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Abstract

Chemistry plays a crucial role in many domains, such as drug discovery
and material science. While large language models (LLMs) such as GPT-
4 exhibit remarkable capabilities on natural language processing tasks,
existing research indicates that their performance on chemistry tasks is
discouragingly low. In this paper, however, we demonstrate that our de-
veloped LLMs can achieve very strong results on a comprehensive set of
chemistry tasks, outperforming the most advanced GPT-4 and Claude 3
Opus by a substantial margin. To accomplish this, we propose SMollnstruct,
a large-scale, comprehensive, and high-quality dataset for instruction tuning.
It contains 14 selected chemistry tasks and over three million samples,
laying a solid foundation for training and evaluating LLMs for chemistry.
Using SMollnstruct, we fine-tune a set of open-source LLMs named as
LlaSMol, among which, we find that Mistral serves as the best base model
for chemistry tasks. Our analysis further demonstrates the critical role of

the proposed dataset in driving the performance improvements.!

1 Introduction

Chemistry is a fundamental science that underpins countless aspects of modern life, ranging
from drug discovery and materials science to energy production. To facilitate research and
applications in this domain, deep learning models including graph neural networks (Kipf &
Welling, 2017) and Transformer-based models (Vaswani et al., 2017) have been developed
for various chemistry tasks such as forward reaction prediction, retrosynthesis, property
prediction (Schwaller et al., 2019; Zhong et al., 2022; Chen et al., 2023; Zhou et al., 2023).
However, these models are usually task-specific models, which neglect shared chemistry
knowledge across tasks and can hardly be adapted to different tasks.

On the other hand, large language models (LLMs) such as GPT-4 (OpenAl, 2023), Llama se-
ries (Touvron et al., 2023a;b), and Mistral (Jiang et al., 2023) have emerged as general-purpose
foundation models and demonstrate remarkable abilities on various natural language pro-
cessing tasks (Chang et al., 2024; Thirunavukarasu et al., 2023; Yue et al., 2023; Zhang et al.,
2023; Deng et al., 2023). However, when applied to chemistry tasks, LLMs show only
limited capabilities (Jablonka et al., 2022; Guo et al., 2023; Hatakeyama-Sato et al., 2023). For
example, Guo et al. (2023) conducted evaluations on eight chemistry tasks and observed that
while GPT-4 outperforms other closed- and open-source LLMs, its performance is far from
that of task-specific deep learning models. Particularly, they found that GPT models perform
poorly when a precise understanding of SMILES (Weininger, 1988), a widely used textual
representation for molecules, is required. In addition to directly applying pretrained LLMs,
Fang et al. (2023) fine-tuned LLMs on an instruction tuning dataset, but their performance
remains very low, far behind the state-of-the-art (SoTA) models designed and trained for
specific tasks.

“Equal contribution.
10ur dataset and models can be found at https://osu-nlp-group.github.io/LLM4Chem/.
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Name Conversion Property Prediction

IUPAC to Molecular Formula (NC-12F) ESOL (PP-ESOL)

Query: What is the molecular formula of the compound with this IUPAC name Query: How soluble is <SMILES> CC(C)CI </SMILES> ?
SIUPAC> 2.5-diphenyl-1 3-oxazole </TUPAC> ? Response: Its log solubility is <NUMBER> -1.41 </NUMBER> mol/L.

Response: <MOLFORMULA> CISHIINO </MOLFORMULA>

LIPO (PP-LIPO)
IUPAC to SMILES (NC-12S) Query: Predict the octanol/water distribution coefficient logD under the circumstance of pH
Query: Could you provide the SMILES for 7.4 for <SMILES> NC(=0)C1=CC=CC=C10 </SMILES> .
<IUPAC> 4-ethyl-4-methyloxolan-2-one </IUPAC> ? LEPOIIES SRUMISIER LD NI
Response: Of course. It's <SMILES> CCC1(C)COC(=0)C1 </SMILES>
BBBP (PP-BBBP)

SMILES to Molecular Formula (NC-SZF) Query: Is blood-brain barrier permeability (BBBP) a property of
vy G e ST Represt e <SMILES> CCNC(=0)/C=C/C1=CC=CC(Br)=C1 </SMILES>?

<SMILES> $=P1(N(CCCI)CCCINCCCO1 </SMILES>, what would be its molecular formula? | Response: <BOOLEAN> Yes </BOOLEAN>
Response: It is MOLFORMULA> C7H15CI2N20PS </MOLFORMULA> . - -
ClinTox (PP-ClinTox)

SMILES to IUPAC (NC-S2I) Query: Is <SMILES> COC[C@@H](NC(C)=0)C(=0)NCC1=CC=CC=C1 </SMILES> toxic?
Response: <BOOLEAN> No </BOOLEAN>

Query: Translate the given SMILES formula of a molecule

<SMILES> CCC(C)CICNCCCNCI1 </SMILES> into its TUPAC name.
Response: <[UPAC> 3-butan-2-yl-1,5-diazocane </I[UPAC> HIV (PP-HIV)

Query: Can <SMILES> CC1=CN(C2C=CCCC20)C(=0)NC1=0 </SMILES> serve as an
inhibitor of HIV replication?

Response: <BOOLEAN> No </BOOLEAN>

Molecule Description

Molecule Captioning (MC) SIDER (PP-SIDER) -

Query: Describe this molecule: Query: Are there any known side effects of

<s|v|fu—_'g> CCOC(=0)C1=CN=CNI[C@H](C)C1=CC=CC=C1 </SMILES> <SMILES> CC1=CC(C)=C(NC(=0)CN(CC(=0)0)CC(=0)0)C(C)=C1Br </SMILES>
i affecting the heart?

Response: The molecule is an imidazole derivative with short-acting sedative, hypnotic, and
Response: <BOOLEAN> No </BOOLEAN>

general anesthetic properties. Etomidate appears to have gamma-aminobutyric acid (GABA)
like effects, mediated through GABA-A receptor. The action enhances the inhibitory effect of

GABA on the central nervous system by causing chloride channel opening events which leads to Chemical Reaction =

membrane hyperpolarization. L_LJ’I_.
; Forward Synthesis (FS) @

Molecule Generation (MG) Query: <SMILES> NC1=CC=C20C0C2-C1.0-CO</SMILES>

Query: Give me a molecule that satisfies the conditions outlined in the description: The Based on the reactants and reagents given above, suggest a possible product.

molecule is a member of the class of tripyrroles that is a red-coloured pigment with antibiotic Response: A possible product can be <SMILES> O=CNC1=CC=C20C0C2=C1 </SMILES>

properties produced by Serratia marcescens. It has a role as an antimi ial agent, a biological

pigment, a bacterial bolite, an is inducer and an anti lastic agent. It is a Retrosynthesis (RS)
tripyrrole, an aromatic ether and a ring assembly.

Response: Here is a potential molecule:

<SMILES> CCCCCC1=C(C)NC(/C=C2\N=C(C3=CC=CN3)C=C20C)=C1 </SMILES>

Query: Identify possible reactants that could have been used to create the specified product.
<SMILES> CC1=CC=C(N)N=CIN </SMILES>
Response: <SMILES> CC(C#N)CCC#N.N </SMILES>

Figure 1: An overview of tasks in the proposed SMollnstruct dataset.

Given these discouraging results, some critical questions arise: Are LLMs actually able to
effectively perform chemistry tasks? Or, Are they fundamentally limited for chemistry? In
this paper, we demonstrate that our developed LLMs can achieve very strong results on
a comprehensive set of chemistry tasks, substantially outperforming the most advanced
GPT-4 OpenAl (2023) and Claude 3 Opus Anthropic (2024).

What makes such LLMs possible? First, we construct a large-scale, comprehensive, and
high-quality dataset for instruction tuning named SMollnstruct. We incorporate tasks with
meaningful applications, collect data from diverse data sources, and apply rigorous scrutiny
for quality control. The resulting dataset consists of 14 tasks (illustrated in Figure 1) and
over 3M samples, laying a solid foundation for training and evaluating LLMs for chemistry
tasks. Based on the dataset, we build a series of LLMs for chemistry named LlaSMol by
fine-tuning four open-source LLMs namely Galactica, Llama 2, Code Llama, and Mistral, on
SMollInstruct with LoRA (Hu et al., 2022).

We conduct comprehensive experiments to evaluate our models and explore their insights,
yielding some interesting findings. Firstly, among the four LlaSMol models, the Mistral-
based model surpasses others by a substantial margin, showcasing the considerable influ-
ence of base models on downstream chemistry tasks. Moreover, contrast to claims made in
previous work (Fang et al., 2023), using SMILES as the molecular representation achieves suf-
ficient validity of generated molecules and better performance compared to using SELFIES
(Krenn et al., 2019). Furthermore, employing canonicalized SMILES during model training
and applications can alleviate learning burdens and increase performance. Finally, while
instruction tuning can inject chemistry task-related knowledge into models, the dataset
plays a crucial role. Our experiments demonstrate that training on our SMollnstruct leads
to substantially better performance compared to training on previous dataset, emphasizing
the contribution of the proposed dataset. Although LlaSMol models do not yet surpass
state-of-the-art (S0TA) task-specific models that are designed and trained specifically for
each individual task, they approach SoTA performance with only 0.58% of parameters being
fine-tuned, suggesting their great potential for further improvements and to serve as strong
foundation models for the field.
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2 Related Work

Task-specific Models for Chemistry. In recent years, many deep learning models have
been developed to tackle different chemistry tasks. For example, Molecular Transformer
Schwaller et al. (2019) and RSMILES Zhong et al. (2022) formulate forward synthesis and
retrosynthesis prediction as sequence-to-sequence translation problems. Chemformer Irwin
et al. (2022) pretrains a transformer model on a large-scale SMILES dataset and fine-tunes it
for various downstream tasks, such as forward synthesis and property prediction. MolT5
Edwards et al. (2022) first pretrains a T5 model on both SMILES and natural language,
and then fine-tunes it to translate SMILES into natural language (i.e., molecule captioning)
or vice versa (i.e., molecule generation). Graph neural networks (GNNs), which directly
leverage the graph structure of the molecule Wang et al. (2023), have also shown promise in
many chemistry applications, such as property prediction Yang et al. (2019); Han et al. (2023),
retrosynthesis Chen et al. (2023); Somnath et al. (2021), and molecule optimization Chen
et al. (2021); Zhang et al. (2022b). Recent studies Zhou et al. (2023); Zhang et al. (2022a) have
shown the promise of leveraging equivariant representations of molecular 3D structures
for chemistry tasks, such as property prediction Zhou et al. (2023) and docking Zhang et al.
(2022a). Uni-Mol Zhou et al. (2023) incorporates this 3D information into the pretraining
of a transformer model and fine-tunes it for downstream tasks. Despite their effectiveness,
these models operate on single tasks and therefore cannot harness knowledge shared across
diverse chemistry tasks like LLMs.

LLMs for Chemistry. Recent efforts have integrated LLMs with chemistry to solve key
chemistry problems, which can be divided into two categories: (1) benchmark studies, and
(2) fine-tuning LLMs with new datasets. Multiple benchmark studies White et al. (2023);
Guo et al. (2023); Jablonka et al. (2023); Liu et al. (2023a) have evaluated the capabilities and
limitations of different off-the-shelf LLMs, such as GPT-4 and Llama, on chemistry problems.
For example, Guo et al. (2023) finds that these LLMs do not perform well on chemistry tasks
and often produce chemically implausible outputs. These findings highlight the need for
further efforts to improve LLMs via fine-tuning for chemistry tasks.

