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Pathogen resistance to β-lactam antibiotics compromises effective treatments of superbug 

infections. One major source of β-lactam resistance is the bacterial production of β-lactamases, 

which could effectively hydrolyze β-lactam drugs. In this thesis, the hydrolysis of various β-lactam 

antibiotics by class A serine-based β-lactamases (ASβLs) were investigated using hybrid Quantum 

Mechanical / Molecular Mechanical (QM/MM) minimum energy pathway (MEP) calculations and 

explainable machine learning (ML) approaches. The TEM-1/benzylpenicillin acylation reaction 

with QM/MM chain-of-states reaction pathways was firstly revisited. I proposed two 

decomposition methods for energy contribution analysis based on perturbing ML regression 

models. Both methods were shown to be model implementation invariant and successfully bridged 

the discrepancies between two pioneering mechanistic studies. The Toho-1 ASβL acylations of 

ampicillin and cefalexin were then investigated. I reported that the acylation pathway selection can 

be ligand dependent: ampicillin could undergo acylation via Lys73 or Glu166 acting as the general 

base while cefalexin acylation is limited to Lys73 as the general base. An explainable artificial 

intelligence (XAI) method, the Boltzmann-weighted Cumulative Integrated Gradients (BCIG), 

was developed to explain the different acylation pathway viability found for ampicillin and 

cefalexin. Lastly, conformational factors determining the GES-5/imipenem deacylation activity 

was investigated using edge-conditioned convolutional graph-learning (GL) methods. Critical 
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mechanistic insights were derived from perturbative response of the GL latent representations, 

which explained the different deacylation reactivity between the two imipenem pyrroline tautomer 

states and identified the orientation of the carbapenem 6α-hydroxyethyl as the key factor that 

impacts the deacylation barrier heights. In summary, my thesis focuses on bridging QM/MM 

chain-of-states reaction pathway calculations and explainable ML to derive essential mechanistic 

insights into β-lactam resistance driven by ASβLs.  
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1. INTRODUCTION 

Bacterial resistance to antibiotic drugs compromises effective clinical treatments of 

pathogen infections and poses severe threat to global health. While being obviously of high clinical 

values, antibiotics are also economically vital for industries threatened by bacterial infections, such 

as husbandry.1 Antibiotic molecules are biologically-active compounds that kill bacterial strains 

or disrupt  their binary fissions.2 The β-lactam antibiotics is the major class of antibiotic drugs and 

is among the first-discovered antibiotics.3–5  

The β-lactams drugs function by inhibiting bacterial cell wall synthesis and thus disrupt 

bacterial reproduction.3 All β-lactam antibiotics share the common structural feature of carrying a 

β-lactam four member ring as the central functional group (Figure 1.1a).4 Common β-lactam-based 

antibiotic families are distinguished by their extended scaffolds: Penam (Penicillins), Cephem 

(Cephalosporins), and Carbapenem (Figure 1.1a).4–6 Since their application, β-lactams have 

demonstrated clinical effectiveness against bacterial infections. However, the abuse of β-lactam 

drugs has also elevated many bacterial strains to β-lactamases-producing superbugs, which could 

effectively inactivate common β-lactam antibiotics families.7–18 

β-Lactamases are bacterial-produced enzymes that are able to effectively hydrolyze and 

confer board resistance to β-lactams. 16,17 Based on their mechanisms of action, β-lactamases are 

divided into four classes: A, B, C, and D.19 The class A serine-based β-lactamases (ASβLs) 

represent a severe threat due to their prevalence in infectious strains and affinity to a wide range 
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of β-lactams.7,8,17,18 ASβLs are characterized by their conserved functional residues at the active 

site: Ser70, Lys73, Ser130, and Glu166. A widely-accepted catalytic mechanism has been 

proposed that β-lactam hydrolysis in ASβLs is a serine-mediated acylation-deacylation process 

(Figure 1.1b). The acylation pathways have shown flexibility as this process could be mediated by 

either Glu166 along or concertedly with Lys73 as the general base.17 On the other hand, the 

deacylation pathways of ASβLs can only be mediated by Glu166 as the general base.  

 

Figure 1.1 Chemical structures of representative β-lactam families and mechanism of β-lactam 
hydrolysis in ASβLs. (a) The β-lactam four membered-ring, the penicillin, cephalosporin, and 
carbapenem scaffolds; (b) The hydrolysis mechanisms of β-lactam mediated by ASβLs. 
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In this thesis, the hydrolysis reactions of β-lactams catalyzed by multiple representative 

ASβLs are investigated using multiscale Quantum Mechanical / Molecular Mechanical (QM/MM) 

simulations. Detailed molecular mechanisms of β-lactam resistance driven by ASβLs were 

revealed by explainable ML methods. The rest of the thesis is organized as follows:  

In chapter 2, the computational methods used are introduced, including: the basics of 

molecular mechanics, the QM/MM as a computational technique for simulating catalytic reactions 

in biomacromolecules (enzymes), the chain-of-states optimization algorithms for determining 

optimal reaction pathways, Deep-Learning (DL) and Graph-Learning (GL) methods, and 

explainability of ML models.  

In chapter 3, a classical model of β-lactam resistance, benzylpenicillin acylation in TEM-

1, is revisited with QM/MM chain-of-states calculations and ML regression models. Two types of 

energy contribution attributing methods, coined the perturbation-based Intrinsic Energy 

Contribution and Dynamic Energy Contribution, were defined to linearly quantify the energy 

contributions from the chemical events that are concerted in nature. Both methods are shown to be 

quantitatively consistent and model-implementation invariant, which are tested on three ML-based 

regression models. I found that the two reacting phases during acylation, tetrahedral formation and 

tetrahedral collapsing, are partially concerted steps during the acylation. Moreover, this study also 

bridged and explained the discrepancy between the conclusions of two pioneering QM/MM studies 

on the rate limiting steps of this reaction. 

In chapter 4, extensive QM/MM calculations were performed to identify the acylation 

pathways adopted by different β-lactam classes. Briefly, I investigated the Toho-1 ASβL acylation 

with ampicillin (AMP) and cefalexin (CEX) antibiotics, which belong to the β-lactam family of 

penams and cephems, respectively. It was found that the Glu166 mediated acylation pathways are 
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viable for AMP but prohibitive for CEX. The acylation pathway selection for general penam and 

cephem scaffolds are further discussed.  

In chapter 5, based on the initial QM/MM investigations on Toho-1/AMP and Toho-

1/CEX, a computational scheme was proposed to achieve the fast sampling of high-quality 

QM/MM minimum energy pathways (MEPs). A DL neural network with the deep-and-wide 

architecture was implemented to successfully learn the QM/MM MEPs within chemical accuracy 

(< 1.0 kcal mol-1). I further developed an explainable artificial intelligence (XAI) approach to 

explain the kinetics and mechanistic difference observed for AMP and CEX acylation of ASβLs. 

This XAI method, coined Boltzmann-weighted Cumulative Integrated Gradients (BCIG), is based 

on the Integrated Gradients (IG) approach. In my QM/MM validating calculations, BCIG could 

correctly attribute energy contributions of individual chemical processes/steps that aligns with 

chemistry intuitions.  

In chapter 6, GL methods were applied to study the resistance conferred by GES-5 ASβL 

against imipenem. The GES-5 deacylation of imipenem is critical for understand the molecular 

mechanisms underlying carbapenem resistance. I investigated two tautomer states on the 

imipenem pyrroline ring, which are known to correlate with the deacylation kinetics of 

carbapenems. An edge-conditioned graph convolutional neural network (ECGCNN) was 

implemented to accurately predict the deacylation barrier from the graph representation of the 

GES-5/Imipenem acyl-enzyme configurations. A perturbative approach was proposed to guide the 

mechanistic understanding of the deacylation mechanism. The imipenem pyrroline 

tautomerization states and the 6α-hydroxyethyl rotamer was revealed to impact the energy barriers 

of the deacylation. The potential of DL/GL methods for post analysis QM/MM calculations was 

demonstrated.  
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Lastly, in chapter 7, The force field parametrization of 2-aminothiazole molecule, which is 

a common fragment found in β-lactams, was presented. The parametrization protocol follows that 

proposed for CHARMM General Force Fields (CGenFF). Briefly, all atom types (thus the Van der 

Waals parameters) were taken from CGenFF. The atomic partial charges on each atom were 

optimized from fitting the water interaction energies. The equilibrium bond lengths and angle were 

fitted to the equilibrium geometries optimized from QM calculations. The classical force constants 

and dihedral terms were parametrized to reproduce the vibrational frequencies at high QM level. 

The optimized parameters were attached by the end of the thesis.  

Above all, this thesis explores the possibility of ML-assisted analysis for QM/MM 

calculations to extract essential mechanistic insights. Several criteria for probing the ML models 

trained on QM/MM MEPs were proposed to effectively unravel the mechanistic basis of ASβL-

mediated β-lactam hydrolysis. This information is useful to understand ASβL evolution under 

selective pressure posed by the application of antibiotic drugs.  
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2. METHODOLOGIES 

2.1 Classical Molecular Mechanical Potentials 

The idea of classical MD is to integrate particle displacement through time according to 

the Newtonian equation of motion,  

𝑚𝑖𝐫̈𝑖 = −∇𝑈(𝐫𝑖) (2.1) 

where 𝑚𝑖 and 𝐫𝑖 are the mass and coordinate of the particle i at time t, respectively. ∇𝑈(𝐫𝑖) is the 

gradient of the potential function which describes the interactions between the particles. In 

classical molecular mechanics, the potential 𝑈 normally refers to a molecular force field. In its 

simplest form, classical additive molecular force field is composed of a bonded part and a 

nonbonded part,20–22 

𝑈𝑀𝑀 = 𝑈𝐵𝑜𝑛𝑑𝑒𝑑
𝑀𝑀 + 𝑈𝑁𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝑀𝑀 (2.2) 

The bonded part adopts the Hooke’s law of elastic springs to account for the bond 

stretching, bending, and torsional potentials contributed by bonded atom groups,  

𝑈𝐵𝑜𝑛𝑑𝑒𝑑
𝑀𝑀 = ∑ 𝑘𝑏(𝑏 − 𝑏0)2

𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝐵𝑒𝑛𝑑𝑖𝑛𝑔

+ ∑ 𝑘𝜑(1 + cos(𝑛𝜑 − 𝛿))
𝑇𝑜𝑟𝑠𝑖𝑜𝑛

(2.3) 

where the kb, kθ, and kφ denote the force constants of the bond stretching, bending, and torsional 

terms, respectively; b0 and θ0 denote the bond lengths and angles at equilibrium; n and δ are the 
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periodicity and phase shift of the rotational potentials of dihedral angles. Note that one dihedral 

angle type could adopt multiple torsional terms to correctly reproduce the rotational profile.  

The nonbonded part of the force field potential includes the nonbonded interactions 

between all atom pairs and is normally scaled or discarded for the atom pairs already included in 

the bonded terms. Normally, the nonbonded potential is calculated as the sum of the classical 

electrostatic and Van der Waals interactions,  

𝑈𝑁𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑
𝑀𝑀 = ∑ 𝜖𝑖𝑗 [(

𝑅𝑚𝑖𝑛,𝑖𝑗

𝐫𝑖𝑗
)

12

− (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝐫𝑖𝑗
)

6

]
𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠

+
1

4𝜋𝜖0
∑

𝑞𝑖𝑞𝑗

𝐫𝑖𝑗𝐶𝑜𝑢𝑙𝑜𝑚𝑏

(2.4) 

In the Van der Waals part, 𝜖𝑖𝑗 is the well-depth of the 6-12 Lennard-Jones potential and Rmin, ij is 

the Van der Waals radius. In the electrostatic part, 𝜖0 is the dielectric constant, 𝑞𝑖 and 𝑞𝑗 are the 

partial atomic charges on the interacting atoms. 𝐫𝑖𝑗 is the atomic distance between atoms i and j. 

Additional correction terms to the minimal force field model are commonly introduced for 

improving the accuracy of the classical potentials. In the most popular CHARMM force fields for 

proteins23, for example, Urey-Bradley terms that define pseudo-bonds between the 1-3 atom pairs 

in an angle are introduced to accurately reproduce the vibrational spectra,  

𝑈𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦
𝑀𝑀 = ∑ 𝑘𝑢(𝑢 − 𝑢0)2

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

(2.5) 

where ku is the spring force constant on the pseudo-bond and u0 the equilibrium length between 

the two atoms. Improper dihedral terms are incorporated for better treatments of the out-of-plane 

bending motions,  

𝑈𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟
𝑀𝑀 = ∑ 𝑘𝜔(𝜔 − 𝜔0)2

𝐼𝑚𝑝𝑟𝑜𝑝𝑒𝑟

(2.6) 
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where kω is the spring force constant on the improper dihedral and ω0 the equilibrium angle. 

Furthermore, numerical grid-based potential correction such as the CMAP method has been 

implemented for the general improvement of protein backbone sampling.24  

Modern force field parameters are optimized from fitting procedures targeting 

experimental data and high-level QM calculations. In order to reduce the vast number of 

parameters needed to define a molecule, one adopts the idea of atom typing to identically treat the 

potentials contributed by atoms under the same physical environment, based on which the bond 

types, angle types, and dihedral types could be accordingly assigned. While each additive force 

field family adopts functional forms with different correction terms and fits against different target 

data, this thesis focuses only on the parametrization protocols adopted by CHARMM (Chapter 7).  

Classical force field potentials are robust descriptors of biomacromolecules such as 

proteins. The relatively cheap computational demand of molecular force field potential and 

gradient computations permits classical MD simulations to be performed at longer time-scales 

needed to access the molecular properties of various biophysical processes.21  

2.2 Hybrid Quantum Mechanical/Molecular Mechanical Potentials 

The classical potentials based on force field functions ignore the electron degrees of 

freedom and are held to several intrinsic limitations. Its quadratic functional form of the bonded 

terms does not permit the dissociation of bonded atom pairs nor the formation of new bonds. The 

QM/MM approach, which treats specific regions of interest at QM level and the rest at MM level, 

has been proposed to enable the simulations of chemical reactions in complex biomolecular 

systems (Figure 2.1).25–29 
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Figure 2.1 The QM/MM partitioning on biomolecular simulating systems. 

In the additive QM/MM formulism, the hybrid potential is the sum of the QM and MM 

Hamiltonians and the QM/MM coupling,  

𝐻̂𝑡𝑜𝑡𝑎𝑙 = 𝐻̂𝑄𝑀 + 𝐻̂𝑀𝑀 + 𝐻̂𝑄𝑀/𝑀𝑀 (2.7) 

The essential focus of the QM/MM approach is the coupling scheme applied to treat the interaction 

between QM and MM regions. In practice, the coupling Hamiltonian 𝐻̂𝑄𝑀/𝑀𝑀 is given as  

𝐻̂𝑄𝑀/𝑀𝑀 = 𝐻̂𝑄𝑀/𝑀𝑀
𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 + 𝐻̂𝑄𝑀/𝑀𝑀

𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 + 𝐻̂𝑄𝑀/𝑀𝑀
𝐵𝑜𝑛𝑑𝑒𝑑 (2.8) 

The 𝐻̂𝑄𝑀/𝑀𝑀
𝐵𝑜𝑛𝑑𝑒𝑑 term notes the QM/MM boundary condition which splits a molecule into a 

QM fragment and a MM fragment. For example, the side chains of amino acid residues which 

participate the chemical reactions are normally partitioned into the QM region while the backbones 

are treated at MM level. This term is commonly implemented in the single “link-atom” approach, 
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where pseudo-hydrogen atoms are introduced to partition the chemical bond into the QM and MM 

region (Figure 2.2).30 These pseudo-hydrogens are used to complement the valence of the QM 

hosting atoms and is only treated quantum mechanically. Additional research efforts for 

developing accurate QM/MM boundary potentials include the frozen orbitals,31 generalized hybrid 

orbitals,32 or pseudobonds.33 While conceptually more physical, the improvements from these 

methods over the single link-atom scheme are inconclusive.30  

 

Figure 2.2 The single link-atom approach for treating QM/MM boundary potential.  

Essentially, the treatments applied to the nonbonded interactions between QM and MM 

regions distinguish the embedding scheme of the QM region into the MM environments.26 In the 

simplest mechanical embedding, all QM/MM coupling interactions are treated purely at MM level,  

𝐻̂𝑄𝑀/𝑀𝑀
𝑉𝑎𝑛 𝑑𝑒𝑟 𝑊𝑎𝑎𝑙𝑠 = ∑ 𝜖𝐴,𝑀 [(

𝑅𝑚𝑖𝑛,𝑖𝑗

𝐫𝐴,𝑀
)

12

− (
𝑅𝑚𝑖𝑛,𝑖𝑗

𝐫𝐴,𝑀
)

6

]
𝐴,𝑀

(2.9) 

𝐻̂𝑄𝑀/𝑀𝑀
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 =

1
4𝜋𝜖0

∑
𝑞𝐴𝑞𝑀

𝐫𝐴,𝑀𝐴,𝑀

(2.10) 

where label A denotes the QM atoms and M the MM atoms.  

