl.compare_AST ([ recordedEls ]):

7 receivedEl.label = 'benign '
8 receivedEl.isDynamic = True

9 if receivedEl.label = 'non -benign ':
10 receivedEl.remove ()

Listing 1.2: Simplified code of the validate function used by the Rewriting phase.
(receivedEl refers to the received element in the server response.)
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Ensuring Compliance During the Rewriting phase, we make necessary mod-
ifications to the remaining elements to ensure compliance with the safe CSP
by executing the comply() function (Listing 1.3) for each element. The Filter
receives the pre-included elements in the server response. Hence, it can only
modify pre-included elements and not runtime-included elements. We leverage
the Mutation Observer to perform required modifications during runtime. As
discussed in Section 4.1, inline event handlers and inline dynamic scripts have
to be converted to non-inline to comply with the C1 policy so that they are
not blocked. To this end, the Filter runs the comply() function on these pre-
included elements to perform the conversion. The comply() function also adds a
nonce attribute to the validated pre-included elements for compliance with the
C2 policy. To handle the runtime-generated elements with inline events, the Fil-
ter attaches the Mutation Observer to the server response as a non-inline script.
The Mutation Observer validates and converts runtime-generated elements with
inline events to non-inline elements. The script content included during runtime
by parent third-party scripts is handled in the same way by the stages shown in
Table 1.

1 def comply(receivedEl):

2 if receivedEl.isEvent () or receivedEl.isDynamic:

3 receivedEl.convert_to_noninline ()

4 receivedEl.nonce = csp_nonce

Listing 1.3: Simplified code of the comply function used by the Rewriting phase.

5 System Implementation

5.1 Learning Phase: Crawler

To populate a sitemap for a Web application, we utilize the following three
methods: i) Python Crawler based on an existing library for sitemap generation
(python-sitemap [4]), ii) Burp Scanner [3] and iii) Mapper that maps server-
side files to URLs. The Python Crawler and the Mapper run automatically when
the Learning Phase is executed. We run the Burp Scanner manually since Burp
does not o↵er an API. Then, we combine the output sitemaps of these methods
and remove duplicate URLs (i.e., exact matches of full URLs). The combination
of these three methods gives us better coverage of the target website compared
to using only one of them. In Appendix Section E, we support this by presenting
the contribution (in number of URLs) of the three methods to the sitemaps of
the 6 Web applications that we experiment on in Section 6.1.

The Python Crawler works by starting at a designated seed URL, and then
following all links on that page to other pages. It only follows the links that have
the same domain as the seed URL (including the ones with relative paths) since
we focus on the script content of only the target website.

During crawling, Burp Scanner navigates around the application. It follows
links, submits forms, and logs in where necessary, to catalog the application’s
navigational paths. Burp Scanner goes beyond what the Python Crawler covers
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by modifying URL parameters and making POST requests. We utilize the Scan-
ner feature of Burp Suite Professional v2023.3.3. Burp provides various modes,
each of which presents di↵erent trade-o↵s between coverage and speed. We em-
ployed the mode with the greatest coverage (i.e., mostcomplete) and configured
the time limit to 60 minutes and the crawl depth to 10. Azad et al. [26] evaluated
the coverage o↵ered by BurpSuite Spider v2.0.14beta on four open source Web
applications. They used additional three methods (Tutorials, Monkey Testing
and Vulnerability Scanner) and compared the results. The Spider outperformed
the other methods by discovering 94%, 90%, 83% and 68% of all the discovered
pages for the four applications.

Mapper runs a command on the top directory on the server-side, which
searches for all files with a certain extension (e.g., .php for PHP-based and .pl

for Perl-based) in the current directory and its subdirectories. For example, for
PHP-based applications, the mapper executes the following command: find .

-type f -name "*.php". It uses the output of this command to generate links
for a target Web application. These links are generated by concatenating the
seed URL and the relative location of the files.

