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ABSTRACT

We investigate efficient ways for the incorporation of liquid democ-
racy into election settings in which voters submit cumulative ballots,
i.e., when each voter is assigned a virtual coin that she can then
distribute as she wishes among the available election options. In
particular, aiming at improving the quality of decision making, we
are interested in fine-grained liquid democracy, meaning that voters
are able to designate a partial coin to a set of election options and
delegate the decision on how to further split this partial coin among
those election options to another voter of her choice.

The fact that we wish such delegations to be transitive—combined
with our aim at fully respecting such delegations—means that incon-
sistencies and cycles can occur, thus we set to find computationally-
efficient ways of resolving voters’ delegations. To this end we de-
velop a theory based on fixed-point theorems and mathematical
programming techniques and we show that for various variants of
definitions regarding how to resolve such transitive delegations,
there is always a feasible resolution; and we identify under which
conditions such solutions are efficiently computable. For example,
we provide a parameterized algorithm whose running time depends
on a distance from triviality of a given instance.
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1 INTRODUCTION

Delegation-based methods attract attention regarding their use in
certain voting scenarios. In particular, in elections that use proxy
voting [24] each voter can choose whether to vote directly by cast-
ing her vote or to delegate her vote to a delegate of her choice (who
votes on her behalf). In liquid democracy [4] (LD, in short), such
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delegations are transitive. LD has attracted attention and popular-
ity partially due to the LiquidFeedback tool for deliberation and
voting [2] that allows for such transitive vote delegations and is in
use by the German Pirate Party as well as by other political parties
around the globe.

In a way, LD is a middle-ground between direct democracy
and representative democracy, as the voters who actively vote—
sometimes referred to as gurus [31]—act as ad-hoc representatives.
To the voters, LD offers more expressiveness and flexibility, and
several generalizations of LD have been proposed that push these
aspects even further: e.g., Golz et al. [18] suggested to let vot-
ers delegate their vote to several delegates; Colley et al. [14] sug-
gested to use general logical directives when specifying delegates;
Brill et al. [7] considered voters that delegate to a ranked list of
delegates; and Christoff and Grossi [12] consider per-issue binary
delegations.

1.1 Fine-Grained Liquid Democracy (FGLD)

We follow a specific enhancement of LD, namely fine-grained liquid
democracy (FGLD).! Originally suggested by Brill and Talmon [8],
the general idea is to allow voters to delegate parts of their ballots
to different delegates, instead of delegating their ballots as a whole.
Specifically, Brill and Talmon [8] studied FGLD for ordinal elections,
in which each ballot is a linear order over a set of candidates (e.g.,
an ordinal election over the set of candidates C = {a,b,c} may
contain a voter voting a > ¢ > b, meaning that the voter ranks
a as her best option, ¢ as her second option, and b as her least-
preferred option). In this context, instead of allowing each voter
to either specify a linear order (i.e., vote directly) or delegate their
vote to a delegate of their choice, Brill and Talmon [8] suggested
the following: for each pair of candidates a, b, each voter is able to
either specify whether she prefers a to b or vice versa, or delegate
that decision to another voter of her choice. While indeed offering
greater voter flexibility, this ordinal FGLD scheme may result in
non-consistent ballots; e.g., consider a voter deciding a > b but
delegating the decision on {b, c} to a voter who eventually decides
b > ¢ and also delegating the decision on {a,c} to a voter who
eventually decides ¢ > a. The resulting ballot, ie, a > b,b >
¢,c > a, would be intransitive. Brill and Talmon [8] suggested
several algorithmic techniques to deal with such possible violations

1Our term “fine-grained” is not related to “fine-grained complexity” which is a part
of the algorithms and computational complexity fields [27, 30] that, e.g., shows time
lower-bounds for problems solvable in polynomial time via fine-grained reductions.
Fine-grained complexity is also present in the computational social choice field [29].


https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.5555%2F3635637.3662958&domain=pdf&date_stamp=2024-05-06

Full Research Paper

of ballot transitivity. Following [8], Jain et al. [20] studied FGLD
for knapsack ballots, in which the ballot of each voter is a subset
Q of candidates from a given set of candidates, each candidate
has some cost, and there is a restriction that the total cost of the
candidates in Q shall respect some known upper bound (knapsack
ballots are useful for participatory budgeting [10, 17]). Again, the
main challenge of allowing such fine-grained delegations is that
ballots may end up being inconsistent—in the case of FGLD for
knapsack ballots, after following these delegations ballots may end
up violating the total cost upper bound.

At a high level, the basic issue that has to be resolved when
considering LD and its generalizations—e.g., FGLD—is that, on one
hand, we wish to resolve voters’ delegations transitively and in
a way that is as close as possible to voter intentions, but, on the
other hand, we have to satisfy certain structural constraints on the
admissible ballots that we arrive to: e.g., in Ordinal FGLD the set
of admissible ballots are those that are transitive; and in Knapsack
FGLD the set of admissible ballots are those that respect the global
budget limit. These structural constraints mean that it is not always
possible to follow voters’ delegations such that all voter ballots
correspond exactly to voter intentions (e.g., in Ordinal FGLD one
way to satisfy the constraints is by not considering some delegations
at all, thus not fully respecting all voters’ delegations). Note that
this is also the focus of work on smart voting [14], which is a further
generalization of LD to arbitrary voter directives.

Below we describe what we mean by FGLD for cumulative ballots
and, in particular, how we understand voter intentions as described
by their partial ballots and their delegations.