The major defect of the mechanical embedding scheme is that for fixed-charge force field 

models, the partial charges on the QM atoms used for computing the QM/MM electrostatics are 
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invariant with regard to possible QM atom displacements.28 This poses an unrealistic 

approximation when bond making or breaking occurs between the QM atoms. Furthermore, the 

absence of MM environments from the QM Hamiltonian also presents another limitation that the 

QM subsystem is actually computed in vacuum.  

As a general improvement over the mechanical embedding, the most popular electrostatic 

embedding scheme has been proposed to incorporate the MM point charges into the QM wave 

functions as one-electron integrals in the Fock matrix, allowing the QM density to be polarized by 

the external field of point charges. The electrostatic part of QM/MM coupling is then given as 

𝐻̂𝑄𝑀/𝑀𝑀
𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 = − ∫ 𝑑𝐫𝜌(𝐫) ∑

𝑞𝑀

|𝐫 − 𝐫𝑀|
𝑀

+
1

4𝜋𝜖0
∑

𝑄𝐴𝑞𝑀

𝐫𝐴,𝑀𝐴,𝑀

(2.11) 

where the 𝜌(𝐫) is the density distribution of the QM electrons and 𝑄𝐴 is the atomic charge of the 

QM nuclei. Accordingly, the 𝐻̂𝑄𝑀/𝑀𝑀
𝐵𝑜𝑛𝑑𝑒𝑑 term in the electrostatic embedding scheme needs special 

care. The linking hydrogen atoms are normally placed on the QM-MM bonds and maintain realistic 

link atom-QM host bond lengths (~1.1 Å for C-H bonds). Under the electrostatic embedding 

scheme, the point charges on the MM hosts would appear too close to the link atom and induce 

unphysical over-polarizations to the QM density. As a general fix, the partial charges on the MM 

hosts are deleted or shifted in common practice.34,35  

Semiempirical parametrized QM methods such as the Tight-Binding models has been 

developed for accurate and efficient sampling of reaction profiles.36,37 Notably, in many 

parametrized QM models, such as the third order Density Functional Tight Binding (DFTB3) 

model,38,39 the QM/MM electrostatic interaction was simply implemented as the Coulomb 

potential between the QM Mulliken charges and MM point charges. Robust simplifications as such 
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not only lead to more accurate treatment of boundary potentials but also enable efficient QM/MM 

electrostatic calculation using Ewald summation40 and related methods41.  

Finally, the QM/MM electrostatic embedding scheme does not consider the MM electronic 

degrees of freedom. This signifies the direction for future developments of the QM/MM model to 

the polarization embedding scheme, where the MM polarizability is included by means of 

polarizable force fields.20,21  

2.3 Chain-of-states MEP Optimizations 

Sampling rare events and locating optimal transition paths are important for detailed 

mechanistic understanding of the dynamics on the system potential.42–44 As a common practice, 

enhanced sampling methods based on reaction coordinates or collective variables explore the (free) 

energy surface via bias potentials that forcingly drive the sampling towards the desired high energy 

states (rare events), which are thermodynamically inaccessible under equilibrium time scales.42 

Essential information such as free energies can be obtained from debiasing the sampled 

ensembles.45,46 Alternatively, enhanced sampling methods in the chain-of-states regime explore 

the potential/free energy landscape by representing the transition path with a series of discrete 

conformations (termed replicas or images) between the minimized/equilibrium states.47–50 This 

chain of replicas is subjected to optimizations with inter-replica interactions (restraints or 

holonomic constraints) to prevent the intermediate replicas from falling to the low energy basin 

(Figure 2.3), thus locating the high energy rare events along the transition path. In general, different 

chain-of-states methods are characterized by the type of replica interaction applied during the 

pathway optimization. This inter-replica interactions could be presented as restraining quadratic 

potentials in the generalized coordinates space (such as the Nudged Elastic Band methods51–53) or 

root-mean-square (RMS) space (such as the Replica Path Method, RPM, with restraints)48, implicit 
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holonomic constraints via the reparameterization trick (such as the String Methods50,54–57 and its 

simplified version without force projections58), or explicit holonomic constraints in the 2-norm 

distance space (such as the RPM with constraints49). This thesis does not aim to exhaustively 

review the chain-of-states and related free energy calculations. Instead, the algorithm adopted by 

the RPM with holonomic constraints from which all MEPs were optimized in the rest of the thesis 

is formally detailed. An example implementation of the RPM and related chain-of-states methods 

on a Muller potential is provided at: github.com/ZL-Song/MullerPot.  

 

Figure 2.3 The optimization of the MEP on a Müller potential using chain-of-states methods with 
a steepest decent optimizer. (a) The RPM with holonomic constraints; (b) The string method with 
force projections. Black dots refer the initial guess and red dots the final optimized path, gray 
trajectories are the optimization steps.  
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The p-norm distance between two vectors is noted as ‖𝐚 − 𝐛‖𝑝. Accordingly, the 2-norm 

distance between the i-th and i+1-th replica (with coordinate vectors 𝐫𝑖 and 𝐫𝑖+1, respectively), 

∆𝑙𝑖,𝑖+1 is given as  

∆𝑙𝑖,𝑖+1 = ‖𝐫𝑖 − 𝐫𝑖+1‖2 (2.12) 

and its gradients with regard to 𝐫𝑖,  

𝜕∆𝑙𝑖,𝑖+1

𝜕𝐫𝑖
=

𝐫𝑖 − 𝐫𝑖+1

‖𝐫𝑖 − 𝐫𝑖+1‖2
(2.13) 

𝜕∆𝑙𝑖,𝑖+1

𝜕𝐫𝑖
=

𝐫𝑖 − 𝐫𝑖+1

∆𝑙𝑖,𝑖+1
(2.14) 

It is trivial to note that ∆𝑙𝑖,𝑖+1 could be calculated as mass-weighted best-fit distances.  

Referring to the original implementation of Brokaw et al.,49 the RPM with holonomic 

constraints seeks to optimize a MEP between to minimal states as a chain of i replicas with equal 

2-norm distances between adjacent replicas, that is  

∆𝑙0,1 = ∆𝑙1,2 = ⋯ = ∆𝑙𝑖−2,𝑖−1 = ∆𝑙̅ (2.15) 

The search for the constrained replica coordinates during each pathway optimization step 

follows the common iterative solution of optimization problem under holonomic constraints.59 

Practically, following each optimization step which changes the replica coordinates, the replicas 

are heterogeneously distributed along the chain and are updated using an iterative procedure with 

Lagrangian multipliers to satisfy the desired constraint conditions. In the RPM with holonomic 

constraint method, the desired distance between all pairs of adjacent replicas, ∆𝑙̅, is the average 2-

norm distance from the initial heterogeneously distributed replica path. Therefore, the constrained 

replica coordinates 𝐫𝑖 is solved by the following update functions,  
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(𝐫𝑖)(𝑛+1) = (𝐫𝑖 + 𝜆𝑖−1
𝜕∆𝑙𝑖−1,𝑖

𝜕𝐫𝑖
+ 𝜆𝑖

𝜕∆𝑙𝑖,𝑖+1

𝜕𝐫𝑖
)

(𝑛)

(2.16) 

(𝐫𝑖)(𝑛+1) = (𝐫𝑖 − 𝜆𝑖−1
𝐫𝑖−1 − 𝐫𝑖

∆𝑙𝑖−1,𝑖
+ 𝜆𝑖

𝐫𝑖 − 𝐫𝑖+1

∆𝑙𝑖,𝑖+1
)

(𝑛)

(2.17) 

where the superscript (𝑛) denotes the n-th iteration, 𝜆𝑖 is the Lagrangian multiplier at ∆𝑙𝑖,𝑖+1. The 

convergence of the MEP is met when  

(∆𝑙𝑖,𝑖+1)
(𝑛+1)

− ∆𝑙̅ ≅ 0 (2.18) 

Since ∆𝑙 is a function of 𝜆, expand (∆𝑙𝑖,𝑖+1)
(𝑛+1)

 via the Taylor series with regard to 𝜆(𝑛) to the 

first order yields  

(∆𝑙𝑖,𝑖+1)
(𝑛)

+ (
𝜕∆𝑙𝑖,𝑖+1

𝜕𝜆
)

(𝑛)

(𝜆(𝑛+1) − 𝜆(𝑛)) − ∆𝑙̅ = 0 (2.19) 

Assuming convergence gives 𝜆𝑖
(𝑛+1) = 0 and descending along the negative gradients:  

(∆𝑙𝑖,𝑖+1)
(𝑛)

+ (
𝜕∆𝑙𝑖,𝑖+1

𝜕𝜆
)

(𝑛)

(−𝜆(𝑛)) − ∆𝑙̅ = 0 (2.20) 

∆𝑙̅ − (∆𝑙𝑖,𝑖+1)
(𝑛)

= (
𝜕∆𝑙𝑖,𝑖+1

𝜕𝜆
)

(𝑛)

(𝜆(𝑛)) (2.21) 

Plugging equations 2.14 and 2.17 to equation 2.21 gives  

∆𝑙̅ − (∆𝑙𝑖)(𝑛) = (
𝒓𝑖 − 𝒓𝑖+1

∆𝑙𝑖
)

(𝑛)
(

𝒓𝑖−1 − 𝒓𝑖

∆𝑙𝑖−1
𝜆𝑖−1 + 2

𝒓𝑖 − 𝒓𝑖+1

∆𝑙𝑖
𝜆𝑖 −

𝒓𝑖+1 − 𝒓𝑖+2

∆𝑙𝑖+1
𝜆𝑖+1)

(𝑛−1)
(2.22) 

Finally, by enumerating equation 2.22 for all replicas (𝑖 = 0, … , 𝑖 − 1, equation 2.15), one 

obtains a tridiagonal matrix of λ which can be solved in most linear algebra packages. Iteratively 
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solving this matrix for λ and r will converge all inter-replica distances to ∆𝑙̅. The convergence 

threshold (equation 2.18) is normally 10-8 Å.  

2.4 Machine Learning and Model Explanations 

ML has emerged with great promise to approximate target function of any form regardless 

of the a priori knowledge about the underlying correlations among input variables. The 

applications of various ML techniques have also advanced theoretical chemistry in various 

subjects60–63, which have been suffering from either the extensive computational demands of high 

levels of theories64–69, or the high dimensionality of the chemical and/or conformational spaces70–

74. Although ML could be introduced to many topics that require accurate and efficient 

approximations, its performance and effectiveness have been limited by feature representations 

and model interpretability.75 In addition to the routinely applied feature representations, 

unsupervised models and rational statistical procedures have been developed to extract robust 

feature vectors from the chemical feature space.76,77 In particular, considerable pioneering efforts 

have focused on the development of suitable descriptors and accurate DL neural networks for 

approximating hybrid Quantum Mechanical / Molecular Mechanical (QM/MM) potentials.78–83  

Being an emerging subarea of ML, GL applies DL-based techniques on graph-structured 

data. Graph structures could encode data representation using vertices and interconnecting edges.84 

Promoted by the robust graph representation of chemical structures, various GL models have 

achieved ground-breaking performances on molecular property predictions.85–89 In this thesis, I 

provide only a brief introduction to ECGCNN model used in Chapter 6.  

The main difference between Euclidean data and graph-structured data is that graph data 

explicitly encode the connectivity as the preferred interaction between the vertices (features). Thus, 
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the strategy for updating the hidden state on vertex v through a graph convolutional layer follows 

a message passing scheme84,90 of three steps: (1) For each vertex v in the graph, the directed edge 

(w → v) from the neighboring vertices w is first encoded by a 𝑀𝑒𝑠𝑠𝑎𝑔𝑒() function; (2) The 

encoded message is introduced to the hidden representation of v by an 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒() function; (3) 

The output hidden state of the graph convolutional layer is then produced by an 𝑈𝑝𝑑𝑎𝑡𝑒() function 

from the aggregated representation of v. In the most general form, a GL convolutional layer 

updates the hidden state 𝐱𝑣
(𝑙) of the vertex v at the l-th layer by  

 𝐱𝑣
(𝑙) = 𝑈𝑝𝑑𝑎𝑡𝑒 ( 𝐱𝑣

(𝑙−1), 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 (𝐱𝑣
(𝑙−1), 𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐱𝑣

(𝑙−1), 𝐱𝑤
(𝑙−1), 𝐞𝑤→𝑣

(𝑙−1)))) (2.23) 

where 𝐱𝑤  denotes the hidden representations of the vertices connected to v; 𝐞𝑤→𝑣
(𝑙−1) denotes the 

representation of edges from 𝐱𝑤 to 𝐱𝑣. While the 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒() function is limited to a handful of 

operators, GL schemes of different types are mostly distinguished by the implementations of 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒()  and 𝑈𝑝𝑑𝑎𝑡𝑒() . The edge-conditioned GL91 for ECGCNN incorporates the edge 

features into the 𝑀𝑒𝑠𝑠𝑎𝑔𝑒() function by learning a hidden representation for 𝐞(𝑙) and uses it as 

the weight matrix that is multiplied to the neighboring hidden states 𝐱𝑤
(𝑙−1) 

𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐱𝑤
(𝑙−1), 𝐞𝑤→𝑣

(𝑙−1)) = ∑ 𝐱𝑤
(𝑙−1)𝐴(𝐞𝑤→𝑣

(𝑙−1))
𝑤

(2.24) 

where 𝐴() is a differentiable function at the edge-conditioned convolutional layer, l. In practice, 

𝐴() is normally implemented as multilayer perceptron that maps 𝐞𝑤→𝑣
(𝑙−1) to the shape of weight 

matrix applicable to 𝐱𝑤
(𝑙−1).  

With the booming popularity of ML, interests to interpret DL/GL neural networks have 

synergistically risen as a subfield of great importance, namely the XAI.92 The ML models being 
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interpretable not only elevates our understanding of the learning algorithms, but also constitutes 

responsible DL/GL-assisted decision making. Practically, XAI techniques attribute the predicted 

outcome of DL/GL models to individual feature contributions, therefore rationalize the driving 

forces behind the decision flow in the models that are black-boxes. While explicit indicators for 

feature contributions are straightforward in linear models93,94 and are incorporated by design in 

specific ensemble-based models95, explaining neural networks is in general hindered by the high 

nonlinearity accumulated through the activations of the hidden layers.96 

Based on the assumption that the predicted nonlinear surface could be approximated as 

linear at local regions, effective importance attribution methods have been proposed based on 

model gradients.97 The state-of-the-art XAI techniques, such as the IG98 and the Layer-wise 

Relevance Propagation99, have demonstrated great promise in various explaining tasks such as 

medical diagnosis100,101 and cheminformatics applications102,103. Alternatively, feature importance 

can also be assigned based on data perturbations and/or model re-learning. As one of common 

practice, one could drop or permute a feature and re-learn the model, the performance difference 

between the original and the re-learned models can be used as the indicator for the contribution 

from that feature. While conceptually more intuitive, cautions have to be taken for this approach 

that the perturbation introduced to the feature must not change the native distribution of the data 

on which the learning models were trained.104 

In this thesis, both gradient-based and perturbation-based explanation techniques are 

presented, developed, and applied to ML models trained on QM/MM MEPs of ASβL-driven β-

lactam resistance.  
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3. REVISITING TEM-1/BENZYLPENICILLIN ACYLATION MECHANISM WITH 
MACHINE-LEARNING ENERGY CONTRIBUTION ANALYSIS 

3.1 TEM-1 β-Lactamases 

TEM-1 is a representative ASβL and the most common β-lactamase among Gram-negative 

bacterial strains.17 Numerous experimental and computational studies have been carried out to 

delineate the functions of the residues at the catalytic binding site.105–113 Based on these studies, 

one widely accepted mechanism was proposed that Glu166 acts as a general base during the 

acylation process of benzylpenicillin hydrolysis (Figure 3.1a). The hydroxyl group of Ser70 first 

attacks the β-lactam carbonyl carbon to form a tetrahedral intermediate, with its proton delivered 

to the bridging catalytic water. The catalytic water molecule in turn donates a proton to the 

deprotonated carboxyl group of Glu166. Upon the formation of the tetrahedral intermediate, the 

fully protonated Lys73 activates the nearby Ser130 to protonate the β-lactam nitrogen, which 

cleaves the β-lactam scissile bond and completes the acylation half of β-lactam hydrolysis. Other 

residues including Asn170 and Ser235 were also validated to contribute hydrogen bonding 

interactions that are critical for the formation of the Michaelis complex between TEM-1 and the 

benzylpenicillin substrate.112,113  
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Figure 3.1 Acylation mechanism of ASβLs and the structure of TEM-1/benzylpenicillin Michaelis 
complex. (a) Acylation mechanism of TEM-1 and benzylpenicillin with Glu166 acting as a general 
base. The β-lactam scissile bond is noted in red; (b) Crystal structure of TEM-1 complexed with 
benzylpenicillin and the selection of QM atoms. 