To improve LLMs for chemistry, multiple instruction tuning datasets have been developed.
Mol-Instructions Fang et al. (2023) consists of 1.3M instructions for multiple small molecule
tasks. However, fine-tuning on the dataset does not significantly improve LLMs’ perfor-
mance (Section 4.3). Drugchat Liang et al. (2023) collects an instruction tuning dataset on
drug properties with 10.8K drug molecules. MolOpt-Instructions Ye et al. (2023) consists of
instructions with 1M molecule pairs for molecule optimization on six properties, in which
each pair has similar molecules with different properties. Recent works also develop 2D
or 3D molecular graph-centric datasets and integrate the graph understanding ability into
LLMs Liu et al. (2023b); Cao et al. (2023); Li et al. (2024). Compared with these datasets,
SMollnstruct is much larger and covers a more diverse and comprehensive set of chem-
istry tasks, which enables LLMs to better understand molecule representations and learn
chemistry knowledge across tasks.

3 SMollnstruct

This section introduces our proposed dataset SMollnstruct and its construction. Readers
may refer to Appendix A for preliminaries and background.

3.1 Overview of SMollnstruct

SMollnstruct is a large-scale instruction tuning dataset that centers around small molecules.
It contains 14 chemistry tasks, illustrated in Figure 1.

(1) We include four name conversion tasks, namely converting [IUPAC name to molecular
formula (NC-12F), converting IUPAC name to SMILES (NC-12S), converting SMILES to
molecular formula (NC-52F), and converting SMILES to IUPAC name (NC-52I). They are
designed to enable deep understanding of molecular structures and representations, which
should serve as the fundamental knowledge for chemistry LLMs.
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(2) Additionally, six property prediction tasks (Wu et al., 2018) are integrated, including PP-
ESOL for water solubility (Mobley & Guthrie, 2014), PP-Lipo for octanol/water distribution
coefficient (Poole & Poole, 2003), PP-BBBP for blood-brain barrier penetration (Martins
et al., 2012), PP-ClinTox for toxicity to human body (Gayvert et al., 2016), PP-HIV for HIV
replication inhibition (Institute, 2004), and PP-SIDER for side effects of drugs (Kuhn et al.,
2015). These involved properties are crucial especially for drug development.

(3) Two tasks focus on the textual descriptions of molecules: molecule captioning (MC) is
to generate a textual description of a given molecule, and molecule generation (MG) is to
generate a molecule based on the given textual description. They require comprehensive
understanding of molecules - their structures and properties, from their textual descriptions.
They also bridge the gap between natural language and molecules.

(4) Lastly, two tasks revolve around chemical reaction knowledge. Forward synthesis (FS)
aims to predict potential products from reactants and reagents, and retrosynthesis (RS)
involves predicting potential reactants given a product. These tasks play vital roles in
real-world applications (Coley et al., 2018). For example, retrosynthesis is essential for
synthesis planning, while forward synthesis is used to validate retrosynthetic suggestions.

SMollnstruct contains 3.3M samples. Each sample is a query-response pair, where the query
describes a task and any task-specific information (e.g., input molecule, textual description,
etc.), and the response is a sentence containing the answer to the queried task. For all the
tasks, unless explicitly defined in the tasks (NC-I2F, NC-12S, NC-52F, and NC-52I), we use
SMILES as the default representation for molecules, but also provide the SELFIES (Krenn
et al., 2019) representation.

3.2 SMollInstruct Construction

We construct the SMollnstruct dataset by following a four-step pipeline: data collection,
quality control, data splitting, and instruction construction.

Data Collection. After consulting domain experts and pinpointing the set of meaningful
tasks (summarized in Section 3.1), we collect data for these tasks from various sources, as
listed in Table 5. Specifically, for the name conversion tasks (NC-12F, NC-12S, NC-S2F, and
NC-52I), we leverage PubChem? (Kim et al., 2019), one of the most comprehensive molecule
databases. Within this database, we randomly select a large set of molecule entries, and
extract their [UPAC names, SMILES representations, and molecular formulas. This obtained
data is then re-organized as input-output pairs for the tasks. For molecular description-
related tasks (MC and MG), we utilize a combination of ChEBI-20 (Edwards et al., 2021;
2022) and Mol-Instructions (Fang et al., 2023), as they both contain high-quality molecule-
text paired data. For property prediction tasks (PP-ESOL, PP-Lipo, PP-BBBP, PP-ClinTox,
PP-HIV, and PP-SIDER), we employ the well-established MoleculeNet datasets (Wu et al.,
2018). We select the 6 datasets from MoleculeNet that represent the essential properties
for real-world applications such as drug discovery. For chemical reaction tasks (FS and
RS), we collect the reaction data from USPTO-full (Lowe, 2017), which is an extensive
collection encompassing over 1M reaction samples extracted from U.S. patents. All the
aforementioned datasets are also widely used in previous studies (He et al., 2021; Zhong
et al., 2022; Edwards et al., 2022; Irwin et al., 2022; Chen et al., 2023; Zhou et al., 2023).

Quality Control. To guarantee high quality, we apply rigorous scrutiny. The collected data
contains many problematic and low-quality samples, which can be roughly categorized into
the following three types, along with our curation methods: (1) Chemically invalid SMILES.
Numerous SMILES strings are chemically invalid (e.g., deviating from the SMILES grammar,
or violating chemical valence). To address this issue, we employ RDKit (RDKit, 2023), a
widely used toolkit for cheminformatics, to parse molecules and detect errors. (2) Wrong
or inaccurate information. Based on manual check, we observed wrong and inaccurate
information recorded in the data. For instance, within the USPTO-full dataset (Lowe,
2017), we identify and correct mislabeled reactants and reagents in chemical reactions by
comparing their atom mappings with products. For the MC and MG tasks, we filter out those
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textual descriptions that lack pertinent, molecule-specific information, with a set of rules
based on wording patterns, lengths and keywords. For PP-SIDER, we eliminate disorders
with ambiguous names that could impede the creation of precise and comprehensible
instructions. (3) Duplicated samples. We detect and remove them.

Data Splitting. Data splitting for multi-task datasets requires careful handling to prevent
data leakage across tasks. For instance, FS and RS are a pair of reverse tasks, so data leakage
occurs when the training set contains an FS sample for a certain chemical reaction and the
test set has an RS sample for the same reaction. This can lead to biased evaluation. Therefore,
we identify sample pairs across related tasks (FS and RS, MC and MG, and the four NC
tasks) that correspond to the same molecules/reactions, and ensure that matched samples
are placed together in either training or evaluation set. Moreover, some samples may share
the same input but have different outputs. For instance, in the RS task, one product (the
same input) may be synthesized from multiple sets of reactants (different outputs). If these
samples are placed into both training and test set, it may lead to exaggerated performance.
Therefore we ensure that samples with identical inputs are placed together either in or
outside of the test set. Additionally, to achieve fair comparisons with Mol-instructions (Fang
et al., 2023), for tasks shared between the two datasets (MC, MG, FS, and RS), we ensure
that their training examples are not included in the test set of SMollnstruct, allowing for
a direct evaluation of their models on our test set. After implementing these constraints,
samples are randomly split into training /validation/test set, except for PP task samples
that undergo a scaffold splitting following the canonical method (Wu et al., 2018).

Instruction Creation. To create query-response textual pairs for instruction tuning, we
manually craft several templates, each including a query and a corresponding response,
and apply GPT-4 to rephrase them. Unlike those in (Fang et al., 2023) which consist of
highly formatted queries (containing three explicitly labeled parts namely instruction, input,
and output) and answer-only responses (e.g., responses for FS and RS only contain answer
SMILES alone, without any natural text), our templates exhibit a more natural and diverse
set of formats in both queries and responses, allowing for more variations and naturalness
in input-output interactions. Moreover, all the SMILES representations are canonicalized,
establishing a standardized data format. In light of the dataset’s inclusion of multi-type
sequences (SMILES, molecular formula, numbers, etc.) beyond natural language text alone,
we utilize special tags to encapsulate corresponding segments (e.g., <SMILES>. . .</SMILES>
for SMILES, <MOLFORMULA>. . .</MOLFORMULA> for molecular formula, <NUMBER>. . . </NUMBER>
for numbers). This design does not only explicitly inform models about the information
types within the tagged content, but also facilitate answer extraction during evaluation.

For more details of dataset construction, please refer to Appendix B.2.

3.3 Merits of SMollnstruct

Compared to previous work (Fang et al., 2023; Liang et al., 2023; Ye et al., 2023), SMolInstruct
stands out in several key aspects:

(1) Large-Scale. SMollnstruct consists of 3.3M samples and 1.6M distinct molecules, with
a diverse range of sizes, structures, and properties (see Appendix B.1), showcasing an
extensive coverage of diverse chemical knowledge.

(2) Comprehensive. SMollnstruct contains 4 types of chemical tasks (14 tasks in total),
emerging as the most comprehensive instruction tuning dataset for small molecules. Notably,
the tasks are meticulously selected to build a strong chemistry foundation model and to
adapt to real-world applications.

(3) High-Quality. Rigorous processing steps have been implemented to exclude problematic
and low-quality samples. Along with careful data splitting and canonicalization of SMILES
representations, SMollnstruct stands as a high-quality resource valuable for future research.

A detailed introduction and statistics of the SMollnstruct dataset can be found in Appendix B.
For a comparison with the previous work, Mol-Instructions (Fang et al., 2023), please refer
to Appendix C.
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4 Experiments

4.1 Owur LlaSMol Models

By fine-tuning base models on the proposed SMollnstruct dataset, we create LLMs capable
of performing chemistry tasks, which we name LlaSMol (Large language models on Small
Molecules). Specifically, we extensively consider four different LLMs as our base models,
namely Galactica 6.7B (Taylor et al., 2022), Llama 2 (Touvron et al., 2023b) 7B, Code Llama
(Roziere et al., 2023) 7B, and Mistral (Jiang et al., 2023) 7B, where Galactica is trained
for scientific applications and has already been exposed to chemistry-related data during
its pretraining, Llama 2 and Mistral are general-purpose LLMs, while Code Llama is
based on Llama 2 and trained for code. We conduct instruction tuning on the proposed
SMolInstruct dataset, and name the resulting models as LlaSMolgajactica, L1aSMOly jama 2,
LlaSMolcode Liama, and LlaSMolygstral, respectively. All the LlaSMol models are trained with
LoRA (Hu et al., 2022), which is applied to all weight matrices in the self-attention and
feedforward neural network (FFN) modules with lora_r and lora_alpha set to 16. The fine-
tuning process utilizes the Huggingface Transformers library (Wolf et al., 2020). Training
spans three epochs, employing the 8-bit AdamW optimizer, a learning rate of le-4, and
a cosine scheduler. The input length for training is set to 512, which covers 99.7% of the
samples. During inference, we adopt beam search as the generation strategy for simplicity.