1.2 FGLD for Cumulative Ballots (CBs)

In this paper we study FGLD for cumulative ballots (CBs). A cumu-
lative ballot with respect to a set C of m candidates is a division of a
unit support among the m candidates (visually, a cumulative ballot
corresponds to a division of a virtual divisible coin among the can-
didates): e.g., a cumulative ballot with respect to a set C = {a, b, c}
may be represented by [0.4, 0.3, 0.3], meaning that the voter gives
support 0.4 to a, support 0.3 to b, and support 0.3 to c. CBs are
used for different social choice settings [13], such as multi-winner
elections [23], participatory budgeting [28] and portioning [16].
From our viewpoint, CBs are especially fitting to FGLD as they are
inherently quite expressive. Furthermore, note that CBs generalize
approval ballots and, to a lesser extent, ordinal ballots.

ExaMmpLE 1. Consider a participatory budgeting instance with the
following set of projects: p1 is a proposal to renovate a public university
for $1M; py is a proposal to build a school for $2M; p3 is a proposal
to refurbish a birthing center for $3M; and p4 is a proposal to open
a new hospital for $4M. With a standard cumulative ballot, a voter
may specify, say, a support of 0.1 to p1, 0.2 to pz, 0.3 to p3, and
0.4 to ps. With a fine-grained liquid democracy cumulative ballot,
however, a voter may specify, say, a support of 0.3 to the set {p1, p2}
(of education-related projects) and the remainder support of 0.7 to
the set {p3, pa} (of health-related projects), and delegate the decision
regarding the specific division of the 0.3 support between p1 and po to
some voter of her choice, as well as the decision regarding the specific
division of the 0.7 support between p3 and py4 to (possibly a different)
voter of her choice.

1030

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Generally speaking, we wish to allow voters to delegate parts of
their cumulative ballots to other voters of their choice, so that they
could concentrate on the “high-level” decisions (such as the division
of the unit support between the education-related projects and the
health-related projects in Example 1) but delegate the “low-level”
decisions further. But how should such fine-grained delegations be
understood? Consider the following continuation of Example 1.

EXAMPLE 2. Say that the voter of Example 1 delegates the decision
on how to divide the 0.3 between p1 and p, to some voter who assigns
0.2 support to p1 and 0.4 support to pa; how shall the support of 0.3
be divided then? Intuitively, we wish to split the 0.3 support propor-
tionally to how the delegate splits her support between p1 and p;. In
this example, this means to assign support 0.1 to p1 and 0.2 to pa, as
[0.1,0.2] exactly preserves the support ratio of [0.2,0.4].

Indeed, throughout the paper we concentrate on resolving fine-
grained cumulative delegations in a way that would be as close
as possible to such a proportional (i.e., ratio-preserving) way as
described in Example 2. Defining such proportionality formally
turns out to not be a straightforward task, mainly because of the
possibility of cyclic delegations together with the possibility of
delegates assigning 0 support to some candidates. Cyclic delegations
have been a classical problem in LD, however zero-support is a new
issue arising when a delegate does not support any of the delegated
candidates; in the classical model when a whole ballot is delegated
this cannot happen for cumulative ballots. We provide a general
solution by applying a global default allocation of a delegate’s
budget, e.g., an even-split allocation, or by a more involved usage
of per-voter, per-delegation default votes requested for the zero-
support situation. Thus, in Section 2, after providing the needed
notation and formally defining our setting, we describe four natural
definitions of such proportionality.

1.3 Usability and Applicability

It may seem that using such FGLD model as we consider here
is too demanding for voters to engage with. We agree that the
mathematics and the increased flexibility it offers to voters do come
at a potential increase in cognitive efforts required to interact with a
system that allows such voting. We, however, wish to stress several
points in this context:

e First, in a user interface that supports our model of FGLD
for CBs there could be the possibility of using simple coarse-
grained LD (i.e., voting directly or delegating the full ballot)
for voters who wish so; and only the opt-in possibility of
voters to use the full expressive power of FGLD.

e Second, we think that a user interface can be designed for
FGLD for CBs in a way that is quite self-explanatory and
useful for most voters. In the full version of the paper [22]
we describe a workflow of casting votes in FGLD for CBs.
In particular, we illustrate a possible draft design for such a
user interface.

e Third, we wish to highlight a different point of view on
our work: viewing each project as its own “issue”, what
our solution offers is actually the bundling of several issues
together, thus allowing voters to delegate bundles of issues
in a way that may be easier than the standard per-issue
approach of LD [12].
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1.4 Technical Overview

Before we dive into our formal treatment, we provide a high-level
description of our technical approach, via the following example.

Consider an instance I of FGLD for CBs and imagine a solution
S that resolves all voters’ delegations. Now, consider some voter v.
If, in S, the delegations of v are all resolved in an exact proportional
way (such as in Example 2), then, in a way, the intentions of v are
fully respected; put differently, v should be “happy”. If, however,
this is not the case, then, if had the ability to do so, v would wish
to change her ballot to be more proportional.

The above discussion suggests a game-theoretic point of view on
our setting. Taking this perspective, we observe that the existence
of a “perfect” solution (i.e., that satisfies proportionality exactly for
all voters) is equivalent to the existence of a Nash-equilibrium in
this game. Slightly more concretely, we consider the “best-response”
function of each voter: this function, given a solution (such as S
above), assigns for a voter v their best-response ballot to S (i.e., if
v’s ballot is not optimal for v with respect to some S, then the best-
response function would return some other ballot that is optimal
for v). We then concentrate on these best-response functions and
recall that a Nash-equilibrium corresponds to a solution that is a
fixed point for those best-response functions (i.e. all voters do not
wish to change their ballots, which means that the best-response
functions, at this particular point, return their input for all voters).