5.2 Learning Phase: CSP Generator

Crafting the safe CSP The CSP Generator leverages selenium [17] to visit
each URL in the sitemap and poll the HTML of the page every 0.2 seconds. We
determined this (configurable) number specific to our setup with an average page
load time of 0.2-0.4 seconds. It declares the page loaded upon detecting that the
HTML content has remained unchanged for the past three consecutive checks.
This way, it allows runtime DOMmodifications such as runtime script generation
to complete. As discussed in Section 3.2, the CSP Generator is designed to
generate a safe CSP, as shown in Listing 1.1. In our CSP policy configuration,
two CSPs, a CSP C1 and a CSP C2, are set and enforced at the same time. The
CSP Generator creates a single CSP C1 for the entire website by progressively
adding the source URLs and hashes of the scripts encountered in each page
visited, to the C1 policy (Listing 1.1 line 1). We cryptographically generate the
nonce value in the C2 policy (Listing 1.1 line 2) on the server side by leveraging
the mod cspnonce Apache module. Our implementation enables the nonce value
to be changed with each request of a page, thereby protecting the website against
nonce reuse attacks. Note that, although unsafe-eval is not present by default
in our generated safe CSP, it can be enabled if necessary.

Building the Element Knowledge The CSP Generator records the element
knowledge in the database separately for each URL present in the sitemap.
When the Filter receives a server response after a client request, it fetches the
element knowledge only for that specific page. This way, EasyCSPeasy limits
the potential for an attack in which an adversary injects a developer-intended
script from one page of a website to another page, aiming to induce malicious
behavior. Additionally, this method decreases the performance overhead caused
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by the hash comparison (Listing 1.2 line 3) and AST comparison (Listing 1.2
line 6) functions during the validation process. Several HTML attributes might
change during runtime (such as width and height) which will a↵ect the value
of tag hash. To avoid this, before calculating the hash, EasyCSPeasy removes
the element attributes except for the inline event attributes (e.g., onclick) and
the src attribute if present. The values of the removed attributes cannot be
interpreted as JavaScript code and cannot be executed. Hence, removing those
attributes does not have any security implications that concern CSP generation.

Dynamic Scripts To validate the inline dynamic scripts in the Rewriting phase,
the CSP Generator first obtains the ASTs of these scripts by using the Es-
prima [12] parser. It then modifies the ASTs so that they do not contain any
dynamic values and adds the modified ASTs (script ast) to the element knowl-
edge. According to the documentation [13], the Literal data type is assigned to
the lexical elements that have one of the following value types: boolean, number,
string, RegExp or null. We modify the generated AST by removing the values
of any Literal types seen in the tree. Among the Literal value types, string
and RegExp may be potentially dangerous if they are generated by processing
user input without any sanitization. However, these string literals must be in-
terpreted as code, to be dangerous. That may only be accomplished through an
eval-like function. Since EasyCSPeasy sets a safe CSP where unsafe-eval is
disabled, this potential vulnerability is eliminated.

5.3 Rewriting Phase

Validating the Elements in the Server Response To validate the received
JS-including elements, the Filter retrieves the element knowledge for the re-
quested URL and executes the validate() function. This function ensures that
only developer-intended elements are present in the rewritten response. As dis-
cussed in Section 4.1, a server may generate a new page or new content based
on the GET and POST parameters in a URL. For example, PhpBB gener-
ates new separate pages for each new topic. The URLs of these pages (topic
URL) contain the topic’s ID number. The topic URLs have the following form:
phpbb.com/viewtopic.php?t=<topic_id>. If a new topic URL is created after
running the Learning Phase, this URL will not be present in our sitemap and
its element knowledge will not be recorded in the database.

To mitigate this issue, the Filter follows the algorithm shown in Listing 1.4.
This function proceeds sequentially through the following steps, advancing to
the next step only if the preceding one fails: i) attempt to match the full
URL (i.e., the URL with its query parameters if present) with the recorded
URLs (db urls), ii) find the recorded URL that has the same path and query
parameters, and the most matching parameter values, as the received URL
(max params()), iii) match the URL to the special regex pattern (may be pro-
vided by the Web developer) and iv) match the URL without the query string
(via remove qs()). With this algorithm, if the full URL has not been observed
during the Learning Phase, the Filter can find a best e↵ort match for a received
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URL. For the above PhpBB example, the Filter can fetch a previously created
topic page’s element knowledge for a newly created topic page. We note that
this method is reliable when the pages of the two best e↵ort match URLs (such
as di↵erent PhpBB topics) contain script content that is interpreted as the same
(i.e., may contain inline dynamic scripts with matching ASTs) by EasyCSPeasy.
We evaluate our algorithm in Section 6.1.
1 def best_effort_match(received_url , db_urls):

2 best_match = None

3 if received_url in db_urls:

4 return received_url

5 best_match = max_params(parse_qs(received_url),parse_qs(db_urls))

6 if best_match:

7 return best_match

8 best_match = re.match(special_pattern , db_urls)

9 if best_match:

10 return best_match

11 if remove_qs(received_url) in remove_qs(db_urls):

12 return remove_qs(received_url)

Listing 1.4: The pseudo-code algorithm to find the closest URL in the database to the
received URL. (parse qs() parses the query string.)

