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Abstract—The limited spectrum and data-intensive applica-
tions in 5G/Next-G networks call for data rate guarantees for
UEs with minimum spectrum usage. This problem is challenging
due to the complexity of MU-MIMO system, unknown Channel
State Information (CSI), and estimation errors. We propose
Rudra, which aims to minimize spectrum usage while offering
probabilistic guarantee for each UE’s data rate. The essence of
Rudra is to employ Chance-Constrained Programming (CCP)
by leveraging limited CSI samples. By reformulating the CCP
into a deterministic one, Rudra offers an iterative solution that
addresses Resource Block Group (RBG) allocation, Modulation
and Coding Scheme (MCS) selection, and Beamforming (BF)
design. Simulations show that Rudra can meet our design
objective and outperforms a modified state-of-the-art algorithm.

Index Terms—5G/Next-G, MU-MIMO, CSI, errors, data sam-
ple, spectrum

I. INTRODUCTION

Many 5G/Next-G applications (e.g., eMBB) require steady
data rate to ensure UEs’ quality of experience (QoE) [1].
With such an increase in demand and limited radio spectrum,
it is critical to optimize radio resource allocation so as to
minimize spectrum usage while providing the expected data
rates [2]. There are several well-known challenges to this
problem: First, the base station (BS) must (in the downlink
direction) efficiently allocate Resource Blocks (RBs) or RB
Groups (RBGs), select the appropriate Modulation and Coding
Scheme (MCS) for each UE, and design MU-MIMO beam-
forming (BF) for its antennas during each transmission time
interval (TTI). Optimizing these tasks jointly is not trivial,
especially when the objective is to minimize spectrum usage
and the constraint involves per-UE data rate guarantee. Second,
optimal RB(G) allocation, MCS selection, and BF design all
hinges upon knowledge of accurate Channel State Information
(CSI). But accurate CSI is hardly available in practice due
to unknown CSI distribution as well as estimation errors [3].
Such a lack of CSI poses a fundamental challenge to optimal
RBG allocation, MCS selection, and BF design.

The goal of this paper is to minimize spectrum usage
while providing the expected data rates through optimal RBG
allocation, MCS selection, and BF design, all under CSI
uncertainty. To the best of our knowledge, none of the existing
works has successfully addressed this problem. Most of the
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existing research did not offer a comprehensive solution for
RBG allocation, MCS selection, and MU-MIMO BF design
to meet UE data rate requirements [4]–[11]. Also, minimizing
spectrum usage is typically not an objective in these works.
Further, most scheduling solutions for MU-MIMO assumed
either perfect CSI knowledge or some well-known distribu-
tions [4]–[10]. But perfect CSI knowledge is hardly available
in practice; neither are the assumed models accurate, rendering
limited practical significance of these approaches.

The main contributions of this paper are summarized below:

• We study a spectrum minimization problem for 5G MU-
MIMO. Our problem aims to address RBG allocation,
MCS selection, and MU-MIMO BF design to provide a
probabilistic data rate guarantee to UEs. To address CSI
uncertainty, we resort to a limited number of CSI data
samples, without any assumption or knowledge of CSI
distribution. This approach is especially appealing to cope
with time-varying channel conditions, as what typically
occur in practice.

• To meet UEs’ data rate requirements with a high proba-
bility (statistical guarantee), we formulate our problem
based on chance-constrained programming (CCP). We
propose Rudra, a data-driven solution that relies on
limited CSI data samples. In the first stage, Rudra trans-
forms the CCP into a deterministic Mixed Integer Non-
Linear Programming (MINLP) problem by constructing
an error-embedded (EE)-Wasserstein ambiguity set based
on limited CSI samples, bridging the gap between the
true, but unknown empirical distribution and the empirical
distribution from collected CSI samples.

• For the reformulated deterministic optimization problem,
Rudra offers an iterative algorithm to minimize spectrum
usage, along with finding a feasible solution to RBG
allocation, MCS selection, and MU-MIMO BF. Specif-
ically, Rudra allocates RBGs based on UEs’ data rate
requirements, prioritizing UEs with higher rate demands,
and selects suitable MCS to satisfy these demands. For
BF design, Rudra leverages Zero-forcing (ZF) basis vec-
tors based on available CSI samples, linearly combining
them and subsequently scaling them to match UE power
allocations.

• Through extensive simulations, we demonstrate that
Rudra meets our design objective. Specifically, the results
show that Rudra is capable of keeping data rate violation
below the prescribed risk level for all UEs, whereas
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Fig. 1. System Model: MU-MIMO transmission in 5G NR.

the benchmark algorithm (based on the state-of-the-art)
often exceeds the required risk level significantly. In the
meantime, Rudra’s RBG usage is only marginally higher
than the benchmark algorithm.

II. PROBLEM DESCRIPTION

Consider a 5G BS serving a set of UEs, as shown in Fig. 1.
The BS has multiple antennas, and each UE has a single
antenna. We consider a downlink scenario where each UE
has a data rate requirement. The BS aims to minimize its
radio resources while offering guarantee to these data rate
requirements.