Following our formulation of such games and the relation to
fixed points we then utilize the theory of fixed points and articulate
certain sufficient conditions that, whenever they are satisfied by
our best-response functions, guarantee the existence of solutions.
Furthermore, a deep result from logic [26] (see Proposition 5) im-
plies a parameterized algorithm with respect to the instance size
(Theorem 7). This allows us to provide a parameterized algorithm
(Theorem 8) with respect to the size of the largest strongly connected
delegation component (see Subsection 4.1 for a definition) which is a
measure of distance from triviality [5, 19] of a given instance, where
a trivial instance is one with no delegation cycles, since it can be
easily solved by processing the delegation graph in its topological
order.

While we focus on a specific definition of proportionality that is
relevant for the setting of FGLD for CBs, our techniques are rather
general, thus in Section 5 we discuss wide generalizations of our
setting in which our theorems regarding existence and tractability
hold as well.

Paper structure. In Section 2 we provide some useful notation
and formally describe the general setting of FGLD for CBs. Then,
in Section 3, we describe our notions of proportionality for that
setting and argue that our fourth definition elegantly overcomes
the drawbacks of the other definitions. In Section 4 we discuss the
existence, structure, and computability of solutions for our four
notions of proportionality. In Section 5 we discuss generalizations
of our setting.

2 FORMAL MODEL

We begin with definitions of some useful notation. For a natural
number n, we denote the set {1,2,...,n} by [n]. Typically we use
bold font to denote a vector (or a matrix), e.g., y or x. By convention
we use subscripts in order to point out a specific value in a vector
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(or a matrix), and write this vector in regular font, e.g., y, = y(v)
and x,c = x(v,c). For a vector of real numbers y € R” by |ly||;
we denote £1-norm of y, i.e., |lyll1 = X;e[n] y(i); and by ||yl we
denote foo-norm of y, i.e., ||lylle = max;e[n] y(i). Additionally, for
x € R" and A C [n] we use the shorthand x4 for the subvector
with indices A, i.e., |x4| = |A| and V;eq x4 (i) = x(i). By 0" € Z"
we denote a vector of zeros of length n. When writing y = 0 we
use the notation 0 for a vector of zeros of appropriate length, i.e.,
the length of y.

An election with cumulative ballots consists of a set of m can-
didates C = {c1,...,cm} and a set of n voters V = {ovy,...,0,}
such that voter v; corresponds to a cumulative ballot that is rep-
resented as a vector v; = [v;(c1),...,0i(cm)], with 0;(cj) > 0 and
Yeecvi(c) = 1, such that v;(c) is the fractional support v; gives
toc.

Our model of FGLD for an election with cumulative ballots
is that each voter v partitions C into a family of non-empty and
disjoint subsets (also called bundles) Sy 1, ..., Sv,|S,J| C C, where
Sy = {Sv,l,...,SUJSU‘} S0 USGSUS = C; and, for each S € S, in
their partition, sets a delegate 5(v, S) € V. We call b, 5 > 0 the bud-
get for a bundle S, and we require that Y s¢ 5, by s = 1. Moreover,
we require that, if §(v,S) = v, then |S| = 1, which expresses the
self-delegation scenario where voter v makes a direct choice about
the candidate from S. Further, without loss of generality, we can
require that, if b, s = 0 then §(v,S) = v (so also |S| = 1).

Given such a description of the delegations, it is natural to seek a
solution? x € RVXC = R™™ that satisfies the following conditions:

(1) Foreachv € V, the vote x, is a cumulative ballot of weight 1,
ie., ||xy]l1 = 1;and
(2) for eachv € V and S € Sy, the vote x, respects the budgets,
ie, [lxyslli = bys.
A vector x that satisfies these conditions is referred to as a solution.
Next, the fact that voter v delegates a bundle S C C to a delegate
d(v, S) means that she wants her solution to relate to the solution
of §(v, S) in some way.

3 NOTIONS OF PROPORTIONALITY

There are many ways of relating the solution of voter v to the
solution of §(v, ). Next we consider four notions of proportionality
that showcase different behaviors that can occur.

To explain these notions, we need some further definitions. A
best-response function f : R — R™" describes, for each voter,
what is their desired solution, given some solution x. That is, given
a solution x, the voter v would be perfectly satisfied if their vote
was (f(x)), (we simplify the notation by using f(x)y = (f(x))o).
Using this function, we can define the regret of the voter v as
[l £ (%) — x5||1, which quantifies the difference between her current
solution and her desired solution. It is possible that, with respect
to a solution x, a voter v would be perfectly satisfied with not just
one but a number of solutions; in that case, f(x), would be a set,
and f would be a set-valued function (also called a correspondence).
We are ready to describe a few specific notions of proportionality
using this pattern.

vxC
RY*C,

?Hereinafter we use R™™ as a representation for this will be useful for some

algebraic operations.



Full Research Paper

3.1 Exact Proportionality (EP)

A voter v is perfectly satisfied with respect to a solution x and
a bundle S if either ||xs(4,5)sll1 > 0 (that is, their delegate gives
positive support to S) and the ratios of x, s exactly match the
ratios of x5(,,5) 5, or in the case when ||lxs(,,5) sll1 = 0 the voter
is always perfectly satisfied. Thus, f is a correspondence with
f(X)os = (x5(0,5).5/1%5(0,9),sll1) - b(0,5) if x5(0,5),5 # 0, and
f(x)y,5 is any non-negative vector of length |S| and weight b (v, S)
otherwise.

The main problematic aspect of (EP) is the following: zero-support
of the delegate (i.e. x5(5,5),5 = 0) is an issue for the delegation and,
in (EP), it is resolved in an arbitrary way allowing any split of the
budget b(v, S) into candidates in S. We can see this in the following
example.

