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Pathogen resistance to B-lactam antibiotics compromises effective treatments of superbug
infections. One major source of B-lactam resistance is the bacterial production of B-lactamases,
which could effectively hydrolyze B-lactam drugs. In this thesis, the hydrolysis of various B-lactam
antibiotics by class A serine-based B-lactamases (ASBLs) were investigated using hybrid Quantum
Mechanical / Molecular Mechanical (QM/MM) minimum energy pathway (MEP) calculations and
explainable machine learning (ML) approaches. The TEM-1/benzylpenicillin acylation reaction
with QM/MM chain-of-states reaction pathways was firstly revisited. I proposed two
decomposition methods for energy contribution analysis based on perturbing ML regression
models. Both methods were shown to be model implementation invariant and successfully bridged
the discrepancies between two pioneering mechanistic studies. The Toho-1 ASBL acylations of
ampicillin and cefalexin were then investigated. I reported that the acylation pathway selection can
be ligand dependent: ampicillin could undergo acylation via Lys73 or Glu166 acting as the general
base while cefalexin acylation is limited to Lys73 as the general base. An explainable artificial
intelligence (XAI) method, the Boltzmann-weighted Cumulative Integrated Gradients (BCIG),
was developed to explain the different acylation pathway viability found for ampicillin and
cefalexin. Lastly, conformational factors determining the GES-5/imipenem deacylation activity

was investigated using edge-conditioned convolutional graph-learning (GL) methods. Critical



mechanistic insights were derived from perturbative response of the GL latent representations,
which explained the different deacylation reactivity between the two imipenem pyrroline tautomer
states and identified the orientation of the carbapenem 60-hydroxyethyl as the key factor that
impacts the deacylation barrier heights. In summary, my thesis focuses on bridging QM/MM
chain-of-states reaction pathway calculations and explainable ML to derive essential mechanistic

insights into B-lactam resistance driven by ASBLs.
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1. INTRODUCTION

Bacterial resistance to antibiotic drugs compromises effective clinical treatments of
pathogen infections and poses severe threat to global health. While being obviously of high clinical
values, antibiotics are also economically vital for industries threatened by bacterial infections, such
as husbandry.! Antibiotic molecules are biologically-active compounds that kill bacterial strains
or disrupt their binary fissions.? The B-lactam antibiotics is the major class of antibiotic drugs and

is among the first-discovered antibiotics.’~

The B-lactams drugs function by inhibiting bacterial cell wall synthesis and thus disrupt
bacterial reproduction.® All B-lactam antibiotics share the common structural feature of carrying a
B-lactam four member ring as the central functional group (Figure 1.1a).* Common B-lactam-based
antibiotic families are distinguished by their extended scaffolds: Penam (Penicillins), Cephem
(Cephalosporins), and Carbapenem (Figure 1.1a).*® Since their application, B-lactams have
demonstrated clinical effectiveness against bacterial infections. However, the abuse of B-lactam
drugs has also elevated many bacterial strains to B-lactamases-producing superbugs, which could

effectively inactivate common B-lactam antibiotics families.” '

B-Lactamases are bacterial-produced enzymes that are able to effectively hydrolyze and
confer board resistance to B-lactams. '*!” Based on their mechanisms of action, B-lactamases are
divided into four classes: A, B, C, and D." The class A serine-based P-lactamases (ASPLs)

represent a severe threat due to their prevalence in infectious strains and affinity to a wide range



of B-lactams.”®!7:18 ASBLs are characterized by their conserved functional residues at the active
site: Ser70, Lys73, Ser130, and Glul66. A widely-accepted catalytic mechanism has been
proposed that B-lactam hydrolysis in ASBLs is a serine-mediated acylation-deacylation process
(Figure 1.1b). The acylation pathways have shown flexibility as this process could be mediated by
either Glul66 along or concertedly with Lys73 as the general base.!” On the other hand, the

deacylation pathways of ASBLs can only be mediated by Glul66 as the general base.
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Figure 1.1 Chemical structures of representative B-lactam families and mechanism of B-lactam
hydrolysis in ASBLs. (a) The B-lactam four membered-ring, the penicillin, cephalosporin, and
carbapenem scaffolds; (b) The hydrolysis mechanisms of B-lactam mediated by ASPLs.



In this thesis, the hydrolysis reactions of -lactams catalyzed by multiple representative
ASPBLs are investigated using multiscale Quantum Mechanical / Molecular Mechanical (QM/MM)
simulations. Detailed molecular mechanisms of B-lactam resistance driven by ASPLs were

revealed by explainable ML methods. The rest of the thesis is organized as follows:

In chapter 2, the computational methods used are introduced, including: the basics of
molecular mechanics, the QM/MM as a computational technique for simulating catalytic reactions
in biomacromolecules (enzymes), the chain-of-states optimization algorithms for determining
optimal reaction pathways, Deep-Learning (DL) and Graph-Learning (GL) methods, and

explainability of ML models.

In chapter 3, a classical model of B-lactam resistance, benzylpenicillin acylation in TEM-
1, is revisited with QM/MM chain-of-states calculations and ML regression models. Two types of
energy contribution attributing methods, coined the perturbation-based Intrinsic Energy
Contribution and Dynamic Energy Contribution, were defined to linearly quantify the energy
contributions from the chemical events that are concerted in nature. Both methods are shown to be
quantitatively consistent and model-implementation invariant, which are tested on three ML-based
regression models. I found that the two reacting phases during acylation, tetrahedral formation and
tetrahedral collapsing, are partially concerted steps during the acylation. Moreover, this study also
bridged and explained the discrepancy between the conclusions of two pioneering QM/MM studies

on the rate limiting steps of this reaction.

In chapter 4, extensive QM/MM calculations were performed to identify the acylation
pathways adopted by different B-lactam classes. Briefly, I investigated the Toho-1 ASBL acylation
with ampicillin (AMP) and cefalexin (CEX) antibiotics, which belong to the B-lactam family of

penams and cephems, respectively. It was found that the Glul66 mediated acylation pathways are

3



viable for AMP but prohibitive for CEX. The acylation pathway selection for general penam and

cephem scaffolds are further discussed.

In chapter 5, based on the initial QM/MM investigations on Toho-1/AMP and Toho-
1/CEX, a computational scheme was proposed to achieve the fast sampling of high-quality
QM/MM minimum energy pathways (MEPs). A DL neural network with the deep-and-wide
architecture was implemented to successfully learn the QM/MM MEPs within chemical accuracy
(< 1.0 kcal mol™). T further developed an explainable artificial intelligence (XAI) approach to
explain the kinetics and mechanistic difference observed for AMP and CEX acylation of ASBLs.
This XAI method, coined Boltzmann-weighted Cumulative Integrated Gradients (BCIG), is based
on the Integrated Gradients (IG) approach. In my QM/MM validating calculations, BCIG could
correctly attribute energy contributions of individual chemical processes/steps that aligns with

chemistry intuitions.

In chapter 6, GL methods were applied to study the resistance conferred by GES-5 ASBL
against imipenem. The GES-5 deacylation of imipenem is critical for understand the molecular
mechanisms underlying carbapenem resistance. I investigated two tautomer states on the
imipenem pyrroline ring, which are known to correlate with the deacylation kinetics of
carbapenems. An edge-conditioned graph convolutional neural network (ECGCNN) was
implemented to accurately predict the deacylation barrier from the graph representation of the
GES-5/Imipenem acyl-enzyme configurations. A perturbative approach was proposed to guide the
mechanistic understanding of the deacylation mechanism. The imipenem pyrroline
tautomerization states and the 6a-hydroxyethyl rotamer was revealed to impact the energy barriers
of the deacylation. The potential of DL/GL methods for post analysis QM/MM calculations was

demonstrated.



Lastly, in chapter 7, The force field parametrization of 2-aminothiazole molecule, which is
a common fragment found in B-lactams, was presented. The parametrization protocol follows that
proposed for CHARMM General Force Fields (CGenFF). Briefly, all atom types (thus the Van der
Waals parameters) were taken from CGenFF. The atomic partial charges on each atom were
optimized from fitting the water interaction energies. The equilibrium bond lengths and angle were
fitted to the equilibrium geometries optimized from QM calculations. The classical force constants
and dihedral terms were parametrized to reproduce the vibrational frequencies at high QM level.

The optimized parameters were attached by the end of the thesis.

Above all, this thesis explores the possibility of ML-assisted analysis for QM/MM
calculations to extract essential mechanistic insights. Several criteria for probing the ML models
trained on QM/MM MEPs were proposed to effectively unravel the mechanistic basis of ASPL-
mediated B-lactam hydrolysis. This information is useful to understand ASBL evolution under

selective pressure posed by the application of antibiotic drugs.



2. METHODOLOGIES

2.1 Classical Molecular Mechanical Potentials
The idea of classical MD is to integrate particle displacement through time according to

the Newtonian equation of motion,
mii‘l- = —VU(rl) (21)

where m; and r; are the mass and coordinate of the particle i at time ¢, respectively. VU (r;) is the
gradient of the potential function which describes the interactions between the particles. In
classical molecular mechanics, the potential U normally refers to a molecular force field. In its
simplest form, classical additive molecular force field is composed of a bonded part and a

nonbonded part,?% 2

UMM = Ug ea + UNombonded (2.2)

The bonded part adopts the Hooke’s law of elastic springs to account for the bond

stretching, bending, and torsional potentials contributed by bonded atom groups,

ymM = z k(b — bo)? + Z ko (6 — 6,) + Z k(1 + cos(ng — 6)) (2.3)

Stretching Bending Torsion

where the ks, ko, and k, denote the force constants of the bond stretching, bending, and torsional

terms, respectively; bo and Gy denote the bond lengths and angles at equilibrium; » and o are the



periodicity and phase shift of the rotational potentials of dihedral angles. Note that one dihedral

angle type could adopt multiple torsional terms to correctly reproduce the rotational profile.

The nonbonded part of the force field potential includes the nonbonded interactions
between all atom pairs and is normally scaled or discarded for the atom pairs already included in
the bonded terms. Normally, the nonbonded potential is calculated as the sum of the classical
electrostatic and Van der Waals interactions,

12 6
Rminij | (Rminij N 1 z q:9; 2.4)
r;; r;; 4Te rjj '

Coulomb

MM —
UNonbonded = €ij
Van der Waals

In the Van der Waals part, €;; is the well-depth of the 6-12 Lennard-Jones potential and Rmin, ij is
the Van der Waals radius. In the electrostatic part, €, is the dielectric constant, g; and q; are the

partial atomic charges on the interacting atoms. r;; is the atomic distance between atoms i and ;.

Additional correction terms to the minimal force field model are commonly introduced for
improving the accuracy of the classical potentials. In the most popular CHARMM force fields for
proteins®®, for example, Urey-Bradley terms that define pseudo-bonds between the 1-3 atom pairs
in an angle are introduced to accurately reproduce the vibrational spectra,

Ull\#\gy—Bradley = Z ku (u - uO)Z (25)

Urey—Bradley

where £, is the spring force constant on the pseudo-bond and uo the equilibrium length between
the two atoms. Improper dihedral terms are incorporated for better treatments of the out-of-plane
bending motions,

Ull\r/lnl\groper = Z ke (@ — wo)z (2.6)

Improper



where ko is the spring force constant on the improper dihedral and wo the equilibrium angle.
Furthermore, numerical grid-based potential correction such as the CMAP method has been

implemented for the general improvement of protein backbone sampling.?*

Modern force field parameters are optimized from fitting procedures targeting
experimental data and high-level QM calculations. In order to reduce the vast number of
parameters needed to define a molecule, one adopts the idea of atom typing to identically treat the
potentials contributed by atoms under the same physical environment, based on which the bond
types, angle types, and dihedral types could be accordingly assigned. While each additive force
field family adopts functional forms with different correction terms and fits against different target

data, this thesis focuses only on the parametrization protocols adopted by CHARMM (Chapter 7).

Classical force field potentials are robust descriptors of biomacromolecules such as
proteins. The relatively cheap computational demand of molecular force field potential and
gradient computations permits classical MD simulations to be performed at longer time-scales

needed to access the molecular properties of various biophysical processes.?!

2.2 Hybrid Quantum Mechanical/Molecular Mechanical Potentials

The classical potentials based on force field functions ignore the electron degrees of
freedom and are held to several intrinsic limitations. Its quadratic functional form of the bonded
terms does not permit the dissociation of bonded atom pairs nor the formation of new bonds. The
QM/MM approach, which treats specific regions of interest at QM level and the rest at MM level,
has been proposed to enable the simulations of chemical reactions in complex biomolecular

systems (Figure 2.1).2%



Figure 2.1 The QM/MM partitioning on biomolecular simulating systems.

In the additive QM/MM formulism, the hybrid potential is the sum of the QM and MM

Hamiltonians and the QM/MM coupling,
Hiorar = Hom + Hypm + HQM/MM (2.7)

The essential focus of the QM/MM approach is the coupling scheme applied to treat the interaction

between QM and MM regions. In practice, the coupling Hamiltonian ﬁQ M/MM 1S given as

Homymm = Hpuhder Waals 4 felectrostatic 4 fbonded (2.8)

The ﬁg&’}‘ﬁ,ﬁ term notes the QM/MM boundary condition which splits a molecule into a
QM fragment and a MM fragment. For example, the side chains of amino acid residues which
participate the chemical reactions are normally partitioned into the QM region while the backbones

are treated at MM level. This term is commonly implemented in the single “link-atom” approach,



where pseudo-hydrogen atoms are introduced to partition the chemical bond into the QM and MM
region (Figure 2.2).3° These pseudo-hydrogens are used to complement the valence of the QM
hosting atoms and is only treated quantum mechanically. Additional research efforts for
developing accurate QM/MM boundary potentials include the frozen orbitals,*' generalized hybrid
orbitals,* or pseudobonds.>*> While conceptually more physical, the improvements from these

methods over the single link-atom scheme are inconclusive.*

( )—:;’ﬁ?-Q

QM carbon / MM carbon

Link-atom, H

Figure 2.2 The single link-atom approach for treating QM/MM boundary potential.

Essentially, the treatments applied to the nonbonded interactions between QM and MM
regions distinguish the embedding scheme of the QM region into the MM environments.?® In the
simplest mechanical embedding, all QM/MM coupling interactions are treated purely at MM level,

R 12 R 6
fjvan der Waals _ z € < min,ij) _ < min,ij) (2.9)
QM/MM = AM .
Tom Tam

AM

—~ , 1 qaq
Electrostatic AMM

= — 2.10
QM /MM 4‘7TEO . rA‘M ( )

where label 4 denotes the QM atoms and M the MM atoms.

The major defect of the mechanical embedding scheme is that for fixed-charge force field

models, the partial charges on the QM atoms used for computing the QM/MM electrostatics are

10



invariant with regard to possible QM atom displacements.?® This poses an unrealistic
approximation when bond making or breaking occurs between the QM atoms. Furthermore, the
absence of MM environments from the QM Hamiltonian also presents another limitation that the

QM subsystem is actually computed in vacuum.