Following 3GPP standards [12], the time and frequency
domains are slotted into Transmission Time Intervals (TTIs)
and subcarriers (SCs). A group of 12 SCs in one TTI is called
a Resource Block (RB). To reduce control overhead, it is
common to combine a few RBs into an RB Group (RBG)
[12] when scheduling radio resources to the UEs. We will
employ RBG for scheduling in this paper.

Scheduling decisions at a BS in each TTI involves three
components.

• First, BS needs to allocate the RBGs to different UEs.
Under MU-MIMO, one RBG can be scheduled to serve
multiple UEs, while one UE can be served on multiple
RBGs.

• Second, the BS needs to choose from one of the 29 MCS
candidates for each UE, and a UE must use the same
MCS for all its scheduled RBGs [12]. A higher MCS
means a higher data rate per RBG but also requires a
higher SINR to support it. Since the same MCS must
be used across all scheduled RBGs for a given UE, BS
must consider the channel quality of all scheduled RBGs
to that UE.

• Third, the BS needs to do BF to mitigate inter-user
interference and improve SINR, enabling UEs to decode
intended signals successfully.

We assume each UE has a data rate requirement. However,
the inherent uncertainty in CSI between the BS and a UE
makes it impractical to offer a deterministic performance
guarantee. In this case, a probabilistic performance guarantee
of data rate is plausible and is what we will pursue in this
work.

From the network operator’s perspective, it is desired to
minimize the spectrum resources used by the BS to meet

these data rate requirements. Thus, the objective of the paper
is to minimize the spectrum resources used by the BS while
satisfying the probabilistic data rate guarantees for the UEs.

There are a number of technical challenges to our prob-
lem. First, we want to address underlying CSI uncertainty
between the BS and a UE in a realistic manner, without
assuming any knowledge of CSI distribution or statistics.
This is different from the vast amount of research that either
assumes knowledge of perfect CSI or assumes CSI follows
some well-known distributions. Second, the three components
in scheduling, namely RBG allocation, MCS selection, and
BF design, are coupled with each other. For instance, since
multiple RBGs can be assigned to a given UE, and a UE
must use the same MCS across all assigned RBGs, RBG
allocation directly affects MCS selection. Additionally, under
MU-MIMO, an RBG can be assigned to multiple UEs, which
will directly impact the design of BF vectors. Third, each of
these scheduling components is mathematically challenging
on its own. RBG allocation and MCS selection involve large
search space with integer variables, while BF design involves
complex vectors with non-convex terms.

III. MODELING AND FORMULATION

In this section, we analyze and formulate our problem.
At the BS, denote Qmax as the upper limit of RBGs that

can be allocated, and NT as the number of antennas. Denote
Q = {1, 2, · · · , g, · · · , q} as the required set of contiguous
RBGs (see Fig. 1) that will be allocated to the UEs to meet
their data rate requirements, where q represents the maximum
number of RBGs required. We have:

1 ≤ q ≤ Qmax . (1)

Denote U = {1, 2, . . . , u, . . . , U} as the set of UEs, where
U is the maximum number of UEs served by the BS. Denote
xg
u as a binary variable to indicate whether RBG g is assigned

to UE u, i.e.,

xg
u =

{
1, if RBG g is assigned to UE u ,

0, otherwise .

Under MU-MIMO, since each RBG can transmit to up to NT

UEs simultaneously, we have:∑
u∈U

xg
u ≤ NT (g ∈ Q) . (2)

At UE u, denote zmu as a binary variable to indicate
whether or not it uses MCS level m ∈ M, where M =
{1, 2, · · · ,m, · · · ,M} represents the set of possible MCS
levels, with M being the maximum MCS level. We have:

zmu =

{
1, if UE u uses MCS level m ,

0, otherwise .

Per 5G specifications [12], a UE can only use one (same)
MCS level for all the RBGs allocated to it. We have,∑

m∈M
zmu = 1 (u ∈ U) . (3)



For BF at the BS, denote wg
u as an NT × 1 complex

precoding vector for UE u on RBG g. wg
u’s for all UEs will

be designed by the BS based on CSI (more on CSI later). We
want to ensure ∥wg

u∥
2
2 to be zero when RBG g is not allocated

to UE u (where ∥ · ∥2 is the L2-norm). We have:

∥wg
u∥

2
2 ≤ xg

uPmax (u ∈ U , g ∈ Q) , (4)

where Pmax is the BS’s total power budget for all UEs. To
ensure the aggregate ∥wg

u∥
2
2 over all UE u and RBG g does

not exceed Pmax, we have:∑
u∈U

∑
g∈Q

∥wg
u∥

2
2 ≤ Pmax . (5)

Probabilistic Data Rate Guarantee Since a UE uses the
same MCS across all the RBGs allocated to it, each RBG will
contribute the same data rate as long as its SINR exceeds the
required threshold by the MCS. Denote γg

u as the achieved
SINR from RBG g at UE u. We have:

γg
u =

∣∣(wg
u)

†hg
u

∣∣2∑
i∈U ,i ̸=u

|(wg
i )

†hg
u|2 + σ2

, (6)

where hg
u is the unknown CSI from RBG g to UE u, (·)† is

the conjugate transpose of complex vector, σ2 is the thermal
noise.