4.2 Experimental Setup

Compared Models. We compare our LlaSMol models with two types of models:

(1) LLMs without fine-tuning on SMollnstruct. This type includes our four base models,
namely Galactica (Taylor et al., 2022), Llama 2 (Touvron et al., 2023b), Code Llama (Roziere
etal., 2023), Mistral (Jiang et al., 2023). we also benchmark against GPT-4 (OpenAl, 2023) and
the more recent Claude 3 Opus (Anthropic, 2024), the current state-of-the-art (SoTA) LLMs3.
For Llama 2, Code Llama, and Mistral, we use 1-shot, due to their poor instruction following
ability; for GPT-4, we report its results under a zero-shot setting, as GPT-4 performs best on
this setting in our experiments (Appendix E); for Claude 3 Opus, we report its zero-shot
results as well. We also include two LLMs tuned specifically for chemistry tasks: Molinst, a
Llama 2 model tuned on the Mol-Instructions dataset by Fang et al. (2023), which shares the
training tasks of MC, MG, FS, and RS with LlaSMol; and ChemLLM (Zhang et al., 2024), an
LLM for chemistry proposed concurrently to our work.

(2) SoTA task-specific models. To provide a comprehensive view of LlaSMol’s performance,
we present results from SoTA task-specific models. For NC-I2S and NC-52I, we compare
with STOUT (Rajan et al., 2021), an encoder-decoder model trained on SMILES-IUPAC name
paired data. For NC-52F, a task achievable with a fixed algorithm, we implement a program
with RDKit (RDKit, 2023), a widely used Python toolkit for cheminformatics, and report
its results. For NC-I2F where no dedicated models exist, we construct a baseline called
STOUT+RDKit by aggregating STOUT for 125 conversion and RDKit for S2F conversion. For
the PP tasks, our compared model is Uni-Mol (Zhou et al., 2023). It incorporates molecular
3D representations and follows a pretraining and fine-tuning paradigm. Following its
original settings, we fine-tune the model on our SMolInstruct dataset with its pretrained
checkpoint. In the case of MC and MG, we compare with MolT5 (Edwards et al., 2022)
and directly use their released checkpoint. The reasons why we do not use our re-trained
model are: (1) we were unable to reproduce results close to those reported in the paper as no
original code was provided; and (2) we take great care to ensure that our test set is devoid
of training examples used by MolT5, ensuring fairness in the evaluation. Lastly, regarding
FS and RS, we re-train RSMILES (Zhong et al., 2022) and Molecular Transformer (Schwaller
et al., 2019) for the two tasks, respectively, following their reported settings. Both of the
models are transformer encoder-decoder models (Vaswani et al., 2017), specifically adapted
for the FS and RS tasks.

3Due to resource limitations, we evaluate GPT-4 and Claude 3 Opus on at most 500 test samples
for each task.
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Table 1: Results on name conversion (NC) and property prediction (PP) tasks. Metrics EM,
Valid, and Acc are in percentage.

NC PP
Model 12F 125 S2F  S21  ESOL  Lipo  BBBP Clintox HIV SIDER
EM EM Valid EM EM RMSE, RMSE, Acc  Acc  Acc  Acc

Task-Specific, Non-LLM Based Models

SoTA 979 735 994 1000 56.5 0.819 0.612 85.3 92.4 97.0  70.0
Existing LLMs without fine-tuning on SMolInstruct
GPT-4 87 33 842 48 00 2570 1.545 62.9 50.0 59.6  57.6
Claude 3 Opus 346 177 902 92 0.0 1036 1.194 75.1 41.7 764  67.0
Galactica 91 97 956 00 00 4184 2.979 69.0 92.4 96.7  68.1
Llama 2 00 00 183 00 00 3287 1.634 58.9 451 933 619
Code Llama 00 00 810 00 00 3483 1.733 58.9 85.4 91.8 602
Mistral 00 0.0 403 00 00 3.079 1.730 40.6 15.3 71 381
Molinst (chemistry LLM) 00 00 9.2 00 00 2271 1.691 60.9 6.3 45 524

ChemLLM (chemistry LLM) 0.8 0.3 3.9 0.0 00 1946 1.797 22.3 75.7 729 32.6
Our LlaSMol Series

LlaSMolGaactica 832 587 994 912 183 1959 1213 690 931 967  70.1
LlaSMol; jama 2 738 466 990 870 129 2791 1338 690 924 967 687
L1aSMolCode 1 tama 754 499 993 886 155 2959 1203 690 931 967 699
LlaSMolygigtral 879 701 99.6 932 290 1150 1010 746 931 967 707

Evaluation Metrics. We employ metrics commonly used in previous work (Schwaller et al.,
2019; Zhong et al., 2022; Fang et al., 2023; Zhou et al., 2023; Chen et al., 2023), which include:
(1) Exact Match (EM), indicating the proportion of predicted results that exactly match
the gold standards. (2) Fingerprint Tanimoto Similarity (FTS), quantifying structural
similarities between molecules using Tanimoto similarities of their Morgan fingerprints
(Morgan, 1965). (3) METEOR score, a comprehensive text-based metric considering both
exact matches and semantic similarity (Lavie & Agarwal, 2007) for the MC task. (4) Root
Mean Square Error (RMSE), measuring the square root of the average squared differences
between predicted and actual values for the PP-ESOL and PP-Lipo tasks (5) Accuracy (Acc),
the ratio of correct predictions for the binary classification tasks (PP-BBBP, PP-ClinTox,
PP-HIV, and PP-SIDER). (6) Validity (Valid), the ratio of valid predictions following SMILES
grammar and chemical valence rules for tasks with SMILES outputs (NC-I2S, MG, FS, and
RS). For all the metrics except RMSE, higher values indicate better performance.

4.3 Main Results

Table 1 and 2 show the performance of different models on SMollnstruct. We make the
following key observations:

(1) Among all the LLMs, our LlaSMol models demonstrate the best performance, under-
scoring the effectiveness of the proposed SMollInstruct dataset and fine-tuning. Specifi-
cally, compared to the base models (Galactica, Llama 2, Code Llama, and Mistral), LlaSMol
models exhibit substantial performance improvements, which highlights the effectiveness
of SMollnstruct in enhancing the understanding of molecular representations and the task-
related knowledge, and signifies the effective learning of chemistry-related tasks by LLMs.
Furthermore, LlaSMol substantially outperforms GPT-4 on all the tasks and Claude 3 Opus
on most tasks, despite their larger parameter size. LlaSMol also surpasses the two chemistry
LLMs namely ChemLLM?*, which is similarly trained on chemistry instruction data. and
Molinst. Notably, LlaSMol; j,m, 2, which uses the same base model and LoRA setting as
Molinst, outperforms it even on the shared training tasks (MC, MG, FS, and RS). This finding
highlights the benefits of our dataset.

(2) Our four LlaSMol models show substantial differences in their performance, empha-
sizing the considerable impact of base models on downstream tasks. Despite sharing iden-
tical training, inference settings, and comparable model sizes, LlaSMoljyjstrq1 consistently out-
performs LlaSMol; |, 2 by a substantial margin, highlighting Mistral’s potential on chem-
istry tasks. In addition, LlaSMolcode 11ama €xhibits better performance than LlaSMoly j,ma 2

4Gince its dataset and evaluation details are not available, we cannot provide more analysis.
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Table 2: Results on molecule captioning (MC), molecule generation (MG), forward synthesis
(FS), and retrosynthesis (RS). Metrics EM, FTS, and Valid are in percentage.

Model MC MG FS RS

ode METEOR EM FTS Valid EM FIS Valid EM FTS Valid

Task-Specific, Non-LLM Based Models
SoTA 0.515 317 732 953 787 922 100.0 47.0 775 99.7
Existing LLMs Without Fine-Tuning on SMolInstruct
GPT-4 0.188 64 426 814 1.6 405 87.0 0.0 334 42.6
Claude 3 Opus 0.219 123 576 926 3.7 457 97.0 1.1 462 94.8
Galactica 0.050 00 11.6 947 0.0 259 83.7 0.0 34.6 93.0
Llama 2 0.150 0.0 48 935 0.0 137 97.7 0.0 275 87.7
Code Llama 0.143 0.0 85 952 0.0 158 99.6 0.0 253 97.1
Mistral 0.193 0.0 9.0 359 0.0 199 95.8 0.0 242 98.0
Molinst (chemistry LLM) 0.124 6.0 43.6 848 21 317 99.8 5.7 48.0 97.8
ChemLLM (chemistry LLM) 0.050 09 143 4.3 0.0 1.6 38.5 0.0 2.9 10.9
Our LlaSMol Series

LlaSMolGyjactica 0.394 77 522 996 531 799 997 257 670 999
L1aSMol; jama 2 0.377 64 471 996 471 769 998 225 652 999
L1aSMolCoge Liama 0.366 65 466 997 520 792 998 257 667 100.0
LlaSMolyfistral 0.452 19.2 61.7 99.7 633 849 99.8 329 704 100.0

Table 3: Ablation study results on NC and PP. Metrics EM, Valid, and Acc are in percentage.
Orange indicates better results than LlaSMolyyigirq1; blue indicates worse.

NC PP
Model 12F 128 S2F S2I  ESOL Lipo BBBP Clintox HIV SIDER
EM EM Valid EM EM RMSE| RMSE| Acc Acc Acc Acc
LlaSMolyistral 879 701 99.6 932 29.0 1.150 1.010 74.6 93.1 96.7 70.7
w /0 canonical 885 672 99.6 934 245 1.224 1.072 71.6 93.1 96.8 70.3
using SELFIES 86.9 477 100.0 947 197 1456 1.106 69.5 91.7 96.5 64.4
train on Mol-Instructions = 0.0 0.0 752 00 00 4.416 2282 0.0 0.0 2.6 04

on most tasks, indicating a potential synergy between programming language knowledge
in Code Llama and molecular representations. Furthermore, LlaSMolg,jactica Outperforms
LlaSMol; jama 2, and LlaSMolcode L1ama in most cases, suggesting the benefits of pretraining
on chemistry-related documents.

(3) Although LlaSMol models do not outperform SoTA models, they demonstrate con-
siderable potential for further improvements. Specifically, LlaSMolyistra) Surpasses the
SoTA models on PP-Clintox and PP-SIDER, but has yet to achieve the success on other
tasks. However, LlaSMol has greatly narrowed the performance gap between LLMs and
SoTA task-specific models, compared to previous efforts (Fang et al., 2023; Zhang et al.,,
2024). Remarkably, LlaSMolyistra attains such performance with only a small proportion
of its parameters fine-tuned (approximately 41.9M, 0.58% of its parameters). As shown
in Appendix F.2, increasing the number of trainable parameters can substantially boost
performance, suggesting that LlaSMolyistra; has immense potential to surpass task-specific
models through more extensive fine-tuning and serve as a strong foundation model for
chemistry applications.

4.4 Ablation Study

To investigate the advantages of SMolInstruct, we conduct an ablation study by comparing
LlaSMolysigtra; With the following variants: (1) w/o canonical, which uses uncanonical-
ized SMILES, to examine the benefits of canonicalization. (2) using SELFIES, which uses
SELFIES Krenn et al. (2019) instead of SMILES to explore their differences. (3) train on
Mol-Instructions, which is trained on Mol-Instructions (Fang et al., 2023), to compare the
performance improvements of our dataset against the previously proposed dataset.