As a general improvement over the mechanical embedding, the most popular electrostatic
embedding scheme has been proposed to incorporate the MM point charges into the QM wave
functions as one-electron integrals in the Fock matrix, allowing the QM density to be polarized by

the external field of point charges. The electrostatic part of QM/MM coupling is then given as

R _ 1
gﬁfﬂ&statlc _ _f drp(r)z am " Qaqm (2.11)
— Ir — 1y 47T60AM Ty M

where the p(r) is the density distribution of the QM electrons and Q, is the atomic charge of the
QM nuclei. Accordingly, the I’-I\gﬂo,,'}%\fi, term in the electrostatic embedding scheme needs special

care. The linking hydrogen atoms are normally placed on the QM-MM bonds and maintain realistic
link atom-QM host bond lengths (~1.1 A for C-H bonds). Under the electrostatic embedding
scheme, the point charges on the MM hosts would appear too close to the link atom and induce
unphysical over-polarizations to the QM density. As a general fix, the partial charges on the MM

hosts are deleted or shifted in common practice.>**

Semiempirical parametrized QM methods such as the Tight-Binding models has been
developed for accurate and efficient sampling of reaction profiles.***” Notably, in many
parametrized QM models, such as the third order Density Functional Tight Binding (DFTB3)
model,**3? the QM/MM electrostatic interaction was simply implemented as the Coulomb

potential between the QM Mulliken charges and MM point charges. Robust simplifications as such

11



not only lead to more accurate treatment of boundary potentials but also enable efficient QM/MM

electrostatic calculation using Ewald summation®’ and related methods*!.

Finally, the QM/MM electrostatic embedding scheme does not consider the MM electronic
degrees of freedom. This signifies the direction for future developments of the QM/MM model to
the polarization embedding scheme, where the MM polarizability is included by means of

polarizable force fields.?*?!

2.3 Chain-of-states MEP Optimizations

Sampling rare events and locating optimal transition paths are important for detailed
mechanistic understanding of the dynamics on the system potential.*>** As a common practice,
enhanced sampling methods based on reaction coordinates or collective variables explore the (free)
energy surface via bias potentials that forcingly drive the sampling towards the desired high energy
states (rare events), which are thermodynamically inaccessible under equilibrium time scales.*?
Essential information such as free energies can be obtained from debiasing the sampled
ensembles.**® Alternatively, enhanced sampling methods in the chain-of-states regime explore
the potential/free energy landscape by representing the transition path with a series of discrete
conformations (termed replicas or images) between the minimized/equilibrium states.*’>° This
chain of replicas is subjected to optimizations with inter-replica interactions (restraints or
holonomic constraints) to prevent the intermediate replicas from falling to the low energy basin
(Figure 2.3), thus locating the high energy rare events along the transition path. In general, different
chain-of-states methods are characterized by the type of replica interaction applied during the
pathway optimization. This inter-replica interactions could be presented as restraining quadratic
potentials in the generalized coordinates space (such as the Nudged Elastic Band methods®!'™*) or

root-mean-square (RMS) space (such as the Replica Path Method, RPM, with restraints)*®, implicit

12



50,54-57 and its

holonomic constraints via the reparameterization trick (such as the String Methods
simplified version without force projections®®), or explicit holonomic constraints in the 2-norm
distance space (such as the RPM with constraints*’). This thesis does not aim to exhaustively
review the chain-of-states and related free energy calculations. Instead, the algorithm adopted by
the RPM with holonomic constraints from which all MEPs were optimized in the rest of the thesis

is formally detailed. An example implementation of the RPM and related chain-of-states methods

on a Muller potential is provided at: github.com/ZL-Song/MullerPot.

a) b)

1.5 15
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0.0 0.0

—-0.5 =0.5
-1.5 J . s . . -1.5

Figure 2.3 The optimization of the MEP on a Miiller potential using chain-of-states methods with
a steepest decent optimizer. (a) The RPM with holonomic constraints; (b) The string method with
force projections. Black dots refer the initial guess and red dots the final optimized path, gray
trajectories are the optimization steps.
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The p-norm distance between two vectors is noted as ||a — b||,. Accordingly, the 2-norm

distance between the i-th and i+1-th replica (with coordinate vectors r; and r;,;, respectively),

Al; ;44 1s given as

Aliivg = lIr; — rigqll (2.12)
and its gradients with regard to r;,
OAlijyr _ T —Tiga (2.13)
or; llr; — rigall '

Al 1 Ty —Tigq
or; Al;i4q

(2.14)

It is trivial to note that Al; ;; could be calculated as mass-weighted best-fit distances.

Referring to the original implementation of Brokaw et al.,** the RPM with holonomic
constraints seeks to optimize a MEP between to minimal states as a chain of i replicas with equal

2-norm distances between adjacent replicas, that is
Algy = Alyp == Aly_p; 4 = Al (2.15)

The search for the constrained replica coordinates during each pathway optimization step
follows the common iterative solution of optimization problem under holonomic constraints.>
Practically, following each optimization step which changes the replica coordinates, the replicas
are heterogeneously distributed along the chain and are updated using an iterative procedure with
Lagrangian multipliers to satisfy the desired constraint conditions. In the RPM with holonomic
constraint method, the desired distance between all pairs of adjacent replicas, Al, is the average 2-
norm distance from the initial heterogeneously distributed replica path. Therefore, the constrained

replica coordinates r; is solved by the following update functions,

14



ALy ; - OAL 1\ ™
(I'i)(n+1) = (I'i + Ai_l# + Ai a;‘z-'- ) (216)
( )(n+1) — 1 i1~ N +12 i =Ty w (2.17)
& S\ Al YAl '

where the superscript (n) denotes the n-th iteration, 4; is the Lagrangian multiplier at Al; ;;,. The

convergence of the MEP is met when

(n+1) —

(Alyis1) — Al

IR

0 (2.18)

Since Al is a function of A, expand (Ali_i+1)(n+1) via the Taylor series with regard to A to the

first order yields

0L\ _
(Ali,i+1)(n) n ( al;ﬂ) (/1(""'1) _ /1(71)) —Al=0 (2.19)

Assuming convergence gives Ai(nﬂ) = 0 and descending along the negative gradients:

Ol 141\ ™ _
(Ali,i+1)(n) + (#ﬂ) (-A™)—Al=0 (2.20)
_ oAl 1\ ™
Al — (Alyiar)™ = (#) (™) (2.21)

Plugging equations 2.14 and 2.17 to equation 2.21 gives

i ri+1ﬂ Tit1 —Tiy2
=
Al; Aliyq

Ti— Ti+1)(n) (ri—l —T;

(n-1)
A ) 2.22
All Ali_l i+1 ( )

— r
Al — (A1) = ( Aii+2

Finally, by enumerating equation 2.22 for all replicas (i = 0, ..., i — 1, equation 2.15), one

obtains a tridiagonal matrix of A which can be solved in most linear algebra packages. Iteratively
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solving this matrix for A and r will converge all inter-replica distances to Al. The convergence

threshold (equation 2.18) is normally 107 A.

2.4 Machine Learning and Model Explanations

ML has emerged with great promise to approximate target function of any form regardless
of the a priori knowledge about the underlying correlations among input variables. The
applications of various ML techniques have also advanced theoretical chemistry in various

60-63

subjects™ °°, which have been suffering from either the extensive computational demands of high

levels of theories® %

, or the high dimensionality of the chemical and/or conformational spaces’®
74 Although ML could be introduced to many topics that require accurate and efficient
approximations, its performance and effectiveness have been limited by feature representations
and model interpretability.”” In addition to the routinely applied feature representations,
unsupervised models and rational statistical procedures have been developed to extract robust
feature vectors from the chemical feature space.”®’’ In particular, considerable pioneering efforts
have focused on the development of suitable descriptors and accurate DL neural networks for

approximating hybrid Quantum Mechanical / Molecular Mechanical (QM/MM) potentials.”® 53

Being an emerging subarea of ML, GL applies DL-based techniques on graph-structured
data. Graph structures could encode data representation using vertices and interconnecting edges.®*
Promoted by the robust graph representation of chemical structures, various GL models have
achieved ground-breaking performances on molecular property predictions.®>*° In this thesis, I

provide only a brief introduction to ECGCNN model used in Chapter 6.

The main difference between Euclidean data and graph-structured data is that graph data

explicitly encode the connectivity as the preferred interaction between the vertices (features). Thus,
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the strategy for updating the hidden state on vertex v through a graph convolutional layer follows

a message passing scheme®*”°

of three steps: (1) For each vertex v in the graph, the directed edge
(w — v) from the neighboring vertices w is first encoded by a Message() function; (2) The
encoded message is introduced to the hidden representation of v by an Aggregate() function; (3)

The output hidden state of the graph convolutional layer is then produced by an Update() function

from the aggregated representation of v. In the most general form, a GL convolutional layer

updates the hidden state Xf,l) of the vertex v at the /-th layer by
xl(,l) = Update <x1(,l_1),Aggregate (x,(,l_l), Message(x,(]l_l),x‘(,‘f_l), ef,ﬁj}))) (2.23)

(1 4enotes the

where x,, denotes the hidden representations of the vertices connected to v; e, _,;

representation of edges from x,, to X,,. While the Aggregate() function is limited to a handful of
operators, GL schemes of different types are mostly distinguished by the implementations of

Message() and Update(). The edge-conditioned GL°' for ECGCNN incorporates the edge

features into the Message() function by learning a hidden representation for e and uses it as

-1

w

the weight matrix that is multiplied to the neighboring hidden states x

Message(x‘%_l), e‘(,lf;?) = Z x‘(ﬂf_l)A(e‘(Af:j,)) (2.24)

w
where A() is a differentiable function at the edge-conditioned convolutional layer, /. In practice,

A() 1s normally implemented as multilayer perceptron that maps e‘(,lf:,},) to the shape of weight

matrix applicable to X$—1)_

With the booming popularity of ML, interests to interpret DL/GL neural networks have

synergistically risen as a subfield of great importance, namely the XAI.°?> The ML models being

17



interpretable not only elevates our understanding of the learning algorithms, but also constitutes
responsible DL/GL-assisted decision making. Practically, XAl techniques attribute the predicted
outcome of DL/GL models to individual feature contributions, therefore rationalize the driving
forces behind the decision flow in the models that are black-boxes. While explicit indicators for

93,94

feature contributions are straightforward in linear models and are incorporated by design in

specific ensemble-based models”, explaining neural networks is in general hindered by the high

nonlinearity accumulated through the activations of the hidden layers.”®

Based on the assumption that the predicted nonlinear surface could be approximated as
linear at local regions, effective importance attribution methods have been proposed based on
model gradients.”” The state-of-the-art XAl techniques, such as the IG*® and the Layer-wise
Relevance Propagation®, have demonstrated great promise in various explaining tasks such as

100.101 and cheminformatics applications!>!1%. Alternatively, feature importance

medical diagnosis
can also be assigned based on data perturbations and/or model re-learning. As one of common
practice, one could drop or permute a feature and re-learn the model, the performance difference
between the original and the re-learned models can be used as the indicator for the contribution
from that feature. While conceptually more intuitive, cautions have to be taken for this approach

that the perturbation introduced to the feature must not change the native distribution of the data

on which the learning models were trained.'*

In this thesis, both gradient-based and perturbation-based explanation techniques are
presented, developed, and applied to ML models trained on QM/MM MEPs of ASBL-driven -

lactam resistance.
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3. REVISITING TEM-1/BENZYLPENICILLIN ACYLATION MECHANISM WITH
MACHINE-LEARNING ENERGY CONTRIBUTION ANALYSIS

3.1 TEM-1 B-Lactamases

TEM-1 is a representative ASBL and the most common B-lactamase among Gram-negative
bacterial strains.!” Numerous experimental and computational studies have been carried out to
delineate the functions of the residues at the catalytic binding site.!® !> Based on these studies,
one widely accepted mechanism was proposed that Glul66 acts as a general base during the
acylation process of benzylpenicillin hydrolysis (Figure 3.1a). The hydroxyl group of Ser70 first
attacks the B-lactam carbonyl carbon to form a tetrahedral intermediate, with its proton delivered
to the bridging catalytic water. The catalytic water molecule in turn donates a proton to the
deprotonated carboxyl group of Glul66. Upon the formation of the tetrahedral intermediate, the
fully protonated Lys73 activates the nearby Ser130 to protonate the B-lactam nitrogen, which
cleaves the B-lactam scissile bond and completes the acylation half of B-lactam hydrolysis. Other
residues including Asnl70 and Ser235 were also validated to contribute hydrogen bonding
interactions that are critical for the formation of the Michaelis complex between TEM-1 and the

benzylpenicillin substrate.!!?!13
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Figure 3.1 Acylation mechanism of ASBLs and the structure of TEM-1/benzylpenicillin Michaelis
complex. (a) Acylation mechanism of TEM-1 and benzylpenicillin with Glu166 acting as a general
base. The B-lactam scissile bond is noted in red; (b) Crystal structure of TEM-1 complexed with
benzylpenicillin and the selection of QM atoms.

3.2 Computational Details

QM/MM calculations. All hybrid QM/MM multiscale calculations in the present study were
conducted by interfacing CHARMM!''* with SCC-DFTB!!3 or Q-Chem!!%!!7. All MD simulations
were performed by OpenMM!'8, The acyl-enzyme product of TEM-1 with benzylpenicillin was
obtained from the X-ray crystal structure (PDB id: 1FQG)'"” and the mutant residue Asn166 was
modified to Glul66 as in the wild type TEM-1. The residues were then protonated according to

previous studies.!®>!% The system was solvated and sodium and chloride ions were added to
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balance the total charge of the system. In order to fully relax the system, classical mechanic
minimization and equilibration were performed with the CHARMM?36 force field for proteins>®,
CHARMM general force field (CGenFF)!'2°1?? for the penicillin molecule and TIP3P model for
water!?®. The structure of the QM/MM initial pathway calculation was taken from the trajectory
of a 10 ns MD simulation at 300 K. The RPM with holonomic constraints* was applied for reaction

pathway calculations. All the pathway calculations were carried out with 50 replicas.

Reaction pathway sampling. The initial pathway was calculated from DFTB3/mio/C36 level of
theory with any residue in the outer 15 A of QM region selected as the unfrozen MM region. Based
on the initial pathway, multiple reaction pathways were sampled. Firstly, three replicas
representing reactant (r), transition (t) and product (p) states were selected. 200 ns MD simulations
were performed on each of the selected replicas. During the MD runs, all the atoms in the QM
region were fixed and snapshots were taken every 0.1 ps. 2-dimensional Principal Component
Analysis (PCA) were performed on the MD trajectories with the pairwise Ca distances as input.
The PCA results was grouped into six clusters, and the snapshots that are the closest to the centers
of each cluster were chosen as the representative structures. A total of eighteen representative
structures were then selected. In order to retain the consistency among the QM/MM pathway’s
energetic profiles, a common MM region was used, which is selected to be the union set of residues
within the outer 10 A of all representative QM regions. Geometry optimizations were then
performed on the selected representative structures. Lastly, based on those representative

structures, eighteen RPM calculations were carried out to obtain the MEPs.

Machine-learning protocols. The scikit-learn package'?* was employed for various machine-
learning protocols including dimensionality reduction, clustering, and regression. The hydrogen

bonding interactions are identified via the Baker-Hubbard criteria!®> as implemented in MDTraj!%S.
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The radial basis function was used as the kernel function for all regression models: Support Vector
regression (SVR), Gaussian Process regression (GPR), and Kernel Ridge regression (KRR). For
the training-validation process of models, the leave-one-group-out cross-validation regression
analysis was employed in the validation step; the hyper-parameters of the models were tuned via

a grid search strategy.