3.2 Computational Details 

QM/MM calculations. All hybrid QM/MM multiscale calculations in the present study were 

conducted by interfacing CHARMM114 with SCC-DFTB115 or Q-Chem116,117. All  MD simulations 

were performed by OpenMM118. The acyl-enzyme product of TEM-1 with benzylpenicillin was 

obtained from the X-ray crystal structure (PDB id: 1FQG)119 and the mutant residue Asn166 was 

modified to Glu166 as in the wild type TEM-1. The residues were then protonated according to 

previous studies.105,106 The system was solvated and sodium and chloride ions were added to 
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balance the total charge of the system. In order to fully relax the system, classical mechanic 

minimization and equilibration were performed with the CHARMM36 force field for proteins23, 

CHARMM general force field (CGenFF)120–122 for the penicillin molecule and TIP3P model for 

water123. The structure of the QM/MM initial pathway calculation was taken from the trajectory 

of a 10 ns MD simulation at 300 K. The RPM with holonomic constraints49 was applied for reaction 

pathway calculations. All the pathway calculations were carried out with 50 replicas.  

Reaction pathway sampling. The initial pathway was calculated from DFTB3/mio/C36 level of 

theory with any residue in the outer 15 Å of QM region selected as the unfrozen MM region. Based 

on the initial pathway, multiple reaction pathways were sampled. Firstly, three replicas 

representing reactant (r), transition (t) and product (p) states were selected. 200 ns MD simulations 

were performed on each of the selected replicas. During the MD runs, all the atoms in the QM 

region were fixed and snapshots were taken every 0.1 ps. 2-dimensional Principal Component 

Analysis (PCA) were performed on the MD trajectories with the pairwise Cα distances as input. 

The PCA results was grouped into six clusters, and the snapshots that are the closest to the centers 

of each cluster were chosen as the representative structures. A total of eighteen representative 

structures were then selected. In order to retain the consistency among the QM/MM pathway’s 

energetic profiles, a common MM region was used, which is selected to be the union set of residues 

within the outer 10 Å of all representative QM regions. Geometry optimizations were then 

performed on the selected representative structures. Lastly, based on those representative 

structures, eighteen RPM calculations were carried out to obtain the MEPs.  

Machine-learning protocols. The scikit-learn package124 was employed for various machine-

learning protocols including dimensionality reduction, clustering, and regression. The hydrogen 

bonding interactions are identified via the Baker-Hubbard criteria125 as implemented in MDTraj126. 
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The radial basis function was used as the kernel function for all regression models: Support Vector 

regression (SVR), Gaussian Process regression (GPR), and Kernel Ridge regression (KRR). For 

the training-validation process of models, the leave-one-group-out cross-validation regression 

analysis was employed in the validation step; the hyper-parameters of the models were tuned via 

a grid search strategy.  

3.3 Summary of Results 

TEM-1/Benzylpenicillin Acylation Profiles. As highlighted in the black rectangles in Figure 3.2, 

the carbonyl tetrahedral intermediate state could be obtained from all B3LYP reaction pathway 

optimizations. However, 16 out of 18 DFTB3 optimized pathways demonstrated that the 

intermediates are lower in energy than the reactant, whereas all B3LYP pathways show that the 

energies of tetrahedral states are well elevated from the reactant. In addition, the tetrahedral 

intermediates from my DFTB3 calculations are structurally different from Hermann et al. The 

average distance between Ser70 Oγ and the carbonyl carbon is 2.1 Å, comparing to 1.45 Å reported 

by Hermann et al.105 Also, it is noted that tetrahedral intermediates from my DFTB3 calculations 

are accompanied by a hydronium formed by the catalytic water and negatively charged Glu166, 

whereas Hermann et al.105 observed a neutral catalytic water and protonated Glu166. Such 

disagreement could originate from the fundamental difference between the QM methodologies. 

Although the DFTB3/mio/C36 optimized pathways provide acylation barriers that are in good 

agreements with experiments, the configurational changes along the chain-of-replicas may not be 

reliable.  
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Figure 3.2 QM/MM chain-of-states pathway profiles. Reaction pathways calculated from 
DFTB3/mio/C36, B3LYP/6-31++G**/ C36, and B3LYP-D3/6-31++G**/ C36levels of theory. 
The black rectangles highlight the tetrahedral intermediates region along the energy profiles. 

On the other hand, my B3LYP optimized reaction pathways agree with the results reported 

by  Meroueh et al.,106 showing that the potential energies of the tetrahedral intermediate are 

elevated from the reactant. Moreover, the dispersion corrected B3LYP calculations generally led 

to 3-5 kcal mol-1 decrease of the activation barriers during the acylation, which is consistent with 

previous observations127,128. Detailed barrier results of the acylation are compared with previous 

computational and experimental studies in Table 3.1. 
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Table 3.1 Comparison of acylation energy barriers of the current and previous works.  

Source 
Energy barriers (kcal mol-1) [a] 

Method [b] 
MC-TI TI-AE Overall 

This study 3.6(3) 11.4(1) 11.4(1) DFTB3/mio/C36, RPM 
This study 8.6(9) 3.8(7) 11.9(4) B3LYP/6-31++G**/C36, RPM 
Hermann et al. 19.6 16.4 19.6 AM1/CHARMM, PES 
Hermann et al. 8.7 7.1 8.7 B3LYP/6-31+G*/C36, PES 
Meroueh et al. [c] 22.0 N/D 22.0 MP2/6-31+G*/AMBER, PES 

Gibson et al. - - 12.6(7) 293.15 K, Exp 

Sirot et al. - - 13.0(5) 310.15 K, Exp 
[a] MC-TI: Michaelis complex to tetrahedral intermediate; TI-AE: tetrahedral intermediate 

collapsing to acyl-enzyme product; 
[b] RPM: Chain-of-states RPM calculations, averaged over 18 pathways; IRC: Intrinsic Reaction 

Coordinate calculation; PES: Potential Energy Surface; Exp: derived from kcat via the Eyring 
equation; 

[c] This study uses penicillanic acid instead of benzylpenicillin, the experimental acylation barrier 
of penicillanic acid is estimated to be 16 – 17 kcal mol-1.  

 

MEP regression models. Predictive PES models were trained to bridge the conformational 

descriptors of each replica to its corresponding energy. An appropriate selection of features is 

critical for the performance of machine-learning predictions. In my case, a total of 105 pairwise 

distances between bonded atoms – either through chemical bonding or hydrogen bonding – in the 

QM region are considered as initial features. As the size of the dataset (900 replicas) is relatively 

small compared to the dimension (105 features), regression models are expected to fit poorly and 

unstably. In order to reduce the dimension of feature vectors, a recursive feature elimination 

analysis using SVR model with linear kernel function was first performed on both 

DFTB3/mio/C36 and B3LYP/6-31++G**/C36 pathways. Based on the selected features and my 

prior knowledge with TEM-1/Benzylpenicillin hydrolysis, 15 interatomic distances were selected 
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and used to construct the feature vector (Figure 3.3a). Moreover, the overall prediction quality of 

regression models on B3LYP pathways are promising with the root mean squared error lower than 

2.0 kcal mol-1(Figure 3.3b).  

 
Figure 3.3 Feature selections and notations of chemical processes, and regression performance of the 
models. (a) Selection of atomic distances as features and chemical events; (b) RMSE predicted by three 
regression models.  

Intrinsic energy contribution. One universal criterion to measure variable contribution is the 

decrease in prediction performance when a certain feature is dropped out from the model.104 

Practically, I measure the joint contribution of feature subset by the difference between the fitting 

performance of a predictive model trained from full input feature set and the same model trained 

with the target feature subset set to zero. In this regard, the intrinsic energy contribution is defined 

as the RMSE between the predicted energetic pathway profiles of the two models, that is 

𝐼a, intrinsic = (
1
𝑅

∑ (𝑓(𝐀(r))  −  𝑓a=0(𝐀(r)))
2

R

r=1

)

1
2

(3.1) 
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where 𝑅 is the total number of replicas on each pathway; 𝑓 is the trained regression model; 𝑓a=0 

is the same model trained from input data with the target feature subset set to zero; 𝐀(r) is the input 

feature vector at the r-th replica. For numerical comparisons between different regression models, 

the measurement used is the percentage of each intrinsic contribution over the sum of all feature 

subgroups (Figure 3.4).  

 
Figure 3.4 Intrinsic energy contributions measured on DFTB3/mio/C36 and B3LYP/6-
31++G**/C36 reaction pathway profiles. The ‘S’, ‘G’, and ‘K’ labels represent results from SVR, 
GPR, and KRR models, respectively.  

The intrinsic contribution provides a quantitative insight into the energy contribution of 

each reaction step to the overall energetic profile. Generally, all regression models give the same 

statistical rankings of the energy contributions from each chemical event: P2 and P3 are the 

decisive processes during the reaction; P0, P1, B0 and B1 pose less impact to the overall energetic; 

Hydrogen bonds (H0, H1 and H2) are considered to be the least critical events. The intrinsic energy 

contribution measured using the GPR model is the most numerically stable, whereas the SVR 
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model gives the largest deviation among the testing cases. As for pathway profiles decomposed at 

different QM levels of theory, the intrinsic contributions are compatible to each other. 

Dynamic Energy Contribution. The intrinsic energy contribution reflects the overall energetic 

contribution of a certain chemical process to the energetic profile. Alternatively, a dynamic energy 

contribution along the reaction progress could be determined by the model response to small 

perturbations applied to each feature subset, which could be implemented from the first-order 

Taylor series: 

𝐼a,dynamic
(r) = |𝑓(𝐀(r) + 𝐏(𝑟)) − 𝑓(𝐀(r))| = |(

𝜕𝑓(𝐀(r))
𝜕𝐀(r) ) (𝐏(𝑟))| (3.2) 

where 𝐏(𝑟) is the perturbation applied to the MEP regression models. The partial gradients are 

computed numerically  

𝜕𝑓(𝐀(r))
𝜕𝐀(𝑟) =

𝑓(𝐀(r) + 𝐏(𝑟)) − 𝑓(𝐀(r) − 𝐏(𝑟))
2𝐏(𝑟) (3.3) 

formally 𝐏(𝑟) is given as 

𝐏(𝑟) = 𝚪(r)𝚬(r) (3.4) 

where 𝚪(r) is a one-hot encoded mask for selecting feature dimensions to which the perturbation 

𝚬(r) is applied, and 

𝚬(r) = 𝑝(𝐀(r−1) − 𝐀(r+1)) (3.5) 

where p is the amount of perturbation applied and is set as 0.01. Finally,  

𝐼a,dynamic
(r) = |𝑓 (𝐀(r) + 𝑝𝚪(r)(𝐀(r−1) − 𝐀(r+1))) − 𝑓 (𝐀(r) − 𝑝𝚪(r)(𝐀(r−1) − 𝐀(r+1)))| (3.6) 
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Figure 3.5 Dynamic energy contributions. The dynamic energy contribution measured from SVR, 
GPR and KRR regression models trained on energetic profiles calculated at B3LYP/6-
31++G**:CHARMM level of theory. The values provided are the average over the reaction 
progress.  

As shown in Figure 3.5, the acylation is initialized by the proton transfer between Ser70 

and the catalytic water (P0). During the first transition to the tetrahedral intermediate, the bond 

formation between Ser70 Oγ and carbonyl carbon (B0) is deemed to be the most energetic 

dominant event. Notably, the protonation of the thiazolidine nitrogen (P3) is concerted in this 

process. The rate determining events of the acylated product formation are the dual protonation of 

Ser130 (P2) and the β-lactam nitrogen (P3) together with the cleavage of the β-lactam scissile bond 

(B1). In addition, the dynamic contribution measurement is also regression model-independent, 

and the small differences in turn reflect the difference in the predicted PES of the regression 

models. During the formation of tetrahedral intermediate, the rate determining event is shown to 

be the bond formation between Ser70 hydroxyl oxygen and the β-lactam carbonyl carbon. As for 

the formation of acyl-enzyme product, the dual-proton transfer from Lys73 to β-lactam nitrogen, 
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bridged by the Ser130 hydroxyl group, becomes the rate determining event. The dynamic energy 

contributions are consistent with the intrinsic contribution measurements as they identify the same 

critical chemical events during the acylation. Generally, the dynamic energy contribution 

qualitatively reveals the time windows and spans of chemical events and quantitatively reflects 

their underlying correlations.  

3.4 Conclusion 

Qualitative agreement between the dynamic and the intrinsic energy contribution 

assessments is observed. The underlying correlations between the transfers of different protons are 

validated in the dynamic energy contribution. Notably, the protonation of Ser130 hydroxyl group 

and the thiazolidine nitrogen are found to be concerted with the formation of tetrahedral 

intermediate, indicating that the acylation reaction is a one-step 4-proton-transfer process. Isolating 

such proton transfers from the tetrahedral formation process has led to conflicted estimations on 

the overall reaction barrier or the stepwise activation energy (Table 3.1). Moreover, dynamic 

energy contributions reveal that the rate limiting events of the acylation are the proton transfers 

from Lys73 to β-lactam nitrogen via the bridging Ser130 hydroxyl group, opposing to previous 

QM/MM calculations, in which the tetrahedral formation is concluded to be the rate limiting step. 

It should be further emphasized that the present study serves as a further complement, not criticism, 

to previous high-level insightful QM/MM computational studies on the mechanisms of β-

lactamases driven antibiotic resistance.  

In summary, I presented novel regression models with machine-learning component to 

quantify the energetic contributions from, as well as the correlations among, individual chemical 

process during enzyme catalysis with high degrees of freedom. Such quantitative measurements 

serve as a useful energetic-decomposing analysis to the enzymatic reaction pathway and reflect 
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the detailed underlying mechanism. This study also serves as a proof of the concept for extending 

the application of machine-learning techniques to probe complex enzymatic reaction mechanisms 

in high degrees of freedom configurational space.  
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4. DISTINCT ACYLATION PATHWAYS OF CTX-M β-LACTAMASES WITH AMPICILLIN 
AND CEFALEXIN IDENTIFIED FROM QM/MM 

4.1 CTX-M β-Lactamases 

CTX-M is a representative ASβL group and has been identified as an immediate menace 

to commonly prescribed β-lactam antibiotics.8–10 The CTX-M enzyme class is characterized by its 

enhanced catalytic efficiency (kcat/KM) against cephalosporin antibiotic families.17 The hydrolysis 

of most cephalosporins deviates from that of other β-lactams by bearing a leaving group at its C3’ 

position. Expelling the C3’ leaving group would trigger a series of rearrangements, allowing its 

dihydrothiazine nitrogen to stay as an unprotonated imine after the acylation.6 However, an 

exception is cefalexin (CEX) which adopts a C3’ methyl as a poor leaving group; The protonation 

of the CEX cephem amine is thus inevitable (Figure 4.1a). CEX also poses enhanced resistance 

against CTX-M hydrolysis compared to other early generations of penicillin or cephalosporins. In 

particular, Nitanai et al.129 showed that the catalytic efficiency (kcat/KM) of CEX hydrolysis 

mediated by Toho-1 (also known as CTX-M-44) is 0.119 μM-1 s-1, which is 17-fold lower than 

that of ampicillin (AMP, 2.11 μM-1 s-1). Whereas AMP and CEX structurally differ only in their 

signature penam/cephem bicyclic rings (Figure 4.1b), the cephem scaffold of CEX evidently 

showed higher hydrolysis resistance even to the CTX-M enzyme class. In this study, the acylation 

pathways of AMP and CEX hydrolysis in Toho-1 was investigated using QM/MM chain-of-states 

calculations. 
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Figure 4.1 Mechanisms of acylation in ASβLs and structures of the model substrates. (a) The 
general mechanism of β-lactam acylation mediated by ASβL; (b) Structures of ampicillin (AMP) 
and cefalexin (CEX). 

4.2 Computational Details 

System Preparation. The high-resolution crystal structures of Toho-1/benzylpenicillin (PDB 

entry: 5KMW)130 and Toho-1/cephalothin (PDB entry: 2ZQ9)129 acyl-enzyme complexes were 

used as template systems to create structures for Toho-1/AMP and Toho-1/CEX complexes. The 

topology files of AMP and CEX were derived from CGenFF121,122. The ligand topologies in the 

template systems were then substituted to create initial structures for Toho-1/AMP and Toho-

1/CEX complexes. Systems with alternative protonation states on Lys73 and Glu166 were 

prepared to account for acylation pathways via different general base residues.131 A total of 4 
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enzyme-ligand models were created, protonated, optimized, and equilibrated using a semi-

empirical QM/MM scheme with DFTB3 level of theory38 and the 3OB parameter set39 

(DFTB3/3OB) as the QM potential and C3623 as the MM counterpart. The atomic distances 

between the key reacting heavy atoms during a 100 ps molecular dynamic simulation using the 

DFTB3/3OB/C36 potential are shown in Table 4.1. The initial structures of the pathway 

calculations were selected as the snapshots that have the minimal inter-heavy-atom distances 

between the reacting functional groups of the four residues (Ser70, Lys73, Ser130, and Glu166), 

the catalytic water and the β-lactam.  