Denote ηm as the required SINR threshold for MCS level m
and rm as the achievable data rate corresponding to MCS level
m, respectively (see Table 5.1.3.1-1 in [12]). Denote rgu,m as
the achieved instantaneous data rate by RBG g on UE u under
MCS level m. We have:

rgu,m =

{
rm, if γg

u ≥ ηm ,

0, otherwise .
(7)

That is, if the achieved SINR γg
u exceeds the required threshold

ηm for MCS level m, we will be able to obtain a data rate of
rm or 0 otherwise. The total data rate for UE u can be calcu-
lated by summing up the achieved data rate across all RBGs
allocated to u and all m’s, which is

∑
g∈Q

∑
m∈M zmu rgu,m.

Denote Ru as the data rate requirement from UE u. The
computation of the expected data rate requires calculating the
achieved SINR (6), which depends on the unknown CSI hg

u. In
contrast to the existing approaches that either assume perfect
knowledge of CSI or assume that CSI follows some well-
known distributions, we do not make any of these assumptions.
Instead, we employ chance-constrained programming (CCP),
which allows us to incorporate the unknown CSI distribution
through the use of a chance constraint. This approach allows
for occasional violation of the constraint up to a small prob-
ability, known as risk level. We have:

P
{∑

g∈Q

∑
m∈M

zmu rgu,m ≥ Ru

}
≥ 1− ϵu (u ∈ U) , (8)

where ϵu is the violation probability that can be tolerated by
UE u. Constraint (8) says that the achieved data rate must be
no smaller than the required data rate (Ru) with probability
at least 1− ϵu.
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Fig. 2. An illustration of sliding window used to collect K data samples for
scheduling.

Objective In this work, we are interested in minimizing
the spectrum usage (i.e., number of contiguous active RBGs
starting from RBG 1) at the BS, such that the data rate
requirements of all UEs are met with high probability 1− ϵu.
The solution to this problem is the key for a carrier network
operator to properly provision bandwidth for the cellular
access network (e.g., through network slicing [13]).

Our optimization problem can be formulated as follows:

(P1) min
xg
u,zm

u ,wg
u

q

s.t. RBG constraint (1),
UE assignment under MU-MIMO (2),
MCS selection constraint (3),
BS power constraints (4) and (5),
Calculation of data rate (6) and (7),
Data rate guarantee constraint (8).

P1 is called a CCP, with (8) being a chance constraint. As
discussed in Section II, our problem is very challenging due
to the presence of the chance constraint (8) that involves
the unknown CSI distributions. Additionally, the problem is
highly complex due to the coupling of RBG allocation, MCS
assignment, and BF design (via constraints (4), (7), and (8)),
as well as the large subspace of the binary variables xg

u and
zmu , and wg

u being complex vectors.
Next, we present a solution, codenamed Rudra,1 for problem

P1. Rudra solves the problem in two stages, as illustrated in
Section IV and Section V, respectively.

IV. RUDRA: REFORMULATION WITH LIMITED DATA
SAMPLES

In this section, we show how Rudra reformulates the CCP
(involving unknown CSI) into a deterministic problem solely
based on limited data samples while aiming for the same
probabilistic data rate guarantee that the original problem (P1)
aims to offer.

In a nutshell, Rudra first forms an empirical distribution
based on a very small set of recently collected CSI data
samples. Rudra then bridges this empirical distribution to the
unknown empirical distribution, which is also based on K

1Rudra, a Hindu god of auspiciousness, is known as a benevolent deity who
fulfills any wish. We use Rudra as the codename of our proposed solution as
it aims to fulfill UEs’ data rate requirements with high probabilities.



CSI data samples that are free of any CSI estimation errors,
by forming an error-embedded (EE)-Wasserstein ambiguity set
with an appropriate radius. Finally, based on the established
ambiguity set, Rudra aims at transforming the chance con-
straint in P1 into a deterministic constraint that only depends
on the small-set of collected CSI data samples. We elaborate
on the details of these steps in the rest of this section.
Collecting CSI Data Samples As mentioned, our approach
to address unknown CSI is through collecting a very small
set of CSI data samples similar to the idea in [14]. Denote
K = {1, 2, · · · , k, · · · ,K} as the set of K CSI data samples,
which come from most recent TTIs and are closely related, say
within the same RBG (see Fig. 2). In this paper, we assume
an RBG consists of 4 contiguous RBs [12].