Ensuring Compliance with the safe CSP The Filter converts the inline
event handlers to non-inline elements using the comply() function. For in-
stance, it alters the inline element depicted in Listing 1.5, transforming it into
the non-inline format shown in Listing 1.6. It fetches the non-inline event_

listener_script from the event element knowledge and creates the inline_

event_secureN.js file (secureN=event_id). Then, it appends a non-inline
script element pointing to the location of inline_event_secureN.js (List-
ing 1.6 line 2) to the HTML response. This script can locate the HTML element
to register the event listener by leveraging the event_id attribute (Listing 1.7).

The comply() function also converts inline dynamic scripts to non-inline
scripts as shown in Listing 1.8. The script_id is leveraged to assign a location to
this script by naming the script file as inline_js_secureN.js (secureN=script_
id). Both scripts located at inline_event_secureN.js and inline_js_secureN.
js would be allowed to execute due to the presence of the self keyword in the
C1 policy, as the scripts are located in the same origin as the seed URL. An
adversary may attempt to retrieve the script files to gain access to any sensitive
information they might contain. To mitigate this, we generate a cryptographi-
cally secure random number (secureN) and use it to assign the file locations.
This prevents an attacker from guessing the file names to accomplish unautho-
rized access.

The elements that are generated during runtime can manifest in two ways,
either through automatic generation within the browser upon a user’s visit to
the page or through generation following user interaction with the page. For
EasyCSPeasy to capture the elements generated only after user interaction,
the necessary user interactions should be simulated during the Learning phase.
This limitation could be addressed by the Web developer utilizing a targeted
testbed that exercises user interactions. The Filter also generates the script files
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(inline event secureN.js) shown in Listing 1.6 to allow the Web browser to
load these scripts during runtime. The final rewritten response which is compli-
ant with the safe CSP is then served to the client.

1 <button onclick="alert('clicked ')">X</button >

Listing 1.5: An example HTML element with an inline event handler.

1 <button event_id="secureN">X</button >

2 <script src='./inline_event_secureN.js'></script >

Listing 1.6: An example conversion of an HTML element with an inline event handler.

1 document.querySelector ("[ event_id='secureN ']").addEventListener (" onclick",
function (){alert('clicked ')});

Listing 1.7: JavaScript code of an inline event secureN.js.

1 <script src='./inline_js_secureN.js'></script >

Listing 1.8: An example conversion of a previously inline script.

Mutation Observer The Mutation Observer script is appended to the page in
the Rewriting Phase by the Filter to validate the developer-intended runtime-
included inline events and convert them to non-inline elements to comply with
the C1 policy. This script observes changes in the DOM during runtime. It de-
tects any runtime-generated inline event handlers. For each of these elements,
the Mutation Observer computes the tag hash to validate the element (via
validate()) and obtain the corresponding event id using the element knowl-
edge. Then, it makes the conversion shown in Listing 1.6. The generated script
(Listing 1.6 line 2) inherits the Mutation Observer’s nonce, achieving compliance
with the C2 policy. The browser then loads the inline event secureN.js files that
were already generated by the Filter. Note that, runtime-included inline and
non-inline scripts do not need to be validated since the safe CSP should block
any script that is not developer-intended.