The results in Table 3 and Table 4 lead to the following observations: (1) The “w /o canonical”
model underperforms LlaSMolyy;sira1 ON most tasks, with a substantial performance drop
on FS and RS. This suggests that canonicalizing SMILES can reduce learning difficulty and
improve performance. As canonicalization can be easily performed using fixed algorithms
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Table 4: Ablation study results on MC, MG, FS, and RS. Metrics EM, FTS, and Valid are in
percentage. Orange indicates better results than LlaSMolyyistra1; blue indicates worse.

Model MC MG FS RS
ode METEOR EM FTS Valid EM FTS Valid EM FTS Valid
LlaSMolistral 0.452 192 617 997 633 849 998 329 704 100.0
w/o canonical 0.457 168 602 991 537 808 999 238 674 999
using SELFIES 0.466 162 586 999 404 740 1000 256 660 999

train on Mol-Instructions 0.195 6.1 46.1 882 39 371 78.3 74 526 76.7

before feeding into models, we recommend using canonical SMILES when training and
applying LLMs for chemistry. (2) While using SELFIES slightly improves the validity of
generated molecules, which aligns with the motivation behind SELFIES (Krenn et al., 2019),
the validity of using SMILES is also sufficiently high. Moreover, using SELFIES results in
worse performance on most tasks, possibly due to SELFIES being typically longer than
SMILES, making it more difficult for the model to accurately understand and generate.
Therefore, using SELFIES over SMILES may not be necessary, contrast to claims made in
previous work (Krenn et al., 2019; Fang et al., 2023). (3) Despite using identical base models
and training settings, the model trained on Mol-Instructions (Fang et al., 2023) performs
much worse than LlaSMolyjsira1 trained on SMollnstruct even on the shared tasks (MC, MG,
FS, and RS). This demonstrates the superiority of our dataset. A detailed comparison with
Mol-Instructions can be found in Appendix C.

To gain deeper insights into the models’ performance and behavior, we conduct further
analytical experiments: (1) To investigate the synergistic effects among different tasks, we
evaluate models trained on a single task and models with certain tasks removed. The results
demonstrate multiple-task training outperforms single-task training, indicating its benefits.
However, each task generally does not heavily rely on the presence of other tasks, suggesting
a degree of independence among them. (2) To investigate the influence of LoRA (Hu et al,,
2022) settings, we vary the involved LoRA modules. We observe that adding LoRA modules
(and trainable parameters) leads to a substantial boost in performance, indicates the models’
great potential for further improvements if with larger-scale fine-tuning. Please refer to
Appendix F for more details.

5 Conclusion

While LLMs show promise as versatile assistants, their performance on chemistry-related
tasks remains notably subpar. To address this issue, we introduces SMollnstruct, a large-
scale, comprehensive, and high-quality instruction tuning dataset. It comprises 14 tasks
highly relevant to real-world applications and contains over 3M rigorously curated samples.
Using SMollnstruct, we develop LlaSMol, a series of LLMs for performing chemistry tasks.
Our experiments demonstrate LlaSMol'’s superiority over existing LLMs, and highlight
SMollnstruct’s crucial role in boosting the performance. Further analytical experiments also
provide significant insights towards developing LLMs for chemistry and science.

However, this work has the following limitations. First, the evaluations for the MC and MG
tasks cannot accurately assess models’ abilities to generate chemically correct descriptions
and molecules. Since the definition of molecular descriptions remain ambiguous and the
available data is limited, it is challenging to assess whether the generated descriptions
or molecules are accurate and correct. Second, this work does not delve into the models’
generalization capabilities beyond the trained tasks. While we recognize the importance
of such capabilities, how to meaningfully test generalization abilities is nontrivial and
needs careful design, which falls outside the purview of this work. Third, our models do
not yet outperform SoTA task-specific models, possibly due to the small ratio of trainable
parameters or suboptimal training procedures. Nevertheless, we propose a high-quality
instruction tuning dataset, demonstrate its effectiveness, and gain deeper insights, which
we hope can be valuable for future research. We will try to address the aforementioned
limitations in our future work.
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A Preliminaries

Molecules form the basis of chemistry, which fundamentally determines the properties and
behaviors of most substances. A molecule is a group of atoms held together by chemical
bonds (Brown, 2018). In this paper, we focus on small molecules, which typically have no
more than 100 atoms and a low molecular weight under 1,500 Daltons (Lenci & Trabocchi,
2020). Small molecules perform many important functions, such as signaling in cellular
biology (McNerney & Styczynski, 2018), pest control in agriculture (Burns et al., 2006),
micronutrients in nutrition (Chen et al., 2022), and drug therapy in medicine (Lenci &
Trabocchi, 2020). Given the importance of small molecules, it is essential to integrate LLMs
into the study of small molecules to further advance their design or development.

Molecules can be represented in multiple ways, such as SMILES strings, IUPAC names,
and molecular formulas. SMILES strings use a sequence of symbols to encode the
2D structures of molecules (Weininger, 1988). A molecule can have multiple SMILES
strings; a canonical SMILES for the molecule is unique and deterministic. For exam-
ple, the canonical SMILES representation of glucose is “C(C1C(C(C(C(01)0)0)0)0)O”.
SELFIES (Krenn et al., 2019) is an alternative representation to SMILES that also uses
a sequence of symbols to denote molecular structures. Its key advantage is robust-
ness, as every SELFIES string is guaranteed to correspond to a valid molecule. The
SELFIES representation corresponding to the above SMILES representation of glucose
is “[C][Branch2][Ring1][Branch1][C][C][Branch1][S][C][Branch1][N][C][Branch1][Branch2]
[C][Branch1][Ring2][O][Ring1][=Branch1][O][O][O][O][O]”. Molecular formulas represent
a molecule by enumerating the type and number of atoms in the molecule (Solomons et al.,
2022). For example, the molecular formula for glucose is “CgH1204”. IUPAC names are
formal names based on natural language elements, which follow the systematic rules set
by the International Union of Preferred and Applied Chemistry (IUPAC) (Favre & Powell,
2014). These names are derived from the structures and functional groups of molecules,
and are intended to be human-readable. For example, the IUPAC name for glucose is
“(3R,45,55,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol”.

Molecules are one of the fundamental units of chemistry that participate in reactions
(Brown, 2018). A reaction is a process which converts input molecules (reactants) into
output molecules (products) through the breaking and forming of chemical bonds. Other
molecules (reagents) may be present to enhance or facilitate the reaction.

B Details of SMollInstruct

In this section, we introduce the details of our proposed dataset SMollnstruct, including
statistics and construction details.

B.1 The statistics of SMolInstruct

Table 5 shows the statistics of SMollnstruct. It contains 4 types of altogether 14 tasks, which
are selected to be meaningful and useful. There are about 3.3M samples, and each of them is
a distinct sample. In other words, there does not exist a pair of samples who share the same
chemical information (i.e., the core input and output information, such as input molecules
and output molecules), but with the same or different natural language templates (i.e., the
task description in the query and the sentence templates in the response). When needed,
one can easily create more instruction tuning samples by combining one piece of chemical
information with multiple natural language templates. All in all, SMolInstruct can serve as
a good benchmark for training and evaluating LLMs on various chemistry tasks.

To know more about the diversity of SMollnstruct, we conduct a statistics on the molecules.
Altogether, there exist 1.6M distinct molecules, and several important statistical values are
shown in Figure 2. Specifically, Bertz complexity is a topological index that measures the
complexity of molecules based on the number and types of bonds and atoms. Atom count
shows the number of atoms in a molecule, and it represents the size of a molecule. Molecular
weight is the sum of the atomic weights of the atoms in a molecule. And ring count shows
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Table 5: The statistics of SMolInstruct. “Qry.” and “Resp.” are average lengths of queries
and responses, respectively.

Task Task abbr. #Train #Valid  #Test #All Qry. Resp.
Name Conversion. Data Source: PubChem

IUPAC to Molecular Formula  NC-I2F 300,000 1,497 2,993 304,490 84 25
TUPAC to SMILES NC-12S 299,890 1,496 2,993 304,379 82 59
SMILES to Molecular Formula NC-S2F 299,800 1,496 2,993 304,379 68 26
SMILES to IUPAC NC-S21 299, 890 1,496 2,993 304,379 72 68
Property Prediction. Data Source: MoleculeNet

ESOL PP-ESOL 888 111 112 1,111 43 22
Lipo PP-Lipo 3,360 420 420 4,200 80 11
BBBP PP-BBBP 1,569 196 197 1,962 68 11
ClinTox PP-ClinTox 1,144 143 144 1,431 69 11
HIV PP-HIV 32,864 4,104 4,107 41,075 63 11
SIDER PP-SIDER 22,820 2,860 2,860 28,540 82 11
Molecule Description. Data Source: Mol-Instructions, ChEBI-20

Molecule Captioning MC 56,498 1,269 2,538 60,305 83 102
Molecule Generation MG 56,498 1,269 2,493 60,260 117 75
Chemical Reaction. Data Source: USPTO-full

Forward Synthesis FS 971,809 2,049 4,062 977,920 98 52
Retrosynthesis RS 941,735 2,092 4,156 947,983 77 70
Overall 3,288,855 20,498 33,061 3,342,414 83 55
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(a) Bertz complexity. (b) Atom count. (c) Molecular weight. (d) Ring count.

Figure 2: The statistics of molecules in SMollnstruct, with the long tail parts removed for a
clear presentation.

the number of rings in the molecular structures. As we can see, the values varies much,
showing a extensive coverage in terms of complexity, size, and structure. Notably, when
compared to Mol-Instructions (Fang et al., 2023), molecules in SMolInstruct show a higher
complexity and diversity, which indicates that SMollnstruct is more comprehensive and
complicated than Mol-Instructions. The scale, complexity, and diversity of SMollnstruct
makes it well-suited for learning chemistry LLMs.

B.2 Details of Dataset Construction

Dataset construction involves four key steps (Section 3.2): data collection, quality control,
data splitting, and instruction creation. This section provides task-specific details, omitting
the common steps of canonicalizing SMILES/SELFIES and verbalizing information into
query and response sentences, which have been introduced in Section 3.2.

Name Conversion (NC). The raw data for name conversion is collected from PubChem
(Kim et al., 2019). Approximately 300k molecule/compound entries are randomly selected
from the database, and their SMILES, IUPAC names, and molecular formulas are extracted.
Entries with incomplete or missing information in these three domains are discarded. Finally,
the SMILES, IUPAC names, molecular formulas are paired to create samples for the four
name conversion tasks.
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Property Prediction (PP). The raw data for property prediction is sourced from MoleculeNet

(Wu et al., 2018). Out of its 16 core datasets®, we select 6 that are only related to small
molecules and are useful especially in drug discovery. Answers for regression tasks (e.g.,
ESOL and Lipo) are formulated as strings of numbers, and answers for binary classification
tasks (e.g., BBBP and SIDER) are formulated as “Yes” or “No”.

Molecule Captioning (MC) and Molecule Generation (MG). The raw data is collected
from ChEBI-20 (Edwards et al., 2021; 2022) and Mol-Instructions (Fang et al., 2023). Despite
the large number of samples in Mol-Instructions, many are found to be of low quality. For
example, numerous molecular descriptions end with the ambiguous phrase “with data
available”, while others are overly general, making it difficult to generate a specific molecule
based on the description. To ensure data quality, regular expressions and heuristic rules are
employed to filter out low-quality samples.