As shown in Fig. 2, Rudra collects K CSI data samples
from a sliding TTI window (in blue-shaded boxes) and these
K data samples are immediately used to design the scheduling
solution at the next TTI (i.e., slot t − 1). The scheduling
solution found in TTI t − 1 is then applied to TTI t (shown
in green-shaded box in the figure).

Given the small window size used for collecting the K CSI
data samples, it is reasonable to consider that all these K
samples within a given RBG follow the same distribution.
However, it should be noted that different RBGs may have
different CSI distribution. Denote ĥg

u(k) as the k-th CSI data
sample for hg

u (the channel from RBG g to UE u). With the
K data samples, we can construct an empirical distribution,
denoted as Pĥg

u
, for the unknown channel hg

u. We have:

P
{
ĥg
u = ĥg

u(k)
}
=

1

K
(u ∈ U , g ∈ Q, k ∈ K) . (9)

Bridging Empirical Distribution of Collected CSI to Un-
known Error-Free CSI Empirical Distribution Let hg∗

u be
the discrete random variable corresponding to K data samples
that are free from any estimation errors. Denote Phg∗

u
as the

unknown empirical distribution of hg∗
u based on K error-free

CSI data samples. There is a “distance” between unknown
empirical distribution of error-free CSI hg∗

u (Phg∗
u

) and the
empirical distribution Pĥg

u
that is based on collected CSI data

sample ĥg
u. Such a distance between two distributions Phg∗

u

and Pĥg
u

can be represented by the so-called ∞-Wasserstein

distance [15], which we denote as W∞

(
Phg∗

u
,Pĥg

u

)
.

Although we have no idea about the unknown empirical
distribution Phg∗

u
, we could construct a “ball”, with Pĥg

u
as its

center and a ∞-Wasserstein distance (or radius) sufficiently
large so that the unknown error-free empirical distribution is
contained in the ball with a high probability. Denote FW∞ (θgu)
as the set of all possible distributions such that

FW∞ (θgu) =
{
Phg∗

u
: W∞

(
Phg∗

u
,Pĥg

u

)
≤ θgu,h

g∗
u ∈ CNT×1

}
,

where θgu is the radius of the EE-Wasserstein ambiguity set for
UE u on RBG g and CNT×1 is the complex space for NT×1
column vector. We call FW∞ (θgu) as error-embedded (EE)-
Wasserstein ambiguity set as the center of the ball embeds
errors.

Note that the EE-Wasserstein ambiguity set is fundamentally
different than the so-called ∞-Wasserstein ambiguity set [15],
which assumes the collected data samples are error-free. Under
the ∞-Wasserstein ambiguity set, as the number of data
samples approaches ∞, the empirical distribution converges
to the true unknown distribution, reducing the radius of the
∞-Wasserstein ambiguity set to zero. In contrast, our EE-
Wasserstein ambiguity set considers CSI data samples with
external errors arising from hardware impairments, environ-
mental noise, thermal noise, and other factors. Specifically,
the empirical distribution at the center of our ambiguity set
is based on the collected CSI data samples containing these
errors. Therefore, even as the number of collected CSI data
samples approaches ∞, the empirical distribution based on
these collected CSI data samples (Pĥg

u
) does not converge to

the unknown empirical distribution (Phg∗
u

).2

In this context, The radius θgu, a crucial hyperparameter,
should be set according to the network setting to ensure that
Phg∗

u
falls within FW∞ (θgu). The larger the θgu, the larger the

ball and more conservative the solution will be (in terms of
the size of the feasible search space and achieved objective
value). Therefore, it is important to choose θgu appropriately
to meet our needs (i.e., to ensure Phg∗

u
falls inside the ball).

We propose to set the radius of the EE-Wasserstein ambiguity
set through long-term offline measurement.
Reformulating Probabilistic Chance Constraint into De-
terministic Constraint Now, we reformulate the chance
constraint (8) into a deterministic constraint based on the
established EE-Wasserstein ambiguity set. Since Phg∗

u
belongs

to FW∞ (θgu), as long as we guarantee the probabilistic data
rate for all distributions in FW∞ (θgu), we can claim the same
guarantee for Phg∗

u
. This means we can substitute (8) by the

following:

inf
Py

g
u
∈FW∞ (θg

u)
P
{∑

g∈Q

∑
m∈M

zmu rgu,m ≥ Ru

}
≥ 1− ϵu (u ∈ U),

(10)
where yg

u represents any NT × 1 complex column vector
and Pyg

u
represents any unknown empirical distribution inside

FW∞(θgu) based on K samples of yg
u.