5.4 Implementation Details

The CSP Generator appends the CSP header pair to the primary Apache con-
figuration file (httpd.conf ) as shown in Listing 1.9 lines 4 to 7. The appended
CSP is e↵ective for all pages of the specified domain. We implement the Filter
as an external output filter (programmed in PHP and Python3). We set this
filter by leveraging the Apache module, mod ext filter and adding the lines 1
to 3 shown in Listing 1.9 to the Apache configuration file. We programmed both
the Crawler and the CSP Generator in Python3. We built EasyCSPeasy to work
with Apache Web servers. However, our approach can be implemented to work
with other Web servers by applying minor changes to our code. Specifically, a
developer can modify their Web server’s configuration file by using our approach
and get the same behavior. For example, in an NGINXWeb server, we can simply
implement the Filter by setting a sub filter through the ngx http sub module

module.
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1 LoadModule cspnonce_module mod_cspnonce.so

2 ExtFilterDefine theFilter intype=text/html mode=output cmd="php filter.php

<website_dir > <website_url >"

3 SetOutputFilter theFilter

4 <Directory />

5 Header set Content-Security-Policy "<C1>"

6 Header append Content-Security-Policy "<C2>"

7 </Directory >

Listing 1.9: EasyCSPeasy’s modification on Apache configuration file

6 Evaluation

EasyCSPeasy needs to mitigate the aforementioned attacks in Section 3.1, pre-
serve commonly interacted functionalities within any website, and have a low
performance overhead. Hence, we evaluate EasyCSPeasy for functionality, se-
curity, and performance aspects. Our approach to evaluating EasyCSPeasy is
threefold: i) Evaluating functionality on open source Web applications by set-
ting up an EasyCSPeasy working environment, ii) Demonstrating protection on
the vulnerable versions of open source Web applications and iii) Measuring the
performance impact on open source Web applications.

6.1 Functionality Experiments on Open Source Web Applications

The modifications made by EasyCSPeasy must not disrupt the functionality of
a target website. We evaluate our system on open source Web applications that
are designed to o↵er di↵erent features. Specifically, we evaluate the following
five PHP-based applications: Litecart [21] (eCommerce), PhpBB3 [14] (forum),
PhpMyAdmin [15] (database administration), Squirrelmail [18] (email), Word-
Press [23] (CMS), and one Perl-based application, TWiki [19] (wiki). We aim to
evaluate the above Web applications with a comprehensive set of test cases.

Azad et al. [26] prepared Selenium tests to systematically exercise commonly
interacted functionalities in older versions of WordPress and PhpMyAdmin. The
goal was to ensure that their testing scenarios align with how real users typically
engage with these web applications, providing a more realistic and meaningful
assessment of their behavior. Hence, we manually replicate their tests to evaluate
the latest versions of WordPress and PhpMyAdmin. Since there is no available
set of test cases for the other Web applications, we develop our own test cases
following the methodology presented in [26] to simulate common Web user in-
teractions. We present the test cases and our results in Table 2. To deploy the
Web applications, we leverage an XAMPP [25] setup with PHP version 8, Perl
version 5.32, and Apache version 2.4. The evaluated versions of LiteCart, TWiki,
and WordPress leverage eval-like functions. To evaluate EasyCSPeasy on those
applications, we enable unsafe-eval in the CSP.
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Test
Num.

LiteCart
v.2.3.3

PhpBB3
v.3.3.5

PhpMyAdmin
v.5.1.3

Squirrelmail
v.1.5.2

TWiki
v.6.0.0

Wordpress
v.4.7.1

1 Login, logout Login, logout Login, logout Login, logout Login, logout Login, logout

2 Add to cart View forum Create database View email Search New post (c)

3 View cart View existing topic Create, browse, drop, optimize table Send email Create topic (c) Theme

4 Increase, decrease quantity in cart Create topic Input data to table Delete email Edit topic Setting
5 Remove product from cart Preview topic and reply Run SQL query Search functionality Attach file Category tag
6 Change regional settings Post reply Create index Flag, unflag email Rename topic Comment
7 Edit account Send, receive private messages Export backup Set new topic parent Export
8 Search product Search functionality Add user Delete topic User
9 View order history Check variables, charsets, engines Media
10 Send message to customer service Import SQL

Table 2: Functionality Experiment Results on Open Source Web Applications. ((c):
Conditional pass)

Functionality Experiment Results In Table 2, we show that out of 51 test
cases executed on the six Web applications, 49 passed, 2 conditionally passed
(i.e., after providing a special pattern to the best effort match algorithm
shown in Listing 1.4) and none of the test cases failed. We observe similar oc-
currences as the PhpBB example discussed in Section 5.3 during our evaluation
of PhpMyAdmin and PhpBB. By using the algorithm presented in Listing 1.4,
EasyCSPeasy successfully executed 4 tests for PhpBB (case 4 - 7) and 6 tests
for PhpMyAdmin (case 2 - 7) that otherwise would have failed.