3.3 Summary of Results

TEM-1/Benzylpenicillin Acylation Profiles. As highlighted in the black rectangles in Figure 3.2,
the carbonyl tetrahedral intermediate state could be obtained from all B3LYP reaction pathway
optimizations. However, 16 out of 18 DFTB3 optimized pathways demonstrated that the
intermediates are lower in energy than the reactant, whereas all B3LYP pathways show that the
energies of tetrahedral states are well elevated from the reactant. In addition, the tetrahedral
intermediates from my DFTB3 calculations are structurally different from Hermann et al. The
average distance between Ser70 Oy and the carbonyl carbon is 2.1 A, comparing to 1.45 A reported
by Hermann et al.!® Also, it is noted that tetrahedral intermediates from my DFTB3 calculations
are accompanied by a hydronium formed by the catalytic water and negatively charged Glul66,

whereas Hermann et al.'®

observed a neutral catalytic water and protonated Glul66. Such
disagreement could originate from the fundamental difference between the QM methodologies.
Although the DFTB3/mio/C36 optimized pathways provide acylation barriers that are in good

agreements with experiments, the configurational changes along the chain-of-replicas may not be

reliable.
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Figure 3.2 QM/MM chain-of-states pathway profiles. Reaction pathways calculated from
DFTB3/mio/C36, B3LYP/6-31++G**/ C36, and B3LYP-D3/6-31++G**/ C36levels of theory.
The black rectangles highlight the tetrahedral intermediates region along the energy profiles.

On the other hand, my B3LYP optimized reaction pathways agree with the results reported
by Meroueh et al.,'° showing that the potential energies of the tetrahedral intermediate are
elevated from the reactant. Moreover, the dispersion corrected B3LYP calculations generally led
to 3-5 kcal mol™! decrease of the activation barriers during the acylation, which is consistent with
previous observations'?”!?%, Detailed barrier results of the acylation are compared with previous

computational and experimental studies in Table 3.1.
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Table 3.1 Comparison of acylation energy barriers of the current and previous works.

Energy barriers (kcal mol-1) [a]

Source Method [b]

MC-TI TI-AE Overall
This study 3.6(3) 11.4(1) 11.4(1) DFTB3/mio/C36, RPM
This study 8.6(9) 3.8(7) 11.9(4) B3LYP/6-31++G**/C36, RPM
Hermann et al. 19.6 16.4 19.6 AMI1/CHARMM, PES
Hermann et al. 8.7 7.1 8.7 B3LYP/6-31+G*/C36, PES
Meroueh et al. [c] 22.0 N/D 22.0 MP2/6-31+G*/AMBER, PES
Gibson et al. - - 12.6(7) 293.15 K, Exp
Sirot et al. - - 13.0(5) 310.15 K, Exp

[a] MC-TIL: Michaelis complex to tetrahedral intermediate; TI-AE: tetrahedral intermediate
collapsing to acyl-enzyme product;

[b] RPM: Chain-of-states RPM calculations, averaged over 18 pathways; IRC: Intrinsic Reaction
Coordinate calculation; PES: Potential Energy Surface; Exp: derived from ket via the Eyring
equation;

[c] This study uses penicillanic acid instead of benzylpenicillin, the experimental acylation barrier
of penicillanic acid is estimated to be 16 — 17 kcal mol™.

MEP regression models. Predictive PES models were trained to bridge the conformational
descriptors of each replica to its corresponding energy. An appropriate selection of features is
critical for the performance of machine-learning predictions. In my case, a total of 105 pairwise
distances between bonded atoms — either through chemical bonding or hydrogen bonding — in the
QM region are considered as initial features. As the size of the dataset (900 replicas) is relatively
small compared to the dimension (105 features), regression models are expected to fit poorly and
unstably. In order to reduce the dimension of feature vectors, a recursive feature elimination
analysis using SVR model with linear kernel function was first performed on both
DFTB3/mio/C36 and B3LYP/6-31++G**/C36 pathways. Based on the selected features and my

prior knowledge with TEM-1/Benzylpenicillin hydrolysis, 15 interatomic distances were selected
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and used to construct the feature vector (Figure 3.3a). Moreover, the overall prediction quality of
regression models on B3LYP pathways are promising with the root mean squared error lower than

2.0 kcal mol ! (Figure 3.3b).
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Figure 3.3 Feature selections and notations of chemical processes, and regression performance of the
models. (a) Selection of atomic distances as features and chemical events; (b) RMSE predicted by three
regression models.

Intrinsic energy contribution. One universal criterion to measure variable contribution is the
decrease in prediction performance when a certain feature is dropped out from the model.!*
Practically, I measure the joint contribution of feature subset by the difference between the fitting
performance of a predictive model trained from full input feature set and the same model trained
with the target feature subset set to zero. In this regard, the intrinsic energy contribution is defined
as the RMSE between the predicted energetic pathway profiles of the two models, that is

1
2

R
Ia, intrinsic = <%Z (f(A(r)) — fa=0(A(r)))2> (3-1)

r=1
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where R is the total number of replicas on each pathway; f is the trained regression model; f;-¢
is the same model trained from input data with the target feature subset set to zero; A® is the input
feature vector at the r-th replica. For numerical comparisons between different regression models,

the measurement used is the percentage of each intrinsic contribution over the sum of all feature

subgroups (Figure 3.4).
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Figure 3.4 Intrinsic energy contributions measured on DFTB3/mio/C36 and B3LYP/6-
31++G**/C36 reaction pathway profiles. The ‘S’, ‘G’, and ‘K’ labels represent results from SVR,
GPR, and KRR models, respectively.

The intrinsic contribution provides a quantitative insight into the energy contribution of
each reaction step to the overall energetic profile. Generally, all regression models give the same
statistical rankings of the energy contributions from each chemical event: P2 and P3 are the
decisive processes during the reaction; PO, P1, BO and B1 pose less impact to the overall energetic;
Hydrogen bonds (HO, H1 and H2) are considered to be the least critical events. The intrinsic energy

contribution measured using the GPR model is the most numerically stable, whereas the SVR
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model gives the largest deviation among the testing cases. As for pathway profiles decomposed at

different QM levels of theory, the intrinsic contributions are compatible to each other.

Dynamic Energy Contribution. The intrinsic energy contribution reflects the overall energetic
contribution of a certain chemical process to the energetic profile. Alternatively, a dynamic energy
contribution along the reaction progress could be determined by the model response to small
perturbations applied to each feature subset, which could be implemented from the first-order

Taylor series:

I(r)

a,dynamic

“ a0+ ) - a0 = [(LE) | 62

dA™

where P(" is the perturbation applied to the MEP regression models. The partial gradients are
computed numerically

af(A(l‘)) _ f(A(l‘) + p(?‘)) _ f(A(I‘) _ P(T))

AT TI0 (33)

formally P is given as
P =TOWE®D (3.4)

where I'™ is a one-hot encoded mask for selecting feature dimensions to which the perturbation

E® is applied, and
E® = p(AT-D — Al+D) (3.5)
where p is the amount of perturbation applied and is set as 0.01. Finally,

@ = |f (A(r) +pr®(AC-D — A(r+1))) —f (A<r) —pr®(AC-D A(r+1>))| (3.6)

a,dynamic
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progress.

As shown in Figure 3.5, the acylation is initialized by the proton transfer between Ser70
and the catalytic water (P0). During the first transition to the tetrahedral intermediate, the bond
formation between Ser70 Oy and carbonyl carbon (BO) is deemed to be the most energetic
dominant event. Notably, the protonation of the thiazolidine nitrogen (P3) is concerted in this
process. The rate determining events of the acylated product formation are the dual protonation of
Ser130 (P2) and the B-lactam nitrogen (P3) together with the cleavage of the f-lactam scissile bond
(B1). In addition, the dynamic contribution measurement is also regression model-independent,
and the small differences in turn reflect the difference in the predicted PES of the regression
models. During the formation of tetrahedral intermediate, the rate determining event is shown to
be the bond formation between Ser70 hydroxyl oxygen and the B-lactam carbonyl carbon. As for

the formation of acyl-enzyme product, the dual-proton transfer from Lys73 to B-lactam nitrogen,
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bridged by the Ser130 hydroxyl group, becomes the rate determining event. The dynamic energy
contributions are consistent with the intrinsic contribution measurements as they identify the same
critical chemical events during the acylation. Generally, the dynamic energy contribution
qualitatively reveals the time windows and spans of chemical events and quantitatively reflects

their underlying correlations.

3.4 Conclusion

Qualitative agreement between the dynamic and the intrinsic energy contribution
assessments is observed. The underlying correlations between the transfers of different protons are
validated in the dynamic energy contribution. Notably, the protonation of Ser130 hydroxyl group
and the thiazolidine nitrogen are found to be concerted with the formation of tetrahedral
intermediate, indicating that the acylation reaction is a one-step 4-proton-transfer process. Isolating
such proton transfers from the tetrahedral formation process has led to conflicted estimations on
the overall reaction barrier or the stepwise activation energy (Table 3.1). Moreover, dynamic
energy contributions reveal that the rate limiting events of the acylation are the proton transfers
from Lys73 to B-lactam nitrogen via the bridging Ser130 hydroxyl group, opposing to previous
QM/MM calculations, in which the tetrahedral formation is concluded to be the rate limiting step.
It should be further emphasized that the present study serves as a further complement, not criticism,
to previous high-level insightful QM/MM computational studies on the mechanisms of [-

lactamases driven antibiotic resistance.

In summary, I presented novel regression models with machine-learning component to
quantify the energetic contributions from, as well as the correlations among, individual chemical
process during enzyme catalysis with high degrees of freedom. Such quantitative measurements

serve as a useful energetic-decomposing analysis to the enzymatic reaction pathway and reflect
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the detailed underlying mechanism. This study also serves as a proof of the concept for extending
the application of machine-learning techniques to probe complex enzymatic reaction mechanisms

in high degrees of freedom configurational space.
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4. DISTINCT ACYLATION PATHWAYS OF CTX-M B-LACTAMASES WITH AMPICILLIN
AND CEFALEXIN IDENTIFIED FROM QM/MM

4.1 CTX-M B-Lactamases

CTX-M is a representative ASBL group and has been identified as an immediate menace
to commonly prescribed B-lactam antibiotics.® '° The CTX-M enzyme class is characterized by its
enhanced catalytic efficiency (kea/Km) against cephalosporin antibiotic families.!” The hydrolysis
of most cephalosporins deviates from that of other B-lactams by bearing a leaving group at its C3’
position. Expelling the C3’ leaving group would trigger a series of rearrangements, allowing its
dihydrothiazine nitrogen to stay as an unprotonated imine after the acylation.® However, an
exception is cefalexin (CEX) which adopts a C3° methyl as a poor leaving group; The protonation
of the CEX cephem amine is thus inevitable (Figure 4.1a). CEX also poses enhanced resistance
against CTX-M hydrolysis compared to other early generations of penicillin or cephalosporins. In
particular, Nitanai et al.!* showed that the catalytic efficiency (kca/Km) of CEX hydrolysis
mediated by Toho-1 (also known as CTX-M-44) is 0.119 pM™! 5!, which is 17-fold lower than
that of ampicillin (AMP, 2.11 uM™! s™!). Whereas AMP and CEX structurally differ only in their
signature penam/cephem bicyclic rings (Figure 4.1b), the cephem scaffold of CEX evidently
showed higher hydrolysis resistance even to the CTX-M enzyme class. In this study, the acylation
pathways of AMP and CEX hydrolysis in Toho-1 was investigated using QM/MM chain-of-states

calculations.
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Figure 4.1 Mechanisms of acylation in ASPLs and structures of the model substrates. (a) The
general mechanism of -lactam acylation mediated by ASBL; (b) Structures of ampicillin (AMP)
and cefalexin (CEX).

4.2 Computational Details

System Preparation. The high-resolution crystal structures of Toho-1/benzylpenicillin (PDB
entry: SKMW)'*° and Toho-1/cephalothin (PDB entry: 2ZQ9)'?° acyl-enzyme complexes were
used as template systems to create structures for Toho-1/AMP and Toho-1/CEX complexes. The
topology files of AMP and CEX were derived from CGenFF!2!!22, The ligand topologies in the
template systems were then substituted to create initial structures for Toho-1/AMP and Toho-
I/CEX complexes. Systems with alternative protonation states on Lys73 and Glul66 were
prepared to account for acylation pathways via different general base residues.!’! A total of 4
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enzyme-ligand models were created, protonated, optimized, and equilibrated using a semi-
empirical QM/MM scheme with DFTB3 level of theory®® and the 30B parameter set®
(DFTB3/30B) as the QM potential and C36> as the MM counterpart. The atomic distances
between the key reacting heavy atoms during a 100 ps molecular dynamic simulation using the
DFTB3/30B/C36 potential are shown in Table 4.1. The initial structures of the pathway
calculations were selected as the snapshots that have the minimal inter-heavy-atom distances
between the reacting functional groups of the four residues (Ser70, Lys73, Ser130, and Glul66),

the catalytic water and the -lactam.

Table 4.1 The mean atomic distances between key reacting heavy atoms in the DFTB3/30B/C36
dynamics. Parenthesis denote the standard deviation (units: A).

Atom pairs Toho/AMP:R1 Toho/CEX:R1 Toho/AMP:R2 Toho/CEX:R2
Ser70 Oy— AMP C7/CEX C8  2.43(0.17)  2.58(0.18)  2.44(0.17)  2.57(0.18)
Lys73 NC— Ser130 Oy 2.85(0.15) 295(0.32) 3.07(0.25) 3.15(0.32)
Ser130 Oy — AMP N4/ CEX N5 3.60(0.23)  3.86(0.26)  3.67(0.31)  3.63(0.31)
Ser70 Oy — Watercat O 2.65 (0.10) 2.65(0.09) - —
Glul66 Og2 — Watercat O 3.06 (0.23) 2.77 (0.17) - -
Ser70 Oy — Lys73 N{ - - 2.88(0.13)  2.93(0.17)

MEP calculations. A total of five structures (noted as Toho/AMP: R1, R2, and Toho/CEX: R1,
R1a, R2) were chosen from the production trajectories. These five frames were then subjected to
calculations at DFT level. The DFT QM region covers important active site fragments: f-lactams,
the catalytic water, the surrounding residues (Ser70, Lys73, Ser130, Glul66, Asn170, Lys234,
Thr235, Ser237), together with a surrounding solvent molecule for the reaction pathway

calculations. The hybrid density functional B3LYP!¥>!33 was used in conjunction with Pople’s 6-
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31G double { basis set'**!%¢ for the QM atoms (B3LYP/6-31G/C36). The RPM with holonomic
constraints* was applied for all pathway optimizations and the energetic profiles on the B3LYP/6-
31G/C36 optimized MEPs were further refined with the augmented 6-31++G** basis set and the
D3 dispersion corrections (B3LYP-D3/6-31++G**/C36). The ChEIPG scheme!?” was employed

for the charge population analysis along the chain-of-states.