Forward Synthesis (FS). USPTO-full (Lowe, 2017), one of the most comprehensive chemical
reaction datasets, serve as the data source. The following processing steps are performed
to clean the data: (1) Reactants and reagents are combined as input, and the product(s)
serve as output, consistent with other datasets such as Mol-Instructions (Fang et al., 2023).
(2) Duplicate chemicals in both input and output are removed to avoid redundancy. (3) If
a chemical appears in both input and output, it is removed from the output to maintain
data integrity. (4) Products in the output containing fewer than 5 molecules are considered
non-main products and excluded. (5) If the above steps result in an empty output, the entire
sample is discarded.

Retrosynthesis (RS). The data is also sourced from USPTO-full (Lowe, 2017), with the
product as input and the reactants (excluding reagents) as output. During data exploration,
we observe instances where reactants are mislabeled as reagents and vice versa. To address
this issue, we compare the atom mapping numbers of the reactants and reagents with the
products and relabel them accordingly. Subsequently, we apply the following processing
steps: (1) Duplicate chemicals in both input and output are removed. (2) If a chemical
appears in both input and output, it is removed from the input. (3) Products in the input
containing fewer than 5 molecules are excluded. (4) In cases where multiple products exist
in the input, the reaction is split into multiple samples, with each product serving as the
input once. (5) If the above steps result in an empty input, the entire sample is discarded.

For all the tasks, samples containing invalid SMILES strings (i.e., those that cannot be parsed
into a valid molecule with RDKit(RDKit, 2023)) are discarded, and duplicate samples are
removed to avoid redundancy. Finally, since some molecules contain multiple components
and they are separated by dots in SMILES, which is the same delimiter used to separate
different reactants/reagents/products in FS and RS, the dots in SMILES strings for NC, PP,
MC, and MG are replaced with semicolons to differentiate between these two usages.

C Comparison with Mol-Instructions

In this section, we present a comprehensive comparison between our work and Mol-
Instructions (Fang et al., 2023).

We begin by comparing our dataset, SMolInstruct, with the Mol-Instructions dataset. While
Mol-Instructions covers a broader scope (including molecule-oriented, protein-oriented,
and biomolecular text instructions), SMollnstruct focuses exclusively on small molecules,
providing a deeper and more comprehensive exploration of this domain.

If focusing on the molecule-related data, as shown in Table 6, SMollnstruct is a larger,
more comprehensive, and higher-quality dataset. It incorporates more tasks, samples, and
molecular representations, and involves more careful curation. Both datasets share the
tasks of MC, MG, FS, and RS. Although SMollnstruct has fewer samples for MC and MG,
the included samples are of higher quality (see Appendix B.2). Furthermore, SMollnstruct
contains substantially more samples for FS and RS, which have been carefully cleaned
and processed. Additionally, SMollnstruct incorporates four NC tasks to facilitate the

5https ://moleculenet.org/datasets-1
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understanding of various molecular representations. Unlike Mol-Instructions, we do not
include the reagent prediction task mainly due to the lack of sufficient high-quality data
(Andronov et al., 2023) and the limited practicality of this task in real world applications.

Beyond the dataset, our work makes contributions to the exploration of chemistry LLMs.
While Fang et al. (2023) primarily focus on the dataset itself and provide a preliminary
exploration of the models, we conduct comprehensive experiments to investigate the abilities
of LLMs in the chemistry domain. Our experiments in Section 4 demonstrates that our
LlaSMol models achieves superior performance compared to the LLMs trained on Mol-
Instructions and the strongest LLMs such as GPT-4 and Claude 3 Opus, greatly diminishing
the gap between LLMs and SoTA task-specific models. Moreover, we provides valuable
insights about multi-task training, LoRA (Hu et al., 2022) settings, and other aspects that
could be helpful for future research in this field.

Table 6: Comparison between Mol-Instructions (the molecule-oriented part) (Fang et al.,

2023) and our SMollnstruct.

Mol-Instructions

SMollnstruct (ours)

name conversion
property prediction

Tasks molecule captioning
molecule generation
forward synthesis
retrosynthesis
reagent prediction

#Distinct samples
#Samples

Complexity and diver-
sity of molecules

XNo this task.

v/362.1k samples on
HOMO/LUMO energy.

v/298.3k samples.
v/298.3k samples.
v/125.4k samples.
v/129.7k samples.
v/125.4k samples.

Provides test set, while
train/validation sets
are not explicitly split.

lower.

v/1.2M samples

v/'78.3k samples on 6 useful
properties.

v'60.3k samples.
v/60.3k samples.
v/977.9k samples.
v/948.0k samples.

XNot included due to its insuf-
ficient data and limited practi-

Supports SMILES (default) and
SELFIES, also involves IUPAC
names and molecular formula
in the NC tasks.

Carefully split into
train/validation/test set,
removing potential data leakage
(see Section 3.2)

Yes, all the SMILES/SELFIES
representations are canonical-
ized, providing a standardized
data format.

Higher (see Appendix B.1).

D Details of Experimental Setup

In this section, we introduce the details of our experimental setups, including the training
and inference details of our LlaSMol models and the compared models. We also give
detailed explanations of the metrics used in Section 4.3, as well extra metrics that we will

use in Appendix E.
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D.1 LlaSMol Models

The base models used for developing LlaSMol are Galactica® (Taylor et al., 2022), Llama
27 (Touvron et al., 2023b), Code Llama® (Roziere et al., 2023) and Mistral’ (Jiang et al,,
2023). We conduct instruction tuning on our SMolInstruct, and the resulting models are
called named as LlaSMolgajactica, L1aSMOI jama 2, LlaSMolcode Liama, @and LlaSMolyistral,
respectively. Expect for being based on different base models, their training and evaluation
configurations are identical, as described as follows.

We used LoRA (Hu et al., 2022) during training, which is applied to all linear layers in
the self-attention and FFN modules with lora_r and lora_alpha set to 16. With the 8-bit
AdamW optimizer, a learning rate of 1le-4, and a cosine scheduler, we train each model for
three epochs. The input length is set to 512, and sequences longer than 512 are truncated.

During inference, we adopt beam search as the generation strategy for simplicity. Due to
the need of evaluations on the top-k predicted answers (as in Appendix E, where k varies
for different tasks, we generate different numbers of sequences for different tasks by setting
the num_return_sequences argument in the Huggingface Transformers library (Wolf et al.,
2020). Specifically, it is set to 5 for NC-12S, NC-S2I, FS, and MG; 3 for NC-12F and NC-52F; 1
for all the PP tasks; and 10 for RS. The beam size is set to num_return_sequences + 3 for all
the tasks. The maximum number of new generated tokens is set to 1024.

D.2 Compared LLMs

We introduce each of the compared LLMs in details, including their training (if applicable)
and inference process.

D.21 GPT4
General You are an expert chemist. Given the SMILES representation of reactants and reagents,
Template your task is to predict the potential product using your chemical reaction knowledge.

The input contains both reactants and reagents, and different reactants and reagents
Task-Specific | are separated by "". Your reply should contain only the SMILES representation of the
Template predicted product and no other text. Your reply must be valid and chemically
reasonable.

Reactants and reagents SMILES: C1CCOC1.CCN(CC)CC.CS(=0)(=0)CL.CS(C)=0.
N[C@@H]1CC2=CC=C(CN3C=C(CO)C(C(F)(F)F)=N3)C=C2C1

ICL
Product SMILES: CS(=0)(=0)N[C@@H]1CC2=CC=C(CN3C=C(CO)C(C(F)(F)F)=N3)C=
C2C1
Reactants and reagents SMILES: CCN.CN1C=CC=C1C=0

Question

Product SMILES:

Figure 3: An example of query template for GPT-4.

GPT-4 (OpenAl, 2023) is one of the SOTA LLMs. We use the model versioned as gpt-4-0613
and evaluate it on 500 samples from SMollnstruct test set via OpenAl’s APL Since GPT-4 is
not fine-tuned on our dataset and thus is not familiar with the flexible queries, to ensure
it generates answers in an expected format, we follow the prompt format proposed in
(Guo et al., 2023) and create a query template for each of the tasks. The template for FSis
shown in Figure 3. It contains 4 parts: (1) General template describes the task in a general
way. (2) Task-specific template describes the detailed content requirements and format

https://huggingface.co/facebook/galactica-6.7b

"https://huggingface.co/meta-1lama/Llama-2-7b-hf
8https://huggingface.co/codellama/Codel lama-7b-hf
https: //huggingface.co/mistralai/Mistral-7B-v@.1
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requirements for the specific task. (3) ICL contains the in-context learning examples. It pro-
vides examples in the format of <input_title>: <input_content>\n <output_title>:
<output_content>\n, where <input_title> and <output_title> serve as straightforward
prompts to the input and output content. This design make the queried task more clear. (4)
Question has the same format as ICL, with <output_content> being empty for the model
to generate.

We conduct both s-shot evaluations, where s = 0,1, 3,5 is the number of provided ICL
examples. For 0-shot evaluation, the ICL part in the template is removed from the queries.
In k-shot evaluation, for each sample,the ICL examples are randomly selected from the
training set. The results of these settings are shown in Appendix E, which reals that these
settings” performance is not consistent across all the tasks. Since 0-shot shows the best
performance on most tasks, we report its results in Section 4.3.

In the evaluations, we use the default generation strategy set in the API. To generate the
same number of results for each sample (as described in Appendix D.1), we set the argument
n in the API, which controls the number of output sequences.

GPT-4 can always follow the formatted instructions introduced above, so we do not bother
to extract the answers from its outputs, but directly use its outputs as the predicted answers.

D.2.2 Claude 3 Opus

Claude 3 Opus (Anthropic, 2024) is a newly proposed SoTA LLM to date. Similarly to GPT-4,
we evaluate Claude 3 Opus on 500 samples from SMolInstruct test set via Anthropic’s AP]I,
and the generation strategy is the default one. The used prompt format is identical to the
one used for GPT-4 (Appendix D.2.1. For each sample, we generate one response. Since
Claude 3 Opus can always follow the formatted instructions, we do not bother to extract
the answers from its outputs, but directly use its outputs as the predicted answers.

D.2.3 Galactica

Galactica (Taylor et al., 2022) is a LLM without instruction tuning. To evaluate it on SMolIn-
struct, we follow the instructions in the paper (Taylor et al., 2022) and the repository' to
create the queries for each task. We use zero-shot setting, as its official instruction does not
suggest using few-shot setting. The generation configuration is set identical to that of our
LlaSMol models (Appendix D.1).

Galatica’s outputs may contain extra text other than the expected answers. Therefore, with
heuristic rules and regular expression matching, we implement a program to extract the
answers from the outputs of the models. Since the extraction cannot possibly cover all the
possible output formats, some answers might not be correctly extracted, which might lead
to validities lower than the actual value.

D.2.4 Llama 2, Code Llama, and Mistral

For our base models (Llama 2, Code Llama, and mistral), since they are not trained on
SMollInstruct and have not seen the diverse queries in the dataset, we use the same query
templates as those used for GPT-4 (Appendix D.2.1). We use the one-shot setting for them,
as it would improve models’ abiltity to follow the instructions and generate answers in a
more formated way. In addition, the generation configuration (including beam size, output
sequence numbers, etc) is set identical to that of our LlaSMol models (Appendix D.1).