While executing two of the test cases (Twiki case 3 and WordPress case
2), we observe that new URLs that are unseen during the Learning Phase
are introduced to the Web application instances. When a user creates a post,
WordPress generates a page for the post with the URL of the following form:
wordpress.com/<year>/<month>/<day>/<post_name>. Similarly, for new top-
ics, Twiki generates a URL of the following form: twiki.com/bin/edit/Main/
<topic_name>. Hence, we craft one special pattern for each WordPress and
Twiki to match a new post or topic URL to any post or topic URL seen
during the Learning Phase. The special pattern for WordPress is the follow-
ing: wordpress.com/(\d{4})/(\d{1,2})/(\d{1,2})/(.+). After we provide
the special patterns, both test cases pass. We label those cases as conditionally
passed. We create multiple topics on each Web application and observe that for
both WordPress and Twiki, any topic page within each application contains the
same script content (i.e., interpreted as the same by EasyCSPeasy). We note
that any special pattern may be configured in config.json by the Web devel-
oper. Moreover, Web developers may optionally disable the strict “page-based
script matching” described in Section 4 instead of adding a special pattern (for-
going the added protection). When this option is disabled, our system will not
attempt to find a URL match. It will fetch all recorded element knowledge in the
database instead of the specific page’s element knowledge relieving the need for
special pattern construction. We conclude that by default EasyCSPeasy mostly
retains the commonly interacted functionalities of the Web applications. When
special patterns are provided, EasyCSPeasy retains all functionalities.

To demonstrate EasyCSPeasy’s successful script content rewriting, we need
to show that a target Web application actually executes scripts. We utilize CSP’s
report-only mode (CSP-RO) which allows the execution of script content vio-
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lating the set policy while reporting such violations. The reports contain the
inline script content (i.e., inline scripts and event handlers) and non-inline script
content (i.e., scripts loaded via src attribute) that would be blocked by the set
policy. To quantify the script content, first, for each Web application, we set the
CSP-RO as script-src ’none’ so that all script content will be reported as a
violation allowing us to log them. Then, we run all test cases in the experiment
setup described above without integrating EasyCSPeasy. This way we log the
script content executed when the test cases are exercised. We show that the
number of executed scripts, detailed in Appendix Section F, peaks at 91 on a
single page.

6.2 Security Experiments on Open Source Web Applications

To demonstrate that EasyCSPeasy can help block all 3 types of known XSS at-
tacks, we set up vulnerable versions of 3 open source Web applications (LiteCart,
WordPress, and MyBB). These applications contain disclosed vulnerabilities that
have been assigned CVEs [16]. We leveraged XAMPP with Apache version 2.4.
For LiteCart and MyBB, we used PHP version 5.6 and for WordPress, we used
PHP version 8. After setting up, we successfully reproduce the disclosed attacks
on these Web applications. Then, we integrate EasyCSPeasy to the applications
and attempt to reproduce the same attacks. Upon the integration of our system,
all attack attempts fail. Hence, we conclude that EasyCSPeasy is able to protect
against the 3 types of XSS as promised.

Reflected XSS Prevention (Case Study: LiteCart) LiteCart versions be-
fore 1.3.3 are found to have multiple reflected XSS vulnerabilities in search.php

(CVE-2014-7183 [9]). This vulnerability is caused by the Web application taking
the user input inside the search box and reflecting it directly into the title HTML
tag without any sanitization. We deploy LiteCart version 1.3.2 in our experiment
environment and craft two separate URLs to reproduce two reflected XSS at-
tacks. The first attack URL, shown in Listing 1.10 line 1, contains an inline script
as the malicious payload. The second URL, shown in Listing 1.10 line 2, con-
tains a link tag with an onerror inline event handler. We execute both attacks
successfully on a default LiteCart setup. After that, we deploy EasyCSPeasy
on our LiteCart setup. Our system generates a safe CSP specifically crafted for
LiteCart. We observe that the first attack is unsuccessful, as the generated C1
policy does not contain the hash of the injected inline script in Listing 1.10 line
1. Similarly, the second attack in Listing 1.10 line 2 fails, since EasyCSPeasy
disables the dangerous unsafe-inline keyword.