To reformulate (10), we resort to the SINR γg
u, as rgu,m is

related to γg
u via (7). Inspired by the idea in [15], we aim

to reformulate (10) based on limited data samples using EE-
Wasserstein ambiguity set. As per [15], under ∞-Wasserstein
distance, guaranteeing (10) (i.e., guaranteeing chance con-
straint for any distribution Pyg

u
in FW∞(θgu)) can be achieved

by new constraints regarding the K CSI data samples. Specif-
ically, solving (10) is equivalent to solving the worst-case
value of the function associated with the chance constraint
(i.e.,

∑
g∈Q

∑
m∈M zmu rgu,m) for all available K data samples

under norm constraint and requiring at least K·(1−ϵu) of these
worst-case value to meet the data rate requirement Ru. By
norm constraint, we require that the ∞-Wasserstein distance

2On the other hand, as the number of CSI data samples goes to ∞, the
unknown error-free empirical distribution (Ph

g∗
u

) converges to the true error-
free unknown CSI distribution (Ph

g
u

).



between the empirical CSI distribution (Pĥg
u

) and any unknown
empirical distribution (Pyg

u
) be bounded by the radius θgu.

When L2 norm is used in the definition of ∞-Wasserstein
distance, finding the ∞-Wasserstein distance between these
two distributions is equivalent to finding the Euclidian distance
between the collected CSI data sample ĥg

u in Pĥg
u

and any CSI
sample yg

u in Pyg
u

. To compute the worst-case data rate for
each UE, we first need to determine the worst-case SINR for
these UEs. Let γ̂g

u(k) denote the worst-case SINR for u ∈ U ,
g ∈ Q, and k ∈ K. γ̂g

u(k) can be written as:

γ̂g
u(k) = min

{ ∣∣(wg
u)

†yg
u

∣∣2∑
i∈U ,
i ̸=u

|(wg
i )

†yg
u|2 + σ2

:
∥∥∥yg

u − ĥg
u(k)

∥∥∥
2
≤ θgu

}
.

(11)
Based on the values of γ̂g

u(k) for each UE, we can evaluate the
expected data rate achieved by the UEs. Using a similar data
rate calculations as in (7), let r̂gu,m(k) represent the expected
data rate for UE u on RBG g based on γ̂g

u(k), i.e.,

r̂gu,m(k) =

{
rm, if γ̂g

u(k) ≥ ηm,

0, otherwise.
(12)

Since we only have K collected CSI data samples, to satisfy
(10), we only need to guarantee that the achieved data rate for
UE u is greater than or equal to Ru for at least K · (1− ϵu)
data samples. Based on this understanding, substituting (12)
into (10), we can reformulate (10) using the CSI data samples
as:∑
k∈K

I
{∑

g∈Q

∑
m∈M

zmu r̂gu,m(k) ≥ Ru

}
≥ K(1− ϵu) (u ∈ U),

(13)
where I{·} is the indicator function returning 1 if its argument
is true and 0 otherwise.

Substitute (6) and (7) with (11) and (12) respectively, and
similarly replace (8) with (13), we then reformulate P1 as
follows:

(P2) min
xg
u,zm

u ,wg
u

q

s.t. Constraints (1), (2), (3), (4), (5),
Data rate calculation (11) and (12),
Data rate guarantee constraint (13).

P2 is a deterministic Mixed Integer Non-Linear Programming
(MINLP) problem. It is still hard to solve due to the coupling
of variables xg

u, zmu , and wg
u as discussed in Section II. In

fact, solving joint RBG allocation and MCS selection was
shown to be NP-hard [4]. Further, even with a given RBG
allocation and MCS selection, BF design remains difficult due
to constraints (11) and (13). In particular, it is hard to find the
optimal solution in (11).

V. RUDRA: SOLVING THE DETERMINISTIC FORMULATION

In this section, we design a solution to P2. Our approach,
shown in Fig. 3, consists of the following steps. First, Rudra
identifies a lower bound QLB for the total number of RBGs

Transform CCP P1 into a deterministic problem 
P2 using limited samples

Determine 𝑄!"# and 𝑄"#
Set 𝑏! : = 𝑄!"#; 𝑞 ≔ 𝑄"#

Perform RBG allocation (𝑥!
$) based on 𝑞 and 𝑏!

Return: 𝑞, RBG allocations (𝑥!
$), MCS (𝑧!%), and 

BF (𝐰!
$)

Yes

No

Stage 1

Stage 2

For UE 𝑢 with 
unmet 𝑅!

𝑏! ≔ 𝑏! + 1; 
𝑞 ≔ 𝑞 + 1

Is solution feasible?

Check feasibility of the solution w.r.t. (13)

Find MCS (𝑧!%) based on 𝑅! and 𝑏!