Table 4.1 The mean atomic distances between key reacting heavy atoms in the DFTB3/3OB/C36 
dynamics. Parenthesis denote the standard deviation (units: Å). 

Atom pairs Toho/AMP:R1 Toho/CEX:R1 Toho/AMP:R2 Toho/CEX:R2 

Ser70 Oγ – AMP C7 / CEX C8 2.43 (0.17) 2.58 (0.18) 2.44 (0.17) 2.57 (0.18) 
Lys73 Nζ – Ser130 Oγ 2.85 (0.15) 2.95 (0.32) 3.07 (0.25) 3.15 (0.32) 
Ser130 Oγ – AMP N4 / CEX N5 3.60 (0.23) 3.86 (0.26) 3.67 (0.31) 3.63 (0.31) 

Ser70 Oγ – Watercat O 2.65 (0.10) 2.65 (0.09) – – 
Glu166 Oε2 – Watercat O 3.06 (0.23) 2.77 (0.17) – – 
Ser70 Oγ – Lys73 Nζ – – 2.88 (0.13) 2.93 (0.17) 
 

MEP calculations. A total of five structures (noted as Toho/AMP: R1, R2, and Toho/CEX: R1, 

R1a, R2) were chosen from the production trajectories. These five frames were then subjected to 

calculations at DFT level. The DFT QM region covers important active site fragments: β-lactams, 

the catalytic water, the surrounding residues (Ser70, Lys73, Ser130, Glu166, Asn170, Lys234, 

Thr235, Ser237), together with a surrounding solvent molecule for the reaction pathway 

calculations. The hybrid density functional B3LYP132,133 was used in conjunction with Pople’s 6-
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31G double ζ basis set134–136 for the QM atoms (B3LYP/6-31G/C36). The RPM with holonomic 

constraints49 was applied for all pathway optimizations and the energetic profiles on the B3LYP/6-

31G/C36 optimized MEPs were further refined with the augmented 6-31++G** basis set and the 

D3 dispersion corrections (B3LYP-D3/6-31++G**/C36). The ChElPG scheme137 was employed 

for the charge population analysis along the chain-of-states.  

4.3 Summary of Results 

Initial Conformations. The optimized reactant structures of Toho/AMP differ from Toho/CEX 

by the hydrogen bonding networks between the penam/cephem carboxylate and the residues 

Thr235, Ser237 (Figure 4.2). Practically, the Ser237 hydroxyl is generally outside of the H-

bonding region of the AMP carboxylic group. The reactant configuration is therefore stabilized by 

a water molecule serving as the H-bond bridge between the Ser237 hydroxyl and the AMP 

carboxylate (Toho/AMP:R1, Figure 4.2a). Meanwhile, the CEX adopts a more flexible binding 

pattern: the hydroxyl group from Ser237 could either form direct hydrogen interacting to the 

substrate carboxyl group (Toho/CEX:R1, Figure 4.2b) or to a solvent water molecule 

(Toho/CEX:R1a, Figure 4.2c).  

 

Figure 4.2 Conformations of R1 reactant states. The conformations of (a) Toho/AMP:R1; (b) 
Toho/CEX:R1; (c) Toho/CEX:R1a. The hydrogen bonding interactions are noted as blue dashed 
lines.  
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Figure 4.3 Energy profiles and the ChElPG charges of key atoms along the acylation pathways in 
Toho-1 hydrolysis. (a) The acylation profiles of Toho/AMP; The ChElPG charges along (b) the 
Toho/AMP: R1 to AE1 pathway, and (c) the Toho/AMP: R2 to AE1 pathway; (d) The energy 
profile and the ChElPG charge profiles of the refined Toho/CEX: R1a to AE1 pathways, which is 
calculated from inserting 18 replicas between replica 24 and 31; (e) The acylation profiles of 
Toho/CEX; The ChElPG charges along (f) the Toho/CEX: R1 to AE1 pathway, (g) the Toho/CEX: 
R2 to AE1 pathway, and (h) the Toho/CEX: R1a to AE1 pathway. The vertical black solid lines in 
(a) and (d) indicate the location of AE1 and AE2. Numbers in parentheses and brackets denote the 
local minimum and maximum values of important states along the reaction path. Note that only 
ChElPG charge values of β-lactam carbonyl carbon (blue) and nitrogen (orange) are shown in (b), 
(c), (f), (g), (h).  

Toho/AMP Acylation Profiles. My calculated Toho/AMP acylation pathways (Figure 4.3) 

closely resemble the potential energy landscapes reported by Meroueh et al:,106 the energy barrier 

for the acylation using Glu166 as general base (14.0 kcal mol-1) is moderately higher than that of 
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Lys73/Glu166 concerted base (8.7 kcal mol-1). The Toho/AMP acylation pathways agree with both 

acylation mechanisms, indicating that either Lys73 or Glu166 could mediate the acylation process 

in Toho/AMP hydrolysis. The ChElPG charge profiles of the Toho/AMP pathways align with the 

intuitive understanding of the reaction mechanism. As shown in Figure 4.3b and 4.3c, the 

decreasing charge population on AMP O7 between replica 20 to 27 is synergetic to the increasing 

charge on Ser70 Oγ, suggesting the formation of tetrahedral intermediate (with a formal charge of 

-1 on AMP O7) during the serine addition. Furthermore, the locations of maximal charge profiles 

on AMP N4 are also correlated with the replica with the highest energy along the reaction progress, 

showing that the protonation of AMP N4 is strongly correlated with the rate of acylation, agreeing 

with previous observations.  

Toho/CEX Acylation Profiles. Toho/CEX acylation demonstrates a different catalytic 

mechanism, as shown in Figure 4.3e. The acylation barrier using Glu166 as the general base is 

prohibitively high (26.5 kcal mol-1).  In particular, the corresponding barrier further increases to 

52.4 kcal mol-1 when cefalexin substrate adopts a similar binding pattern as ampicillin 

(Toho/CEX:R1a to AE1, Figure 4.3e). These leave Lys73 as the inevitable candidate to mediate 

deprotonation of the Ser70 hydroxyl during CEX acylation, which confers an energetic barrier of 

13.7 kcal mol-1 (Toho/CEX:R2 to AE1). Further mechanistic insights can be derived from the 

ChElPG charge profiles. On the Glu166-mediated Toho/CEX acylation pathways (Figure 4.3f, 

4.3g, 4.3h), a stable tetrahedral intermediate indicated by the temporarily decreased charge on β-

lactam carbonyl oxygen (as in the corresponding Toho/AMP pathways) is less synergetic to the 

formation of the tetrahedral intermediate. Moreover, the charge on the cephem nitrogen is largely 

increased to 0.41 (Figure 4.3f) and 0.22 (Figure 4.3h) upon the barrier replica, which evidently 

suggests its poor proton affinity to accept the proton transfer from Ser130. Alternatively, the dual-
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base mediated Toho/CEX: R2 to AE1 pathways (Figure 4.3g) demonstrates a similar charge profile 

to the corresponding AMP acylation pathway. Interestingly, an increase of ChElPG charge on 

CEX C8 is seen uniquely upon the formation of tetrahedral intermediate on this pathway (Figure 

4.3g, replica 18). Intuitively, the lone pair on Ser70 Oγ in the R2 configurations are oriented 

towards the ligand carbonyl carbon, potentially activating the conjugated π orbital on the β-lactam 

bicyclic. While the π-conjugation in AMP (N4-C7=O8) is localized to the β-lactam scissile C-N 

bond, it is extended along the cephem bicyclic (C3=C4-N5-C8=O8) in CEX. The temporary charge 

increment on CEX C8 can therefore be interpreted as the consequence of breaking the more 

delocalized π-conjugation on the cephem scissile bond during the nucleophilic attack of Ser70 Oγ. 

Accordingly, this explanation is also supported by the observation that the tetrahedral 

intermediates on  Toho/AMP and Toho/CEX pathways do not significantly differ from each other 

in terms of heavy atom conformations.  

Comparison with Experiments. The computational barriers are further correlated with 

experimental kinetic studies (Table 4.2). Nitanai et al.129 reported that the catalytic barrier 

(calculated from kcat) of Toho/AMP hydrolysis is ~14.9 kcal mol-1, slightly lower by ~1.7 kcal 

mol-1 than that of CEX (~16.6 kcal mol-1). In my calculations, both acylation barriers for 

Toho/AMP are sufficiently lower than the experimentally determined catalytic barrier, suggesting 

that the acylation mechanism previously developed for ASβLs are applicable to Toho-1/AMP as 

well. In contrast, the only viable reaction pathway for CEX is the Lys73/Glu166 dual base 

mechanism. The pathway that uses Glu166 as the only general base greatly exceeded the 

experimental barrier (16.6 kcal mol-1) by 9.9 kcal mol-1. Briefly, my results provide good 

correlation to the experimental barriers.  
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Table 4.2 The computational and experimental catalytic barriers of AMP and CEX acylation 
catalyzed by Toho-1.  

Source Systems Energy barriers (kcal mol-1) Method [a] 

Shimizu-Ibuka et al.138 [b] Toho-1/AMP 15.5 303.15K, Exp 
Nitanai et al.129  Toho-1/AMP 14.9 303.15K, Exp 

This study  Toho-1/AMP 8.7 / 14.0 [c] B3LYP-D3/C36 
Nitanai et al.129  Toho-1/CEX 16.6 303.15K, Exp 

This study  Toho-1/CEX 13.7 / 26.5 [c] B3LYP-D3/C36 
[a]The experimental (Exp) catalytic barrier of Toho/AMP were derived from kcat via the Eyring 

equations, the acylation barrier of Toho/CEX were derived from the ratio of kcat/KM to 
Toho/AMP;  

[b]This study used the wild-type Toho-1 as the enzyme host while others used the 
Arg274Asn/Arg276Asn Toho-1 mutant as the enzyme host;  

[c]Values before “/” report the barrier of the Lys73/Glu166 concerted base acylation pathway. 
Values after “/” report the Glu166 sole base acylation pathway.  

 

4.4 Conclusion 

In this study, I demonstrate that the AMP and CEX acylation energy landscapes differ from 

each other during Toho-1 hydrolysis. In my calculations of both systems, the R1 pathway, which 

is mediated solely by Glu166 as the base, confers a higher (potential) energy barrier than the R2 

pathways. Herein, the R1 acylation pathway is shown to be energetically prohibitive for CEX, 

leaving the Lys73/Glu166 dual base mechanism as the main viable pathway for its acylation. In 

the case of AMP, whereas the investigated acylation barrier via the Glu166 sole base mechanism 

is sufficiently lower than the experimentally determined kinetics, the viability of the R1 pathway 

is not evidently clear from the potential barrier alone. However, unlike Toho/CEX, I note that the 

ChElPG charge profiles in Toho/AMP acylation demonstrate a similar pattern for the R1 and R2 
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pathways, suggesting that the R1 acylation mechanism is at least competitive to the R2 

alternatives.  

My calculations with CEX acylation also shed light onto the hydrolysis of other 

cephalosporins. As noted above, CEX mechanistically stands out in the cephalosporin family as 

its β-lactam nitrogen has to be protonated upon the formation of the acyl-enzyme product. 

However, common cephalosporins such as cephalothin and cefotaxime show higher catalytic 

efficiency (kcat/KM), which suggests a much lower acylation barrier than that of CEX. Such 

observations suggest that the cephem nitrogen may not be protonated during the entire acylation 

processes of other cephalosporins. Through their crystallographic study, Olmos et al.139 recently 

reported that that the departure of the C3’ leaving group is clearly simultaneous to the serine attack 

during the ASβLs/cefotaxime acylation, supporting the above hypothesis. In this regard, the 

protonation of the cephem nitrogen, which was also previously validated as the rate limiting step, 

could be avoided, and leading to the higher acylation rates observed in other early generations of 

cephalosporins.  
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5. ACYLATION OF CTX-M-44 ASβL EXPLAINED FROM MACHINE-LEARNED QM/MM 
MINIMUM ENERGY PATHWAYS 

5.1 Boltzmann-weighted Cumulative Integrated Gradients 

In order to verify the intuitive hypothesis on the acylation of Toho/AMP and Toho/CEX, I 

developed the XAI method, coined Boltzmann-weighted Cumulative IG (BCIG), for ML models 

trained on high quality DFT/MM MEPs, which is formulated as follows. For an ML-MEP model, 

which is designated as F and is trained on a dataset of P MEPs, the contribution of a chemical 

process c on the p-th MEP can be represented as the ‘pathway-wise’ contribution attributing 

function Apath  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐
𝑝 = 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝) (5.1) 

The overall contribution of chemical process c in the ensemble of P MEPs is the sum of the 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐
𝑝 weighted by the accessibility (the Boltzmann factor) of p-th MEP, which is  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐
𝑷 = 𝐶𝑁 ∑ (exp (−

∆𝐸𝑝

𝑅𝑇
) × 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝))

𝑷

𝑝=1

(5.2) 

where ΔEp is the energy barrier of the p-th MEP, R is the ideal gas constant, T is the temperature, 

CN is a normalization factor.  

The exponential averaging implicitly assumes sample completeness in the MEP datasets, 

which is mostly impractical for actual MEP calculations. In practice, direct application of 

Boltzmann weights would lead to numerical instability with a limited number of sampled MEPs. 
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Alternatively, a Probability Density Function (PDF), 𝑃𝐷𝐹(∆𝐸𝑝), could be introduced to smooth 

the density of MEP barriers. In its simplest form, the PDF could be a single Gaussian function. 

Further, in cases where the sampled barrier distribution failed to approximate a Gaussian 

distribution, alternative density estimators such as Gaussian Mixture Models (GMMs) or kernel 

density estimations could be employed for better approximation. Nonetheless, introducing PDF to 

equation 5.2 yields  

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑐
𝑷 = 𝐶𝑁

′ ∑ (exp (−
∆𝐸𝑝

𝑅𝑇
) × 𝑃𝐷𝐹(∆𝐸𝑝) × 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝)) 

𝑷

𝑝=1

(5.3) 

Note that the normalization factor 𝐶𝑁
′  is  

𝐶𝑁
′ =

𝑃

∑ exp (− ∆𝐸𝑝

𝑅𝑇 ) × 𝑃𝐷𝐹(∆𝐸𝑝)𝑷
𝑝=1

(5.4) 

In my implementation, 2-component GMMs, which approximates the distribution of MEP barriers 

using a weighted sum of two independent Gaussians, were used as the PDF for MEP barriers.  

If the chain-of-states RPM is used for MEP calculations, each transition path is represented 

by a series of discrete replicated structures (replicas) that connect the reactant and product. The 

‘pathway-wise’ contribution Apath could be calculated from the ‘replica-wise’ attribution function 

Areplica of c to the energy of the r-th replica on the p-th MEP:  

𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝) = ∑ 𝐴𝑟𝑒𝑝𝑙𝑖𝑐𝑎(𝐹, 𝑐, 𝑝, 𝑟)
𝑴

𝑟=1

(5.5) 

where M is the total number of replicas in each MEP.  
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As proposed by Sundararajan et al.98, for a DL model F, the contribution of the i-th feature 

xi of the feature vector x corresponding to a specific sample point can be calculated as the IG along 

a path γ(α) that connects the sample point with feature vector x (where α = 1) and a baseline with 

feature vector x’ (where α = 0)  

𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑖
𝛾(𝐱) =  ∫

𝜕𝐹(𝛾(𝛼))
𝜕𝛾(𝛼)

1

𝛼=0

𝜕𝛾(𝛼)
𝜕𝛼

𝑑𝛼 (5.6) 

In my case, the reactant states on the MEPs were selected as the baselines and the 

contribution of c at the r-th replica was the integrated partial derivatives (with regard to c) through 

the intermediate replicas preceding the r-th replica along the MEP. Accordingly, Eq. 6 is adapted 

for the discrete reaction pathway as  

𝐴𝑟𝑒𝑝𝑙𝑖𝑐𝑎(𝐹, 𝑐, 𝑝, 𝑟) = 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑𝐺𝑟𝑎𝑑𝑐
𝑝(𝐱) =  ∑

𝜕𝐹(𝐱(𝑝, 𝑖))
𝜕𝐱(𝑝, 𝑖)

𝜕𝐱(𝑝, 𝑖)
𝜕𝑖

𝑟

𝑖=1

(5.7) 

where i is the index of the pathway replicas, x(p, i) is the feature vector of the i-th replica on the 

p-th MEP.  