Although we try our best to make the output format as clear as possible in the queries, these
three models still cannot follow the instructions and their outputs are in various formats. By
heuristic rules and regular expression matching, we implement a program to extract the
answers from the outputs of each of the models. Since the extraction cannot possibly cover
all the possible output formats, some answers might not be correctly extracted, which might
lead to validities lower than the actual value.

10https ://github.com/paperswithcode/galai
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D.2.5 Molinst

Molinst is a Llama 2 model fine-tuned on Mol-Instructions by Fang et al. (2023). On the
shared tasks between Mol-Instructions and SMollnstruct (including MC, MG, FS, and RS),
we directly use the query templates from Mol-Instructions to achieve better results. On other
tasks, we create one query template for each task following the style of Mol-Instructions.
We use zero-shot on its evaluation, as Mol-Instructions does not contain any few-shot use
cases. We directly use Molinst’s checkpoint!! and evaluate it on SMolInstruct, which is a
fair comparison, because SMollnstruct’s test set does not contain any training examples
from the training set of Mol-Instructions.

The outputs of Molinst may also contain extra text other than the expected answers, espe-
cially on its unseen tasks. Thus, we also implement a program to extract the answers. Since
the extraction cannot possibly cover all the possible output formats, some answers might
not be correctly extracted, which might lead to their validities lower than the actual value.

D.2.6 ChemLLM

ChemLLM (Zhang et al., 2024) is an LLM simultaneously proposed with ours. We apply
their released checkpoint'? and evaluate it on SMolInstruct. The used prompt format is
identical to the one used for GPT-4 (Appendix D.2.1. For each sample, we generate one
response.

The outputs of ChemLLM may contain extra text other than the expected answers. Thus,
we implement a program to extract the answers from its outputs. Since the extraction
cannot possibly cover all the possible output formats, some answers might not be correctly
extracted, which might lead to their validities lower than the actual value.

D.3 Task-Specific, Non-LLM Based SoTA Models

D.3.1 STOUT for NC-12S and NC-S2I

STOUT is a encoder-decoder model trained on SMILES and IUPAC name paired data, and it
is capable of conducting the NC-2iS and NC-52I tasks. Due to the lack of training code, we
cannot re-train it on our dataset, and directly use their released model checkpoint!®. Since
it may have encounter some test samples of SMollnstruct during training, the evaluation
results in Table 1 may be higher than its real performance.

D.3.2 RDK:it for NC-S2F

The NC-S2F task can be easily achieved with a fixed algorithm by parsing the input SMILES
representation and counting the numbers of atoms. We implement a program with RDKit (a
widely used Python toolkit for processing molecules and other chemical information) and
report its results.

D.3.3 STOUT+RDKit for NC-I2F

Since there are no dedicated models for the NC-I2F task, we combine STOUT for the
IUPAC to SMILES conversion and RDKIT for the SMILES to molecular formula conversion.
Specifically, we feed the input IUPAC name into STOUT to get the corresponding SMILES,
and then used the RDKit-based program to get the molecular formula based on the SMILES.

D.3.4 Uni-Mol for All The PP Tasks

Uni-Mol (Zhou et al., 2023) is a framework for learning useful representations of molecules
based on their 3D conformations. Uni-Mol can be fine-tuned to perform property prediction

11https ://huggingface.co/zjunlp/1lama2-molinst-molecule-7b.
12https ://huggingface.co/AI4Chem/ChemLLM-7B-Chat
Bhttps://github.com/Kohulan/Smiles-TO-iUpac-Translator
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based on these representations. Using the pretrained model weights, hyperparameters,
and code supplied by the authors, we fine-tuned Uni-Mol models for chemical property
prediction tasks on our dataset. For SIDER property prediction, we used 20 as the number
of targets for multi-target classification, as our dataset focused on a specific subset of 20
SIDER targets. We generated results from Uni-Mol using the code provided by the authors
and evaluated according to the metrics in Section 4.2. The data split used for fine-tuning,
validation, and testing property prediction tasks is different from the one used in the
Uni-Mol paper, so the performance may not match exactly.

D.3.5 MolT5 for MC and MG

MolT5 (Edwards et al., 2022) is a T5 model for translating between molecules and natural
language. We use the already fine-tuned MolT5-large checkpoints provided by the authors
for both molecule generation and molecule description. We generate predictions on our test
set using beam search with 5 beams, following the example code provided by the authors.
For input, the molecule description model is provided a SMILES string and the molecule
generation model is provided a natural language description. For molecule description,
we generated only one result. For molecule generation, we set the number of sequences to
return to 5. We evaluate our test set results according to the metrics in Section 4.2. The data
used for testing is different from the data used by the MolT5 paper, so the performance may
be different. Please note that our test set does not overlap with the MolT5 training set.

D.3.6 RSMILES for FS and RS

RSMILES (Zhong et al., 2022) is a transformer model trained on pairs of SMILES strings
aligned to minimize their edit distance. RSMILES translates aligned SMILES strings of
reactants and reagents into products for the FS task, and products into reactants for the RS
task. Following the settings described in the paper of RSMILES, we augment and align each
pair of SMILES strings in our training data for 5 times. For the FS task, we adopt a “mixed”
setting and append canonical SMILES strings of reagents to the end of aligned reactant
SMILES strings. We train two RSMILES models for the FS and RS tasks, respectively, using
the hyper-parameters provided in their GitHub repository. After training, we average the
last 5 checkpoints to get the final checkpoint for each task. During inference, we augment
each input SMILES strings for 5 times. We generate 10 output SMILES strings for each
augmented input using beam search, resulting in a total of 50 SMILES strings for each test
reaction. We get the final top 10 predictions for each task by aggregating these 50 predictions
using their provided scripts.

The performance of our re-trained RSMILES model on our dataset for the RS task is com-
parable with those reported in their paper on the USPTO-full dataset. Please note that the
performance of our re-trained RSMILES for the FS task, as shown in Table 2, is lower than
the reported results on the USPTO-MIT dataset for the FS task in their paper. This is due to
that our dataset for the FS task is more challenging than the USPTO-MIT dataset used in the
RSMILES's paper, due to the inclusion of stereochemical information.

D.3.7 Molecular Transformer for FS and RS

Similar to RSMILES, Molecular Transformer (Schwaller et al., 2019) is also a transformer
model trained on pairs of SMILES strings, and translate from reactants and reagents into
products or products into reactants. While the original Molecular Transformer only focused
on the FS task, we train and test it on both the FS and RS tasks. We use canonical SMILES
strings of molecules without data augmentation as the training data of Molecular Trans-
former. We train two Molecular Transformer models separately for the FS and RS tasks
using the hyper-parameters provided in their GitHub repository. During inference, we
generate 10 output SMILES strings for each canonical input SMILES string using beam
search. The performance of our re-trained Molecular Transformer model on our dataset for
the FS task is comparable with those reported in their paper on the USPTO-STEREO dataset.
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D.4 Evaluation Metrics

We introduce the metrics used in Section 4.3 as follows:

Exact match (EM). It measures the success of a model in providing responses that perfectly
match the reference or ground truth answers. Notably, for each predicted result, we
compare it with the gold answers of all the samples that have the same input as the
sample. If there exists a match, it is counted as correct and contributes to the ratio of
this metric. Note that for different types of outputs, we employ different criterion for
judging it they match. For tasks where outputs are SMILES strings (NC-125, MG, FS,
and RS), we parse SMILES strings into molecules, and they are matched only if the two
molecules are identical. For tasks where outputs are molecular formula, two are matched
if they represent the same set of atoms, and the corresponding numbers of the samples
are identical. For tasks where outputs are IUPAC names (NC-S2I), since IUPAC names
may contain multiple parts separated by semicolons, we compare the set composed of
these parts. That is, we do not care about the orders of these parts and how many of parts
are there in the generated string, but judge by the correctness of the unique parts.
Fingerprint Tanimoto Similarity (FTS). It is an important metric type commonly used
in cheminformatics. It measures the structural similarity between molecules. The one
we report in Section 4.3 is one of this type, called Morgan FTS, which leverages Morgan
method to calculate the fingerprint (Morgan, 1965).

METEOR score. It is a common metric used to measure the similarity between text.
(Lavie & Agarwal, 2007)

RMSE. It is a common metric to measure the distance between predicted values and the
gold values on regression tasks. Smaller is better.

* Acc. It represents the ratio of correct predictions.
® Validity (Valid): it reports the ratio of valid predicted SMILES representations that can

be successfully parsed into a molecule. It is calculated among all the generated outputs
that contain extractable answer part. If an output refuses to answer a question, it would
not be counted for calculating the validity.

Additional metrics used in Appendix E are briefly introduced as follows:

Top-k Exact Match: It is the same as EM discussed before, but on the top-k generated
outputs. It gives a more comprehensive results.

MACCS FTS and RDK FTS: In addition to Morgan FI'S we use in the previous sections,
we introduce two extra FTS metrics, namely MACCS FTS and RDK FTS, that use MACCS
(Durant et al., 2002) and RDK (Schneider et al., 2015) methods to calculate the fingerprint
respectively.

BLUE scores and ROUGE scores: Another types of textual based metrics that measures
the similarity between text.

Matthew’s Correlation Coefficient (MCC). Applied in the binary classification tasks
(PP-BBBP, PP-Clintox, PP-HIV, and PP-SIDER), this metric provides a balanced measure
of the quality of binary classifications (Matthews, 1975).

F1 Score: The harmonic mean of precision and recall; a commonly used metric for
classification tasks.

E Detailed Experimental Results

In this section, we present more comprehensive experimental results and analysis. We will
provide detailed performance of all models across a wider range of metrics and offer more
discussion of the findings. We will discuss about each type of tasks in the rest of this section.

E.1 Name Conversion Tasks

The results on the four NC tasks are presented in Table 7, Table 8, Table 9, and Table 10. On
these tasks, Although open source LLMs including Llama 2, Code Llama, and Mistral can
sometimes achieve fairly good validity, showing that they know at least basic knowledge of
the molecular representations, they correctly predict none of the samples. It indicates that
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their lack of knowledge to do reasoning for the conversions. Trained on scientific corpus
(including chemistry materials), Galactica can achieve some correct predictions, but the
performance is still low. After fine-tuning on these open source LLMs, LlaSMol models are
substantially better than other LLMs, showing the benefits of our dataset and fine-tuning.
Compared to the SoTA models, LlaSMol models still underperform, but approach them on
NC-I2F, NC-I2S, and NC-S2F. However, on NC-S2I, LlaSMol is still far from SoTA. It seems
that NC-521 is the hardest task among the four NC tasks, as the SoTA task-specific method,
STOUT, only achieves 56.5% accuracy. Ability on this task suggests a level of understanding
of the functional groups in the IUPAC specification, as well as an understanding of SMILES
representations. Improving models’ understanding and generation for IUPAC names might
be necessary.

Table 7: Overall results (%) of NC-12E.