Find BF (𝐰!
$) using limited data samples

Fig. 3. A flow chart for solving the deterministic problem formulation by
Rudra.

required and the minimum number of RBGs QLB
u for each UE

to meet its data rate requirements. Using these values as a
starting point, Rudra allocates RBGs based on each UE’s data
rate requirement Ru. Next, Rudra selects an appropriate MCS
level for each UE based on the data rate requirements Ru and
the assigned number of RBGs bu. It then determines a suitable
BF solution by first creating Zero-forcing (ZF) basis vectors
from the collected CSI sample. These vectors are linearly
combined to form an initial BF solution, which is then scaled
to meet the assigned transmission power, calculated to achieve
the minimum SINR required for the selected MCS. Rudra then
checks the feasibility of the solution w.r.t. (13). If feasible,
Rudra terminates and returns the current RBG usage q, RBG
allocations xg

u, MCS levels zmu , and BF vectors wg
u for each

UE. If the solution is not feasible, Rudra increases the RBG
usage bu for UEs that have not met their data rate requirements
by 1, increases the total RBG usage q by 1, and repeats the
process until all UEs’ data rate requirements are satisfied. The
remainder of this section details each step.

A. Step 1: Determining Lower Bound for RBG

A simple lower bound for the required number of RBGs
can be found by assuming the highest MCS level (and thus its
corresponding achieved data rate) for each UE. Based on this,
we can determine the minimum number of RBGs required to
meet the data rate requirement Ru of each UE u.

Denote rmax
u as the maximum data rate achieved by UE u

on an RBG based on the highest MCS level (i.e., 29). rmax
u

can be easily calculated based on the spectral efficiency (SE)
Table 5.1.3.1-1 in [12]. Denote QLB

u as the minimum number
of RBGs required for UE u. We have:

QLB
u =

⌈
Ru

rmax
u

⌉
, (u ∈ U).

Since QLB
u is based on the highest possible MCS level for

each UE u ∈ U , our lower bound for total number of required



RBGs, denoted as QLB, should be at least maxu∈U QLB
u . On

the other hand, under MU-MIMO, each RBG can transmit up
to NT UEs on each RBG. In practice, due to channel rank
conditions, the actual number of UEs supported by an RBG
is typically smaller than NT. In this paper, we assume each
RBG can transmit to NT /2 UEs, where NT is the number of
antennas at the BS. Then we have:

QLB = max

{
max
u∈U

QLB
u ,

⌈∑
u Q

LB
u

NT/2

⌉}
.

QLB and QLB
u will be the starting points for q and bu,

respectively, in the iterative search.

B. Step 2: RBG allocation

In this step, we assign RBGs to UEs based on their data rate
requirements Ru’s. The main idea is to prioritize UEs with the
highest Ru’s with RBGs that enjoy the best channel quality
(based on CSI data samples).

First, Rudra sorts UEs in U based on a descending order
of Ru’s.3 Denote this new sorted set as Usort. Then we start
with the first UE in Usort, i.e., the one with the highest Ru

value in the set. Then for this UE u, we assign bu RBGs with
the best channel quality among the available RBGs. (If the
number of available RBGs is less than bu, Rudra increments
q by one more RBG and restart the RBG allocation process
for all UEs.)

To compare channel quality among the available RBGs and
chose the top bu RBGs with the best channel quality, we resort
to the collected CSI data samples. Specifically, denote ¯̂

hg
u as

the average squared Frobenius norm of channel gain for UE
u across RBGs g based on the K CSI data samples. We have:

¯̂
hg
u =

1

K

∑
k∈K

∥∥∥ĥg
u(k)

∥∥∥2
2
. (14)

The RBGs are then sorted in descending order based on their
¯̂
hg
u values, and the top bu distinct RBGs with the highest gains

are allocated to UE u.
Once Rudra is done with UE u, it removes u from the set

Usort and then consider the next UE in the set (with the highest
Ru requirement). Throughout the RBG allocation process, we
maintain a counter for each RBG to ensure it will not be
allocated to more than NT/2 UEs.

Once all UEs are allocated with their bu’s, Rudra terminates
with this RBG allocation step.

C. Step 3: Finding MCS

The goal of this step is to find a suitable MCS based on
the RBG allocation results from the previous step. To meet
each UE’s data rate requirements Ru, each RBG allocated to
an UE must deliver a minimum data rate of Ru

bu
, where Ru is

UE u’s data rate requirement and bu is the number of RBGs
allocated to UE u. Since UEs must use the same MCS level
for all scheduled RBGs, we set MCS level based on Ru

bu
. Then

we choose the lowest MCS level, say m, from Table 5.1.3.1-1
[12] that satisfies Ru

bu
and set zmu = 1 and ziu = 0 when i ̸= m.

3If there is a tie during sorting, then break the tie randomly.

D. Step 4: Finding BF Solution

Our goal is to determine a suitable BF solution based on
the current RBG allocation and MCS selection. We propose
to exploit the K CSI data samples (between each RBG g
and UE u) to compute ZF basis vectors, which will be
combined linearly to form the initial BF solutions. To scale
these solutions appropriately, we resort to power allocation.
To do this, we allocate power on each RBG w.r.t. its UEs
according to the UEs’ minimum SINR requirements, which
can be determined by the selected MCS levels from the
previous step. Once we have the power allocation among the
RBGs, the final BF solution is then obtained by scaling the
initial BF solution in proportion to the power allocation. We
elaborate on the details of our approach in the rest of this
section.