The representation of c must be determined to expand the first partial derivative in equation 

5.7. As noted, c represents a ‘chemical process’ that includes (but is not limited to) bond 

making/breaking and proton transfers. The progress of chemical process is commonly represented 

by the linear combination of multiple order parameters such as atomic distances, often referred to 

as the reaction coordinates or collective variables. However, I note that the correlation between 

the atomic distances is highly nonlinear in the evolution along the optimal reaction path obtained 

from the chain-of-states calculations. Therefore, instead of feeding the reduced representation of 
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linear-combined atomic distances, I used a set of atomic distances that accounts for all chemical 

process during the acylation for the training of the DL model F, that is,  

𝐸(𝑝, 𝑖) ≅ 𝐹(𝐱(𝑝, 𝑖)) (5.8) 

where E(p, i) is the energy of i-th replica on the p-th MEP. Further, due to the nonlinearity of the 

correlation between the feature dimensions, the gradients of F with regard to c, which usually 

corresponds to multiple feature dimensions in x, cannot be calculated analytically. Therefore, the 

first partial derivative in equation 5.7 is computed numerically 

𝜕𝐹(𝐱(𝑝, 𝑖))
𝜕𝛿(𝐱(𝑝, 𝑖))

=
𝐹 (𝐱(𝑝, 𝑖) + 𝛿𝜀(𝐱(𝑝, 𝑖 + 1) − 𝐱(𝑝, 𝑖))) − 𝐹 (𝐱(𝑝, 𝑖) − 𝛿𝜀(𝐱(𝑝, 𝑖) − 𝐱(𝑝, 𝑖 − 1)))

𝐷𝑖𝑠𝑡 (𝐱(𝑝, 𝑖) + 𝛿𝜀(𝐱(𝑝, 𝑖 + 1) − 𝐱(𝑝, 𝑖)), 𝐱(𝑝, 𝑖) − 𝛿𝜀(𝐱(𝑝, 𝑖) − 𝐱(𝑝, 𝑖 − 1)))
(5.9) 

where ε denotes a small perturbative factor (0.01 as in the current study); δ acts as the selector for 

the feature dimensions included in the chemical process (c). In practice, δ is a multi-hot encoded 

mask to ensure that the perturbation ε is applied only to the features x that represent the chemical 

process of interests; 𝐷𝑖𝑠𝑡(𝐴, 𝐵)  stands for the distance metric that accounts for the pathway 

curvature. The gradient on the pathway curvature reads: 

𝜕𝐱(𝑝, 𝑖)
𝜕𝑖

=
𝐷𝑖𝑠𝑡 (𝐱(𝑝, 𝑖) + 𝛿𝜀(𝐱(𝑝, 𝑖 + 1) − 𝐱(𝑝, 𝑖)), 𝐱(𝑝, 𝑖) − 𝛿𝜀(𝐱(𝑝, 𝑖) − 𝐱(𝑝, 𝑖 − 1)))

𝜀 × ((𝑖 + 1) − (𝑖 − 1))
(5.10) 

Combining equations. 5.7, 5.9, 5.10, the contribution of the chemical process c to the r-th replica 

on the p-th pathway is calculated as the integrated partial gradients of the ML-MEPs model F as:  

𝐴𝑟𝑒𝑝𝑙𝑖𝑐𝑎(𝐹, 𝑐, 𝑝, 𝑟)

= ∑
𝐹 (𝐱(𝑝, 𝑖) + 𝛿𝜀(𝐱(𝑝, 𝑖 + 1) − 𝐱(𝑝, 𝑖))) − 𝐹 (𝐱(𝑝, 𝑖) − 𝛿𝜀(𝐱(𝑝, 𝑖) − 𝐱(𝑝, 𝑖 − 1)))

2𝜀

𝑟

𝑖=1

 (5.11) 
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Accordingly, the contribution of c along one MEP 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝) can be calculated by 

cumulatively summing the integrated partial gradients (equation 5.5). The sign of 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝) 

gives the interaction between the chemical processes; whereas its absolute values give the 

perturbative response of the ML-MEP model regarding different c. Therefore, the absolute values 

of 𝐴𝑝𝑎𝑡ℎ(𝐹, 𝑐, 𝑝) were used to calculate the weighted contributions in equation 5.3. I proceed with 

the computational details that implements the BCIG approach for interpreting the acylation 

reactions of Toho/AMP and Toho/CEX studied in the last chapter.  

5.2 Computational Details 

System Preparation. Based on reaction mechanisms of the target reaction studied in the last 

chapter, I created the R1, R2, and AE states for wild type Toho/AMP and Toho/CEX systems 

using the DFTB3/3OB/C36 potential with necessary distance-based restraints. A total of six states 

were subjected to extensive conformational sampling with constrained NVT simulations for 150 

ns. During the constrained dynamics, the hydroxyls of the Ser70/Ser130, the Lys73 amino group, 

the Glu166 carboxyl group, the carbonyl-nitrogen bond of the ligands, and the catalytic water were 

fixed in place to retain their QM optimized orientations. The snapshots used for the MEP 

calculations were taken from the last 120 ns of the constrained MD trajectories with a time interval 

of 1.2 ns for each system. Briefly, a total number of 600 snapshots (100 snapshots from three states 

of two systems) were selected as the starting conformations for the MEP calculations.  

MEP calculations. The 600 starting conformations were all optimized using the DFTB3 potential. 

During the optimizations, the surrounding MM residues within 4 Å of the QM region were allowed 

to move while the remaining of system were fixed. The corresponding product/reactant states were 

generated from the starting conformations. In total, 800 pairs of either R1/AE or R2/AE states 
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were generated for the Toho/ligand complexes, and were used as the reactant/product pairs for the 

MEP optimizations using the RPM with holonomic constraints49.  

 

Figure 5.1 Selected features, 2D representation of the pathway conformations, and architecture of 
the ML-MEP models. The selected features and chemical processes of (a) the Toho/AMP: R1-AE 
and Toho/CEX: R1-AE datasets and (b) the Toho/AMP: R2-AE and Toho/CEX: R2-AE datasets. 
The atomic distances that are included in feature vectors are noted in orange lines, the chemical 
processes are noted in blue; (c) The 2D principal component dimensionality reduction of the 
pairwise inter-heavy-atom distances in the QM region and a schematic demonstration for the loss 
of pathway context of the replicas; (d) The architecture of the QM/MM MEP learning deep-and-
wide neural network.  
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ML-MEP models. The goal of the ML regressions is not only to predict the single point total 

energies of the systems, but also to bridge the conformational change with the energy evolution 

along the optimized MEPs, which mainly attributes to the displacement of the reacting atoms in 

the QM regions. Therefore, the initial selection of features covered (1) the atomic distances 

between the chemical-bonded and hydrogen-bonded heavy atoms in the QM region and; (2) the 

hydrogen-donor/acceptor distances between the reacting hydrogens and surrounding QM heavy 

atoms. The final selection of features on the R1-AE and R2-AE pathway datasets were illustrated 

in Figure 5.1a, 5.1b.  

A feed-forward neural network with the ‘Deep-and-Wide’ learning architecture (DaWNN) 

proposed by Cheng et al.140 was implemented for the learning of the QM/MM MEPs (Figure 5.1d). 

The dropout strategy141 was applied for all hidden layers to promote the generalizability of the 

neural networks and prevent over-fitting. The dropout rate (0.1) and the number of neuron units 

(256) on the hidden layers were tuned via a grid search strategy on a 10% path-wise stratified 

validation set. Practically, I constructed the validation set by randomly picking 5 replicas from 

each of the pathway carrying 50 replicas. The standard mean squared error (MSE) was used as the 

objective loss function to train the ML-MEP models. All models were trained with the AdaM142 

optimizer for 300 epochs with a sample batch-size of 25. 

5.3 Summary of Results 

QM/MM MEPs. The barrier distributions of the calculated QM/MM MEPs are plotted in Figure 

5.2. Both R1-AE and R2-AE acylation pathways of Toho/AMP are accessible as they show lower 

mean averaged barriers than the Toho/CEX ones. The exponential averaged acylation barrier is 

16.98 kcal mol-1 for the Toho/AMP: R1-AE pathway (Figure 5.2a), which is 12.81 kcal mol-1 

higher than the Toho/AMP: R2-AE pathways (4.17 kcal mol-1, Figure 5.2c). The lowest 



 

47 
 

Toho/AMP: R1-AE barrier is shown to be 14.01 kcal mol-1, which is lower than the experimental 

acylation barriers of ~15.5 kcal mol-1. As for Toho/CEX acylation, the pathway via the R2-AE 

mechanism confers an exponential averaged barrier of 14.33 kcal mol-1 (Figure 5.2d), which is 

11.22 kcal mol-1 lower than its R1-AE alternative (25.55 kcal mol-1, Figure 5.2b). Further, as the 

lowest energy barrier found on Toho/CEX: R1-AE pathways (22.35 kcal mol-1) is much higher 

than the estimated experimental barrier (~17.2 kcal mol-1), these pathways are considered as 

generally inaccessible. The viable acylation path for Toho/CEX is therefore verified to be the R2-

AE mechanism, as stated in the previous chapter.  

 

Figure 5.2 The distribution of the acylation barriers (ΔE) at B3LYP-D3/6-31+G**/C36 level of 
theory. (a) Toho/AMP: R1-AE acylation pathways; (b) Toho/CEX: R1-AE acylation pathways; (c) 
Toho/AMP: R2-AE acylation pathways, and; (d) Toho/CEX: R2-AE acylation pathways. The 
scatters show the locations of the energy barriers. The width of the histograms is 4 kcal mol-1. The 
red curves note the density estimation from the GMMs.  
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Energetics interpreted from BCIG contributions. As shown in Figure 5.3a and 5.3b, the 

DaWNN models could accurately predict the replica-wise energy with R2 scores > 0.995 and the 

barrier heights with RMSE < 2 kcal mol-1.  

 

Figure 5.3 The predictive performance and the BCIG contributions of the ML-MEP models. The 
predictive performance of (a) the replica energies and (b) the pathway barriers of (left to right) 
the Toho/AMP: R1-AE, Toho/CEX: R1-AE, Toho/AMP: R2-AE, and Toho/CEX: R2-AE 
models. The BCIG contributions of the models: (c) Toho/AMP: R1-AE; (d) Toho/CEX: R1-AE; 
(e) Toho/AMP: R2-AE; and (f) Toho/CEX: R2-AE.  

For the Toho/AMP: R1-AE pathways (Figure 5.3c), the highest BCIG contributions come 

from the concerted proton transfers from Lys73 to the thiazolidine nitrogen (P2 and P3). The 
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proton abstraction of Glu166 carboxyl (P0 and P1) were assessed to be moderately rate-limiting 

as they pose higher contributions than the nucleophilic attacks of the Ser70 hydroxyl to the β-

lactam carbonyl (B0 and B1). The contributions for the Toho/CEX: R1-AE pathways also suggest 

that the protonation of the cephem nitrogen (P2 and P3) is the determinant factor with the highest 

contribution (Figure 5.3d). However, the deprotonation of Ser70 Oγ (P1) and its nucleophilic 

attach to the cephem carbonyl carbon (B0) were shown to considerably contribute to the reaction 

profiles of Toho/CEX: R1-AE. On the R2-AE acylation pathways, the concerted proton transfers 

from Lys73 to the β-lactam nitrogen, bridged by Ser130 hydroxyl (P2 and P3), remains as the 

reaction step of the highest BCIG contributions in both Toho/AMP and Toho/CEX systems (Figure 

5.3e, 5.3f). Interestingly, in the Toho/AMP: R2-AE pathways, the highest individual contribution 

comes from P2 (the proton transfer between Lys73 and Ser130), while in Toho/CEX: R2-AE, it 

was determined as P3 (the protonation of the cephem nitrogen). I note that the BCIG derived from 

different systems are not to be compared with each other since they explain different models which 

were trained on different datasets with distinct distributions. Alternatively, one can train models 

on mixed datasets to allow comparison of BCIG from different systems to explain for relative 

reactivity. However, the BCIG values in this case for different chemical process are not to be 

compared with each other, since the distribution of different feature is biased by the artificial 

mixing of the datasets.  

Reactivity interpreted from BCIG contributions. Additional DaWNN models trained on the 

mixed datasets (Toho/AMP&CEX: R1-AE and Toho/AMP&CEX: R2-AE) As shown in Figure 

5.4a, 5.4b, the model prediction on the replica energies or the pathway barriers remain the same 

predictive accuracies (RMSEs < 2 kcal mol-1 and R2 > 0.995) compared with the models trained 

on individual datasets, demonstrating the scalability of the DaWNN architecture for learning MEPs.  
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Figure 5.4 The predictive performance and the BCIG contributions of the unified ML-MEP models. 
The predictive performance of (left to right) the replica energies and the pathway barriers of (a) 
the Toho/AMP&CEX: R1-AE; and (b) the Toho/AMP&CEX: R2-AE models. The BCIG 
contributions of (c) the Toho/AMP&CEX: R1-AE; and (d) the Toho/AMP&CEX: R2-AE models. 

The BCIG contributions are computed for the reactivity-explaining models: 

Toho/AMP&CEX: R1-AE and Toho/AMP&CEX: R2-AE. For the R1-AE pathways, the BCIG 

contributions on all chemical processes are much higher in the Toho/CEX acylation MEPs than 

the Toho/AMP ones (Figure 5.4c). As expected, the correlated P2 and P3 contributions largely 

increase for the Toho/CEX R1-AE acylation pathways, reflecting the less active protonation of the 

cephem nitrogen. While the acylation pathways are initialized by the nucleophilic serine addition, 

the high BCIG contributions attributed for this process indicates that the R1-AE acylation 

pathways for Toho/CEX is unfavored comparing to Toho/AMP. Combining the enzyme kinetics 

discussed above, the interpretation of BCIG contributions shows that the acylation pathway using 

solely Glu166 as the general base is turned off for Toho/CEX due to its incapability to activate the 
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serine attack on the cephem carbonyl. On the other hand, the contributions in the 

Toho/AMP&CEX: R2-AE models demonstrated the same trend (Figure 5.4d): the BCIG values 

for most chemical processes in Toho/CEX pathways are higher than the Toho/AMP pathways. The 

differences of the BCIG contributions in two systems mainly come from the residue-evolved 

processes: B0, P4 (the serine nucleophilic attack to β-lactam carbonyl), and P2, P3 (the concerted 

proton transfers to protonate the β-lactam nitrogen). Interestingly, the BCIG contribution from C-

N bond breaking (B1) for CEX concerted base acylation is shown to be slightly lower than that for 

AMP. In brief, the BCIG contributions from the Toho/AMP&CEX: R2-AE MEP learning model 

show that the energy contributions of concerned chemical processes on the Toho/CEX pathways 

are moderately higher than the Toho/AMP pathways, suggesting lower acylation activity for the 

Toho/CEX: R2-AE pathways. 

5.4 Conclusion 

In this study, I presented a QM/MM computational workflow that achieves fast sampling 

of QM/MM MEPs for enzyme catalysis. Firstly, I optimized 800 MEP conformations and refined 

the single point energies using B3LYP-D3/6-31+G**/C36 calculations. The energetics from this 

computational workflow are in good agreement with previous calculations demonstrated in chapter 

4.  

ML-MEP models with high performance and scalability using the DaWNN architecture 

were developed for the machine-learning of the QM/MM MEPs of enzyme catalysis. Comparing 

to conventional DNN models, the DaWNN architecture achieves much higher accuracy in learning 

the energetic profiles from the conformational evolutions along the QM/MM MEPs. Further, the 

DaWNN model is shown to be highly scalable to the training size or the source of the training data 

without significant loss in performance.  
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Inspired by the IG approach98 for explaining ML/DL models, I further developed the BCIG 

approach to interpret the ML-MEP models for mechanistic insights in enzyme catalysis. Using 

Toho/AMP and Toho/CEX as the model systems, the energetic and the reactivity contributions of 

the processes with different substrates are quantified by the BCIG attributions. The conformational 

factors that differentiate the Toho-1 acylation activities of AMP and CEX were identified. The 

BCIG contributions quantified that the cephem scaffold was less susceptible to the nucleophilic 

serine addition and the protonation of the β-lactam nitrogen than the penam. Moreover, I presented 

a purpose-oriented training-explaining strategy to focus on mode interpretability. Whereas the 

different ML-MEP models are trained and interpreted for specific mechanistic aspects, I have 

shown that the interpretations of different models give consistent mechanistic insights that agrees 

with my intuitive mechanistic understandings on the modeled systems.  
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6. MECHANISTIC ANALYSIS OF CARBAPENEMASES RESISTANCE TO IMIPENEM 
GUIDED BY GRAPH-LEARNING 

6.1 GES-5 β-Lactamases 

The GES family of ASβLs has demonstrated functional diversity that constitutes its broad 

resistance to β-lactams.5,12,13,18 The first clinically isolated GES-1 enzyme was reported to be an 

extended-spectrum β-lactamase with very low resistance to carbapenems, while its single mutant 

Gly170Ser variant (GES-5) was shown to effectively hydrolyze carbapenems such as imipenem 

(IPM, Figure 6.1a).143 The general β-lactam deacylation mechanism has been extensively 

investigated by pioneering theoretical efforts.144–146 Based on their hybrid QM/MM mechanistic 

study, Hermann et al.110 proposed that the ASβLs deacylation of β-lactams is a concerted one step 

process (Figure 6.1b). Briefly, the deacylating water molecule first attacks the acylated 

electrophilic β-lactam carbon and synergistically donates its proton to the deprotonated GES 

Glu166, which acts as the general base. The scissile bond between Ser70 Oγ and the β-lactam 

carbonyl carbon is cleaved upon the proton transfer from the fully protonated Lys73 amino to 

Ser70 Oγ, which retrieves the Ser70 hydroxyl and completes the deacylation. Moreover, the 

deacylation of carbapenems is further complicated by possible Δ2-to-Δ1 pyrroline tautomerization 

on the carbapenem scaffold during the acyl-enzyme state (Figure 6.1b).147,148 While the 

interconversion between the two tautomer states is reported, it has been proposed that the Δ1-

pyrroline tautomer state is more inert to ASβL deacylation.149,150  
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Figure 6.1 The GES/IPM complex and the deacylation reaction. (a) The GES/IPM acyl-enzyme 
complex. The deacylating water and the IPM molecule are colored in green and magenta, 
respectively; (b) The deacylation mechanism and the atoms included in the QM region. The 
QM/MM boundary bonds are marked by blue lines. The structural differences of the acylated IPM-
Δ1 and IPM-Δ2 tautomer are highlighted in red.  