ExAMPLE 3. Let V = {v,u} and C = {c1, cz, c3}. Voter v delegates
S = {c1, c2} with budget 1 tou (hence x;, (.} = 0). If voter u defines
its cumulative ballot as u = [0.001, 0, 0.999], then the only solution
under (EP) forv is [1,0, 0]. On the other hand, ifu will change its ballot
slightly by just moving 0.001 support from c; to c3, thenu = [0,0, 1]
and v can split its budget arbitrarily among c1 and c3. Therefore, any
xp = [a,1—a,0] fora € [0,1] is solution forv, in particular, [0, 1,0]
is feasible for x,; this is completely different than the only solution
before u slightly changed its ballot.

Example 3 indeed also highlights that the solution is not robust
to small changes in the input; robustness is an important property
in other social choice context as well [6].

3.2 Exact Proportionality with Thresholds
(EP-T)

The behavior of (EP) in the case of zero-support may be seen as far
too arbitrary (as in Example 3). Moreover, it might seem unnatural
that, in (EP), the voter v only stops demanding an exactly propor-
tional solution when her delegate’s support for S drops down to
exactly 0. Indeed, it may be better to consider that she loses her
confidence in her delegate below the confidence threshold e, s > 0
and then she uses her default vote.

To define such notion of proportionality we require more infor-
mation from each voter v, i.e., for every bundle S € S, we require a
weight wy, s > 0 (expressing the voter’s confidence in the delegate),

and a default vote dys € R%) such that ||d,slli = by (which
can be used when the delegate supports S too weakly). One natu-
ral example of a default vote is an even-split which is defined as
dys(c) = bys/|S| for every ¢ € S. For example, in our user interface
draft in [22], the option of manipulating the default vote is hidden
from the user for the sake of simplicity, and the even split solution
is used for all voters.

In (EP-T) we define a threshold e, 5 = 1/w,s such that, if
lx5(0,5),sll1 > €ys, then we demand exact proportionality as in
(EP), but if ||xs5(y,5) sll1 < €y,5, then we demand that x, 5 = dys,
that is, v’s action is her default vote.

Unfortunately, it may happen that there is no solution under
(EP-T). We present a small instance with no solution in Example 4.
The underlying reason for this non-existence is the discontinuity
of the best-response function at €, 5. We formulate and prove this
fact formally in Proposition 1.
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ExamMPLE 4. We define 2 voters{v, u} and 4 candidates{c1, c2, c3, c4}.

Table 1 shows the delegations data.

Table 1: Delegations defined by voters v (top table) and u (bot-
tom table) in Example 4.

S dys bys | 6(0,9) | eus
S1={c1,c2} | [0.5,0] 0.5 u 0.8
Sy ={c3,ca}t | [0.5,0] | 0.5 u 0.8

S dys bys | 8(u.S) | eus
S3 ={c1,ca}t | [0,0.5] | 0.5 v 0.7
Sy ={c2,¢c3} | [0,0.5] | 0.5 v 0.4

ProrosITION 1. Under (EP-T), there are instances that do not admit
a solution.

Proor. We analyze an instance from Example 4. Let us assume,
by contradiction, that there is a solution x under (EP-T). We consider
two cases: either Xo,e; + Xo,ey = 0.7 01 Xy + Xy, <0.7.

In the case xy¢, + Xy, = 0.7 we know that u on S3 splits budget
0.5 into ¢1 and ¢4 proportionally to xyc, and x,¢,. Additionally,
we know that xy¢, + Xy, < 0.3 < 0.4 = ¢, 5, hence u has to use
its default vote on Sy, i.e., Xy, = 0 and xy ¢, = 0.5. Further, we
know that x¢, + xyc, = bys, = 0.5 50 xy¢, < 0.5. Therefore,
Xu,e, +Xuc, < 0.5 < 0.8 = €,5, 50 v has to use its default vote on Sy,
ie, xp¢ = 0.5and xy ¢, = 0. It means also that x,¢, < 0.5 and from
this and the fact that u on S5 splits budget 0.5 proportionally we
obtain xy, ¢, < 0.25.Hence, we have xy, ¢, +xy,¢, < 0.75 < 0.8 = €05,
so v on S has to use its default vote: xy ¢, = 0.5 and x,¢, = 0. But
this gives xy ¢, + xy¢, = 0.5 which is in contradiction with the
assumption xy¢, + Xy, = 0.7.

Let us consider the other case, i.e., xy¢, + Xy,c, < 0.7. First of all,
we know that u has to use its default vote on S3, i.e., xy¢, =0 and
Xu,c, = 0.5. It follows that x; ¢, + Xy, < 0.5 < 0.8 = €, 5, hence
v has to use its default vote on S; 50 xy¢, = 0.5 and x4, = 0. We
have two subcases: either xy ¢, + Xy, > 0.4 Or Xy ¢, + Xpc, < 0.4.

e when xyc, +Xyc, > 0.4 then u splits budget 0.5 on S4 propor-
tionally to x4, and xyc,, but x4, = 0 so we have xy, ¢, = 0
and xy ¢, = 0.5.
e when xy¢, + Xy,c, < 0.4 then u has to use its default vote on
S4, 50 Xy, ¢, = 0 and xy ¢, = 0.5.
Notice that in both subcases we have to have x;,¢, = 0 and x,¢, =
0.5. It follows that xyc, + xye, = 1 2 0.8 = €,5, so v wants
to split budget 0.5 among c3 and ¢4 proportionally to xc, and
Xu,c, Which are equal, hence x,¢, = xy¢, = 0.25. But this gives
Xov,¢; + Xoe, = 0.75 which is in contradiction with the assumption
Xo,e, + Xo,c, < 0.7. This finishes the proof. m]