Denote Ug as the set of scheduled UEs on RBG g (from
RBG allocation step). Denote Hg(k) as the the k-th CSI
sample matrix for Ug , which is a |Ug|×NT complex channel
matrix. Let Wg

basis(k) denote the ZF basis matrix for all UEs
u ∈ Ug based on CSI sample k, forming a complex weight
matrix of size NT×|Ug|. Each column of Wg

basis(k) represents
the ZF basis vector for a UE u ∈ Ug . Wg

basis(k) can be
efficiently computed by pseudo-inverting Hg(k).

We generate the initial BF solution by linearly combining
the basis matrices Wg

basis(k) across K CSI samples, assigning
each ZF basis matrix an equal weight. For g ∈ Q, denote Ŵg

as the initial BF matrix for all scheduled UEs in RBG g. It is
computed as:

Ŵg =

K∑
k=1

Wg
basis(k) ,

where Ŵg is of size NT × |Ug|. Denote ŵg
u as the initial

precoding vector for UE u ∈ Ug , corresponding to a column
in Ŵg .

To scale these initial BF solutions appropriately, we consider
how power is allocated to each UE over its scheduled RBGs.
Specifically, We propose to perform power allocation for each
UEs u ∈ Ug to meet their minimum SINR requirement γ th

u.
Here, γ th

u is based on the selected MCS level from the previous
step (using Table 5.1.3.1-1 [12]).

Denote p̂gu as the minimum required power to be allocated
to UE u ∈ Ug to meet the minimum SINR requirement γ th

u.

That is, γ th
u =

p̂g
u
¯̂
hg

u

σ2 , where ¯̂
hg
u is defined in (14) and σ2 is the

noise power. Clearly, this is an estimate and assumes the BF
solution can null all interference. We have p̂gu =

γ th
uσ

2

¯̂
hg

u

.

Denote pgu as the final power allocated to UE u on RBG g.
Clearly, it should be allocated in proportion to p̂gu. We have:

pgu =
p̂gu∑

g∈Q
∑

u∈Ug p̂
g
u
Pmax .

Based on the above power allocation, we now perform
scaling on ŵg

u to obtain wg
u for all u ∈ Ug as:

wg
u = ŵg

u ·

√
pgu

∥ ŵg
u∥22

,



and for u /∈ Ug , set wg
u = 0.

E. Step 5: Reality Check and Updates

In this step, we verify if the current RBG allocation, MCS
selection, and BF design meet the data rate constraint (13) for
each UE. That is, we calculate the achieved data rate for each
UE w.r.t. K data samples and check whether or not at-least
⌈K(1− ϵu)⌉ indicator functions in (13) are true for each UE
u ∈ U . If all UEs meet their requirement, Rudra terminates
with the current solution. Otherwise, for those UEs whose data
rate requirements are not satisfied, their required number of
RBGs bu is incremented by 1. Then Rudra increases the total
RBG usage q by 1 and loops back to step 2 (RBG allocation).
We elaborate on the details of this step in the rest of this
section.

To evaluate (13) for UE u, we first need to compute γ̂g
u(k).

This entails solving the minimization problem (11). Given its
enormous complexity, we instead find a lower bound for γ̂g

u(k)
and use this lower bound for γ̂g

u(k).
An easy lower bound can be obtained by minimizing the

numerator
∣∣(wg

u)
†yg

u

∣∣2 and maximizing each
∣∣(wg

i )
†yg

u

∣∣2 term
in the denominator in (11), both subject to the constraint∥∥∥yg

u − ĥg
u(k)

∥∥∥
2
≤ θgu. We have:

(OPT-N) min
yg
u

∣∣(wg
u)

†yg
u

∣∣2
s.t.

∥∥∥yg
u − ĥg

u(k)
∥∥∥
2
≤ θgu.

(OPT-D) max
yg
u

∣∣(wg
i )

†yg
u

∣∣2
s.t.

∥∥∥yg
u − ĥg

u(k)
∥∥∥
2
≤ θgu.

Since both OPT-N and OPT-D are convex, we can easily find
their optimal solutions. For OPT-N, the closed-form expression
for the optimal solution yg,∗

u is:

yg,∗
u = ĥg

u(k)− θgu
wg

u

∥wg
u∥2

ej·∠((w
g
u)

†ĥg
u(k)) , (15)

where ∠ represents the phase of the argument in (). Similarly,
for OPT-D, the closed-form expression for the optimal solution
for i ̸= u, denoted as yg,∗

u(i), is:

yg,∗
u(i) = ĥg

u(k) + θgu
wg

i

∥wg
i ∥2

e
j·∠

(
(wg

i )
†
ĥg

u(k)
)
. (16)