1 http://litecart.net/en/search?query =";></title><script >alert (1)</script >

2 http://litecart.net/en/search?query =";></title><link rel='stylesheet ' type

='text/css' href='blah' onerror=alert (1)></link>

Listing 1.10: Reflected XSS payloads
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Stored XSS Prevention (Case Study: WordPress) WordPress features a
plugin architecture where one can integrate a plugin into their WordPress setup.
A stored XSS in the Absolutely Glamorous Custom Admin plugin (versions <=
6.8) has been disclosed in CVE-2021-36823 [11]. The stored XSS attack can be
executed via unsanitized input fields of the plugin settings. A user can input any
one of the three payloads shown in Listing 1.11 line 1 to 3 to execute arbitrary
JavaScript. This user input is also stored in the database, so the potentially
malicious payload will be served to every user that visits the vulnerable page.
After reproducing the stored XSS attack with three di↵erent payloads shown in
Listing 1.11, we deploy EasyCSPeasy on the WordPress setup. We observe the
payloads in Listing 1.11 lines 1 and 2 fail to execute since the CSP C1 generated
by EasyCSPeasy does not contain unsafe-inline. Similarly, the payload with
a non-inline script in Listing 1.11 line 3 is blocked because its source URL is not
allowlisted in the CSP C1.

1 "><img src=x onerror=alert (1) />

2 "><script >alert (1)</script >

3 "><script src=evil.com/evil.js></script >

Listing 1.11: Stored XSS payloads

DOM-based XSS Prevention (Case Study: MyBB) MyBB is a free and
open-source forum software. In MyBB (version <= 1.8.24), the custom code
(BBCode) for the visual editor does not escape input properly when rendering
HTML, resulting in a DOM-based XSS vulnerability (CVE-2020-15139 [10]).
The weakness can be exploited by pointing a victim to a page where the visual
editor is active (e.g., such as for a post or Private Message) and operates on a
maliciously crafted BBCode message. We use the payload in Listing 1.12 to ex-
ploit this vulnerability in our MyBB setup. After running the attack successfully
on a default MyBB setup, we integrate EasyCSPeasy to MyBB and attempt to
reproduce the same attack. EasyCSPeasy blocks the DOM-based XSS attack
attempt as expected since it disables the unsafe-inline compatibility mode.

1 [size =10;"><img/onerror='alert (1)'/src=1/>]PoC[/size]

Listing 1.12: DOM-based XSS payload

6.3 Performance Evaluation

The Learning Phase of EasyCSPeasy has to be executed only once by the site-
operator, whereas the Rewriting Phase runs on every page request and may
a↵ect the user experience. Therefore, we evaluate EasyCSPeasy’s performance
impact by measuring the performance of the Rewriting Phase. We conducted
experiments on each of the six Web applications shown in Table 2. We integrate
EasyCSPeasy to the Web application environments we created for functionality
experiments. To profile our code we leverage the cProfile python library which
shows the execution time for each individual function. We visit ten pages (of the
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most commonly interacted pages) per application and profile EasyCSPeasy. We
show the key results in Table 3. EasyCSPeasy introduces a total median overhead
of 53 ms which is under the 100 ms limit for having the user feel that the system is
reacting instantaneously [40]. The median overhead corresponds to 9.6% (53ms)
of the total page load time (550ms), where 15 ms is attributed to the function
that fetches the element knowledge from the database and 35 ms is attributed
to the HTML parsing functions. We observe the maximum overhead case on a
WordPress page where the total overhead introduced is 429ms which corresponds
to 11.9% of the total page load time (3.6s). The main di↵erence between the
median and the maximum cases, which is causing the additional overhead, is the
increased execution time of the AST operations. The WordPress page where we
observe the maximum overhead contains 8 long scripts with dynamic variables.
Collectively these scripts contain 319,708 characters. While generating the ASTs,
the Esprima library works on each character one by one. The high number of
characters in the maximum overhead case compared to the other cases is the
main reason for the increased overhead.

Execution Time (ms) Script Content

Type Median Max Type Median Max

Database Fetch 15 (2.7%) 15 (0.4%) Inline Event 2 1
HTML Parse 35 (6.4%) 12 (0.3%) Inline Script 3 75
AST Operations 3 (0.5%) 402 (11.2%) Dynamic Script 3 8
Total Overhead 53 (9.6%) 429 (11.9%) Non-inline Script 7 91
Total Page Load 550 (100%) 3600 (100%)

Table 3: Performance Overhead Experiment Results.