3.3 Exact Proportionality with Thresholds,
Interpolated (EP-TI)

In (EP-T), there is a sharp “loss of confidence” in v’s delegate at
the threshold €, . This causes that there might be no solution
at all for (EP-T) instance (as in Example 4). It may be better to
require exact proportionality aslong as [|x5(s,5) sll1 = €y,5, but then
gradually transition to v’s default vote d,, g instead of switching to
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it abruptly. Formally, we define f(x)y,5 = (X5(0,5),5/1%5(0,5),5ll1) -
bys if [l x5(0,5),sll1 = €u,5, otherwise

X5(0,5),s + (€05 = [1X5(0,5).5l11) - dus
lx5(0,5),5 + (€0,5 = 1%5(0,5),5111) “dusll1

f(x)v,S = v,S - (l)
This expression goes from the delegate’s solution to v’s default vote
as the delegate’s support goes from €, s to zero. Hence, f(x),,s is
continuous which may be a desired property. A solution under (EP-
TI) for an instance from Example 4 is: x}, = [0.5,0.0,0.423,0.077],
x;, = [0.39154, 0.0, 0.5,0.10846]. Calculations are presented in the
full version of the paper [22].

Because of continuity of f(x), s under (EP-TI), this proportion-
ality notion may be seen reasonable, however, the fact that the de-
rivative of f(x), s at €, s is not continuous causes “sharp” changes
when changing a vote slightly—it can be noticed in the following
example.

ExaMmpLE 5. Let V = {o,u}, C = {c1,c2,¢3}, and let v delegate
S = {c1, c2} with budget 1 tou by defining its weight to be w, s = 100
(high confidence). The default vote for this delegation isd, s = [0, 1].
If voter u define its cumulative ballot asu = [0.015,0,0.985], then the
only solution under (EP-TI) forv is [1, 0, 0]; indeed, we have e, s = 0.01
and ||x,.s|l1 = 0.015, so in such a case v keeps a support ratio of
ugs = [0.015, 0]. Next, we analyze how small changes tou may change
the solution.

o Ifu slightly changes its ballot by moving a support of y = 0.005
from c; to c3, then u = [0.01,0,0.99] and the only solution
under (EP-TI) for v has not be changed, i.e., it is [1,0, 0].

o On the other hand, ifu changes its ballot by moving a support
of 2y from c1 to c3, then u = [0.005,0,0.995], and the only
solution under (EP-TI) for v uses interpolation and it is now
[0.5,0.5,0]. Indeed, we have

O *us+ (€5 — lIxusll) - dos
lxws + (eas = llxusllt) - dosli
_ [0.005,0] + (0.01 — 0.005) - [0, 1]
~11[0.005, 0] + (0.01 — 0.005) - [0, 1][I1
[0.005,0.005]

~1/10.005,0.005] |11

All'in all, a change of y does not alter a solution, but a change of
2y alters it significantly.

f(x)os

bv,S

=1[0.5,0.5] .

3.4 Weighted Convex Combinations (WCC)

To avoid the behaviour of (EP-TI), as demonstrated in Example 5,
we consider the following: the solution v is always a combination of
her default vote d, s with her delegate’s solution x5(,,5),s, and her
confidence in §(v, S) is expressed by taking her delegate’s solution
with weight w;, 5. That is, the desired solution is exactly d, s +wy s -
X5(0,5),s scaled appropriately to sum up to by g, that is,

dys + WS X5(0,5),5
ldos +wos - xs5(0.5).sll1

f(*)os = @
Observe that this means that, if the weight is fixed, then the influ-
ence of the delegate decreases as their support decreases, and with
the support of the delegate fixed, their influence increases as the
weight wy, g increases.
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Below we apply the (WCC) proportionality notion to the in-
stance from Example 5. First of all, the initial solution (when u =
[0.015,0,0.985]) for v is different—it is [0.6, 0.4, 0] —because:

2 dos+wys - Xus
f(®os ldos +wos - xusllt
~ [0,1] +100 - [0.015,0]
T11[0, 1] + 100 - [0.015,0] 1
Note that the default vote has a strong impact on this solution
because the support of u for S is small. Let us further analyze two
changes of u’s vote, as in Example 5:
o If u changes its ballot to [0.01, 0,0.99], then the only solution
under (WCC) for v is [0.5,0.5,0].
o If u changes its ballot to [0.005, 0, 0.995], then the only solu-
tion under (WCC) for v is [%, % 0].
Note that the solution changes more smoothly in the case of (WCC)
than in (EP-TI).

bv,S

1=10.6,04] .

4 EXISTENCE AND STRUCTURE OF
SOLUTIONS

To discuss the existence and structure of solutions and the com-
plexity of computing them, we need to introduce some notions
from fixed-point theory. Given a function f : RN — R, a point
x € RN is called a fixed-point of f if f(x) = x. The next result is of
fundamental importance:

PROPOSITION 2 (Brouwer’s theorem [9]). Let f be a continuous
function from a compact convex set K to itself. Then f has a fixed-
point.

We say that a correspondence f : K — 2K has a closed graph
if the set {(x,y) € K XK | y € f(x)} is closed. A fixed-point of a
correspondence f is a point x such that x € f(x).

ProrosITION 3 (Kakutani’s theorem [21]). Let K be a non-empty,
compact, and convex subset of RN, and let f have a closed graph
and f(x) be non-empty and convex for all x € K. Then f has a
fixed-point.