EM

Model ——————— Validity
Top1l Top3
STOUT+RDKit 97.9 - 100.0
GPT-4 (0-shot) 8.7 16.4 98.4
GPT-4 (1-shot) 10.8 19.9 98.6
GPT-4 (3-shot) 9.1 17.7 98.6
GPT-4 (5-shot) 11.5 20.4 98.8
Claude 3 Opus 34.6 - 98.2
Galactica 9.1 12.3 100.0
Llama 2 0.0 0.1 96.7
Code Llama 0.0 0.0 98.5
Mistral 0.0 0.2 98.5
Molinst 0.0 0.0 1.7
ChemLLM 0.8 - 97.4
LlaSMolgajactica 83.2 91.3 100.0
LlaSMoly jama 2 73.8 86.1 100.0
LlaSMolCOde Llama 75.4 87.0 100.0
LlaSMolpfistral 87.9 93.2 100.0

Table 8: Overall results (%) of NC-I2S.

Model Exact Match FTS Validity
Topl Top3 Top5 MACCS RDK Morgan
STOUT 73.5 - - 99.9 99.8 99.5 99.4
GPT-4 (0-shot) 3.3 51 59 77.6 52.0 494 84.2
GPT-4 (1-shot) 3.3 5.7 6.9 76.5 49.6 48.1 85.8
GPT-4 (3-shot) 3.6 59 6.9 76.5 48.8 46.9 84.4
GPT-4 (5-shot) 24 47 6.1 75.6 47.5 46.2 84.8
Claude 3 Opus 17.7 - - 88.5 70.0 68.6 90.2
Galactica 9.7 111 12.5 81.5 58.1 53.4 95.6
Llama 2 0.0 0.0 0.0 29.4 18.7 11.3 18.3
Code Llama 0.0 0.0 0.0 30.7 20.0 12.0 81.0
Mistral 0.0 0.0 0.0 33.6 21.3 11.3 40.3
Molinst 0.0 0.0 0.0 439 25.1 18.4 96.2
ChemLLM 0.3 - - 0.0 0.0 0.0 3.9
LlaSMolGalactica 58.7 688 72.6 95.5 86.4 84.9 99.4
LlaSMoly jama 2 466 575 60.5 92.4 79.3 78.3 99.0
LlaSMolcode Llama 499 60.1 63.8 93.1 80.9 80.0 99.3
LlaSMolpgistral 70.1 77.8 80.1 96.6 90.1 89.1 99.6
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Table 9: Overall results (%) of NC-S2F.

EM

Model Validity
Top1l Top3
RDKit 100.0 - 100.0
GPT-4 (0-shot) 48 11.6 99.8
GPT-4 (1-shot) 34 9.2 100.0
GPT-4 (3-shot) 34 9.0 99.8
GPT-4 (5-shot) 3.0 8.0 99.4
Claude Opus 3 9.2 - 100.0
Galactica 0.0 0.0 99.9
Llama 2 0.0 0.0 72.1
Code Llama 0.0 0.0 97.1
Mistral 0.0 0.1 87.8
Molinst 0.0 0.0 19.3
ChemLLM 0.0 - 25.8
LlaSMolgajactica 91.2  95.0 100.0
LlaSMol} jama 2 87.0 93.1 100.0
LlaSMolcode Liama 88.6 947 100.0
LlaSMolyfisiral 932 965  100.0

Table 10: Overall results (%) of NC-S2I.

EM
Model
Topl Top3 Top5

STOUT 56.5 - -

GPT-4 (0-shot) 0.0 0.0 0.0
GPT-4 (1-shot) 0.0 0.0 0.0
GPT-4 (3-shot) 0.2 0.2 0.2
GPT-4 (5-shot) 0.2 0.2 0.2
Claude 3 Opus 0.0 - -

Galactica 0.0 0.0 0.0
Llama 2 0.0 0.0 0.0
Code Llama 0.0 0.0 0.0
Mistral 0.0 0.0 0.0
Molinst 0.0 0.0 0.0
ChemLLM 0.0 - -

LlaSMolgatactica 18.3 31.8 36.8
LlaSMoly jama 2 12.9 23.2 26.6
LlaSMOlCOde Llama 155 262 305
LlaSMolpgistral 29.0 45.3 50.5
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E.2 Property Prediction

Table 11: Overall results (RMSE) of PP-ESOL and PP-Lipo.

Model ESOL| Lipol
Uni-Mol 0.819 0.612
GPT-4 (0-shot) 2.570 1.545
GPT-4 (1-shot) 2.268 1.625
GPT-4 (3-shot) 2.027 1.777
GPT-4 (5-shot) 1.689 1.592
Claude 3 1.036 1.194
Galactica 4.184 2.979
Llama 2 3.287 1.634
Code Llama 3.483 1.733
Mistral 3.079 1.730
Molinst 4.304 2.800
ChemLLM 6.635 2.499
LlaSMolga1actica 1.959 1.213
LlaSMoly jama 2 2.791 1.338
LlaSMolcode 11ama  2-959 1.203
LlaSMolyjistral 1.150 1.010

The results on the two regression tasks (PP-ESOL and PP-Lipo) are presented in Table 11.
LlaSMolysigtra; outperforms other LLMs including GPT-4 by a large margin, showing the
effectiveness of the fine-tuning. However, it is slightly worse than Claude 3 Opus on
PP-ESOL, possibly because of its much larger scale of parameters and training data. The
task-specific method (Uni-Mol) still outperforms all of the LLMs. This might be attributed
to the fact that Uni-Mol (Zhou et al., 2023) possesses 3D structure knowledge, which may be
useful in predicting molecular properties.

Table 12: Overall results (Acc) of PP-BBBP, PP-ClinTox, PP-HIV, and PP-SIDER.

Model BBBP ClinTox HIV SIDER
Uni-Mol 85.3 92.4 97.0 70.0
GPT-4 (0-shot) 62.9 50.0 59.6 57.6
GPT-4 (1-shot) 66.0 25.7 39.4 43.2
GPT-4 (3-shot) 60.9 36.1 48.0 39.8
GPT-4 (5-shot) 579 33.3 55.8 50.4
Claude 3 Opus 75.1 41.7 76.4 67.0
Galactica 69.0 92.4 96.7 68.1
Llama 2 58.9 45.1 93.3 61.9
Code Llama 58.9 85.4 91.8 60.2
Mistral 40.6 15.3 7.1 38.1
Molinst 60.9 6.3 45 52.4
ChemLLM 22.3 75.7 72.9 32.6
LlaSMolcajactica 69.0 93.1 96.7 70.1
LlaSMoly jyma 2 69.0 92.4 96.7 68.7
LlaSMolcoge 11ama 69.-0 93.1 96.7 69.9
LlaSMolyfistral 74.6 931 967 707

The results for the four classification tasks (PP-BBBP, PP-Clintox, PP-HIV, and PP-SIDER) pre-
sented in (Table 12) show similar information. Particularly, on PP-SIDER task, LlaSMolp;stral
outperforms all the LLMs and the task-specific model Uni-Mol, which highlights the poten-
tial of LLMs in understanding molecules and predicting their properties. The reason why

27



Published as a conference paper at COLM 2024

LlaSMol models get the same results on PP-HIV is that the dataset is imbalanced, and the
models all predict most samples as negative samples.

E.3 Molecule Description

For the MC task (Table 13), LlaSMolyistra is the best performing LLM on all metrics. It is
still outperformed by the SoTA task-specific model (MolT5), however, approaching close
to it. Please note that these text-based metrics only measures the similarity to the gold
descriptions, and it does not necessary mean the correctness of the description on chemistry
dimension. Limited by the current resources, we cannot obtain the correctness measures,
and will leave this to our future work.

Table 13: Overall results of MC.

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
MolT5 0462  0.366 0.563 0.398 0.501 0.515
GPT-4 (0-shot) 0.095  0.020 0.238 0.058 0.156 0.188
GPT-4 (1-shot) 0.166  0.061 0.295 0.099 0.211 0.206
GPT-4 (3-shot) 0202  0.092 0.333 0.132 0.250 0.244
GPT-4 (5-shot) 0214  0.103 0.346 0.146 0.267 0.258
Claude 3 Opus 0.114  0.030 0.263 0.069 0.173 0.219
Galactica 0.018  0.002 0.061 0.012 0.052 0.050
Llama 2 0.110  0.047 0.251 0.107 0.209 0.150
Code Llama 0.106  0.052 0.247 0.122 0.216 0.143
Mistral 0.146  0.068 0.281 0.118 0.232 0.193
Molinst 0.028  0.020 0.226 0.160 0.217 0.124
ChemLLM 0012  0.004 0.057 0.005 0.048 0.050
L1aSMolGajactica 0314 0225 0.456 0.289 0.402 0.394
L1aSMol; jama 2 0302 0213 0.447 0.281 0.396 0.377
LlaSMolcoge 11ama 0322 0.227 0.441 0.273 0.390 0.366
LlaSMolygistral 0414 0319 0.521 0.357 0.463 0.452

For the MG task (Table 14), LlaSMolpyistra1 is the best performing LLM on all metrics. Since
this task aims to generate an arbitrary molecule that fits the given description, it is not
required to exactly match the gold one, and the FTS metrics may be better to reflect models’
ability. However, similar to MC, the metrics only measure the similarities between predicted
and gold ones, and not necessarily means the correctness of the generation. We will leave
this to our future work.

E.4 Chemical Reaction

For the FS task (Table 15), LlaSMolpssirar is the best performing LLM across all metrics,
although it ties with many methods on validity. Notably, all of the LIaSMol models perform
much better than the other LLMs, which indicates the power of fine-tuning on SMollnstruct
for understanding chemical reactions. The SoTA task-specific methods still outperform all
of the LLMs, but the LlaSMol series is much closer than the other LLMs.

We observe a similar trend for the RS task (Table 16). Again, LlaSMolpisrq) is the best
performing LLM across all metrics, although it does tie with LlaSMolyj,m, 2 for validity.
We observe the LLMs without instruction tuning fail to achieve any accuracy greater than
2% on this task. This indicates that instruction tuning can be useful for LLMs to learn
retrosynthesis. The SoTA task-specific methods still outperform all of the LLMs, which
indicates that there is still room for improvement for LLMs on RS.

E.5 Other Common Findings

Besides for the aforementioned findings, we can observe some common findings across
different tasks. Firstly, we can see that GPT-4 does not show consistent pattern on different
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Table 14: Overall results (%) of MG.