6.2 Computational Details 

System Preparation I built the simulation system from the crystal structure of GES-5/IPM acyl-

enzyme complex (PDB: 4H8R).151 The sulfhydryl groups in Cys69 and Cys238 were patched as 

the conserved disulfide bridge in most ASβL-carbapenemases.152 The prepared systems were 

subjected to extensive MD sampling after proper equilibration dynamics. The reacting groups, 

including the Ser70 Oγ, the Lys73 Nζ amino, the Glu166 Oε1, the deacylating water, and the IPM 

β-lactam/pyrroline bicyclic scaffold, were held in place to retain their QM-optimized orientations. 

The system was subjected to 200 ns MD simulations and snapshots were recorded at a 400 ps 

interval, producing a total number of 500 representative configurations.  
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QM/MM MEPs. The protonated N4 on the IPM pyrroline ring undergoes tautomerization in most 

ASβL/IPM acyl-enzyme intermediates, leading to two possible tautomer configurations on the 

IPM pyrroline ring: IPM-Δ1 and IPM-Δ2 (Figure 6.1b). In their crystallography study, Smith et al. 

observed that the S isomeric state of the Δ1 tautomer is the dominant configuration in the acyl-

enzyme complex in a GES-5 Cys69Gly variant. Accordingly, the S isomeric form was selected for 

all Δ1 tautomer states since that the Cys69Gly mutation has been verified to not alter the 

conformational architecture of the active site as with the wild-type GES-5.152 For each 

representative configuration, both IPM tautomerization states were built and were used to calculate 

the deacylation MEPs. A total number of 1,000 pathways using the RPM with holonomic 

constraints49 and 36,000 single point B3LYP-D3/MM energies were calculated in the current study.  

Featurization. The goal of my GL task is to connect the acyl-enzyme configurations to the 

deacylation barriers of the QM/MM MEPs. I represent the atoms and interatomic distances as 

vertices and edges, formulating graph representations of the acyl-enzyme configurations for 

GES/IPM deacylation (Figure 6.2a). The atoms included in the graph was selected according to 

the following procedure. First, the atoms on the reaction coordinates were automatically included 

as initial vertices. I then expanded the selection to any neighboring atoms that are covalently-

bonded or forming hydrogen-bonding interactions with the initially atoms in at least one of the 

reactant configurations, leading to 19 and 21 atoms/vertices in the GES/IPM-Δ1 and GES/IPM-

Δ2 graphs, respectively. Each vertex was represented as a vector that one-hot encodes the element 

type multiplied by its partial charge from Natural Population Analysis (NPA)153 on the B3LYP-

D3 densities. On the other hand, the edges were naturally defined as the reaction coordinates, the 

chemical bonds, and the hydrogen-bonding interactions between the selected vertices. 

Additionally, the atoms in the same residue that are not directly covalent-bonded are also linked. 
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Figure 6.2 The graph representations and the learning model. (a) The graph representation of 
GES/IPM acyl-enzyme conformations. The hydrogen, carbon, nitrogen, and oxygen atoms are 
noted by gray, black, blue, and red spheres, respectively. The edges as reaction coordinates, 
chemical bonds, hydrogen bonding interactions are shown as red solid lines, black solid lines, and 
blue dashed lines, respectively. The black dotted lines denote the edges between two atoms of the 
same residue. The asterisks highlight the edges used as the metrics for conformational clustering. 
The green box shows the vertices and edges that are included only in GES/IPM-Δ2 graphs. (b) The 
ECGCNN model architecture.  

Conformational clustering. Prior to the GL of the deacylation barriers, my visual inspection on 

the acyl-enzyme states identified several conformational patterns. Therefore, I performed 
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conformational clustering analysis to elaborate the conformational modes of the non-reacting 

functional groups upon deacylation. I note that my attempts with unsupervised clustering 

algorithms (also assisted by dimensionality reduction) provides no meaningful clustering as 

verified from my visual inspection, which suggests the high-complexity of the conformational 

space on the GES/IPM active site with the reduced edge representations. Alternatively, I manually 

filtered the metric distances based on two criteria: the metric distance (1) should manifest high 

variance (> 0.5 Å) to clearly distinguish conformational differences; and (2) should not lead to 

small clusters with fewer than 10 snapshots. Eventually, the distances of Asn132 Oδ – IPM HO6α 

and IPM O6α – Lys73 Hζ1 were used to successfully divide the snapshots into four clusters (Figure 

6.3), noted as cluster A, B, C, and D.  

 

Figure 6.3 The conformational clustering of the acyl-enzyme states, the energy barriers of the 
clusters, and the representative conformations in each cluster. (a) The clustering of acyl-enzyme 
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configurations using two distance metrics (pink dashed lines); (b) The deacylation barriers in each 
cluster. ** denotes that the mean difference in barrier distributions between two tautomer states 
are statistically significant (Welch test p <0.001); The representative acyl-enzyme configurations 
in clusters of (c) GES/IPM-Δ1; and (d) GES/IPM-Δ2. The key hydrogen-bonding interactions 
involving the IPM 6α-hydroxyl group and Asn132 are highlighted by cyan solid lines. The Glu166 
Oε1, and the Lys73 Hζ1, Hζ3 are labeled. The carbon atoms of the β-lactam ligand in colored in 
magenta, except the deacylating β-lactam carbon which is colored in dark purple. Other hydrogen, 
carbon, nitrogen, oxygen, and sulfur atoms are colored in white, dim gray, blue, red, and yellow, 
respectively.  

GL Model for Predicting Deacylation Barriers. The ECGCNN model91 implemented in the 

current study adopts three edge-conditioned learning layers, each of which learns the vertex hidden 

representations with 64 convolutional filters (Figure 6.2b). After the third layer, the hidden 

representation of the graph learned by each filter was read out by a global sum pooling operator, 

i.e., by summing all vertex hidden states learned per filter. The hidden representation of the graph 

was then transformed by a learned weight vector at the final linear layer (without bias units) to 

produce a 64-dimensional latent vector. The model prediction of the deacylation barrier is obtained 

from the reduced sum of this latent vector.  

I trained the ECGCNN model using all 1,000 GES/IPM configurations. 150 configurations 

were randomly selected as a 15% validation set stratified with regard to the IPM pyrroline tautomer 

states. The learnable weights were optimized by an AdaM optimizer 142 at a learning rate of 0.001 

against the standard loss of mean-squared-error (MSE). The model was trained for 750 epochs 

with a sample batch size of 25. During the training process, the ECGCNN model producing the 

lowest validation loss was retained as the final model.  

Perturbative Response of the GL Model. The NPA charges are mostly invariant with regard to 

the GES/IPM acyl-enzyme configurations (Figure 6.4), I therefore focus on the edge features for 
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the ECGCNN model explanations to gain mechanistic insights. I assess the edge importance by 

the following perturbative approach. For each graph denoting an acyl-enzyme configuration, I first 

obtain the 64-dimensional latent vector produced from the final linear transform, which is defined 

as the baseline, ℎ𝑏𝑎𝑠𝑒. I then feed a perturbed graph omitting an edge e that flows through the 

forward pass of the ECGCNN model and produces a perturbed latent vector, ℎ𝑒
𝑝𝑒𝑟𝑡. Since the 

reduced sum of the latent vector gives the predicted deacylation barrier, the contribution attributed 

to e is defined as the perturbative response of the latent vector upon excluding e from the input 

graph. Eventually, I assess the importance of e with the 1-norm distance between ℎ𝑏𝑎𝑠𝑒 and ℎ𝑒
𝑝𝑒𝑟𝑡: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝑒) = ∑|ℎ𝑒
𝑝𝑒𝑟𝑡 − ℎ𝑏𝑎𝑠𝑒| (6.1) 

 

Figure 6.4 Distribution of NPA charges on each atom included in the graph. Entries on the left side 
of the solid orange line are vertices (atoms) related to the reaction coordinates. Entries on the right 
side of the solid purple line are vertices (atoms) present only in GES/IPM-Δ2 graphs. 
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6.3 Summary of Results 

GES/IPM Deacylation Barriers. It has been proposed that the deacylation half of ASβL-mediated 

IPM hydrolysis is the rate-limiting step of the overall hydrolysis. Frase et al measured the kinetic 

rate of GES-5/IPM deacylation (k3) as 0.45 s-1 under room temperature, which approximates a 

deacylation barrier of 17.62 kcal mol-1 with the Eyring equation.154 Moreover, Kalp et al suggested 

that the deacylation efficiencies of IPM in ASβLs are also correlated with the tautomerization 

states of the pyrroline ring, where the IPM-Δ2 tautomer is more active for deacylation than the 

IPM-Δ1 species. In my calculations (Figure 6.5), the exponential-averaged deacylation barriers of 

the IPM-Δ1 tautomers in GES-5 (23.83 kcal mol-1) is higher than that of IPM-Δ2 (21.17 kcal mol-

1). The IPM-Δ2 tautomer is therefore deemed to be the more active deacylating species.  

 

Figure 6.5 The deacylation barrier distributions of GES/IPM pathways. (a) GES/IPM-Δ1; (b) 
GES/IPM-Δ2.  

GL Representations. The predictive performance of the ECGCNN model on the deacylation 

barrier is firstly evaluated (Figure 6.6a). The deacylation barriers of the training set can be 

predicted within 2.0 kcal mol-1 mean absolute errors (MAE). The predictions on the validation set 
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are with lower accuracy (MAE <3.0 kcal mol-1), but the predicted barrier heights are in good 

agreement with the calculated values (R2 >0.8). Therefore, I conclude that my ECGCNN model 

could reasonably predict the deacylation barriers based on the graph representations of the acyl-

enzyme configuration.  

 

Figure 6.6 The regression performance of the ECGCNN model and the UMAP dimensionality 
reduced visualization of graph features. (a) The regression performance of the GNN model on the 
training and validation sets of two systems. The UMAP dimensionality reductions on the (b) 
distances as reaction coordinates; (c) the 64-element latent vectors from the ECGCNN model. Note 
that the UMAP representations of GES/IPM-Δ1 and GES/IPM-Δ2 were plotted under the same 
scale.  
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I further investigated if the knowledge basis of the structural factors on the barrier heights 

are also properly encoded by the GL latent representations. The low-dimension UMAP155 

representation of the reaction coordinate distances showed clear correlation to the deacylation 

barrier (Figure 6.6b): the configurations of high-to-low deacylation barriers are distributed from 

left-to-right. However, the acyl-enzyme configurations from different pyrroline tautomerization 

states are mixed together, suggesting that different tautomer states are conformationally 

indistinguishable. On the other hand, the UMAP-projected GL latent vectors are able to preserve 

the barrier distributions as the high-to-low deacylation barriers spans from top-left to lower-right 

(Figure 6.6c). Meanwhile, it also shows that the IPM-Δ1 and Δ2 tautomers can be distinguished 

from each other, suggesting that the ECGCNN model could effectively capture and properly 

encode the hidden patterns underlying the conformation-barrier relationship in GES/IPM 

deacylation.  

Perturbative Responses of the GL Representations. The ECGCNN model was unboxed using 

the perturbative response of the graph-learned hidden representations. The overall 1-norm 

displacements of the 64-dimensional latent vector upon edge exclusion are shown in Figure 6.7. 

The reaction coordinates of the nucleophilic attack of the deacylating water (IPM C7 – Water O) 

and the protonation of the GLU166 (Glu166 Oε1 – Water H1) showed statistically significant 

difference between the IPM tautomerization states (Figure 6.7a). Compared with the IPM-Δ1 

tautomers, the deacylation barriers of the Δ2 states are less sensitive to the water attack on the 

Ser70-IPM ester carbon and are more dependent on the protonating-distance of Glu166. Notably, 

in both deacylation pathways, the deacylation barriers are shown to be most sensitive to the 

exclusion of the edge IPM C7 – IPM O6α, which specifies the orientation of the 6α-hydroxyethyl. 

Lastly, while the Welch tests have shown that the latent vector displacements upon excluding three 
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edges (Asn132 Oδ1 – IPM HO6α, Glu166 Oε1 – IPM HO6α, and IPM O6α – Lys73 Hζ1) are 

statistically different between the two tautomer states, those differences in values seem small.  

 

Figure 6.7 The displacements of latent vectors upon edge removal from the reactant graph. (a) The 
displacement of latent vectors arranged by edges excluded in each system; (b) The latent vectors 
displacements that show very significant difference in at least one of the clusters. The sub-plots 
with orange and black axis are inter-residue reaction coordinates and inter-residue hydrogen 
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bonding interactions, respectively. ** denotes that the mean difference in barrier distributions 
between two tautomer states are statistically significant (Welch test p <0.001). 

Due to the diverse orientations of the IPM 6α-hydroxyethyl, I further investigated the 

potential impact to the deacylation barriers from each conformational cluster. The deacylation 

barriers of IPM-Δ2 are more sensitive than those of Δ1 to the reaction coordinates of Glu166 

protonation (Glu166 Oε1 – water H1) in clusters A, B, and D, while cluster C is inconclusive yet 

with a higher average perturbative response (Figure 6.7b). As for the interactions concerning the 

IPM 6α side chain groups, all statistically significant comparisons between two tautomer states are 

found for the A cluster, while the actual differences are shown to be small. The key difference 

between the conformational clusters is the IPM O6α – IPM C7 edges. As shown in Figure 6.7b, 

while all clusters showed high latent response upon the IPM O6α – IPM C7 edge removal, cluster 

B is shown to have latent displacements significantly larger than the others. Such observation can 

be directly correlated with the local hydrogen bonding interactions to the water attack, as the 

cluster B is the only cluster that has its IPM 6α-hydroxyl group donating hydrogen bonds to the 

water molecule or the general base (Glu166, Figure 6.8). 

 
Figure 6.8 The distribution of the IPM C7-C6-C6α-O6α dihedral angle of each conformational 
cluster.  
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6.4 Conclusion 

In summary, I calculated 1,000 QM/MM MEPs for the deacylation between GES-5 and 

IPM with two tautomer states. Based on the MEP dataset, I developed an ECGCNN model that 

reasonably predicts the deacylation barrier from the of graph representations of GES/IPM acyl-

enzyme conformations. The mechanism underlying the deacylation reactivity of GES-5 has been 

revealed with atomistic details using the displacement response of the ECGCNN-learned 

representations upon edge exclusion. Guided by this perturbative approach, I delineate the 

mechanisms of two major factors that impact the deacylation reactivity in GES/IPM hydrolysis. 