We will use these theorems to show the existence of solutions.
But, before it, we discuss how to compute solutions. First, notice
that complexity classes such as P and NP are of no use when a solu-
tion is guaranteed to exist. Thus, we are interested in the hierarchy
of classes below and including TFNP (Total Function Nondeter-
ministic Polynomial), which is the class of function problems that
are guaranteed to have an answer and this answer can be checked
in polynomial time. PPAD is a subclass of TENP which is known
to be complete for Brouwer fixed-points, meaning there is a func-
tion f satisfying the conditions of Brouwer’s theorem, such that
any problem in PPAD can be reduced to finding a fixed-point of
f- No polynomial-time algorithm for a PPAD-complete problem is
believed to exist. Before we can state the current state of the art,
we have to introduce yet another notion. Even when a fixed-point
x is guaranteed to exist, it might not be rational. Thus, it is com-
mon to turn to discussing approximate fixed-points. A point x is
an e-weak approximate fixed-point if ||x — f(x)||e < €.Itis an
e-strong approximate fixed-point if it is at distance at most ¢ from
some fixed-point x*. Most results, as well as our treatment, focus
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on weak-approximations. The currently best result about finding
Brouwer weak-approximate fixed-points is the following:

PROPOSITION 4 (Chen and Deng [11]). An e-weak approximate
fixed-point of an M-Lipschitz continuous function f : RN — RN can
be found through O((1/e - M)YN1) queries to f and this is tight.

M is intuitively an upper bound on the first derivatives of f. This
kind of complexity is essentially a polynomial-time approximation
scheme in fixed dimension N, but exponential in N otherwise.

As we will see, sometimes the proportionality conditions we
use can be described with quadratic or other types of constraints,
so results from mathematical programming become relevant. A
quadratically constrained quadratic program (QCQP) is a collection
of quadratic constraints ¢;(x) < 0 and a quadratic objective func-
tion go(x) to be minimized over all x € RN, The decision problem
of the existential theory of the reals is to find a solution x of a for-
mula ¢(x) that is a quantifier-free formula involving equalities and
inequalities of real polynomials. The following effective theorem
was proved by Renegar [26]:

PRrROPOSITION 5 (Renegar [26]). An e-strong approximation x
of a satisfying assignment x € RN of a quantifier-free formula
@(x) involving P polynomial inequalities of maximum degree D and
with coefficients of total encoding length L can be found in time
max{L,log(1/€)} - polylog(L)(PD)° ™).

Finally, a simple heuristic to search for a fixed-point is the
simple iteration heuristic, which constructs a sequence of points
x0x . by taking x0 an arbitrary initial point from the set K,
and then setting x' = f(x'~1). This procedure converges to a
fixed-point if the function f is a contraction, which means that
there is a non-negative constant g < 1 such that for every x € K,
If(x) = fF(f DI < q - |lx — f(x)]| under some norm; this is Ba-
nach’s fixed-point theorem [1]. (Essentially, the proof follows as the
distance between iterations decreases geometrically with the coef-
ficient q.) There are many other heuristics for finding fixed-points,
usually in the guise of “zero-finding” or “root-finding” heuristics,
because finding x such that f(x) = x can equivalently be seen as
finding a zero of the function g(x) = f(x)—xor g(x) = || f(x)—x]||1,
for example.

We are now ready to see what these results say about our four
notions of proportionality.

Exact Proportionality (EP): One can verify that f is a corre-
spondence satisfying the conditions of Kakutani’s theorem, thus,
a solution is always guaranteed to exist. However, because f is a
correspondence and not a function, it is unclear how to define the
simple iteration procedure or apply other zero-finding heuristics.
The problem can be defined as a QCQP as follows.

OBSERVATION 6. If a voter v delegates S € Sy tou and b, s > 0,
then proportionality under (EP) is equivalent to

v(er) _ uler)
o(ez) uler))

From this we can derive a quadratic constraint: v(c1) - u(cz) =
u(c1)-v(cz). Notice that the constraint behaves precisely as required
also in the case when u assigns zero support to S, because both
sides of the equality will be zero and thus all possible values are

Ve, e €S |u(ep) #0 =

1034

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

permissible for v(c1) and v(cz). A quadratic program that models
the problem consists of the following variables and constraints.

o Definition of the variables: for every voter v € V and can-
didate ¢ € C we define a variable x,. € [0, 1] that is the
fractional support v gives to c.

o Constraint for cumulative ballots: we fix that every voter
v € V splits budget 1 to the candidates,

®)

e Delegation budget: voter v € V has to split budget b, s
among candidates in S € Sy,

2eeCXoe =1 .

4)

o (EP) constraint for every delegation of S € Sy by a voter
v € V (due to Observation 6):

ZceS Xv,c = bu,S .

VYci,c0 €S .

®)

Thus, one can utilize the theorem of Renegar as we describe in
Subsection 4.1.3

Exact Proportionality with Thresholds (EP-T). We have al-
ready shown in Proposition 1 that solutions might not exist. Notice
that (EP-T) does not fit the conditions of Brouwer’s theorem as f is
not continuous. The lesson here is to be cautious when considering
discontinuous best-response functions; while discontinuity does
not immediately imply non-existence of solutions, it opens the door
to it.

Exact Proportionality with Thresholds, Interpolated (EP-
TI). Compared with (EP), f is now a function, and we can see that
it satisfies the conditions of Brouwer’s theorem, so a fixed-point is
always guaranteed to exist. Moreover, we could now use the simple
iteration heuristic, as well as any of the zero-finding heuristics.
In Subsection 4.1 we show applications of Renegar’s algorithm in
solving (EP-TI).4

Weighted Convex Combinations (WCC). Finally, for (WCC),
we again observe that the best-response function f is continu-
ous and thus Brouwer’s theorem guarantees the existence of a
fixed-point. Moreover, f is amenable to simple iteration and other
zero-finding heuristics, and it has continuous derivatives, which
can be exploited by many heuristics (unlike (EP-TI), which has dis-
continuous derivatives). We also note that (WCC) can be modeled
as a QCQP: for every voter v € V and every delegation S € S, the
constraint (5) can be replaced by

Xv,er " X5(0,5),c2 = X8(0,S),c1 " Xv.c2

Xo,c * ”dv,S +Wwy,s ’xé(v,S),SHl
=bys - (doc + Wiws  X5(05),c) YCES,

(6)

which is quadratic in x (note that the || ® ||; in the left hand side is
a linear expression in terms of x). This also implies that we can use
the algorithm of Renegar (see Subsection 4.1).