4.3 Summary of Results

Initial Conformations. The optimized reactant structures of Toho/AMP differ from Toho/CEX
by the hydrogen bonding networks between the penam/cephem carboxylate and the residues
Thr235, Ser237 (Figure 4.2). Practically, the Ser237 hydroxyl is generally outside of the H-
bonding region of the AMP carboxylic group. The reactant configuration is therefore stabilized by
a water molecule serving as the H-bond bridge between the Ser237 hydroxyl and the AMP
carboxylate (Toho/AMP:R1, Figure 4.2a). Meanwhile, the CEX adopts a more flexible binding
pattern: the hydroxyl group from Ser237 could either form direct hydrogen interacting to the
substrate carboxyl group (Toho/CEX:R1, Figure 4.2b) or to a solvent water molecule

(Toho/CEX:R1a, Figure 4.2¢c).

gy ‘o
-

1) Glutee |Lys7a .
)./ ) yﬁ[“\_ g

:R1a

Figure 4.2 Conformations of R1 reactant states. The conformations of (a) Toho/AMP:R1; (b)
Toho/CEX:R1; (c) Toho/CEX:R1a. The hydrogen bonding interactions are noted as blue dashed
lines.
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Figure 4.3 Energy profiles and the ChEIPG charges of key atoms along the acylation pathways in
Toho-1 hydrolysis. (a) The acylation profiles of Toho/AMP; The ChEIPG charges along (b) the
Toho/AMP: R1 to AE1 pathway, and (c) the Toho/AMP: R2 to AE1 pathway; (d) The energy
profile and the ChEIPG charge profiles of the refined Toho/CEX: R1a to AE1 pathways, which is
calculated from inserting 18 replicas between replica 24 and 31; (e) The acylation profiles of
Toho/CEX; The ChEIPG charges along (f) the Toho/CEX: R1 to AE1 pathway, (g) the Toho/CEX:
R2 to AE1 pathway, and (h) the Toho/CEX: R1a to AE1 pathway. The vertical black solid lines in
(a) and (d) indicate the location of AE1 and AE2. Numbers in parentheses and brackets denote the
local minimum and maximum values of important states along the reaction path. Note that only
ChEIPG charge values of B-lactam carbonyl carbon (blue) and nitrogen (orange) are shown in (b),

(©), (0, (2), (h).

Toho/AMP Acylation Profiles. My calculated Toho/AMP acylation pathways (Figure 4.3)
closely resemble the potential energy landscapes reported by Meroueh et al:,!% the energy barrier

for the acylation using Glul66 as general base (14.0 kcal mol™) is moderately higher than that of
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Lys73/Glul66 concerted base (8.7 kcal mol ™). The Toho/AMP acylation pathways agree with both
acylation mechanisms, indicating that either Lys73 or Glul66 could mediate the acylation process
in Toho/AMP hydrolysis. The ChEIPG charge profiles of the Toho/AMP pathways align with the
intuitive understanding of the reaction mechanism. As shown in Figure 4.3b and 4.3c, the
decreasing charge population on AMP O7 between replica 20 to 27 is synergetic to the increasing
charge on Ser70 Oy, suggesting the formation of tetrahedral intermediate (with a formal charge of
-1 on AMP O7) during the serine addition. Furthermore, the locations of maximal charge profiles
on AMP N4 are also correlated with the replica with the highest energy along the reaction progress,
showing that the protonation of AMP N4 is strongly correlated with the rate of acylation, agreeing

with previous observations.

Toho/CEX Acylation Profiles. Toho/CEX acylation demonstrates a different catalytic
mechanism, as shown in Figure 4.3e. The acylation barrier using Glul66 as the general base is
prohibitively high (26.5 kcal mol™). In particular, the corresponding barrier further increases to
52.4 kcal mol! when cefalexin substrate adopts a similar binding pattern as ampicillin
(Toho/CEX:R1a to AE1, Figure 4.3e). These leave Lys73 as the inevitable candidate to mediate
deprotonation of the Ser70 hydroxyl during CEX acylation, which confers an energetic barrier of
13.7 kcal mol™! (Toho/CEX:R2 to AE1). Further mechanistic insights can be derived from the
ChEIPG charge profiles. On the Glul66-mediated Toho/CEX acylation pathways (Figure 4.3f,
4.3g, 4.3h), a stable tetrahedral intermediate indicated by the temporarily decreased charge on f3-
lactam carbonyl oxygen (as in the corresponding Toho/AMP pathways) is less synergetic to the
formation of the tetrahedral intermediate. Moreover, the charge on the cephem nitrogen is largely
increased to 0.41 (Figure 4.3f) and 0.22 (Figure 4.3h) upon the barrier replica, which evidently

suggests its poor proton affinity to accept the proton transfer from Ser130. Alternatively, the dual-
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base mediated Toho/CEX: R2 to AE1 pathways (Figure 4.3g) demonstrates a similar charge profile
to the corresponding AMP acylation pathway. Interestingly, an increase of ChEIPG charge on
CEX C8 is seen uniquely upon the formation of tetrahedral intermediate on this pathway (Figure
4.3g, replica 18). Intuitively, the lone pair on Ser70 Oy in the R2 configurations are oriented
towards the ligand carbonyl carbon, potentially activating the conjugated m orbital on the B-lactam
bicyclic. While the m-conjugation in AMP (N4-C7=08) is localized to the B-lactam scissile C-N
bond, it is extended along the cephem bicyclic (C3=C4-N5-C8=08) in CEX. The temporary charge
increment on CEX C8 can therefore be interpreted as the consequence of breaking the more
delocalized m-conjugation on the cephem scissile bond during the nucleophilic attack of Ser70 Oy.
Accordingly, this explanation is also supported by the observation that the tetrahedral
intermediates on Toho/AMP and Toho/CEX pathways do not significantly differ from each other

in terms of heavy atom conformations.

Comparison with Experiments. The computational barriers are further correlated with

experimental kinetic studies (Table 4.2). Nitanai et al.'®

reported that the catalytic barrier
(calculated from kcu) of Toho/AMP hydrolysis is ~14.9 kcal mol™, slightly lower by ~1.7 kcal
mol! than that of CEX (~16.6 kcal mol'). In my calculations, both acylation barriers for
Toho/AMP are sufficiently lower than the experimentally determined catalytic barrier, suggesting
that the acylation mechanism previously developed for ASBLs are applicable to Toho-1/AMP as
well. In contrast, the only viable reaction pathway for CEX is the Lys73/Glul66 dual base
mechanism. The pathway that uses Glul66 as the only general base greatly exceeded the

experimental barrier (16.6 kcal mol!) by 9.9 kcal mol!. Briefly, my results provide good

correlation to the experimental barriers.
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Table 4.2 The computational and experimental catalytic barriers of AMP and CEX acylation
catalyzed by Toho-1.

Source Systems Energy barriers (kcal mol™) Method [a]
Shimizu-Ibuka et al.!*® [b] =~ Toho-1/AMP 15.5 303.15K, Exp
Nitanai et al.!* Toho-1/AMP 14.9 303.15K, Exp
This study Toho-1/AMP 8.7/14.0 [c] B3LYP-D3/C36
Nitanai et al.'?’ Toho-1/CEX 16.6 303.15K, Exp
This study Toho-1/CEX 13.7/26.5 [c] B3LYP-D3/C36

[a]The experimental (Exp) catalytic barrier of Toho/AMP were derived from k. via the Eyring
equations, the acylation barrier of Toho/CEX were derived from the ratio of kcu/Ky to
Toho/AMP;

[b]This study used the wild-type Toho-1 as the enzyme host while others used the
Arg274Asn/Arg276Asn Toho-1 mutant as the enzyme host;

[c]Values before “/” report the barrier of the Lys73/Glul66 concerted base acylation pathway.
Values after “/” report the Glul66 sole base acylation pathway.

4.4 Conclusion

In this study, I demonstrate that the AMP and CEX acylation energy landscapes differ from
each other during Toho-1 hydrolysis. In my calculations of both systems, the R1 pathway, which
1s mediated solely by Glul66 as the base, confers a higher (potential) energy barrier than the R2
pathways. Herein, the R1 acylation pathway is shown to be energetically prohibitive for CEX,
leaving the Lys73/Glul66 dual base mechanism as the main viable pathway for its acylation. In
the case of AMP, whereas the investigated acylation barrier via the Glul66 sole base mechanism
is sufficiently lower than the experimentally determined kinetics, the viability of the R1 pathway
is not evidently clear from the potential barrier alone. However, unlike Toho/CEX, I note that the

ChEIPG charge profiles in Toho/AMP acylation demonstrate a similar pattern for the R1 and R2
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pathways, suggesting that the R1 acylation mechanism is at least competitive to the R2

alternatives.

My calculations with CEX acylation also shed light onto the hydrolysis of other
cephalosporins. As noted above, CEX mechanistically stands out in the cephalosporin family as
its B-lactam nitrogen has to be protonated upon the formation of the acyl-enzyme product.
However, common cephalosporins such as cephalothin and cefotaxime show higher catalytic
efficiency (kca/Km), which suggests a much lower acylation barrier than that of CEX. Such
observations suggest that the cephem nitrogen may not be protonated during the entire acylation

processes of other cephalosporins. Through their crystallographic study, Olmos et al.'*’

recently
reported that that the departure of the C3’ leaving group is clearly simultaneous to the serine attack
during the ASPLs/cefotaxime acylation, supporting the above hypothesis. In this regard, the
protonation of the cephem nitrogen, which was also previously validated as the rate limiting step,

could be avoided, and leading to the higher acylation rates observed in other early generations of

cephalosporins.
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5. ACYLATION OF CTX-M-44 ASPL EXPLAINED FROM MACHINE-LEARNED QM/MM
MINIMUM ENERGY PATHWAYS

5.1 Boltzmann-weighted Cumulative Integrated Gradients

In order to verify the intuitive hypothesis on the acylation of Toho/AMP and Toho/CEX, I
developed the XAI method, coined Boltzmann-weighted Cumulative IG (BCIG), for ML models
trained on high quality DFT/MM MEPs, which is formulated as follows. For an ML-MEP model,
which is designated as F and is trained on a dataset of P MEPs, the contribution of a chemical
process ¢ on the p-th MEP can be represented as the ‘pathway-wise’ contribution attributing

function Apam
Contribution] = Apqen(F,c,p) (5.1)

The overall contribution of chemical process ¢ in the ensemble of P MEPs is the sum of the

Contribution!? weighted by the accessibility (the Boltzmann factor) of p-th MEP, which is

P

AEP
Contribution? = Cy Z (exp (— ﬁ) X Apaen(F, c, p)) (5.2)
p=1

where AEP? is the energy barrier of the p-th MEP, R is the ideal gas constant, T is the temperature,

Cn 1s a normalization factor.

The exponential averaging implicitly assumes sample completeness in the MEP datasets,
which is mostly impractical for actual MEP calculations. In practice, direct application of

Boltzmann weights would lead to numerical instability with a limited number of sampled MEPs.
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Alternatively, a Probability Density Function (PDF), PDF (AEP), could be introduced to smooth
the density of MEP barriers. In its simplest form, the PDF could be a single Gaussian function.
Further, in cases where the sampled barrier distribution failed to approximate a Gaussian
distribution, alternative density estimators such as Gaussian Mixture Models (GMMs) or kernel
density estimations could be employed for better approximation. Nonetheless, introducing PDF to

equation 5.2 yields

P
AE?
Contributionf = Cj, Z (exp (— ﬁ) X PDF(AEP) X Apqen(F, c, p)) (5.3)
p=1

Note that the normalization factor Cy is

P

Cl = . (5.4)

P_ exp (— %) x PDF(AEP)

In my implementation, 2-component GMMs, which approximates the distribution of MEP barriers

using a weighted sum of two independent Gaussians, were used as the PDF for MEP barriers.

If the chain-of-states RPM is used for MEP calculations, each transition path is represented
by a series of discrete replicated structures (replicas) that connect the reactant and product. The
‘pathway-wise’ contribution Apam could be calculated from the ‘replica-wise’ attribution function

Areplica Of ¢ to the energy of the r-th replica on the p-th MEP:

M
Apath (F’ G p) = Z Areplica (F’ D, T) (55)

r=1

where M is the total number of replicas in each MEP.
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As proposed by Sundararajan et al.”®, for a DL model E, the contribution of the i-th feature
x; of the feature vector x corresponding to a specific sample point can be calculated as the IG along
a path p(a) that connects the sample point with feature vector x (where ¢ = 1) and a baseline with

feature vector x’ (where a = 0)

dF (y(a)) dy(a) da

oy(a) Oa (5.6)

1
IntegratedGrad! (x) = f

a=0

In my case, the reactant states on the MEPs were selected as the baselines and the
contribution of ¢ at the r-th replica was the integrated partial derivatives (with regard to c) through
the intermediate replicas preceding the r-th replica along the MEP. Accordingly, Eq. 6 is adapted
for the discrete reaction pathway as

o oF (x(p, 1)) ax(p, i)
ox(p, 1) adi

Arepiica(F, ¢, p, 1) = IntegratedGrad? (x) = (5.7)

where i is the index of the pathway replicas, x(p, i) is the feature vector of the i-th replica on the

p-th MEP.

The representation of ¢ must be determined to expand the first partial derivative in equation
5.7. As noted, ¢ represents a ‘chemical process’ that includes (but is not limited to) bond
making/breaking and proton transfers. The progress of chemical process is commonly represented
by the linear combination of multiple order parameters such as atomic distances, often referred to
as the reaction coordinates or collective variables. However, I note that the correlation between
the atomic distances is highly nonlinear in the evolution along the optimal reaction path obtained

from the chain-of-states calculations. Therefore, instead of feeding the reduced representation of
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linear-combined atomic distances, I used a set of atomic distances that accounts for all chemical

process during the acylation for the training of the DL model F, that is,

E(p,i) = F(x(p,i)) (5.8)

where E(p, i) is the energy of i-th replica on the p-th MEP. Further, due to the nonlinearity of the
correlation between the feature dimensions, the gradients of F with regard to ¢, which usually
corresponds to multiple feature dimensions in X, cannot be calculated analytically. Therefore, the

first partial derivative in equation 5.7 is computed numerically

oF (x(p,0) F (x(p,D) + 8e(x(p,i + 1) = x(p, D)) = F (x(p, 1) = 8(x(p, D) = x(p, i — 1))
05(x(p,0))  Dist (x(p, D)+ 8e(x(p, i+ 1) —x(p, D), x(p, i) — Se(x(p, i) — x(p,i — 1)))

(5.9)

where & denotes a small perturbative factor (0.01 as in the current study); ¢ acts as the selector for
the feature dimensions included in the chemical process (¢). In practice, d is a multi-hot encoded
mask to ensure that the perturbation ¢ is applied only to the features x that represent the chemical
process of interests; Dist(4, B) stands for the distance metric that accounts for the pathway

curvature. The gradient on the pathway curvature reads:

0x(p, i) _ Dist (x(p, i)+ 6e(x(p,i + 1) — x(p, i)),x(p, i) — 6e(x(p, i) —x(p,i— 1)))

i ex(i+1D-(G-1) (5.10)

Combining equations. 5.7, 5.9, 5.10, the contribution of the chemical process ¢ to the r-th replica

on the p-th pathway is calculated as the integrated partial gradients of the ML-MEPs model F as:

Areplica (F, Gp, T)

_ Zr: F (x(p, i)+ 5£(x(p, i+1) —x(p, i))) - F (x(p, ) — 5£(x(p, i) —x(p,i— 1)))

o (5.11)

i=1
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Accordingly, the contribution of ¢ along one MEP Ay, (F,c,p) can be calculated by
cumulatively summing the integrated partial gradients (equation 5.5). The sign of A,4:n (F, ¢, p)
gives the interaction between the chemical processes; whereas its absolute values give the
perturbative response of the ML-MEP model regarding different c¢. Therefore, the absolute values
of Apaen (F, ¢, p) were used to calculate the weighted contributions in equation 5.3. I proceed with
the computational details that implements the BCIG approach for interpreting the acylation

reactions of Toho/AMP and Toho/CEX studied in the last chapter.