6.4 Limitations

EasyCSPeasy has two limitations: i) the generic crawler of our system may not
generate complete sitemaps and ii) runtime-generated script content that is only
generated after user interaction has to be explicitly triggered during the Learn-
ing phase. However, both of these limitations may be overcome by utilizing
application-specific testbeds. Testbeds are commonly used for testing an appli-
cation after code changes. A targeted testbed is likely to contain the sitemap to
visit the pages of the application and to simulate user interactions.

7 Conclusion

In conclusion, we propose EasyCSPeasy, a server-side, standalone XSS mitiga-
tion system that helps Web developers adopt CSP by generating a safe CSP for
any target website. EasyCSPeasy also ensures compliance with the set CSP by
rewriting the server response. We evaluate and show our system can success-
fully protect against all three types of XSS. In addition to o↵ered mitigation,
EasyCSPeasy does not interfere with the most commonly interacted website
functionalities and introduces a minimal performance overhead.
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A Type 1 Script Gadgets

This type of gadget can be used to trigger new script element creation with
potentially malicious code. We show an example script gadget present in a web-
site’s HTML in Listing 1.13 lines 2 to 5. This gadget finds all button elements
in a page and assigns their data-text attribute to their innerHTML (the text
shown on a button). An attacker can inject a button element to this page and
assign their malicious script as the value of the button’s data-text attribute.
We show an example of injected HTML to trigger malicious script inclusion in
Listing 1.14. When the gadget is triggered, it creates a new script element with
the attacker’s malicious code (Listing 1.15).

1 <button data-text='mybutton '></button >
2 <script nonce='r4nd0m '>
3 bts=document.getElementsByTagName('button ');
4 bts=Array.from(bts);

5 bts.forEach(element => element.innerHTML=element.getAttribute('data-text ')
); </script >

Listing 1.13: An example Script Gadget present in a website’s HTML

1 <button data-text="<script src='evil.com/evil.js'></script >"></button >

Listing 1.14: An example attacker injected HTML

1 <button data-text='...'>
2 <script src='evil.com/evil.js'>
3 </script ></button >

Listing 1.15: The final HTML

B CSP Configurations: C1 and C2

C1 policy - Allowlist-based This configuration contains a list of allowed script
source URLs and a list of hashes to allow individual inline script execution. The
CSP C1 configuration has the form shown in Listing 1.16 line 1. Previous work
found that allowlists are ine↵ective and bypassable by showing that they can
potentially include unsafe endpoints (destination URLs) that contain vulnera-
bilities (such as JSONP and Open Redirects) which may be leveraged to perform
XSS attacks [47]. To preserve all functionality in a website, the site-operator has
to build a complete URL and hash list for the C1 policy. Additionally, config-
urations based on allowlists can be challenging to maintain, as websites may
regularly add or remove scripts. As a result, the allowlist must be continuously
updated to reflect these changes. Manually building and maintaining such com-
prehensive lists can be a lengthy and error-prone process (e.g., the site-operator
might forget to allowlist some scripts or make a typo in the allowlist), especially
for complex websites [42]. Hence, we argue that devising a C1 policy should be
done automatically as has been done before [34].
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1 script-src <allowed_urls > <allowed_hashes >

Listing 1.16: CSP C1

C2 policy - Nonce-based, strict-dynamic enabled This configuration contains
a randomly generated nonce value which will only allow execution if a script has
the same nonce value as the one listed in the CSP. The CSP C2 configuration has
the form shown in Listing 1.17 line 2. Runtime script generation is a widespread
practice on the Web. The presence of strict-dynamic makes this policy com-
patible with websites that perform runtime script generation since these scripts
would not carry a valid nonce value and would otherwise be blocked by the
CSP. However, because of this, a C2 policy will leave a page vulnerable to Type
1 Script Gadget attacks. When implementing a C2 policy, maintaining function-
ality requires site operators to assign a valid nonce value in each server-generated
script. This process should be automatized since it may be time-consuming and
error-prone.