Additionally, in [22] we describe counterexamples construction
of certain algorithmically favorable structural properties for (WCC).

3In practice, there are also many QCQP solvers such as IPopt, Knitro, Gurobi, or Baron,
that can be used to solve this problem.

41t is also possible to use a QCQP formulation similar to that of (EP) augmented
with logical disjunctions that can be formulated using 0/1 variables, enforced as
x-(1-x)=0.
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4.1 Parameterized Algorithms

On the positive side, since the constraints on solutions satisfying
(EP), (EP-TI), and (WCC) can be formulated as logical connections
of polynomial inequalities, Proposition 5 can be used to derive the
following results.

THEOREM 7. We can find an e-strong approximation of a solution
x € R™ of an instance of FGLD for CBs with n voters and m candi-
dates satisfying any of proportionality notions (EP), (EP-TI), or (WCC)
in time polylog(w,d, 1/€) - (nm)©(nm)

PRrooF. Our goal is to construct a formula ¢(x) describing a
solution x, and then apply Renegar’s algorithm (Proposition 5). For
(EP), consider the QCQP given by constraints (3)—(5). A formula ¢
expressing that x satisfies all of these constraints is simply their
conjunction, the number of constraints is bounded by O(nm), the
largest degree is 2, and the largest coefficient is 1. For (EP-TI), we
can use an implication: if ||xs(,5) sll1 > €y, then constraint (5)
must hold, otherwise a different quadratic constraint given by f
must hold. The number of constraints is again O(nm), but now the
encoding length of coefficients depends on the largest weight w;, g
and default vector d. This is no issue because the encoding length
anyway only enters the complexity of Proposition 5 polynomially.
For (WCC), simply consider the QCQP given by (3), (4), and (6). The
estimates are the same as for (EP-TI). O

In particular, Theorem 7 implies a polynomial-time algorithm
for instances of constant size. This may be seen as a critical lim-
itation, however, note that an instance of FGLD for CBs may be
kernelized and partitioned into strongly connected delegation com-
ponents (SCDCs), which can then be solved separately according to
their topological order where the final output can be constructed
by merging the solutions of the individual SCDCs. This way, the
non-polynomial dependence in the running time is with respect
to the size of the largest SCDC, which can be much smaller than
the original instance size nm. Note also that the size of the largest
SCDC can be seen as a parameter that is essentially a distance from
a trivial instance [5, 19], which is one with no delegation cycles,
i.e., whose largest SCDC has size 1.

Let us state this result formally. The delegation graph has vertices
V X C, each vertex representing a decision of a voter on a candidate.
The graph has a directed edge (v, c1) — (u, c2) if there exists S € Sy
such that ¢y, ¢z € Sand (v, S) = u, encoding that a decision of voter
v on candidate c¢; depends on a decision of voter u on candidate
c2. Note that there are directed edges from (v, ¢1) to every (u, cz)
such that ¢z € S. A strongly connected delegation component is a
strongly connected component in the delegation graph. An SCDC
can be seen as a non-trivial part of the delegation graph: put the
SCDCs in their topological order, and notice that the variables x; ¢
corresponding to vertices (v, ¢) in an SCDC y can be evaluated if the
value is known for all variables x;, .+ from the SCDCs that follow y
in the topological order.

Thus, we go over the SCDCs in their reverse topological order
and, for each SCDC, solve the corresponding subinstance separately
using Theorem 7. In this way, we gradually obtain the values for
all the variables of the solution.

Let s be the number of vertices in the largest SCDC. As each
subinstance corresponds to an SCDC, it can be solved in time
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polylog(w,d, 1/¢) - (5)0(®) using Theorem 7 and there are at most
nm-many SCDCs, hence we obtain the following theorem.

THEOREM 8. We can find an e-strong approximation of a solution
x € R™ of an instance of FGLD for CBs with n voters and m candi-
dates satisfying any of (EP), (EP-TI), or (WCC) in time polylog(w,d, 1/¢€)-
sO0) . poly(n, m), where s is the number of vertices in largest SCDC.

5 GENERALIZATIONS

We will now show a major strength of our treatment: it can be
widely generalized. We start with stating under which conditions
a solution is guaranteed to exist. The following is essentially a
restatement of Brouwer’s theorem.

THEOREM 9. Let n be the number of voters and m the number of
candidates. For each i € [n], let K; C R™ be a convex and closed set
of possible votes of voter v, and let K = K1 X K X - - - X Kj,. For each
i € [n], let fi - K — K; be the best-response function of a voter v;,
that is, with respect to any x € K, if voter v; chooses action f;(x),
then their individual regret is 0.

If each f; is continuous, then there exists a fixed point x € K, that
is, there exists, for each voter v; € V, an action x,,, such that their
regret is 0.

Proor. The function f(x) = (fi(x), 2(x),..., fa(x)) is con-
tinuous and the set K is convex and closed. The existence of a
fixed-point follows from Proposition 2. O

Intuitively, the theorem above states that, if each voter v has a
continuous best-response function f and their regret is || f,(x) —
xy|l1, or equivalently, if their regret r, : K — Rx¢ is continuous
and they can unilaterally decrease it to 0, then a solution is always
guaranteed to exist. (One implication of the equivalence is easy; the
other direction follows by, given a regret function ry, defining, for
each x € K, f,(x) to be some action x, which decreases the regret
of v to 0 with respect to x.) Let us outline a few settings which can
be captured by Theorem 9.