5.2 Computational Details

System Preparation. Based on reaction mechanisms of the target reaction studied in the last
chapter, I created the R1, R2, and AE states for wild type Toho/AMP and Toho/CEX systems
using the DFTB3/30B/C36 potential with necessary distance-based restraints. A total of six states
were subjected to extensive conformational sampling with constrained NVT simulations for 150
ns. During the constrained dynamics, the hydroxyls of the Ser70/Ser130, the Lys73 amino group,
the Glu166 carboxyl group, the carbonyl-nitrogen bond of the ligands, and the catalytic water were
fixed in place to retain their QM optimized orientations. The snapshots used for the MEP
calculations were taken from the last 120 ns of the constrained MD trajectories with a time interval
of 1.2 ns for each system. Briefly, a total number of 600 snapshots (100 snapshots from three states

of two systems) were selected as the starting conformations for the MEP calculations.

MEP calculations. The 600 starting conformations were all optimized using the DFTB3 potential.
During the optimizations, the surrounding MM residues within 4 A of the QM region were allowed
to move while the remaining of system were fixed. The corresponding product/reactant states were

generated from the starting conformations. In total, 800 pairs of either R1/AE or R2/AE states
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were generated for the Toho/ligand complexes, and were used as the reactant/product pairs for the

MEP optimizations using the RPM with holonomic constraints*.

a) Glu166 Lertitle C) e —— Toho/AMP: R1-AE
0 / P2 : T —— Toho/CEX: R1-AE
d i | J—Ser130 —— Toho/AMP: R2-AE
e P1  Ser70 q&"« Toho/CEX: R2-AE
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Figure 5.1 Selected features, 2D representation of the pathway conformations, and architecture of
the ML-MEP models. The selected features and chemical processes of (a) the Toho/AMP: R1-AE
and Toho/CEX: R1-AE datasets and (b) the Toho/AMP: R2-AE and Toho/CEX: R2-AE datasets.
The atomic distances that are included in feature vectors are noted in orange lines, the chemical
processes are noted in blue; (c) The 2D principal component dimensionality reduction of the
pairwise inter-heavy-atom distances in the QM region and a schematic demonstration for the loss
of pathway context of the replicas; (d) The architecture of the QM/MM MEP learning deep-and-

wide neural network.

45



ML-MEP models. The goal of the ML regressions is not only to predict the single point total
energies of the systems, but also to bridge the conformational change with the energy evolution
along the optimized MEPs, which mainly attributes to the displacement of the reacting atoms in
the QM regions. Therefore, the initial selection of features covered (1) the atomic distances
between the chemical-bonded and hydrogen-bonded heavy atoms in the QM region and; (2) the
hydrogen-donor/acceptor distances between the reacting hydrogens and surrounding QM heavy
atoms. The final selection of features on the R1-AE and R2-AE pathway datasets were illustrated

in Figure 5.1a, 5.1b.

A feed-forward neural network with the ‘Deep-and-Wide’ learning architecture (DaWNN)
proposed by Cheng et al.'** was implemented for the learning of the QM/MM MEPs (Figure 5.1d).
The dropout strategy'*! was applied for all hidden layers to promote the generalizability of the
neural networks and prevent over-fitting. The dropout rate (0.1) and the number of neuron units
(256) on the hidden layers were tuned via a grid search strategy on a 10% path-wise stratified
validation set. Practically, I constructed the validation set by randomly picking 5 replicas from
each of the pathway carrying 50 replicas. The standard mean squared error (MSE) was used as the
objective loss function to train the ML-MEP models. All models were trained with the AdaM!#?

optimizer for 300 epochs with a sample batch-size of 25.

5.3 Summary of Results

QM/MM MEPs. The barrier distributions of the calculated QM/MM MEDPs are plotted in Figure
5.2. Both R1-AE and R2-AE acylation pathways of Toho/AMP are accessible as they show lower
mean averaged barriers than the Toho/CEX ones. The exponential averaged acylation barrier is
16.98 kcal mol ™! for the Toho/AMP: R1-AE pathway (Figure 5.2a), which is 12.81 kcal mol!

higher than the Toho/AMP: R2-AE pathways (4.17 kcal mol!, Figure 5.2c). The lowest
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Toho/AMP: R1-AE barrier is shown to be 14.01 kcal mol™!, which is lower than the experimental
acylation barriers of ~15.5 kcal mol™!. As for Toho/CEX acylation, the pathway via the R2-AE
mechanism confers an exponential averaged barrier of 14.33 kcal mol™! (Figure 5.2d), which is
11.22 kcal mol™! lower than its R1-AE alternative (25.55 kcal mol™!, Figure 5.2b). Further, as the
lowest energy barrier found on Toho/CEX: R1-AE pathways (22.35 kcal mol™!) is much higher
than the estimated experimental barrier (~17.2 kcal mol-1), these pathways are considered as
generally inaccessible. The viable acylation path for Toho/CEX is therefore verified to be the R2-

AE mechanism, as stated in the previous chapter.
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Figure 5.2 The distribution of the acylation barriers (AE) at B3LYP-D3/6-31+G**/C36 level of
theory. (a) Toho/AMP: R1-AE acylation pathways; (b) Toho/CEX: R1-AE acylation pathways; (c)
Toho/AMP: R2-AE acylation pathways, and; (d) Toho/CEX: R2-AE acylation pathways. The
scatters show the locations of the energy barriers. The width of the histograms is 4 kcal mol-1. The
red curves note the density estimation from the GMMs.
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Energetics interpreted from BCIG contributions. As shown in Figure 5.3a and 5.3b, the
DaWNN models could accurately predict the replica-wise energy with R? scores > 0.995 and the

barrier heights with RMSE < 2 kcal mol™.

a) 80 Toho/AMP: R1-AE 80" Toho/CEX: R1-AE 80 Toho/AMP: R2-AE 801 Toho/CEX: R2-AE
<60 T 60f = eof < 60f
3 3 IS 3 £
£ 40 £ 40- £ 4o0f £ 4of
® ® ® I
g 2o g o7 £ £
= o} = o = o =z o}
g R2=09984 | I RZ=09981 | £ R?=09994 | ¥ R? = 0.9972
S 50l MAE = 0.3860 | S _50l MAE = 0.4642 | & _59| MAE = 0.2678 | S _5ol MAE = 0.5320
' RMSE = 0.5116 | RMSE = 0.6729 | Y RMSE = 0.3379 | W A RMSE = 0.7193
—aop | Meameres = 10000 —aop | Meeeies = 10000 —aop /| Mo = 10000 —aop 7, Meemees = 10000
—40-20 0 20 40 60 80 —40 -20 0 20 40 60 80 —40-20 0 20 40 60 80 —40-20 0 20 40 60 80
Ewm (kcal mol™1) Epy (kcal mol™1) Emy (kcal mol~1) Em (kcal mol™1)
) 80 Toho/AMP: R1-AE 80[ Toho/CEX: R1-AE - 801" Toho/AMP: R2-AE 80[ Toho/CEX: R2-AE
T T ST T
2 60 g 60+ g 60F g 60f
5 5 e T g
x40 ~ 40 j ~ 40F x 40
s = ,.5=" = =
H , H ,/ ) H , g s
£ 90l R2 = 0.9729 S 50h ‘ RZ = 0.9940 S 50h R? = 0.9944 s 5ol R2 = 0.9969
e MAE = 0.7251 g MAE = 1.4091 g MAE = 0.4014 g MAE = 1.4203
< RMSE = 1.0678 < RMSE = 1.6458 < RMSE = 0.5416 | RMSE = 1.6510
ot Nsamples = 200 o - Nsamples = 200 oF Nsamples = 200 o} Nsamples = 200
0 200 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
AEy, (kcal mol=1) AEw, (kcal mol=1) AEy, (kcal mol=1) AEy, (kcal mol=1)
20 30 65 30
C) 27| Toho/AMP: R1-AE d) 27| Toho/CEX: R1-AE e) = 60| Toho/AMP: R2-AE f) 47| Toho/CEX: R2-AE
IS S 25F 3 55f S 25f
£ 15} 1S £ 50 1S
™ ™ =451 ® 20}
¥ ] G 40 o
X X X X
v 10 [l ] 35 n 15
c c c 30 c
. .o O 5t 8
B 5 320 ER
£ £ £ 15} £
€ € € € 5f
(=] (=] (=] o
g, 5] O o

o

BO Bl PO Pl P2 P3
Chemical Process

BO Bl PO P1L P2 P3 BO Bl P2 P3 P4

Chemical Process

BO Bl P2 P3 P4
Chemical Process

Chemical Process

Figure 5.3 The predictive performance and the BCIG contributions of the ML-MEP models. The
predictive performance of (a) the replica energies and (b) the pathway barriers of (left to right)
the Toho/AMP: R1-AE, Toho/CEX: R1-AE, Toho/AMP: R2-AE, and Toho/CEX: R2-AE
models. The BCIG contributions of the models: (c) Toho/AMP: R1-AE; (d) Toho/CEX: R1-AE;
(e) Toho/AMP: R2-AE; and (f) Toho/CEX: R2-AE.

For the Toho/AMP: R1-AE pathways (Figure 5.3c), the highest BCIG contributions come

from the concerted proton transfers from Lys73 to the thiazolidine nitrogen (P2 and P3). The
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proton abstraction of Glul66 carboxyl (PO and P1) were assessed to be moderately rate-limiting
as they pose higher contributions than the nucleophilic attacks of the Ser70 hydroxyl to the -
lactam carbonyl (B0 and B1). The contributions for the Toho/CEX: R1-AE pathways also suggest
that the protonation of the cephem nitrogen (P2 and P3) is the determinant factor with the highest
contribution (Figure 5.3d). However, the deprotonation of Ser70 Oy (P1) and its nucleophilic
attach to the cephem carbonyl carbon (B0) were shown to considerably contribute to the reaction
profiles of Toho/CEX: R1-AE. On the R2-AE acylation pathways, the concerted proton transfers
from Lys73 to the B-lactam nitrogen, bridged by Ser130 hydroxyl (P2 and P3), remains as the
reaction step of the highest BCIG contributions in both Toho/AMP and Toho/CEX systems (Figure
5.3e, 5.31). Interestingly, in the Toho/AMP: R2-AE pathways, the highest individual contribution
comes from P2 (the proton transfer between Lys73 and Ser130), while in Toho/CEX: R2-AE, it
was determined as P3 (the protonation of the cephem nitrogen). I note that the BCIG derived from
different systems are not to be compared with each other since they explain different models which
were trained on different datasets with distinct distributions. Alternatively, one can train models
on mixed datasets to allow comparison of BCIG from different systems to explain for relative
reactivity. However, the BCIG values in this case for different chemical process are not to be
compared with each other, since the distribution of different feature is biased by the artificial

mixing of the datasets.

Reactivity interpreted from BCIG contributions. Additional DaWNN models trained on the
mixed datasets (Toho/AMP&CEX: R1-AE and Toho/AMP&CEX: R2-AE) As shown in Figure
5.4a, 5.4b, the model prediction on the replica energies or the pathway barriers remain the same
predictive accuracies (RMSEs < 2 kcal mol-1 and R2 > 0.995) compared with the models trained

on individual datasets, demonstrating the scalability of the DaWNN architecture for learning MEPs.
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Figure 5.4 The predictive performance and the BCIG contributions of the unified ML-MEP models.
The predictive performance of (left to right) the replica energies and the pathway barriers of (a)
the Toho/AMP&CEX: RI-AE; and (b) the Toho/AMP&CEX: R2-AE models. The BCIG
contributions of (c) the Toho/AMP&CEX: R1-AE; and (d) the Toho/AMP&CEX: R2-AE models.

The BCIG contributions are computed for the reactivity-explaining models:
Toho/AMP&CEX: R1-AE and Toho/AMP&CEX: R2-AE. For the R1-AE pathways, the BCIG
contributions on all chemical processes are much higher in the Toho/CEX acylation MEPs than
the Toho/AMP ones (Figure 5.4c). As expected, the correlated P2 and P3 contributions largely
increase for the Toho/CEX R1-AE acylation pathways, reflecting the less active protonation of the
cephem nitrogen. While the acylation pathways are initialized by the nucleophilic serine addition,
the high BCIG contributions attributed for this process indicates that the R1-AE acylation
pathways for Toho/CEX is unfavored comparing to Toho/AMP. Combining the enzyme kinetics
discussed above, the interpretation of BCIG contributions shows that the acylation pathway using
solely Glul66 as the general base is turned off for Toho/CEX due to its incapability to activate the
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serine attack on the cephem carbonyl. On the other hand, the contributions in the
Toho/AMP&CEX: R2-AE models demonstrated the same trend (Figure 5.4d): the BCIG values
for most chemical processes in Toho/CEX pathways are higher than the Toho/AMP pathways. The
differences of the BCIG contributions in two systems mainly come from the residue-evolved
processes: B0, P4 (the serine nucleophilic attack to B-lactam carbonyl), and P2, P3 (the concerted
proton transfers to protonate the B-lactam nitrogen). Interestingly, the BCIG contribution from C-
N bond breaking (B1) for CEX concerted base acylation is shown to be slightly lower than that for
AMP. In brief, the BCIG contributions from the Toho/AMP&CEX: R2-AE MEP learning model
show that the energy contributions of concerned chemical processes on the Toho/CEX pathways
are moderately higher than the Toho/AMP pathways, suggesting lower acylation activity for the

Toho/CEX: R2-AE pathways.

5.4 Conclusion

In this study, I presented a QM/MM computational workflow that achieves fast sampling
of QM/MM MEPs for enzyme catalysis. Firstly, I optimized 800 MEP conformations and refined
the single point energies using B3LYP-D3/6-31+G**/C36 calculations. The energetics from this
computational workflow are in good agreement with previous calculations demonstrated in chapter

4.