1 script-src 'nonce- <value >' 'strict-dynamic '

Listing 1.17: CSP C2

C SMURF Experiments

In Table 4, we show the results of the experiments done by Ste↵ens et al. [46]
and our results that we obtain by rerunning their experiments. Specifically, we
compare the two results to show that the eval usage went down by 18.3%. We
aim to gauge the shift in eval usage among leading websites. To achieve this,
we measure eval usage among today’s most popular websites rather than those
that held that status in January 2020 (Tranco list used in [46]). We consider this
approach more representative of current eval usage trends. We used the March
28, 2022 version of the Tranco list.

Inline Event Handler
Writing Hosts

Inline Script
Writing Hosts

Eval
Using Hosts

Non-programmatic Script
Including Hosts

SMURF experiments
by Ste↵ens et al. [46]

Self OR third-party OR
(self AND third-party)

85.5% 95% 78.8% N/A

Only third-party 23.7% 0.4% 23.8% N/A
Only self 11.2% 50.6% 17.7% N/A
Only third-party OR
(self AND third-party)

74.3% 44.8% 61% 17.6%

Our SMURF
experiments

Self OR third-party OR
(self AND third-party)

82% 97.7% 60.5% N/A

Only third-party 35.4% 9% 30% N/A
Only self 12.3% 40.6% 12.3% N/A
Only third-party OR
(self AND third-party)

69.6% 57.1% 48.2% 12%

Table 4: Original and Our SMURF experiments. Cells highlighted to show that eval
usage is significantly decreased.
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D Comparison with Related Work

In Table 5, we compare existing systems to EasyCSPeasy on the design goals pre-
sented below and show that EasyCSPeasy is the only system that accomplishes
all of these goals. We compose the design goals of our system by addressing the
shortcomings of previous work [34,30,49,33,41], regarding their o↵ered protection
against XSS, genericness, applicability to real-world websites, and the potential
introduction of additional security considerations. We present our design goals
in the following:
Standalone: A standalone system performs its function without requiring any
third party. Our system should be standalone so that a site-operator may easily
integrate it with their Web application.
Generates a Safe CSP: Our system should devise a safe CSP as explained in
Section 3.2.
Language Agnostic: To have higher real-world applicability, our system should
allow integration with Web applications programmed in any back-end language.
Supports Dynamic Websites: Dynamic websites may generate JavaScript
on the fly via server-side scripting. Adopting a dynamic approach is a prevalent
practice among site-operators [37]. Hence, being incompatible with those sites
would significantly decrease the number of potential websites that can benefit
from the system. Our system should support dynamic websites.
No unsafe-inline: The dangerous unsafe-inline compatibility mode should
be disabled in the CSP and our system should modify the webpages so that the
script content is compliant with this CSP.
Page-based script matching: To prevent unwanted or malicious behavior,
we should only allow execution of a script within the context of its developer-
intended page.

AutoCSP [34] CCSP [30] CSPAutoGen [41] deDacota [33] JSCSP [49] EasyCSPeasy

Standalone Yes No Yes Yes No Yes
Generates a Safe CSP No No No No No Yes
Language Agnostic No Yes Yes No Yes Yes
Supports Dynamic Websites No Yes Yes No No Yes
No unsafe-inline No No Yes No No Yes
Page-based Script Matching No No No No Yes Yes

Table 5: Comparison with Related Work on the Design Goals.

E Obtained Sitemap Sizes

We show the number of URLs contributed to the sitemaps by each of the three
methods for the six Web applications in Figure 2. Burp Scanner did not terminate
on PhpBB3 because of an everchanging session ID URL parameter called sid.
Hence, we show the contribution of Burp on Figure 2 (b) as zero. We successfully
configured our Python crawler to ignore the sid parameter.
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Fig. 2: Venn diagrams showing the number of URLs contributed to the sitemaps by
each of the three methods.

F Script Content of Evaluated Web Applications

In Table 6, we show the number of scripts executed by each evaluated Web
application.

Type
LiteCart
v.2.3.3

PhpBB3
v.3.3.5

PhpMyAdmin
v.5.1.3

Squirrelmail
v.1.5.2

TWiki
v.6.0.0

Wordpress
v.4.7.1

Median Inline 2 2 1 7 6 12
Non-inline 3 4 2 1 50 12

Max Inline 5 5 5 11 9 84
Non-inline 3 13 37 3 74 91

Table 6: Test Case Script Content Execution. The numbers represent the number of
scripts executed by the Web application.
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