The protonation on IPM-Δ2 N4 could facilitate an internal oxyanion hole as the hydrogen bonding 

donated to the Ser70-IPM ester oxygens, which potentially stabilizes the tetrahedral intermediate 

and is reflected as the small latent vector displacement to the exclusion of IPM C7 – water O edges 

in the ECGCNN model. Alternatively, the IPM 6α-hydroxyethyl group could adopt two 

orientations and interacts with the reacting groups and thus impacts the deacylating barrier. In the 

ECGCNN model, this is demonstrated as significant latent displacements upon the removal of 

edges relevant to the IPM 6α side chain. Most importantly, while no explicit representation of the 

hydroxyethyl orientation was encoded in the feature representation, my ECGCNN model could 

capture this hidden information and manifest high sensitivity to the IPM O6α – IPM C7 distance 

which is highly correlated with the IPM 6α-hydroxyethyl orientation. Finally, my study 

demonstrates the potential for DL/GL methods in assisting the mechanistic understandings of 

enzyme catalysis. 
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7. EMPIRICAL FORCE FIELD PARAMETRIZATION OF 2-AMINOTHIAZOLE 

7.1 Parametrization Scheme of CGenFF 

Although CGenFF provides automatic atom typing and parameter assignment for small 

bio-molecules based on the property of parameter-transferability, the generated parameters are not 

as accurate and needs to be further refined.121,122 The original workflow for CGenFF parameter 

refinement is shown in Figure 7.1 and is described as follows:  

• Atom types (Van der Waals parameters) are transferred from CGenFF;  

• Atomic partial charges are parameterized to HF/6-31G* water interaction energies from at 

MP2/6-31G* optimized geometries;  

• Equilibrium bond length & angles are fitted to reproduce the molecular structure from 

MP2/6-31G* calculations;  

• Force constants are optimized to reproduce the vibrational frequencies from MP2/6-31G* 

calculations; The vibrational frequencies are calculated by the MOLVIB module integrated 

in CHARMM, which requires Pulay’s Natural Internal Coordinate (NIC)156,157 as the input 

format to specify both fragment topology and coordinates;  

• Multiplicity and phase shift on torsional terms are determined by the connectivity of the 

dihedrals and thus need not to be changed;  

• Divide and conquer: when dealing with large molecules with more than 20 atoms, the 

molecule is divided into fragments and each fragment is parametrized independently. The 
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parametrized fragments are then joined together and the energy terms on the connecting 

part is further optimized using QM PES profile as the target data. 

 

Figure 7.1 Flowchart for CGenFF parametrization and chemical structure of 2-aminothiazole.  

7.2 Parameter Searching Strategy 

Searching for the optimal combination of force field parameters is a heavy task due to the 

dimensionality of the parameters and simple exhaustive method is computationally unaffordable. 

Accordingly, an adaptive grid searching strategy is adopted for the automation of parameter 

searching. As demonstrated in Figure 7.2, instead of generating a tightly distributed point grid, a 

diffused grid was firstly generated with three points separated by large point span on each 

direction. The optimal parameter combination was chosen as the reference point and a new grid 

with smaller span was generated and tested. Finally, this iterative process converges when the 

difference between the MM results and QM data is smaller than criteria threshold. Moreover, the 



 

68 
 

grid points were generated using the First Depth Search (FDS) algorithm to avoid revisiting 

duplicated parameter combinations. This strategy is also important as in most cases, the variable 

space consists of more than eight dimensions, leaving exhaustive generation of all possible 

parameter set extremely time-consuming. 

 

 

Figure 7.2 Demonstration of adaptive grid search in a 2D variable space. 

7.3 Parametrization of 2-Aminothiazole: Atomic Partial Charges 

As shown in Figure 7.3, seven water interactions were firstly constructed. the optimal 

interaction energies and distances are calculated using rigid PES scans on the intermolecular 

distance between H2O and the target atom. The deviation between the water interaction energies 

at QM (HF/6-31G*//MP2/6-31G*) level of theory and MM level of theory are all larger than 1 

kcal/mol, as presented in Table 7.1. After the optimization of atomic charges, the maximum 

deviation in the water interaction energies is reduced to less than 0.07 kcal/mol. Notably, water 

interaction on H9 is not optimized independently as the compromise for keeping H9 and H10 

indistinguishable.  
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Figure 7.3 Water interactions considered for 2-Aminothiazole. 

Table 7.1 Deviation to QM water interaction energies of initial and optimized atomic charges. 

No. Interaction / Atom Initial charge ΔE (kcal mol-1) Fitted charge ΔE (kcal mol-1) 

1 / S5 -0.053 -3.201 0.470 0.003 
2 / C4 -0.185 -3.344 -0.659 -0.027 
3 / C3 0.209 -3.319 -0.146 -0.068 
4 / N2 -0.620 -2.568 -0.440 0.005 
5 / H10 0.355 -1.354 0.164 0.010 
6 / H9 0.355 -1.778 0.164 -0.926 
7 / N6 -0.760 -2.593 -0.479 0.032 
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7.4 Parametrization of 2-Aminothiazole: Equilibrium Terms 

The equilibrium terms are fitted to MP2/6-31G* minimized structures. The initial and fitted 

parameters are shown in Table 7.2. The comparison between the QM and MM minimized 

geometry are presented in the following sections. 

Table 7.2 Initial and optimized equilibrium bond length and bond angles. 

Equilibrium Bond Length or Angles Initial Fitted 

C1-N6 1.4000 Å 1.3779 Å 
N2-C1-N6 123.00° 127.55° 
S5-C1-N6 119.80° 116.60° 
C1-N6-H9 115.00° 117.55° 

 

7.5 Parametrization of 2-Aminothiazole: Force Constants 

The force constants are optimized to reproduce the vibrational frequencies at MP2/6-31G*, 

the optimized force constants are shown in Table 7.3. 

Table 7.3 Initial and optimized force constants, units vary with entries. 

Force Constants Initial Fitted 

C1-N6 330.00 370.00 
N2-C1-N6 45.80 45.00 
S5-C1-N6 25.00 58.00 

C1-N6-H9 45.00 68.00 
C3-N2-C1-N6 3.0000 7.0000 
N2-C1-N6-H9 0.3200 2.5000 
S5-C1-N6-H9 0.3200 2.3000 
C4-S5-C1-N6 4.0000 5.0000 
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The comparison between the vibrational frequencies calculated at QM level of theory and 

MM level of theory are presented in Figure 7.4. The underfitting of the frequency in the red dashed 

box is contributed (>95%) by the scissoring motion of the NH2 group. Such a vibrational mode 

could be expressed by a linear combination of three bond angles, shown as α, β and γ in Figure 

7.4. The γ angle is a well-parametrized bond bending term in the original CGenFF and was adopted 

in the current fragment due to the transferability of force field parameters. Modifying this bending 

term violates the parametrization protocol as this bending term is shared by a number of well-

parametrized fragments in the CGenFF. Thus, optimizing this frequency mode demands 

introducing new atom types and is beyond necessity. Regardless, this discrepancy between QM 

and MM vibrational frequency is left aside with no further optimization. 

 
Figure 7.4 CGenFF parametrization for vibrational frequencies, the frequency marked in the red 
dashed box produced by the scissoring of the amino group. 
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7.6 Comparison of QM and MM optimized geometries 

The performance of the MM force field parameters on 2-aminothiazole are benchmarked 

on the basis of minimized structures, as shown in Figure 7.5. It can be seen that, the unfitted 

CGenFF parameters produce a symmetrical conformation, whereas the MP2/6-31G* geometries 

give an asymmetrical conformation with the conjugation C-C double bond and the lone pairs on 

the amino group. The minimal conformation is improved after parametrizing for equilibrium 

structures, but the torsional angle is not optimal. Upon fitted for vibrational frequencies, the MM 

minimization could reasonably reproduce the QM minimized conformation. Although 

compromise was made during the parameter searching, the performance of the CGenFF parameters 

for 2-aminothiazole is satisfying.  

 

Figure 7.5 Comparison of QM (in orange) and MM (in multi-color) minimized geometry: (a) 
with unfitted force field parameters; (b) with force field parameters fitted for equilibrium 
geometry; (c) with force field parameters fitted for vibrational frequencies.  
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8. CONCLUSIONS 

In this thesis, the molecular mechanisms of antibiotic resistance driven by ASβLs are 

unraveled with QM/MM MEP calculations and explainable ML models.  

The detailed molecular mechanism of the acylation reaction between TEM-1, a 

penicillinase, and benzylpenicillin is firstly revisited. I proposed two types of perturbation-based 

importance attribution method for understanding the energy contributions per reaction step. Both 

methods provide consistent measures of the energy contributions and demonstrated that the 

collapsing of the TEM-1/Benzylpenicillin tetrahedral intermediates is the rate limiting reaction 

step of the overall acylation. Along this line, the discrepancies between two pioneering studies on 

the same system is also bridged.  

The detailed molecular mechanism of the acylation reaction between Toho-1, a 

cephalosporinase, and AMP/CEX is then investigated. I proposed the BCIG approach, an XAI 

method, to explain the machine-learned QM/MM MEPs. The DL model of learning QM/MM 

MEPs adopts the DaWNN architecture and achieved high accuracy and scalability. The BCIG 

approach could attribute variable contributions of the overall reaction profile to individual reaction 

steps. The BCIG metric are validated on additional QM/MM calculations and the intuitive 

understanding of the reaction. Moreover, based on this study combining QM/MM and XAI, I 

proposed that the acylation of Toho-1/CEX does not happen using Glu166 as the only general 

base, rather, it has to be mediated by Lys73/Glu166 as the concerted base.  



 

74 
 

The detailed molecular mechanism of the deacylation activity of GES-5, a carbapenemases, 

and IPM is also studied. I built graph representations of the acyl-enzyme active site of GES-5/IPM, 

and applied GL model to predict the deacylation barrier heights calculated from the QM/MM 

MEPs. The GL model adopts a edge-conditioned learning scheme and effectively utilizes atomic 

distances as the edge information to reach a prediction error of < 3 kcal mol-1. I proposed that the 

conformational factors that regulate the deacylation activity could be probed from a perturbative 

edge-removing scheme on the GL model. Accordingly, I concluded that the tautomerization states 

on the IPM pyrroline ring and the orientations of the IPM 6α-hydroxyethyl side group are two 

major factors that impacts and deacylation activity in IPM hydrolysis by GES-5.  

Further discussions in this thesis focused on developing classical molecular force fields for 

β-lactam molecules. The parametrization of a common β-lactam fragment, 2-aminothiazole, is 

detailed. The parametrized force field files for the 2-amonithiazole and cephalothin were appended 

as appendix in the hope that it would be helpful to future researches. However, I note that those 

force field files are not extensively tested nor peer-reviewed.  

In summary, my Ph.D. efforts are mostly devoted to understand molecular mechanisms 

underlying ASβL-driven β-lactam resistance combining QM/MM and XAI. Using three ASβL 

enzymes with distinct functions, I have shown that these ML/DL/GL models can be explained with 

chemical relevance. In other words, the ML/DL/GL models trained on reasonable chemical 

datasets could also encode essential hidden mechanistic information, which could be unraveled 

using XAI methods for mechanistic insights. To conclude, I proved that ML and model explanation 

methods could be effectively introduced for reliable QM/MM post-analysis, which extracts 

chemical insights of great importance and details for enzyme mechanism studies.  
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Natural Internal Coordinates for 2-aminothiazole with explanations 

! Natural Internal Coordinates for 2-aminothiazole with explanations 
    1    1    2    0    0       !  1    BOND    C1=N2 
    1    2    3    0    0       !  2    BOND    N2-C3 
    1    3    4    0    0       !  3    BOND    C3=C4 
    1    4    5    0    0       !  4    BOND    C4-S5 
    1    1    5    0    0       !  5    BOND    C1-S5 
    1    1    6    0    0       !  6    BOND    C1-N6 
    1    3    7    0    0       !  7    BOND    C3-H7 
    1    4    8    0    0       !  8    BOND    C4-H8 
    1    6    9    0    0       !  9    BOND    N6-H9 
    1    6   10    0    0       ! 10    BOND    N6-H10 
    2    5    1    2    0       ! 11    ANGL    S5-C1=N2           5-member ring  a1 
    2    1    2    3    0       ! 12    ANGL    C1=N2-C3                          a2 
    2    2    3    4    0       ! 13    ANGL    N2-C3=C4                          a3 
    2    3    4    5    0       ! 14    ANGL    C3=C4-S5                          a4 
    2    4    5    1    0       ! 15    ANGL    C4-S5-C1                          a5 
    4    5    1    2    3       ! 16    DIHE    S5-C1=N2-C3                 t1 
    4    1    2    3    4       ! 17    DIHE    C1=N2-C3=C4                 t2 
    4    2    3    4    5       ! 18    DIHE    N2-C3=C4-S5                 t3 
    4    3    4    5    1       ! 19    DIHE    C3=C4-S5-C1                 t4 
    4    4    5    1    2       ! 20    DIHE    C4-S5-C1=N2                 t5 
    2    2    1    6    0       ! 21    ANGL    N2=C1-N6       C1    b1 
    2    5    1    6    0       ! 22    ANGL    S5-C1-N6             b2  
    3    6    2    5    1       ! 23    WWAG    N6-C1(=N2)-S5  N6  wagging on N2-C1-S5 plane 
    2    2    3    7    0       ! 24    ANGL    N2-C3-H7       C3    b1 
    2    4    3    7    0       ! 25    ANGL    C4=C3-H7             b2 
    3    7    4    2    3       ! 26    WWAG    H7-C3(-N2)-C4  H7  wagging on N2-C3=C4 plane 
    2    3    4    8    0       ! 27    ANGL    C3=C4-H8       C4    b1 
    2    5    4    8    0       ! 28    ANGL    S5-C4-H8             b2 
    3    8    5    3    4       ! 29    WWAG    H8-C4(-S5)=C3  H8  wagging on S5-C4=C3 plane 
    2    9    6   10    0       ! 30    ANGL    H9-N6-H10      N6    a 
    2    1    6    9    0       ! 31    ANGL    C1-N6-H9             b1 
    2    1    6   10    0       ! 32    ANGL    C1-N6-H10            b2 
    3    1    9   10    6       ! 33    WWAG    C1-N6(-H9)-H19 C1  wagging on NH2 plane 
    4    2    1    6    9       ! 34    DIHE    N2-C1-N6-H9        dihedral angles of NH2 rolling 
! U-matrix that transforms internal coordinates into NICs: 
  1  1  1. 
  2  2  1. 
  3  3  1. 
  4  4  1. 
  5  5  1. 
  6  6  1. 
  7  7  1. 
  8  8  1. 
  9  9  1. 
 10 10  1. 
 11 11  1.    11 12 -0.81  11 13  0.31  11 14  0.31  11 15 -0.81 
 12 12 -1.12  12 13  1.81  12 14 -1.81  12 15  1.12 
 13 16  0.31  13 17 -0.81  13 18  1.    13 19 -0.81  13 20  0.31 
 14 16 -1.81  14 17 -1.12  14 19  1.12  14 20  1.81 
 15 21  1.    15 22 -1. 
 16 23  1. 
 17 24  1.    17 25 -1. 
 18 26  1. 
 19 27  1.    19 28 -1. 
 20 29  1. 
 21 30  2.    21 31 -1.    21 32 -1. 
 22 31  1.    22 32 -1. 
 23 33  1. 
 24 34  1. 
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Force Field for 2-Aminothiazole Compatible with CHARMM36/CGenFF 

* Toppar stream file for 2-aminothiazole 
* Zilin Song, 13 March 2019 
* 
 
read rtf card append 
* Topologies for 2-aminothiazole 
* Zilin Song, 13 March 2019 
* 
 
36 1 
 
! Note: This FF has not been extensively tested nor peer-reviewed. 
 
RESI frg5           0.000       
GROUP                 ! FINAL       R1      INIT     PENALTY 
ATOM C1     CG2R53      0.625  !   0.621   0.302      78.615 
ATOM N2     NG2R50     -0.440  !  -0.440  -0.620      14.505 
ATOM C3     CG2R51     -0.150  !  -0.146   0.209       2.500 
ATOM C4     CG2R51     -0.655  !  -0.659  -0.185       2.500 
ATOM S5     SG2R50      0.470  !   0.470  -0.053      40.269 
ATOM N6     NG321      -0.483  !  -0.479  -0.670      72.686 
ATOM H7     HGR52       0.130  !   0.130   0.130       0.000 
ATOM H8     HGR52       0.175  !   0.175   0.177       0.000 
ATOM H9     HGPAM2      0.164  !   0.164   0.355       9.083 
ATOM H10    HGPAM2      0.164  !   0.164   0.355       9.083 
 
BOND   C1   S5   C1   N6   C1   N2   N2   C3 
BOND   C3   C4   C3   H7   C4   S5   C4   H8 
BOND   N6   H9   N6   H10 
IMPR   C1   N2   N6   S5 
 
END 
 
read param card flex append 
* Parameters for 2-aminothiazole 
* Zilin Song, 13 March 2019 
* 
 
BONDS 
CG2R53 NG321  370.00    1.3730 ! 330.00   55 
 
ANGLES 
NG2R50 CG2R53 NG321      45.00    127.55 ! 45.80      39 
NG321  CG2R53 SG2R50     58.00    116.60 ! 25.00      70 
CG2R53 NG321  HGPAM2     68.00    117.55 ! 45.00      19 
 
DIHEDRALS 
NG321 CG2R53 NG2R50 CG2R51 7.0000 2   180.00  ! 3.0000     70 
NG2R50 CG2R53 NG321 HGPAM2 2.5000 2   180.00  ! 0.3200     140.5 
SG2R50 CG2R53 NG321 HGPAM2 2.3000 2   180.00  ! 0.3200     224.5 
NG321 CG2R53 SG2R50 CG2R51 5.0000 2   180.00  ! 4.0000     70 
 
IMPROPERS 
CG2R53 NG2R50 NG321 SG2R50 65.000 0     0.00  ! 45.00      209 
 
END 
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Force Field for Cephalothin Compatible with CHARMM36/CGenFF 

* Force field for cephalothin molecule. 
* For use with CGenFF v4.0 
* Zilin Song, 21 May 2019 
* 
 
READ rtf CARD APPEnd 
* Topologies based on CGenFF v4.0 
* Zilin Song, 21 May 2019 
* 
36 1 
 
! Note: This FF has not been extensively tested nor peer-reviewed. 
 