ML-MEP models with high performance and scalability using the DaWNN architecture
were developed for the machine-learning of the QM/MM MEPs of enzyme catalysis. Comparing
to conventional DNN models, the DaWNN architecture achieves much higher accuracy in learning
the energetic profiles from the conformational evolutions along the QM/MM MEPs. Further, the
DaWNN model is shown to be highly scalable to the training size or the source of the training data

without significant loss in performance.
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Inspired by the IG approach”® for explaining ML/DL models, I further developed the BCIG
approach to interpret the ML-MEP models for mechanistic insights in enzyme catalysis. Using
Toho/AMP and Toho/CEX as the model systems, the energetic and the reactivity contributions of
the processes with different substrates are quantified by the BCIG attributions. The conformational
factors that differentiate the Toho-1 acylation activities of AMP and CEX were identified. The
BCIG contributions quantified that the cephem scaffold was less susceptible to the nucleophilic
serine addition and the protonation of the B-lactam nitrogen than the penam. Moreover, I presented
a purpose-oriented training-explaining strategy to focus on mode interpretability. Whereas the
different ML-MEP models are trained and interpreted for specific mechanistic aspects, I have
shown that the interpretations of different models give consistent mechanistic insights that agrees

with my intuitive mechanistic understandings on the modeled systems.
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6. MECHANISTIC ANALYSIS OF CARBAPENEMASES RESISTANCE TO IMIPENEM
GUIDED BY GRAPH-LEARNING

6.1 GES-5 B-Lactamases

The GES family of ASBLs has demonstrated functional diversity that constitutes its broad
resistance to B-lactams.’!>1318 The first clinically isolated GES-1 enzyme was reported to be an
extended-spectrum B-lactamase with very low resistance to carbapenems, while its single mutant
Gly170Ser variant (GES-5) was shown to effectively hydrolyze carbapenems such as imipenem
(IPM, Figure 6.1a).'* The general B-lactam deacylation mechanism has been extensively
investigated by pioneering theoretical efforts.!**14® Based on their hybrid QM/MM mechanistic

study, Hermann et al.!!°

proposed that the ASBLs deacylation of B-lactams is a concerted one step
process (Figure 6.1b). Briefly, the deacylating water molecule first attacks the acylated
electrophilic B-lactam carbon and synergistically donates its proton to the deprotonated GES
Glul66, which acts as the general base. The scissile bond between Ser70 Oy and the B-lactam
carbonyl carbon is cleaved upon the proton transfer from the fully protonated Lys73 amino to
Ser70 Oy, which retrieves the Ser70 hydroxyl and completes the deacylation. Moreover, the
deacylation of carbapenems is further complicated by possible A2-to-A1 pyrroline tautomerization
on the carbapenem scaffold during the acyl-enzyme state (Figure 6.1b).!47!*¥ While the
interconversion between the two tautomer states is reported, it has been proposed that the Al-

pyrroline tautomer state is more inert to ASPL deacylation.!4-15
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Figure 6.1 The GES/IPM complex and the deacylation reaction. (a) The GES/IPM acyl-enzyme
complex. The deacylating water and the IPM molecule are colored in green and magenta,
respectively; (b) The deacylation mechanism and the atoms included in the QM region. The

QM/MM boundary bonds are marked by blue lines. The structural differences of the acylated IPM-
Al and IPM-A2 tautomer are highlighted in red.

6.2 Computational Details

System Preparation I built the simulation system from the crystal structure of GES-5/IPM acyl-
enzyme complex (PDB: 4H8R).">! The sulfhydryl groups in Cys69 and Cys238 were patched as
the conserved disulfide bridge in most ASBL-carbapenemases.!>* The prepared systems were
subjected to extensive MD sampling after proper equilibration dynamics. The reacting groups,
including the Ser70 Oy, the Lys73 N amino, the Glul66 Ogl, the deacylating water, and the IPM
B-lactam/pyrroline bicyclic scaffold, were held in place to retain their QM-optimized orientations.
The system was subjected to 200 ns MD simulations and snapshots were recorded at a 400 ps

interval, producing a total number of 500 representative configurations.
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QM/MM MEPs. The protonated N4 on the IPM pyrroline ring undergoes tautomerization in most
ASBL/IPM acyl-enzyme intermediates, leading to two possible tautomer configurations on the
IPM pyrroline ring: IPM-A1 and IPM-A2 (Figure 6.1b). In their crystallography study, Smith et al.
observed that the S isomeric state of the Al tautomer is the dominant configuration in the acyl-
enzyme complex in a GES-5 Cys69Gly variant. Accordingly, the S isomeric form was selected for
all Al tautomer states since that the Cys69Gly mutation has been verified to not alter the
conformational architecture of the active site as with the wild-type GES-5.°? For each
representative configuration, both IPM tautomerization states were built and were used to calculate
the deacylation MEPs. A total number of 1,000 pathways using the RPM with holonomic

constraints*’ and 36,000 single point B3LYP-D3/MM energies were calculated in the current study.

Featurization. The goal of my GL task is to connect the acyl-enzyme configurations to the
deacylation barriers of the QM/MM MEDPs. I represent the atoms and interatomic distances as
vertices and edges, formulating graph representations of the acyl-enzyme configurations for
GES/IPM deacylation (Figure 6.2a). The atoms included in the graph was selected according to
the following procedure. First, the atoms on the reaction coordinates were automatically included
as initial vertices. I then expanded the selection to any neighboring atoms that are covalently-
bonded or forming hydrogen-bonding interactions with the initially atoms in at least one of the
reactant configurations, leading to 19 and 21 atoms/vertices in the GES/IPM-A1 and GES/IPM-
A2 graphs, respectively. Each vertex was represented as a vector that one-hot encodes the element
type multiplied by its partial charge from Natural Population Analysis (NPA)!** on the B3LYP-
D3 densities. On the other hand, the edges were naturally defined as the reaction coordinates, the
chemical bonds, and the hydrogen-bonding interactions between the selected vertices.

Additionally, the atoms in the same residue that are not directly covalent-bonded are also linked.
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Figure 6.2 The graph representations and the learning model. (a) The graph representation of
GES/IPM acyl-enzyme conformations. The hydrogen, carbon, nitrogen, and oxygen atoms are
noted by gray, black, blue, and red spheres, respectively. The edges as reaction coordinates,
chemical bonds, hydrogen bonding interactions are shown as red solid lines, black solid lines, and
blue dashed lines, respectively. The black dotted lines denote the edges between two atoms of the
same residue. The asterisks highlight the edges used as the metrics for conformational clustering.
The green box shows the vertices and edges that are included only in GES/IPM-A2 graphs. (b) The
ECGCNN model architecture.

Conformational clustering. Prior to the GL of the deacylation barriers, my visual inspection on

the acyl-enzyme states identified several conformational patterns. Therefore, I performed
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conformational clustering analysis to elaborate the conformational modes of the non-reacting
functional groups upon deacylation. I note that my attempts with unsupervised clustering
algorithms (also assisted by dimensionality reduction) provides no meaningful clustering as
verified from my visual inspection, which suggests the high-complexity of the conformational
space on the GES/IPM active site with the reduced edge representations. Alternatively, I manually
filtered the metric distances based on two criteria: the metric distance (1) should manifest high
variance (> 0.5 A) to clearly distinguish conformational differences; and (2) should not lead to
small clusters with fewer than 10 snapshots. Eventually, the distances of Asn132 O6 — IPM HO6a
and IPM O6a — Lys73 H(1 were used to successfully divide the snapshots into four clusters (Figure

6.3), noted as cluster A, B, C, and D.
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Figure 6.3 The conformational clustering of the acyl-enzyme states, the energy barriers of the
clusters, and the representative conformations in each cluster. (a) The clustering of acyl-enzyme
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configurations using two distance metrics (pink dashed lines); (b) The deacylation barriers in each
cluster. ** denotes that the mean difference in barrier distributions between two tautomer states
are statistically significant (Welch test p <0.001); The representative acyl-enzyme configurations
in clusters of (c) GES/IPM-A1; and (d) GES/IPM-A2. The key hydrogen-bonding interactions
involving the IPM 60-hydroxyl group and Asn132 are highlighted by cyan solid lines. The Glul166
Oel, and the Lys73 H(1, HC3 are labeled. The carbon atoms of the f-lactam ligand in colored in
magenta, except the deacylating B-lactam carbon which is colored in dark purple. Other hydrogen,
carbon, nitrogen, oxygen, and sulfur atoms are colored in white, dim gray, blue, red, and yellow,
respectively.

GL Model for Predicting Deacylation Barriers. The ECGCNN model®! implemented in the
current study adopts three edge-conditioned learning layers, each of which learns the vertex hidden
representations with 64 convolutional filters (Figure 6.2b). After the third layer, the hidden
representation of the graph learned by each filter was read out by a global sum pooling operator,
i.e., by summing all vertex hidden states learned per filter. The hidden representation of the graph
was then transformed by a learned weight vector at the final linear layer (without bias units) to
produce a 64-dimensional latent vector. The model prediction of the deacylation barrier is obtained

from the reduced sum of this latent vector.

[ trained the ECGCNN model using all 1,000 GES/IPM configurations. 150 configurations
were randomly selected as a 15% validation set stratified with regard to the IPM pyrroline tautomer

states. The learnable weights were optimized by an AdaM optimizer '**

at a learning rate of 0.001
against the standard loss of mean-squared-error (MSE). The model was trained for 750 epochs
with a sample batch size of 25. During the training process, the ECGCNN model producing the
lowest validation loss was retained as the final model.

Perturbative Response of the GL. Model. The NPA charges are mostly invariant with regard to

the GES/IPM acyl-enzyme configurations (Figure 6.4), I therefore focus on the edge features for
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the ECGCNN model explanations to gain mechanistic insights. I assess the edge importance by
the following perturbative approach. For each graph denoting an acyl-enzyme configuration, I first
obtain the 64-dimensional latent vector produced from the final linear transform, which is defined
as the baseline, h?9%¢. | then feed a perturbed graph omitting an edge e that flows through the
forward pass of the ECGCNN model and produces a perturbed latent vector, h?¢"*. Since the
reduced sum of the latent vector gives the predicted deacylation barrier, the contribution attributed

to e is defined as the perturbative response of the latent vector upon excluding e from the input

graph. Eventually, I assess the importance of e with the 1-norm distance between h?%%¢ and hgert:

Importance(e) = Z|h§e” — hbase| (6.1)
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Figure 6.4 Distribution of NPA charges on each atom included in the graph. Entries on the left side

of the solid orange line are vertices (atoms) related to the reaction coordinates. Entries on the right
side of the solid purple line are vertices (atoms) present only in GES/IPM-A2 graphs.

59



6.3 Summary of Results

GES/IPM Deacylation Barriers. It has been proposed that the deacylation half of ASBL-mediated
IPM hydrolysis is the rate-limiting step of the overall hydrolysis. Frase et al measured the kinetic
rate of GES-5/IPM deacylation (k3) as 0.45 s under room temperature, which approximates a
deacylation barrier of 17.62 kcal mol™! with the Eyring equation.!>* Moreover, Kalp et al suggested
that the deacylation efficiencies of IPM in ASPLs are also correlated with the tautomerization
states of the pyrroline ring, where the [IPM-A2 tautomer is more active for deacylation than the
IPM-AT1 species. In my calculations (Figure 6.5), the exponential-averaged deacylation barriers of
the IPM-A1 tautomers in GES-5 (23.83 kcal mol™) is higher than that of IPM-A2 (21.17 kcal mol

1. The IPM-A2 tautomer is therefore deemed to be the more active deacylating species.

a) b)
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Figure 6.5 The deacylation barrier distributions of GES/IPM pathways. (a) GES/IPM-A1; (b)
GES/IPM-A2.

GL Representations. The predictive performance of the ECGCNN model on the deacylation
barrier is firstly evaluated (Figure 6.6a). The deacylation barriers of the training set can be

predicted within 2.0 kcal mol! mean absolute errors (MAE). The predictions on the validation set
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are with lower accuracy (MAE <3.0 kcal mol™), but the predicted barrier heights are in good
agreement with the calculated values (R? >0.8). Therefore, I conclude that my ECGCNN model
could reasonably predict the deacylation barriers based on the graph representations of the acyl-

enzyme configuration.
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Figure 6.6 The regression performance of the ECGCNN model and the UMAP dimensionality
reduced visualization of graph features. (a) The regression performance of the GNN model on the
training and validation sets of two systems. The UMAP dimensionality reductions on the (b)
distances as reaction coordinates; (c) the 64-element latent vectors from the ECGCNN model. Note
that the UMAP representations of GES/IPM-A1 and GES/IPM-A2 were plotted under the same
scale.
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I further investigated if the knowledge basis of the structural factors on the barrier heights
are also properly encoded by the GL latent representations. The low-dimension UMAP!®
representation of the reaction coordinate distances showed clear correlation to the deacylation
barrier (Figure 6.6b): the configurations of high-to-low deacylation barriers are distributed from
left-to-right. However, the acyl-enzyme configurations from different pyrroline tautomerization
states are mixed together, suggesting that different tautomer states are conformationally
indistinguishable. On the other hand, the UMAP-projected GL latent vectors are able to preserve
the barrier distributions as the high-to-low deacylation barriers spans from top-left to lower-right
(Figure 6.6c). Meanwhile, it also shows that the IPM-A1 and A2 tautomers can be distinguished
from each other, suggesting that the ECGCNN model could effectively capture and properly
encode the hidden patterns underlying the conformation-barrier relationship in GES/IPM
deacylation.

Perturbative Responses of the GL Representations. The ECGCNN model was unboxed using
the perturbative response of the graph-learned hidden representations. The overall 1-norm
displacements of the 64-dimensional latent vector upon edge exclusion are shown in Figure 6.7.
The reaction coordinates of the nucleophilic attack of the deacylating water (IPM C7 — Water O)
and the protonation of the GLU166 (Glul66 Ogl — Water H1) showed statistically significant
difference between the IPM tautomerization states (Figure 6.7a). Compared with the IPM-A1
tautomers, the deacylation barriers of the A2 states are less sensitive to the water attack on the
Ser70-IPM ester carbon and are more dependent on the protonating-distance of Glul66. Notably,
in both deacylation pathways, the deacylation barriers are shown to be most sensitive to the
exclusion of the edge IPM C7 — IPM O6a, which specifies the orientation of the 6a-hydroxyethyl.

Lastly, while the Welch tests have shown that the latent vector displacements upon excluding three
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edges (Asnl132 Os1 — IPM HOG6a, Glul66 Oel — IPM HO60, and IPM O60 — Lys73 HC1) are

statistically different between the two tautomer states, those differences in values seem small.
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displacement of latent vectors arranged by edges excluded in each system; (b) The latent vectors
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with orange and black axis are inter-residue reaction coordinates and inter-residue hydrogen
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bonding interactions, respectively. ** denotes that the mean difference in barrier distributions
between two tautomer states are statistically significant (Welch test p <0.001).