(1) Proportionality per bundle. Each voter v can specify for
each bundle S whether they require (EP-TI) or (WCC) for
this delegation.

(2) (WCC) for subcommittees. A voter v may wish to delegate

their decision to a committee of delegates: say that v desig-

nates k delegates vy, . .., v, each with a weight wy, ..., w,

and the best response of v is to take d,, s + Z;‘:l Wi - Xy, 5 and

scale it to be of #;-norm b, .

Large- vs small-scale decisions. We have focused on the

setting where the voter makes a “large-scale” decision of

how support should be split among bundles of candidates,
and delegates the “small-scale” decision within each bun-
dle. Theorem 9 captures also the setting where the voter

specifies support ratios within bundles (e.g., by specifying a

non-negative |S|-dimensional vector dg with [|ds||; = 1 for

each bundle S), but delegates the decision of how to split the

total support among these bundles to a delegate 5(v).

Continuous confidence functions. In (WCC), a voter ex-

presses their confidence in a delegate through the weight
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wy,s. The influence of §(v,S) increases with w;, g and de-
creases with [|x5(,,s) sll1. A voter may specify a less straight-
forward interaction. Imagine that there is a candidate ¢ which
v is strongly in favor of, and will trust a delegate §(v, S) to
the degree to which §(v, S) is also in favor of c. As long as the
dependence of the confidence of v in §(v, S) is continuous,
satisfying solutions are guaranteed by Theorem 9.

Spatial voting. In spatial voting [15], a voter’s ballot is
some real D-dimensional vector. We may define FGLD in
this setting analogously to the previous point—the action of v
will be a combination of their default vote and the solution of
their delegate(s) to the degree of the (continuous) confidence
of v in §(v, S).

Turning to tractability, we have the following meta-theorems.

®)

THEOREM 10. Let n,m, and, for eachi € [n], K; and f;, be defined
as in Theorem 9. Then:

(1) Ifeach f; is M-Lipschitz continuous, then an e-weak approx-
imate fixed-point x can be found through (1/e - M)©(nm)
queries to f.

(2) Ifeach f; is continuous and can be expressed by a quantifier
free formula ¢;(x) with at most P polynomials of maximum
degree D and maximum coefficient encoding length L, then
an e-strong approximation of a solution can be found in time
polynomial in L, P, D andlog(1/¢), if n and m are fixed con-
stants.

Proor. The theorem is a straightforward application of Propo-
sitions 4 and 5, respectively. ml

6 DISCUSSION

We studied fine-grained liquid democracy for cumulative ballots,
and concentrated on how to resolve voters’ delegations transitively
in a way that is proportional. In the context of fine-grained liquid
democracy, our results allow for increasing voter expressiveness
and flexibility and thus advance the state of the art and what is
possible to do with liquid democracy. Our work does have some
limitations that naturally lead to the following directions for future
research.

First, we presented parameterized algorithms in Subsection 4.1
but actually we did not prove computational hardness of the prob-
lem. Indeed, ideally, one would prove, e.g., PPAD-hardness (see
our comments after Proposition 3). The best evidence for hard-
ness is a recent paper of Papadimitriou et al. [25], showing that
there are closely-related games which finding Nash equilibrium
is PPAD-hard. This seems like an intriguing but non-trivial open
question.

Second, note that in our work we concentrated on how to resolve
delegations, and not on how to aggregate voter preferences. Thus,
we do not consider issues of social welfare directly; that is, while the
increase of voter flexibility and expressiveness intuitively allow for
better quality of the collective decision, a natural future direction
is to complement our research with an investigation dealing with
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the social welfare. Such a study may follow related work such as
that which was done for participatory budgeting [3]. Note that a
related issue that we do not consider, for similar reasons, is that

of strategic voting: this is so as, again, we are interested in the
resolution of voters’ delegations and not in the communal decision

to be made—studying strategic voting is indeed another natural
future research direction to investigate.

Third, our analysis demonstrates that the mathematics of FGLD
for CBs is non-trivial, in particular as different natural notions of
proportionality lead to different results and suffer from different
shortcomings. Correspondingly, a natural future research direction
may experiment with our proportionality notions and evaluate
them in practice as well as suggest different notions of proportion-
ality. Our work does provide some guidance towards a practical
implementation of our ideas, in particular, our analysis leads us to
conclude that WCC is the currently-best proportionality notion.
This is because: (1) it has stronger continuity properties than other
models (e.g., a continuous derivative), making it better-behaving
with respect to many heuristics; and (2) our QCQP formulation
can be easy to use in practice by applying quadratic programming
solvers (see the discussion in Section 4).

In a more general context, we view our theoretical treatment—
culminating in our meta-theorems—as an important result that
could be used for other settings (such as those briefly discussed in
Section 5) as well. In particular, our meta-theorems can be used in
social choice settings that are continuous in nature; a particularly
promising area is that of spatial voting [15].

Besides using our meta-theorems for such continuous social
choice settings, an interesting avenue for future research is to de-
velop analogous meta-theorems for discrete settings. This may be
possible using fixed-point theorems for discrete functions, and the
logic would be, similarly to the continuous setting, to view a given
social choice setting as a game, define appropriate regret functions
and apply discrete fixed-point theorems. Even if the conditions of
discrete fixed-point theorems could not be satisfied, one can con-
sider the analogue of a mixed Nash equilibrium, where a solution
would not be a single action but rather a distribution on player’s
actions. Such meta-theorems may be used also to revisit the setting
of Ordinal FGLD [8] and Knapsack FGLD [20].
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