Exact Match FTS
Model Validity
Topl Top3 Top5 MACCS RDK Morgan
MolT5 31.7 38.7 41.4 87.9 80.2 73.2 95.3
GPT-4 (0-shot) 6.4 7.7 9.2 74.2 53.3 42.6 81.4
GPT-4 (1-shot) 49 6.2 7.9 74.0 52.9 42.8 81.8
GPT-4 (3-shot) 5.9 8.2 8.9 74.8 53.5 43.3 85.2
GPT-4 (5-shot) 4.0 5.9 7.1 73.6 52.8 43.1 85.2
Claude 3 Opus 12.3 - - 83.9 67.6 57.6 92.6
Galactica 0.0 0.0 0.0 22.7 11.8 11.6 94.7
Llama 2 0.0 0.0 0.0 18.3 11.8 4.8 93.5
Code Llama 0.0 0.0 0.0 26.5 15.1 8.5 95.2
Mistral 0.0 0.1 0.1 32.2 18.4 9.0 35.9
Molinst 6.0 11.7 13.4 69.5 53.5 43.6 84.8
ChemLLM 0.9 - - 38.3 21.5 14.3 4.3
LlaSMolGalactica 7.7 14.2 174 79.6 62.0 52.2 99.6
LlaSMol} jama 2 6.4 114 13.7 74.3 55.8 471 99.6
LlaSMol¢ode 11ama 6.5 11.8 14.2 74.0 55.9 46.6 99.7
LlaSMolyistral 19.2 29.0 33.6 84.1 70.4 61.7 99.7
Table 15: Overall results (%) of FS.
Exact Match FTS
Model Validity

Topl Top3 Top5 MACCS RDK Morgan

Molecular Transformer  78.4 85.5 87.0 95.5 929 91.4 99.5
RSMILES 78.7 88.0 89.7 95.7 93.7 92.2 100.0
GPT-4 (0-shot) 1.6 24 2.6 60.8 494 40.5 87.0
GPT-4 (1-shot) 1.1 2.2 2.6 61.5 495 411 914
GPT-4 (3-shot) 0.2 2.2 2.6 62.2 51.3 42.8 92.0
GPT-4 (5-shot) 1.3 2.0 3.0 63.1 51.7 44.0 93.8
Claude 3 Opus 3.7 - - 65.7 54.1 45.7 97.0
Galactica 0.0 0.0 0.0 40.2 33.2 25.9 83.7
Llama 2 0.0 0.0 0.0 33.4 24.3 13.7 97.7
Code Llama 0.0 0.0 0.0 35.3 26.4 15.8 99.6
Mistral 0.0 0.0 0.0 38.9 31.0 19.9 95.8
Molinst 2.1 3.3 3.7 51.1 36.7 31.7 99.8
ChemLLM 0.0 - - 8.0 0.9 1.6 38.5
LlaSMolgajactica 53.1 66.4 70.7 88.8 82.6 79.9 99.7
LlaSMolj jama 2 47.1 61.6 66.4 87.0 80.1 76.9 99.8
LlaSMolcoge Liama 52.0 65.4 69.2 88.3 81.9 79.2 99.8
LlaSMolyfistral 633 755  79.0 91.8 87.1 84.9 99.8
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Table 16: Overall results (%) of RS.

Exact Match FTS
Model Validity
Topl Top3 Top5 MACCS RDK Morgan
Molecular Transformer  47.0 61.7 66.5 87.0 81.5 77.5 99.7
RSMILES 46.2 63.9 69.9 86.5 81.0 76.8 100.0
GPT-4 (0-shot) 0.0 0.3 0.2 57.5 34.0 33.4 42.6
GPT-4 (1-shot) 0.3 0.8 1.4 66.6 42.5 40.9 79.6
GPT-4 (3-shot) 0.5 1.2 1.6 68.2 45.6 42.2 87.8
GPT-4 (5-shot) 0.2 0.8 1.2 68.3 46.0 43.1 84.4
Claude 3 Opus 1.1 - - 70.3 49.8 46.2 94.8
Galactica 0.0 0.0 0.0 489 38.2 34.6 93.0
Llama 2 0.0 0.0 0.0 46.6 35.0 27.5 87.7
Code Llama 0.0 0.1 0.0 44.7 32.1 25.3 97.1
Mistral 0.0 0.0 0.0 44.6 32.0 24.2 98.0
Molinst 5.7 8.3 9.5 69.6 53.7 48.0 97.8
ChemLLM 0.0 - - 14.3 2.1 2.9 10.9
LlaSMolgaactica 25.7 40.8 46.3 80.8 71.9 67.0 99.9
LlaSMolj jama 2 22.5 35.5 41.1 79.8 70.4 65.2 99.9
LlaSMolcoge Liama 25.7 40.0 45.7 80.7 71.7 66.7 100.0
L1aSMolyfistral 329 496 554 83.0 75.2 70.4 100.0

in-context learning settings, with 0-shot achieving the best performance on most tasks. It
may indicate that GPT-4 does not have sufficient knowledge about chemistry and cannot
effectively learn how to do these tasks by imitating several samples. Injecting chemistry
knowledge by training LLMs may be necessary. Secondly, although Claude 3 Opus still
trails behind LlaSMol and the SoTA task-specific models, it surpasses GPT-4 on all the
chemistry tasks. Claude 3 Opus demonstrates notably enhanced performance compared to
GPT-4, showcasing its superior grasp of chemistry knowledge, highlighting its potential
applications in the domain.

F More Analytical Experiments

F1 Task Synergy

In order to investigate the synergy among different tasks, we first conduct an experiment to
evaluate the performance of an LLM trained on single task or a specific type of task. We
train several single-task models, each focusing on one task or a group of tasks from the same
type14. We then compare the performance of these single-task models with LlaSMolyyistral,
which is trained on all 14 tasks, to assess the potential benefits of multi-task training.

The results are presented in Table 17. The multi-task trained model, LlaSMolyigtrq1, Outper-
forms the single-task models on the majority of tasks. The improvements are particularly
substantial on PP-ESOL, PP-BBBP, PP-Clintox, MC, and MG. This finding suggests the pres-
ence of shared knowledge across these tasks. For instance, the knowledge of understanding
SMILES may be common to most tasks, and training models on multiple tasks can enhance
this knowledge, thus achieving better performance.

To further investigate the relationships among different tasks, we conduct an additional
experiment by removing certain tasks from the training data. Specifically, we train a set of
models, each with one task or a group of tasks from the same type removed from its training

14These single-task models include LlaSMol-NC, LlaSMol-PP, LlaSMol-MC, LlaSMol-MG, LlaSMol-
FS, and LlaSMol-RS, where the model names indicate the training task(s). For instance, LlaSMol-FS is
trained only on the FS task, LlaSMol-NC is trained on all the NC tasks combined, and L1aSMol-PP is
trained on all the PP tasks combined. The training setups are identical to those of LlaSMolyyjgtra1-
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Table 17: Results of single-task models and multi-task models. The “Single-Task” column
corresponds to the single-task models trained on the corresponding tasks, while the “Multi-
Task” column corresponds to LlaSMolyyisira) that is trained on all the tasks. Orange cells
represent positive performance improvement.

Task Metric Single-Task Multi-Task Improv.
NC-12F EM (%) 86.8 87.9 1.1
NC-I2S EM (%) 67.6 70.1 24
NC-S2F EM (%) 93.2 93.2 0.0
NC-521 EM (%) 274 29.0 15
PP-ESOL  RMSE| 20.616 1.150  19.466
PP-Lipo RMSE] 1.241 1.010 0.231
PP-BBBP Acc (%) 68.5 74.6 6.1
PP-Clintox  Acc (%) 79.9 93.1 13.2
PP-HIV Acc (%) 96.7 96.7 0.0
PP-SIDER  Acc (%) 64.3 70.7 6.4
MC METEOR 0.299 0.452 0.153
MG FTS (%) 33.1 61.7 28.6
FS EM (%) 62.6 63.3 0.7
RS EM (%) 315 329 1.4

data'®, and their base models and training setups are identical to those of LlaSMolyyjstral-
We then compare their performance with LlaSMolpystra1, which is trained without removing
any tasks.

Table 18: Results of removing certain tasks. Orange cells represent better results than
LlaSMolyyistra] While blue cells represent worse results.

NC-2F NC-I2S NC-S2F NC-S2I PP-ESOL PP-Lipo PP-BBBP PP-Clintox PP-HIV PP-SIDER MC MG FS RS
Model EM (%) EM (%) EM(%) EM (%) RMSE ~ RMSE  Acc (%) Acc(%) Acc(%)  Acc(%) METEOR FTS(%) EM (%) EM (%)
w/oNC - - - - 1520 1.090 76.1 93.1 96.8 70.6 0.436 549 632 335
w/o PP 87.9 70.7 935 287 - - - - - - 0.447 623 64.2 33.1
w/o MC 87.6 71.0 935 27.8 1133 1.057 741 93.1 9.8 70.9 - 64.1 633 334
w/oMG 87.8 69.6 934 27.8 1.231 0982 77.2 93.1 96.8 70.9 0.445 - 634 34.0
w/oFS 87.9 70.4 93.8 295 1.278 1.288 70.6 93.1 96.8 70.8 0.452 632 - 33.1
w/oRS 88.0 71.1 93.7 29.7 1.203 1.048 721 93.1 9.8 70.6 0.450 62.6 61.9 -
L1aSMoly jyma 2 87.9 70.1 932 29.0 1.150 1.010 746 93.1 9.7 707 0.452 617 633 329

Interestingly, results presented in Table 18 generally show no consistent pattern among
different tasks. Specifically, removing certain task(s) can lead to improvements on some
tasks, while leading to decrements on others. And in most cases, the change is not sub-
stantial, suggesting that each task does not heavily rely on any other tasks, but rather on
the data of the task itself. However, there are two exceptions — for the “w/o NC” model,
the performance of PP-ESOL and MG greatly drops. On PP-ESOL, we hypothesize that
the knowledge of understanding chemical structures learned on NC might be useful in
predicting the solubility of a molecule. For MG, since there are many IUPAC names in the
input molecular descriptions, the performance drop may be attributed to the fact that the
ability to convert IUPAC names to SMILES, learned on NC, can help the model directly
obtain the related SMILES representations, thus leading to better performance.

E2 Influence of LoORA Modules and Trainable Parameters

In this section, we investigate the influence of using different LoORA modules, or different
sizes of trainable parameters. We take LlaSMolyj;sira1 as the basic setting and refer to it as
LlaSMol in this section for simplicity. All the compared models are listed as follows, with
trainable parameter sizes and ratios labeled in brackets:

e LlaSMol Lite (6.8M, 0.09%): LoRA is applied on q_proj and v_proj of the attention
modules.

¢ LlaSMol Attn (13.6M, 0.19%): LoRA is applied on all the attention projection matrices
(including q_proj, k_proj, v_proj, o_proj).

15These models are named as “w/o Task”, where Task represents the task names.
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e LlaSMol FEN (28.3M, 0.39%): LoRA is applied on all the FFN projection matrices (includ-
ing gate_proj, down_proj, up_proj).

¢ LlaSMol (41.9M, 0.58%): The basic setting. LoRA is applied on all the attention and FFN
projection matrices.

e LlaSMol Plus (173.0M, 2.33%): LoRA is applied on all the attention and FFN projection
matrices, and 1m_head is set trainable.

All these models are trained with the identical training configurations (as described in
Section 4.1).

Figure 4 presents the model performance on all the 14 tasks. We can observe that for most
tasks, progressing from LlaSMol Lite to LlaSMol Attn, LlaSMol FFN, and finally LlaSMol,
the incorporation of more LoRA modules (and thus more trainable parameters) leads to a
substantial performance enhancement. Further adding 1m_head as trainable parameters in
LlaSMol Plus can further slightly improves the performance. This indicates that refining the
selection of LoORA modules and incorporating more trainable parameters is very important.
Moreover, LLMs exhibit considerable potential to surpass the performance of previous
task-specific models on various chemistry tasks, provided that more trainable parameters
are allowed or even full fine-tuning is employed.

However, for certain property prediction (PP) tasks, the incorporation of additional LoRA
modules does not demonstrate consistent improvements. This inconsistency may be at-
tributed to the relatively small number of training and test samples, which can result in
reduced model robustness when faced with diverse inputs, as well as the inherent random-
ness associated with limited data.
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Figure 4: Performance on different tasks under different LoRA settings. Except for PP-ESOL
and PP-Lipo, the larger the better.
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