Due to the diverse orientations of the IPM 6a-hydroxyethyl, I further investigated the
potential impact to the deacylation barriers from each conformational cluster. The deacylation
barriers of IPM-A2 are more sensitive than those of Al to the reaction coordinates of Glul66
protonation (Glul66 Ocl — water H1) in clusters A, B, and D, while cluster C is inconclusive yet
with a higher average perturbative response (Figure 6.7b). As for the interactions concerning the
IPM 6a side chain groups, all statistically significant comparisons between two tautomer states are
found for the A cluster, while the actual differences are shown to be small. The key difference
between the conformational clusters is the [IPM O6a — IPM C7 edges. As shown in Figure 6.7b,
while all clusters showed high latent response upon the IPM O6a — IPM C7 edge removal, cluster
B is shown to have latent displacements significantly larger than the others. Such observation can
be directly correlated with the local hydrogen bonding interactions to the water attack, as the
cluster B is the only cluster that has its IPM 6a-hydroxyl group donating hydrogen bonds to the

water molecule or the general base (Glul66, Figure 6.8).
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Figure 6.8 The distribution of the IPM C7-C6-C6a-O6a dihedral angle of each conformational
cluster.
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6.4 Conclusion

In summary, I calculated 1,000 QM/MM MEPs for the deacylation between GES-5 and
IPM with two tautomer states. Based on the MEP dataset, I developed an ECGCNN model that
reasonably predicts the deacylation barrier from the of graph representations of GES/IPM acyl-
enzyme conformations. The mechanism underlying the deacylation reactivity of GES-5 has been
revealed with atomistic details using the displacement response of the ECGCNN-learned
representations upon edge exclusion. Guided by this perturbative approach, I delineate the
mechanisms of two major factors that impact the deacylation reactivity in GES/IPM hydrolysis.
The protonation on IPM-A2 N4 could facilitate an internal oxyanion hole as the hydrogen bonding
donated to the Ser70-IPM ester oxygens, which potentially stabilizes the tetrahedral intermediate
and is reflected as the small latent vector displacement to the exclusion of IPM C7 — water O edges
in the ECGCNN model. Alternatively, the IPM 6a-hydroxyethyl group could adopt two
orientations and interacts with the reacting groups and thus impacts the deacylating barrier. In the
ECGCNN model, this is demonstrated as significant latent displacements upon the removal of
edges relevant to the IPM 6a side chain. Most importantly, while no explicit representation of the
hydroxyethyl orientation was encoded in the feature representation, my ECGCNN model could
capture this hidden information and manifest high sensitivity to the IPM O6a — IPM C7 distance
which is highly correlated with the IPM 6a-hydroxyethyl orientation. Finally, my study
demonstrates the potential for DL/GL methods in assisting the mechanistic understandings of

enzyme catalysis.
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7. EMPIRICAL FORCE FIELD PARAMETRIZATION OF 2-AMINOTHIAZOLE

7.1 Parametrization Scheme of CGenFF

Although CGenFF provides automatic atom typing and parameter assignment for small
bio-molecules based on the property of parameter-transferability, the generated parameters are not
as accurate and needs to be further refined.!?"'?*> The original workflow for CGenFF parameter

refinement is shown in Figure 7.1 and is described as follows:

e Atom types (Van der Waals parameters) are transferred from CGenFF;

e Atomic partial charges are parameterized to HF/6-31G* water interaction energies from at
MP2/6-31G* optimized geometries;

e Equilibrium bond length & angles are fitted to reproduce the molecular structure from
MP2/6-31G* calculations;

e Force constants are optimized to reproduce the vibrational frequencies from MP2/6-31G*
calculations; The vibrational frequencies are calculated by the MOLVIB module integrated
in CHARMM, which requires Pulay’s Natural Internal Coordinate (NIC)!'>%!%7 as the input
format to specify both fragment topology and coordinates;

e Multiplicity and phase shift on torsional terms are determined by the connectivity of the
dihedrals and thus need not to be changed;

e Divide and conquer: when dealing with large molecules with more than 20 atoms, the

molecule is divided into fragments and each fragment is parametrized independently. The
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parametrized fragments are then joined together and the energy terms on the connecting

part is further optimized using QM PES profile as the target data.

| Initial topology & parameters |

| Charge optimization at QM geometry |
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Equilibrium geometry H8
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Figure 7.1 Flowchart for CGenFF parametrization and chemical structure of 2-aminothiazole.

7.2 Parameter Searching Strategy

Searching for the optimal combination of force field parameters is a heavy task due to the
dimensionality of the parameters and simple exhaustive method is computationally unaffordable.
Accordingly, an adaptive grid searching strategy is adopted for the automation of parameter
searching. As demonstrated in Figure 7.2, instead of generating a tightly distributed point grid, a
diffused grid was firstly generated with three points separated by large point span on each
direction. The optimal parameter combination was chosen as the reference point and a new grid
with smaller span was generated and tested. Finally, this iterative process converges when the

difference between the MM results and QM data is smaller than criteria threshold. Moreover, the
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grid points were generated using the First Depth Search (FDS) algorithm to avoid revisiting
duplicated parameter combinations. This strategy is also important as in most cases, the variable

space consists of more than eight dimensions, leaving exhaustive generation of all possible

parameter set extremely time-consuming.

Figure 7.2 Demonstration of adaptive grid search in a 2D variable space.

7.3 Parametrization of 2-Aminothiazole: Atomic Partial Charges

As shown in Figure 7.3, seven water interactions were firstly constructed. the optimal
interaction energies and distances are calculated using rigid PES scans on the intermolecular
distance between H>O and the target atom. The deviation between the water interaction energies
at QM (HF/6-31G*//MP2/6-31G*) level of theory and MM level of theory are all larger than 1
kcal/mol, as presented in Table 7.1. After the optimization of atomic charges, the maximum
deviation in the water interaction energies is reduced to less than 0.07 kcal/mol. Notably, water
interaction on H9 is not optimized independently as the compromise for keeping H9 and H10

indistinguishable.

68



Figure 7.3 Water interactions considered for 2-Aminothiazole.
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Table 7.1 Deviation to QM water interaction energies of initial and optimized atomic charges.

No. Interaction / Atom Initial charge  AE (kcal mol™!)  Fitted charge  AE (kcal mol™)
1/8Ss -0.053 -3.201 0.470 0.003

2/Cq -0.185 -3.344 -0.659 -0.027

3/Cs 0.209 -3.319 -0.146 -0.068

4/ N -0.620 -2.568 -0.440 0.005

5/Hio 0.355 -1.354 0.164 0.010

6/ Ho 0.355 -1.778 0.164 -0.926

7/ Ne -0.760 -2.593 -0.479 0.032
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7.4 Parametrization of 2-Aminothiazole: Equilibrium Terms

The equilibrium terms are fitted to MP2/6-31G* minimized structures. The initial and fitted

parameters are shown in Table 7.2. The comparison between the QM and MM minimized

geometry are presented in the following sections.

Table 7.2 Initial and optimized equilibrium bond length and bond angles.

Equilibrium Bond Length or Angles Initial Fitted
CI1-N6 1.4000 A 1.3779 A
N2-C1-N6 123.00° 127.55°
S5-C1-N6 119.80° 116.60°
C1-N6-H9 115.00° 117.55°

7.5 Parametrization of 2-Aminothiazole: Force Constants

The force constants are optimized to reproduce the vibrational frequencies at MP2/6-31G*,

the optimized force constants are shown in Table 7.3.

Table 7.3 Initial and optimized force constants, units vary with entries.

Force Constants Initial Fitted
C1-N6 330.00 370.00
N2-C1-N6 45.80 45.00
S5-C1-N6 25.00 58.00
C1-N6-H9 45.00 68.00
C3-N2-C1-N6 3.0000 7.0000
N2-C1-N6-H9 0.3200 2.5000
S5-C1-N6-H9 0.3200 2.3000
C4-S5-C1-N6 4.0000 5.0000
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The comparison between the vibrational frequencies calculated at QM level of theory and
MM level of theory are presented in Figure 7.4. The underfitting of the frequency in the red dashed
box is contributed (>95%) by the scissoring motion of the NH2 group. Such a vibrational mode
could be expressed by a linear combination of three bond angles, shown as a, B and y in Figure
7.4. The v angle is a well-parametrized bond bending term in the original CGenFF and was adopted
in the current fragment due to the transferability of force field parameters. Modifying this bending
term violates the parametrization protocol as this bending term is shared by a number of well-
parametrized fragments in the CGenFF. Thus, optimizing this frequency mode demands
introducing new atom types and is beyond necessity. Regardless, this discrepancy between QM

and MM vibrational frequency is left aside with no further optimization.
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Figure 7.4 CGenFF parametrization for vibrational frequencies, the frequency marked in the red
dashed box produced by the scissoring of the amino group.
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7.6 Comparison of QM and MM optimized geometries

The performance of the MM force field parameters on 2-aminothiazole are benchmarked
on the basis of minimized structures, as shown in Figure 7.5. It can be seen that, the unfitted
CGenFF parameters produce a symmetrical conformation, whereas the MP2/6-31G* geometries
give an asymmetrical conformation with the conjugation C-C double bond and the lone pairs on
the amino group. The minimal conformation is improved after parametrizing for equilibrium
structures, but the torsional angle is not optimal. Upon fitted for vibrational frequencies, the MM
minimization could reasonably reproduce the QM minimized conformation. Although
compromise was made during the parameter searching, the performance of the CGenFF parameters

for 2-aminothiazole is satisfying.

Figure 7.5 Comparison of QM (in orange) and MM (in multi-color) minimized geometry: (a)
with unfitted force field parameters; (b) with force field parameters fitted for equilibrium
geometry; (c) with force field parameters fitted for vibrational frequencies.
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8. CONCLUSIONS

In this thesis, the molecular mechanisms of antibiotic resistance driven by ASPLs are

unraveled with QM/MM MEP calculations and explainable ML models.

The detailed molecular mechanism of the acylation reaction between TEM-1, a
penicillinase, and benzylpenicillin is firstly revisited. I proposed two types of perturbation-based
importance attribution method for understanding the energy contributions per reaction step. Both
methods provide consistent measures of the energy contributions and demonstrated that the
collapsing of the TEM-1/Benzylpenicillin tetrahedral intermediates is the rate limiting reaction
step of the overall acylation. Along this line, the discrepancies between two pioneering studies on

the same system is also bridged.

The detailed molecular mechanism of the acylation reaction between Toho-1, a
cephalosporinase, and AMP/CEX is then investigated. I proposed the BCIG approach, an XAI
method, to explain the machine-learned QM/MM MEPs. The DL model of learning QM/MM
MEPs adopts the DaWNN architecture and achieved high accuracy and scalability. The BCIG
approach could attribute variable contributions of the overall reaction profile to individual reaction
steps. The BCIG metric are validated on additional QM/MM calculations and the intuitive
understanding of the reaction. Moreover, based on this study combining QM/MM and XAI, I
proposed that the acylation of Toho-1/CEX does not happen using Glul66 as the only general

base, rather, it has to be mediated by Lys73/Glul66 as the concerted base.
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The detailed molecular mechanism of the deacylation activity of GES-5, a carbapenemases,
and IPM is also studied. I built graph representations of the acyl-enzyme active site of GES-5/IPM,
and applied GL model to predict the deacylation barrier heights calculated from the QM/MM
MEPs. The GL model adopts a edge-conditioned learning scheme and effectively utilizes atomic
distances as the edge information to reach a prediction error of < 3 kcal mol™. I proposed that the
conformational factors that regulate the deacylation activity could be probed from a perturbative
edge-removing scheme on the GL model. Accordingly, I concluded that the tautomerization states
on the IPM pyrroline ring and the orientations of the IPM 6a-hydroxyethyl side group are two

major factors that impacts and deacylation activity in IPM hydrolysis by GES-5.

Further discussions in this thesis focused on developing classical molecular force fields for
B-lactam molecules. The parametrization of a common B-lactam fragment, 2-aminothiazole, is
detailed. The parametrized force field files for the 2-amonithiazole and cephalothin were appended
as appendix in the hope that it would be helpful to future researches. However, I note that those

force field files are not extensively tested nor peer-reviewed.

In summary, my Ph.D. efforts are mostly devoted to understand molecular mechanisms
underlying ASBL-driven B-lactam resistance combining QM/MM and XAI. Using three ASPL
enzymes with distinct functions, [ have shown that these ML/DL/GL models can be explained with
chemical relevance. In other words, the ML/DL/GL models trained on reasonable chemical
datasets could also encode essential hidden mechanistic information, which could be unraveled
using XAl methods for mechanistic insights. To conclude, I proved that ML and model explanation
methods could be effectively introduced for reliable QM/MM post-analysis, which extracts

chemical insights of great importance and details for enzyme mechanism studies.
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Natural Internal Coordinates for 2-aminothiazole with explanations

I Natural Internal Coordinates for 2-aminothiazole with explanations

U_
1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

P WMNMNNMNNMNWNNMNWNNWNOMNPEDAEPAEDRPARNMNMNNMNNMNNRPRRPRPRPRPRPRERRE

P RPRRPROUOUWNPANOUNMNMPWNRUPDMWNMMRUOCDOOPD, WERERPAWNPR
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=
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OWOWOONNNUVOODOATRUPMWNMNRUPRDWNMNOODOOOOOOOO®O®
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6

DO OOPLPOOWOOROONPFPURARWOIOOOOOOOOOODOOOOOOOO®

9

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

BOND
BOND
BOND
BOND
BOND
BOND
BOND
BOND
BOND
BOND
ANGL
ANGL
ANGL
ANGL
ANGL
DIHE
DIHE
DIHE
DIHE
DIHE
ANGL
ANGL
WWAG
ANGL
ANGL
WWAG
ANGL
ANGL
WWAG
ANGL
ANGL
ANGL
WWAG
DIHE

C1=N2

N2-C3

c3=c4

c4-s5

C1-S5

C1-N6

C3-H7

C4-H8

N6-H9

N6-H10

S5-C1=N2

C1=N2-C3

N2-C3=C4

C3=C4-S5

C4-S5-C1
S5-C1=N2-C3
C1=N2-C3=C4
N2-C3=C4-S5
€3=C4-5S5-C1
C4-S5-C1=N2
N2=C1-N6 c1
S5-C1-N6
N6-C1(=N2)-S5 N6
N2-C3-H7 c3
C4=C3-H7
H7-C3(-N2)-C4 H7
C3=C4-H8 c4
S5-C4-H8
H8-C4(-S5)=C3 H8
H9-N6-H10 N6
C1-N6-H9
C1-N6-H10
C1-N6(-H9)-H19 C1
N2-C1-N6-H9

matrix that transforms internal coordinates into NICs:
1.

VCoOoONOUVTDA WNR

R RRRRRRRR

[y

-1.12
0.31
-1.81

=

RPRRERNRRRRR

11
12
13
14
15

17

19

21
22

12
13
17
17
22

25

28

31
32

-0.
.81
-0.
=ilo
=il

=ilo
=il

81

81
12

11 13
12 14
13 18
14 19

21 32

0.31
-1.81

1.12

11 14
12 15
13 19
14 20

0.31 11 15 -0.81
1.12

-0.81 13 20 0.31

1.81

5-member ring al

a2
a3
a4
a5
t1
t2
t3
t4
t5
bl
b2

wagging on N2-C1-S5 plane
bl
b2
wagging on N2-C3=C4 plane
bl
b2
wagging on S5-C4=C3 plane
a
b1
b2
wagging on NH2 plane
dihedral angles of NH2 rolling
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Force Field for 2-Aminothiazole Compatible with CHARMM36/CGenFF

* Toppar stream file for 2-aminothiazole
* Zilin Song, 13 March 2019

*

read rtf card append
* Topologies for 2-aminothiazole
* Zilin Song, 13 March 2019

*

36 1

| Note: This FF has not been extensively tested nor peer-reviewed.