We can substitute the optimal solutions (15) and (16) into the
objective function of OPT-N and OPT-D respectively to derive
their optimal objective values. By inserting these objective
values into the numerator and denominator of (11), we can
find a lower bound for γ̂g

u(k).
With the lower bound for achieved SINR γ̂g

u(k) for UE u,
we compute the data rate r̂gu,m(k) across all scheduled RBGs
based on (12). We then check the feasibility by evaluating
the indicator function in (13) across K CSI samples for each
UE. If the sum of the indicator function values is at least

TABLE I
SIMULATION PARAMETERS

BS
Number of transmit antennas (NT) 8
Maximum transmit power (Pmax) 46 dBm
5G numerology 0
Bandwidth per RB 180 kHz
Number of RBs per RBG 4
UE
Number of UEs (U ) 20 (Randomly distributed)
Data rate requirement (Ru) Random from [4, 7] Mbps
Risk level (ϵu) 0.1
Thermal noise (σ2) -150 dBm/Hz

⌈K(1− ϵu)⌉, the data rate requirement is satisfied and Rudra
returns the current xg

u, zmu , and wg
u as the final solution with

objective value q. Otherwise, for UEs whose data rates are
not satisfied, we increment their bu’s by 1, update the total
RBG q by 1, and repeat steps 2–5 until all UEs’ data rate
requirements are satisfied.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of Rudra.

A. Simulation Settings

A network topology with one BS and 20 UEs used in the
simulation is shown in Fig. 4(a). The BS is placed at the center
of the circle while the 20 UEs are randomly deployed within
a radius of 300 m from the center. The key parameters at the
BS and the UEs are given in Table. I.

The wireless channel is modeled by path loss and Rayleigh
fading. Specifically, the path loss (in dB) is given by: 38+30×
log10(du), where du is the distance between the BS and UE
u (in meter). To simulate the estimation error in the collected
CSI samples, we use a truncated Gaussian distribution [9].
We initialize the Gaussian distribution with a mean of 0 and
a variance of 0.1, followed by truncation at three standard
deviations from the mean. It should be noted that both the
channel model and estimation error model described are only
used for parameter generation in our simulation studies. Rudra
relies solely on limited CSI samples and are “blindfolded”
(unaware) to any distribution knowledge.

We collect K = 48 CSI samples per hg
u. We set radius for

our ambiguity set as θgu = 9.48× 10−7 for all u ∈ U , g ∈ Q.
All simulations were conducted on a MacBook Pro laptop

with a 2.3 GHz 8-core Intel Core i9 processor and 32 GB of
2667 MHz DDR4 RAM, using MATLAB R2021a.

B. Benchmark

To the best of our knowledge, no existing algorithm directly
addresses our problem. The closest is the Unified Algorithm by
Zhang, et al. in [4], which maximizes system throughput via
greedy RBG allocation and MCS selection, assuming perfect
channel knowledge. To extend this algorithm for our problem,
we use the average of available CSI data samples for the chan-
nel. Since the Unified Algorithm does not address BF design,
we incorporate ZF for BF. To make a fair comparison with
Rudra, we modify the Unified Algorithm to meet the UEs’
data rate requirements and change its objective to minimize
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Fig. 4. Performance evaluation of Rudra.

bandwidth usage. We call the modified algorithm “Modified
Unified Algorithm” (or MUA).

C. Case Study
In this section, we analyze Rudra’s performance through a

case study. We set ϵ = 0.1 and simulate over 10,000 TTIs.
Bandwidth Performance: Firstly, we present the bandwidth
performance of Rudra (q). Figure 4(b) shows the required
number of RBGs (q) from Rudra and that under MUA over 100
TTIs. As shown in the figure, the required number of RBGs
(q) under MUA is slightly lower than Rudra across the 100
TTIs. This is because MUA does not offer any guarantee on
UEs’ data rate requirement (as we shall see later in Fig. 4(c)).
But the difference between the two is not very significant.
Probabilistic Data Rate Guarantee: Next, we show the
average violation probability of data rate requirement for each
UE under Rudra and those under MUA. Figure 4(c) shows
the results for each UE, which are averaged over 10,000
TTIs. Clearly, Rudra’s violation probability meets the target
ϵ = 0.1 for all UEs, whereas MUA’s violation probabilities
exceeds ϵ = 0.1 for all UEs (with some exceeding 0.5, or
50%). This is because MUA does not incorporate chance
constraints (by taking into considerations of channel and
estimation uncertainty) in its algorithm design.

VII. CONCLUSIONS

In this paper, we investigated a spectrum usage mini-
mization problem with probabilistic data rate guarantees to
UEs. Our proposed solution, codenamed Rudra, addressed this
problem with the following innovative features: i) coping with
CSI uncertainty by using only limited CSI data samples; ii)
reformulation of a CCP into a deterministic MINLP using
an error-embedded (EE)-Wasserstein ambiguity set; iii) an
iterative algorithm to solve the deterministic spectrum min-
imization problem through RBG allocation, MCS selection,
and BF design. Simulations showed that Rudra achieves our
design objectives, outperforms a customized algorithm based
on the state-of-the-art.
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