RESI INN          -1.000      ! atom_no 
GROUP                        ! frg1 
ATOM C1     CG2R51   -0.045   !   1 
ATOM C2     CG2R51   -0.210   !   2 
ATOM C3     CG2R51   -0.225   !   3 
ATOM C4     CG2R51   -0.085   !   4 
ATOM S5     SG2R50   -0.015   !   5 
ATOM H2     HGR51     0.160   !   6 
ATOM H3     HGR51     0.170   !   7 
ATOM H4     HGR52     0.180   !   8                 H4         H3 
GROUP                        ! frg2                  \        / 
ATOM C6     CG321    -0.110   !   9                   C4 == C3 
ATOM C7     CG2O1     0.550   !  10                   |       \ 
ATOM N8     NG2S1    -0.535   !  11                   |       C2 -- H2 
ATOM O7     OG2D1    -0.545   !  12                   |      // 
ATOM H6A    HGA2      0.090   !  13                   S5 -- C1    H6A 
ATOM H6B    HGA2      0.090   !  14                           \  / 
ATOM H8     HGP1      0.310   !  15                            C6 -- H6B 
GROUP                        ! frg3                           / 
ATOM C9     CG3C41    0.300   !  16                   O7 == C7 
ATOM C10    CG2R53    0.290   !  17                           \ 
ATOM N11    NG2R43   -0.330   !  18               O10          N8 -- H8 
ATOM C12    CG3RC1    0.070   !  19                 \\        / 
ATOM S13    SG311     0.065   !  20                  C10 -- C9 -- H9 
ATOM C14    CG321    -0.065   !  21                    |      | 
ATOM C15    CG2DC1   -0.110   !  22(-)   O21A        N11 -- C12 -- H12 
ATOM C16    CG2D1O   -0.160   !  23          \        /         \ 
ATOM H9     HGA1      0.090   !  24          C21 -- C16         S13 
ATOM O10    OG2D1    -0.470   !  25         //       \\         / 
ATOM H12    HGA1      0.090   !  26       O21B       C15 -- C14 -- H14A 
ATOM H14A   HGA2      0.090   !  27                        /    \ 
ATOM H14B   HGA2      0.090   !  28             H17A -- C17      H14B 
GROUP                        ! frg4                    /   \ 
ATOM C17    CG321     0.135   !  29                H17B     O18 
ATOM O18    OG302    -0.490   !  30                        / 
ATOM C19    CG2O2     0.890   !  31                O19 == C19 
ATOM C20    CG331    -0.310   !  32                        \ 
ATOM H17A   HGA2      0.090   !  33                         C20 -- H20A 
ATOM H17B   HGA2      0.090   !  34                        /   \ 
ATOM O19    OG2D1    -0.615   !  35                    H20B     H20C 
ATOM H20A   HGA3      0.090   !  36 
ATOM H20B   HGA3      0.090   !  37 
ATOM H20C   HGA3      0.090   !  38 
GROUP                        ! -COO(-) 
ATOM C21    CG2O3     0.730   !  39 
ATOM O21A   OG2D2    -0.760   !  40 
ATOM O21B   OG2D2    -0.760   !  41 
 
BOND   C1   S5   C1   C6   C2   H2   C2   C3 
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BOND   C3   H3   C4   H4   C4   S5   C6   H6A 
BOND   C6   H6B  C6   C7   C7   N8   N8   H8 
BOND   N8   C9   C9   H9   C9   C10  C9   C12 
BOND   C10  N11  N11  C12  N11  C16  C12  H12 
BOND   S13  C14  C12  S13  C14  C15  C14  H14A 
BOND   C15  C17  C14  H14B C16  C21  C17  H17A  
BOND   C17  H17B C17  O18  O18  C19  C19  C20 
BOND   C19  O19  C20  H20A C20  H20B C20  H20C 
BOND   C21  O21A C21  O21B 
DOUBLE C1   C2 
DOUBLE C3   C4 
DOUBLE C7   O7 
DOUBLE C10  O10 
DOUBLE C15  C16 
IMPR   C7     C6     N8     O7 
IMPR   C10    C9     N11    O10 
IMPR   C16    C15    C21    N11 
IMPR   C19    C20    O18    O19 
IMPR   C21    O21A   O21B   C16 
ACCEPTOR O10 C10 
ACCEPTOR O21A C21 
ACCEPTOR O21B C21 
ACCEPTOR O19 C19 
ACCEPTOR O7  C7 
! ICs created based on CHARMM optimized structure. 
IC  C6    C1    C2    C3     1.5000  130.00  180.00  107.20   1.3600 
IC  C1    C2    C3    C4     1.3600  107.20    0.00  107.20   1.3600 
IC  C2    C1    C6    C7     1.3600  130.00 -120.00  112.00   1.4900 
IC  C1    C6    C7    N8     1.5000  112.00  180.00  116.50   1.3450 
IC  C6    C7    N8    C9     1.4900  116.50  180.00  123.50   1.4550 
IC  C7    N8    C9    C12    1.3450  123.50  120.00  101.00   1.5400 
IC  N8    C9    C10   N11    1.4550  101.00 -120.00  104.50   1.3800 
IC  C9    C12   S13   C14    1.5400  110.20  120.00   98.00   1.8180 
IC  C12   S13   C14   C15    1.7930   98.00    0.00  111.82   1.5020 
IC  C14   C15   C17   O18    1.5020  122.00  -60.00  109.00   1.4400 
IC  C15   C17   O18   C19    1.5020  109.00  180.00  109.60   1.3340 
IC  C17   O18   C19   O19    1.4400  109.60    0.00  125.90   1.2200 
IC  O18   C19   C20   H20A   1.3340  109.00  180.00  109.50   1.1110 
IC  N11   C16   C21   O21A   1.3860  115.50  180.00  111.00   1.2600 
IC  S5    C6    *C1   C2     1.7300  125.00  180.00  130.00   1.3600 
IC  C3    C1    *C2   H2     1.3600  107.20  180.00  126.40   1.0800 
IC  C4    C2    *C3   H3     1.3600  107.20  180.00  126.40   1.0800 
IC  S5    C3    *C4   H4     1.7300  109.00  180.00  130.00   1.0830 
IC  C7    C1    *C6   H6A    1.4900  112.00  120.00  109.50   1.1110 
IC  H6A   C1    *C6   H6B    1.1110  109.50 -120.00  109.50   1.1110 
IC  N8    C6    *C7   O7     1.3450  116.50  180.00  121.00   1.2300 
IC  C9    C7    *N8   H8     1.4550  123.50  180.00  123.00   0.9970 
IC  C12   N8    *C9   C10    1.5400  101.00  120.00  101.00   1.5600 
IC  C10   N8    *C9   H9     1.5600  101.00 -120.00  102.00   1.0930 
IC  N11   C9    *C10  O10    1.3800  104.50  180.00  135.70   1.2350 
IC  N11   C9    *C12  H12    1.4500  104.50 -120.00  110.20   1.1110 
IC  N11   C9    *C12  S13    1.4500  104.50 -120.00  110.20   1.7930 
IC  C15   S13   *C14  H14A   1.5020  111.82  120.00  111.30   1.1110 
IC  C15   S13   *C14  H14B   1.5020  111.82 -120.00  111.30   1.1110 
IC  C12   C10   *N11  C16    1.4500  111.50  180.00  113.00   1.3860 
IC  C16   C14   *C15  C17    1.3400  126.50  180.00  122.00   1.5020 
IC  O18   C15   *C17  H17A   1.4400  109.00  120.00  111.50   1.1110 
IC  H17A  C15   *C17  H17B   1.1110  111.50 -120.00  111.50   1.1110 
IC  O19   O18   *C19  C20    1.2200  125.90  180.00  109.00   1.5220 
IC  H20A  C19   *C20  H20B   1.1110  109.50  120.00  109.50   1.1110 
IC  H20A  C19   *C20  H20C   1.1110  109.50 -120.00  109.50   1.1110 
IC  C15   N11   *C16  C21    1.3400  111.00  180.00  115.50   1.4890 
IC  O21A  C16   *C21  O21B   1.2600  111.00  180.00  111.00   1.2600 
END 
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READ param CARD FLEX APPEnd 
* Parameters parameterized basing on CGenFF v4.0 
* Zilin Song, 21 May 2019 
* 
 
BONDS 
CG3C41 NG2S1   320.00     1.4550 
CG2D1O CG2O3   440.00     1.4890 
CG2D1O NG2R43  475.00     1.3860 
CG3C41 CG3RC1  270.00     1.5400 
CG3C41 HGA1    348.00     1.0930 
CG3RC1 NG2R43  245.00     1.4500 
CG3RC1 SG311   162.00     1.7930 
 
ANGLES 
CG2R53 CG3C41 NG2S1    95.00    101.00 
CG3RC1 CG3C41 NG2S1    95.00    101.00 
NG2S1  CG3C41 HGA1     72.00    102.00 
CG2O1  NG2S1  CG3C41   50.00    123.50 
CG3C41 NG2S1  HGP1     35.00    119.50 
CG321  CG2DC1 CG321    48.00    122.00 
CG2DC1 CG321  OG302    20.00    109.00 
CG2DC1 CG2D1O CG2O3    48.00    132.50 
CG2DC1 CG2D1O NG2R43   60.00    111.00 
CG2O3  CG2D1O NG2R43   95.00    115.50 
CG2D1O CG2O3  OG2D2    40.00    111.00   50.00   2.35300 
CG321  CG2R51 SG2R50   25.00    125.00 
CG2O1  CG321  CG2R51   51.80    112.00 
CG321  SG311  CG3RC1   63.00     98.00 
CG3C41 CG3RC1 NG2R43   90.00    104.50 
CG3C41 CG3RC1 SG311    95.00    110.20 
CG3C41 CG3RC1 HGA1     46.00    110.20 
NG2R43 CG3RC1 SG311    30.00    113.80 
NG2R43 CG3RC1 HGA1     51.00    107.00 
SG311  CG3RC1 HGA1     69.00    105.00 
CG2D1O NG2R43 CG2R53   54.00    113.00 
CG2D1O NG2R43 CG3RC1  104.00    119.00 
CG2R53 NG2R43 CG3RC1   85.00    111.50 
CG3RC1 CG3C41 HGA1     46.00    110.50 
CG2DC1 CG321  SG311    65.00    111.82 
CG2R53 CG3C41 CG3RC1   90.00    106.00 
CG2R53 CG3C41 HGA1     46.00    112.30 
 
DIHEDRALS 
CG321  CG2R51 SG2R50 CG2R51     4.0000  2   180.00 
CG2R51 CG2R51 CG321  CG2O1      0.3000  1     0.00 
CG2R51 CG2R51 CG321  CG2O1      1.2000  2   180.00 
SG2R50 CG2R51 CG321  CG2O1      1.5000  3   180.00 
SG2R50 CG2R51 CG321  HGA2       1.2000  3     0.00 
NG2S1  CG2O1  CG321  CG2R51     3.2000  1     0.00 
OG2D1  CG2O1  CG321  CG2R51     1.8000  1   180.00 
CG321  CG2O1  NG2S1  CG3C41     1.6000  1     0.00 
CG321  CG2O1  NG2S1  CG3C41     2.5000  2   180.00 
OG2D1  CG2O1  NG2S1  CG3C41     2.5000  2   180.00 
CG2R53 CG3C41 NG2S1  CG2O1      4.0000  3   180.00 
NG2R43 CG2R53 CG3C41 NG2S1      3.0000  3     0.00 
OG2D1  CG2R53 CG3C41 NG2S1      4.0000  3     0.00 
CG3RC1 CG3C41 NG2S1  CG2O1      0.5000  3   180.00 
NG2S1  CG3C41 CG3RC1 NG2R43     0.5000  3     0.00 
NG2S1  CG3C41 CG3RC1 SG311      3.4000  3     0.00 
NG2S1  CG3C41 CG3RC1 HGA1       4.0000  3   180.00 
HGA1   CG3C41 NG2S1  CG2O1      1.0000  3     0.00 
CG2R53 CG3C41 NG2S1  HGP1       4.0000  1     0.00 
CG3RC1 CG3C41 NG2S1  HGP1       3.3000  1   180.00 
HGA1   CG3C41 NG2S1  HGP1       0.0000  3     0.00 
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CG2O3  CG2D1O CG2DC1 CG321      0.5600  1   180.00 
CG2O3  CG2D1O CG2DC1 CG321      7.0000  2   180.00 
NG2R43 CG2D1O CG2DC1 CG321      2.5000  2   180.00 
CG2DC1 CG2D1O CG2O3  OG2D2      1.3000  2   180.00 
NG2R43 CG2D1O CG2O3  OG2D2      0.3000  2   180.00 
CG2O3  CG2D1O NG2R43 CG2R53     1.6000  1     0.00 
CG2O3  CG2D1O NG2R43 CG2R53     2.5000  2   180.00 
CG2O3  CG2D1O NG2R43 CG3RC1     1.6000  1     0.00 
CG2O3  CG2D1O NG2R43 CG3RC1     4.0000  2   180.00 
CG2D1O CG2DC1 CG321  OG302      0.9000  3   180.00 
CG321  CG2DC1 CG321  OG302      0.1000  3     0.00 
CG321  CG2DC1 CG321  SG311      5.4000  3   180.00 
CG2DC1 CG321  OG302  CG2O2      0.5000  3   180.00 
CG321  CG2DC1 CG321  HGA2       0.1900  3     0.00 
NG2R43 CG2R53 CG3C41 CG3RC1     3.0000  3     0.00 
CG2D1O CG2DC1 CG321  SG311      0.5000  2     0.00 
CG2D1O CG2DC1 CG321  SG311      0.3000  3     0.00 
CG2DC1 CG2D1O NG2R43 CG2R53     2.0000  1     0.00 
CG2DC1 CG2D1O NG2R43 CG2R53     3.7000  2   180.00 
CG2DC1 CG2D1O NG2R43 CG3RC1     1.2000  1   180.00 
CG2DC1 CG2D1O NG2R43 CG3RC1     6.5000  2   180.00 
NG2R43 CG2R53 CG3C41 HGA1       0.5700  3     0.00 
OG2D1  CG2R53 CG3C41 CG3RC1     0.5700  3     0.00 
OG2D1  CG2R53 CG3C41 HGA1       0.5700  3     0.00 
CG3C41 CG2R53 NG2R43 CG2D1O     1.5000  2   180.00 
CG3C41 CG2R53 NG2R43 CG3RC1     1.5000  2   180.00 
OG2D1  CG2R53 NG2R43 CG2D1O     1.8500  2     0.00 
OG2D1  CG2R53 NG2R43 CG3RC1     2.5000  2   180.00 
CG2DC1 CG321  SG311  CG3RC1     2.5000  1   180.00 
CG2DC1 CG321  SG311  CG3RC1     1.5000  3   180.00 
HGA2   CG321  SG311  CG3RC1     0.0000  3     0.00 
CG2R53 CG3C41 CG3RC1 NG2R43     3.0000  3     0.00 
CG2R53 CG3C41 CG3RC1 SG311      1.6500  3   180.00 
CG2R53 CG3C41 CG3RC1 HGA1       0.5700  3     0.00 
HGA1   CG3C41 CG3RC1 NG2R43     3.0000  3     0.00 
HGA1   CG3C41 CG3RC1 SG311      1.6500  3     0.00 
HGA1   CG3C41 CG3RC1 HGA1       0.5700  3     0.00 
CG3C41 CG3RC1 NG2R43 CG2D1O     3.0000  3     0.00 
CG3C41 CG3RC1 NG2R43 CG2R53     3.0000  3     0.00 
SG311  CG3RC1 NG2R43 CG2D1O     3.7000  3     0.00 
SG311  CG3RC1 NG2R43 CG2R53     0.8500  3     0.00 
HGA1   CG3RC1 NG2R43 CG2D1O     2.0000  3     0.00 
HGA1   CG3RC1 NG2R43 CG2R53     0.5700  3     0.00 
CG3C41 CG3RC1 SG311  CG321      1.5000  1   180.00 
CG3C41 CG3RC1 SG311  CG321      1.0000  3   180.00 
NG2R43 CG3RC1 SG311  CG321      5.5000  1     0.00 
NG2R43 CG3RC1 SG311  CG321      1.0000  3     0.00 
HGA1   CG3RC1 SG311  CG321      0.0000  3     0.00 
 
IMPROPERS 
CG2D1O CG2DC1 CG2O3  NG2R43    72.0000  0     0.00 
CG2O3  OG2D2  OG2D2  CG2D1O    96.0000  0     0.00 
CG2O2  CG331  OG302  OG2D1     62.0000  0     0.00 
 
END 
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