RESI frg5 0.000

GROUP I FINAL R1 INIT PENALTY
ATOM C1 CG2R53 0.625 ! 0.621 0.302 78.615
ATOM N2 NG2R50 -0.440 | -0.440 -0.620 14.505
ATOM C3 CG2R51 -0.150 ! -0.146 0.209 2.500
ATOM C4 CG2R51 -0.655 ! -0.659 -0.185 2.500
ATOM S5 SG2R50 0.470 ! 0.470 -0.053 40.269
ATOM N6 NG321 -0.483 | -0.479 -0.670 72.686
ATOM H7 HGR52 0.130 ! 0.130 0.130 0.000
ATOM H8 HGR52 0.175 ! 0.175 0.177 0.000
ATOM HO HGPAM2 0.164 ! 0.164 0.355 9.083
ATOM H10 HGPAM2 0.164 ! 0.164 0.355 9.083

BOND Cl1 S5 (C1 N6 C1 N2 N2 C3
BOND C3 4 GC3 H7 C4 S5 C4 H8
BOND N6 H9 N6  H1e
IMPR C1 N2 N6 S5

END

read param card flex append
* Parameters for 2-aminothiazole
* Zilin Song, 13 March 2019

*

BONDS
CG2R53 NG321 370.00 1.3730 ! 330.00 55

ANGLES

NG2R50 CG2R53 NG321 45.00 127.55 ! 45.80 39

NG321 CG2R53 SG2R50 58.00 116.60 ! 25.00 70

CG2R53 NG321 HGPAM2 68.00 117.55 ! 45.00 19
DIHEDRALS

NG321 CG2R53 NG2R50 CG2R51 7.0000 2  180.00 ! 3.0000 70
NG2R50 CG2R53 NG321 HGPAM2 2.5000 2 180.00 ! 0.3200 140.5
SG2R50 CG2R53 NG321 HGPAM2 2.3000 2 180.00 ! 0.3200 224.5
NG321 CG2R53 SG2R50 CG2R51 5.0000 2 180.00 | 4.0000 70
IMPROPERS

CG2R53 NG2R50 NG321 SG2R50 65.6000 0 0.00 ! 45.00 209
END
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Force Field for Cephalothin Compatible with CHARMM36/CGenFF

Force field for cephalothin molecule.
For use with CGenFF v4.0
Zilin Song, 21 May 2019

L R R 3

READ rtf CARD APPENnd
* Topologies based on CGenFF v4.0

* Zilin Song, 21 May 2019
*

36 1

| Note: This FF has not been extensively tested nor peer-reviewed.

RESI INN -1.000 ! atom_no

GROUP I frgl

ATOM C1 CG2R51 -0.045 | 1

ATOM C2 CG2R51 -0.210 ! 2

ATOM C3 CG2R51 -0.225 | 3

ATOM C4 CG2R51 -0.085 | 4

ATOM S5 SG2R50 -0.015 | 5

ATOM H2 HGR51 0.160 ! 6

ATOM H3 HGR51 0.170 ! 7

ATOM H4 HGR52 0.180 ! 8 H4 H3
GROUP | frg2 \ /

ATOM C6 CG321 -0.116 ! 9 C4 == C3

ATOM C7 CG201 0.550 | 10 | \

ATOM N8 NG251 -0.535 | 11 | C2 -- H2
ATOM 07 0G2D1 -0.545 | 12 | //

ATOM H6A HGA2 0.090 ! 13 S5 -- C1 H6A
ATOM H6B HGA2 0.090 | 14 \ /
ATOM H8 HGP1 0.3106 ! 15 C6 -- He6B
GROUP | frg3 /

ATOM C9 CG3C41 0.300 ! 16 07 == C7

ATOM C10 CG2R53 0.29 | 17 \

ATOM N11 NG2R43 -0.330 | 18 010 N8 -- H8
ATOM C12 CG3RC1 0.070 ! 19 \\ /

ATOM S13 SG311 0.065 | 20 C10 -- C9 -- H9
ATOM C14 CG321 -0.065 | 21 | |

ATOM C15 CG2DC1  -0.110 ! 22(-) 021A N11 -- C12 -- H12
ATOM C16 CG2D10 -0.160 ! 23 \ / \
ATOM H9 HGA1 0.0990 | 24 Cc21 -- Ci16 S13
ATOM 010 0G2D1 -0.470 | 25 // \\ /
ATOM H12 HGA1 0.090 | 26 021B C15 -- C14 -- H14A
ATOM H14A  HGA2 0.090 | 27 / \
ATOM H14B  HGA2 0.0990 | 28 H17A -- C17 H14B
GROUP | frga / N\

ATOM C17 CG321 0.135 | 29 H17B 018

ATOM 018 0G302 -0.4%9 | 3@ /

ATOM C19 CG202 0.890 | 31 019 == C19

ATOM C20 CG331 -0.310 ! 32 \

ATOM H17A  HGA2 0.0990 ! 33 C20 -- H20A
ATOM H17B  HGA2 0.090 I 34 / N\

ATOM 019 0G2D1 -0.615 | 35 H20B H2ecC
ATOM H20A  HGA3 0.090 ! 36

ATOM H20B  HGA3 0.0990 | 37

ATOM H20C  HGA3 0.0990 ! 38

GROUP I -C00(-)

ATOM C21 CG203 0.730 ! 39

ATOM 021A  0G2D2 -0.760 | 40

ATOM 021B  0G2D2 -0.760 | 41

BOND (1 S5 (€1 €6 C2 H2 (C2 (3
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BOND
BOND
BOND
BOND
BOND
BOND
BOND
BOND
BOND
DOUB
DOUB
DOUB
DOUB
DOUB
IMPR
IMPR
IMPR
IMPR
IMPR

c3
ce6
N8
Ccle
S13
Cc15
c17
c19
c21
LE C1
LE C3
LE C7
LE Ci1o
LE C15
c7
Cle
Cile
c19
c21

H3
H6B
co
N11
c14
c17
H17B
019
021A
c2
c4
07
010
Cle
cé
co
c1
c2
02

ACCEPTOR 010 C10
ACCEPTOR 021A C21
ACCEPTOR 021B C21
ACCEPTOR 019 (C19
ACCEPTOR 07 C7
| ICs created based on CHARMM optimized structure.

IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
IC
END

cé
c1
c2
c1
cé
c7
N8
co
Cc12
ci14
C15
c17
018
N11
S5
c3
Cc4
S5
c7
H6A
N8
c9
c12
Cle
N11
N11
N11
C15
Cc15
c12
Cie
018
H17A
019
H20A
H20A
C15
021A

Cc1
c2
Cc1
ceé
c7
N8
(@°]
c12
S13
Cci15
c17
018
c19
Cie
ceé
Cc1
c2
c3
c1
Cc1
ceé
c7
N8
N8
co
(@°]
co
S13
S13
Cle
ci14
C15
C15
018
c19
ci19
N11
Cile

c4
c6
co
N11
C12
c14
Cc17
Cc20
c21

5
0
1A

c2
c3
ceé
c7
N8
co
Cle
S13
c14
c17
018
ci9
c20
c21
*C1
*C2
*C3
*C4
*C6
*C6
*C7
*N8
*C9
*C9
*C10
*C12
*C12
*Cl14
*Cl14
*N11
*C15
*C17
*C17
*C19
*C20
*C20
*C16
*C21

H4
c7
H9
Cc12
S13
H14B
018
H20A
021B

N8
N11
c21
018
021B

c3
Cc4
c7
N8
(@°]
c12
N11
ci14
C15
018
Cc19
019
H20A
021A
c2
H2
H3
H4
H6A
H6B
07
H8
Cie
H9
010
H12
S13
H14A
H14B
Cle
c17
H17A
H17B
Cc20
H20B
H20C
c21
021B

c4
c7
(@)
N11
Ci4
Cle
018
Cc20

07

010
N11
019
Cle

RPRRPRRRPRRRRPRRPRRPRRRPRRPRRPREPRPRRPRRPRRPRPRRPRRREPRPRRRPRERRRRRERRR

S5
N8
Ccle
C1e
Cc15
c21
c19
H20B

.5000
.3600
.3600
.5000
.4900
.3450
.4550
.5400
.7930
.5020
.5020
.4400
.3340
.3860
.7300
.3600
.3600
.7300
.4900
.1110
.3450
.4550
.5400
.5600
.3800
.4500
.4500
.5020
.5020
.4500
.3400
.4400
.1110
.2200
.1110
.1110
.3400
.2600

Cé
N8
(@)
Cc12
Ci4
c17
C19
Cc20

130.
107.
130.
112.
116.
123.
101.
110.

98.
122.
109.
109.
109.
115.
125.
107.
107.
109.
112.
109.
116.
123.
101.
1e1.
104.
104.
104.
111.
111.
111.
126.
109.
111.
125.
109.
109.
111.
111.

H6A
H8
c12
H12
H14A
H17A
Cc20
H20C

00 180@.
20 Q.
00 -120.
00 180@.
50 180.
50 120.
00 -120.
20 120.
00 Q.
00 -60.
00 180.
60 Q.
00 180.
50 180.
00 180.
20 180.
20 180.
00 180.
00 120.
50 -120.
50 180.
50 180.
00 120.
00 -120.
50 180.
50 -120.
50 -120.
82 12@.
82 -120.
50 180.
50 180.
00 120.
50 -120.
90 18@.
50 120.
50 -120.
00 180@.
00 180@.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
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107.
107.
112.
116.
123.
l1e01.
104.

98.
111.
109.
109.
125.
109.
111.
130.
126.
126.
130.
109.
109.
121.
123.
l1e1.
102.
135.
110.
11e0.
111.
111.
113.
122.
.50
111.
109.
109.
109.
115.
111.

111

20
20
00
50
50
00
50
00
82
00
60
90
50
00
00
40
40
00
50
50
00
00
00
00
70
20
20
30
30
00
00

50
00
50
50
50
00

RPRRRRPRRPRRPRRPRPRRRREPREPRREPRPRPORRRREPREPRERRERRIEPRPRPRPRRRRERRERRERRERRRRR

.3600
.3600
.4900
.3450
.4550
.5400
.3800
.8180
.5020
.4400
.3340
.2200
.1110
.2600
.3600
.0800
.0800
.0830
.1110
.1110
.2300
.9970
.5600
.0930
.2350
.1110
.7930
.1110
.1110
.3860
.5020
.1110
.1110
.5220
.1110
.1110
.4890
.2600




READ param CARD FLEX APPEnd
* Parameters parameterized basing on CGenFF v4.0
* Zilin Song, 21 May 2019

*

BONDS

CG3C41
CG2D10
CG2D10
CG3C41
CG3C41
CG3RC1
CG3RC1

ANGLES
CG2R53
CG3RC1
NG2S1

CG201

CG3C41
CG321

CG2DC1
CG2DC1
CG2DC1
CG203

CG2D10
CG321

CG201

CG321

CG3C41
CG3C41
CG3C41
NG2R43
NG2R43
SG311

CG2D10
CG2D10
CG2R53
CG3RC1
CG2DC1
CG2R53
CG2R53

NG2S1
CG203
NG2R43
CG3RC1
HGA1
NG2R43
SG311

CG3C41
CG3C41
CG3C41
NG2S1

NG2S1

CG2DC1
CG321

CG2Dh10
CG2D10
CG2D10
CG203

CG2R51
CG321

SG311

CG3RC1
CG3RC1
CG3RC1
CG3RC1
CG3RC1
CG3RC1
NG2R43
NG2R43
NG2R43
CG3C41
CG321

CG3C41
CG3C41

DIHEDRALS

CG321
CG2R51
CG2R51
SG2R50
SG2R50
NG2S1
0G2D1
CG321
CG321
0G2D1
CG2R53
NG2R43
0G2D1
CG3RC1
NG2S1
NG2S1
NG2S1
HGA1
CG2R53
CG3RC1
HGA1

CG2R51
CG2R51
CG2R51
CG2R51
CG2R51
CG201

CG201

CG201

CG201

CG201

CG3C41
CG2R53
CG2R53
CG3C41
CG3C41
CG3C41
CG3C41
CG3C41
CG3C41
CG3C41
CG3C41

320.
440.
475
270.
348.
245.
162.

NG2S1
NG2S1
HGA1

CG3C4
HGP1

CG321
0G302
CG203
NG2R4
NG2R4
0G2D2
SG2R5
CG2R5
CG3RC
NG2R4
SG311
HGA1

SG311
HGA1

HGA1

CG2R5
CG3RC
CG3RC
HGA1

SG311
CG3RC
HGA1

SG2R5
CG321
CG321
CG321
CG321
CG321
CG321
NG2S1
NG2S1
NG2S1
NG2S1
CG3C4
CG3C4
NG2S1
CG3RC
CG3RC
CG3RC
NG2S1
NG2S1
NG2S1
NG2S1

00
00

.00

00
00
00
00

1

3
3

0
1
1
3

3
1
1

1

0

1
1

1
1
1

PR RRRRPR

95.00
95.00
72.00
50.00
35.00
48.00
20.00
48.00
60.00
95.00
40.00
25.00
51.80
63.00
90.00
95.00
46.00
30.00
51.00
69.00
54.00
104 .00
85.00
46.00
65.00
90.00
46.00

CG2R51
CG201
CG201
CG201
HGA2
CG2R51
CG2R51
CG3C41
CG3C41
CG3C41
CG201
NG2S1
NG2S1
CG201
NG2R43
SG311
HGA1
CG201
HGP1
HGP1
HGP1

.4550
.4890
.3860
.5400
.0930
.4500
.7930

101.
1e01.
102.
123.
119.
122.
109.
132.
111.
115.
111.
125.
112.

98.
104.
11e0.
11e0.
113.
107.
105.
113.
119.
111.
11e0.
.82
106.
112.

111

OWARDNWOODNWANNRRWRRLRRLROD

00
00
00
50
50
00
00
50
00
50
00
00
00
00
50
20
20
80
00
00
00
00
50
50

00
30

.0000
3000
2000
.5000
.2000
.2000
. 8000
.6000
5000
.5000
.0000
.0000
.0000
5000
.5000
.4000
.0000
.0000
0000
3000
.0000

WERPRRPWWWWWWWWNNRPRRPRPWWNEN

50.00

2.35300

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
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CG203
CG203
NG2R43
CG2DC1
NG2R43
CG203
CG203
CG203
CG203
CG2D10
CG321
CG321
CG2DC1
CG321
NG2R43
CG2D10
CG2D10
CG2DC1
CG2DC1
CG2DC1
CG2DC1
NG2R43
0G2D1
0G2D1
CG3C41
CG3C41
0G2D1
0G2D1
CG2DC1
CG2DC1
HGA2
CG2R53
CG2R53
CG2R53
HGA1
HGA1
HGA1
CG3C41
CG3C41
SG311
SG311
HGA1
HGA1
CG3C41
CG3C41
NG2R43
NG2R43
HGA1

CG2D10
CG2D10
CG2D10
CG2D10
CG2D10
CG2D10
CG2D10
CG2D10
CG2D10
CG2DC1
CG2DC1
CG2DC1
CG321

CG2DC1
CG2R53
CG2DC1
CG2DC1
CG2D10
CG2Dh10
CG2D10
CG2Dh10
CG2R53
CG2R53
CG2R53
CG2R53
CG2R53
CG2R53
CG2R53
CG321

CG321

CG321
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