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Abstract

We present PAPERCLIP (Proposal Abstracts Provide an Effective Repre-
sentation for Contrastive Language-Image Pre-training), a method which
associates astronomical observations imaged by telescopes with natural
language using a neural network model. The model is fine-tuned from a
pre-trained Contrastive Language–Image Pre-training (CLIP) model using
successful observing proposal abstracts and corresponding downstream ob-
servations, with the abstracts optionally summarized via guided generation
using large language models (LLMs). Using observations from the Hubble
Space Telescope (HST) as an example, we show that the fine-tuned model
embodies a meaningful joint representation between observations and nat-
ural language through quantitative evaluation as well as tests targeting
image retrieval (i.e., finding the most relevant observations using natural
language queries). and description retrieval (i.e., querying for astrophysical
object classes and use cases most relevant to a given observation). Our
study demonstrates the potential for using generalist foundation models
rather than task-specific models for interacting with astronomical data by
leveraging text as an interface.

1 Introduction

Machine learning (ML) is starting to have a significant impact in the sciences, with astro-
physics being no exception. ML methods have demonstrated promise at every stage of
the research pipeline, from instrument design, to data acquisition, to its analysis (Huertas-
Company & Lanusse, 2022). Most applications of ML within astrophysics have focused
on augmenting traditional techniques in order to improve performance on specific tasks.
The foundation model paradigm, in contrast, seeks to develop generalist models which
can be deployed to simultaneously tackle a wide range of tasks (Bommasani et al., 2021).
These models are typically pre-trained on massive amounts of unlabeled data using self-
supervised or weakly-supervised learning techniques, enabling them to learn powerful
representations which can then be used downstream. Foundation models can often benefit
from additional training (fine-tuning) using a relatively small amount of domain-specific
data in order to increase their usefulness when applied to specialized domains.

There is considerable interest in developing custom foundation models for the sciences
(e.g., Batatia et al., 2023; Subramanian et al., 2023; McCabe et al., 2023; Birk et al., 2024;
Vig et al., 2024; Heinrich et al., 2024), with astrophysics being ripe for such an effort given
the large amounts of publicly-available data and diverse ways of interacting with it. The
multi-modality inherent to astrophysical observations, with different types of data (e.g.,
images, spectra, light curves, textual descriptions) often available for a given target object,
presents a unique opportunity.

In this paper, we describe PAPERCLIP (Proposal Abstracts Provide an Effective Represen-
tation for Contrastive Language-Image Pre-training), a method that connects, for the first
time, astronomical image observations with natural language by leveraging the association
between abstracts of successful observing proposals written by astronomers and images
corresponding to downstream observations imaged by telescopes. This approach demon-
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Figure 1: Overview of the PAPERCLIP method. (Left) A pre-trained CLIP model is fine-
tuned using a dataset of Hubble observations and corresponding proposal abstracts. The
proposal abstracts are optionally summarized using guided large language model gen-
eration. (Right) The fine-tuned model can then be used for downstream tasks such as
observation retrieval i.e., finding the observations most relevant to a given text query. The
proposal abstract snippet shown here corresponds to proposal ID 16914.

strates the potential of adapting generalist multi-modal foundation models to astronomy,
complementing task-specific models by providing a flexible, language-based interface for
interacting with observational data. Concretely, we showcase the method using observa-
tions imaged by the Hubble Space Telescope (HST). We show that fine-tuning a pre-trained
CLIP (Contrastive Language-Image Pre-training; Radford et al., 2021) image-text model on
observation-abstract pairs results in meaningful joint representations through quantitative
and qualitative evaluation tests. Our method opens up the possibility of interacting with
astronomical survey data using free-form natural language as an interface, which is a cor-
nerstone of the success of the modern foundation model paradigm. A high-level overview
of the method is shown in Fig. 1.

Related Work The concept of learning task-agnostic representations via self-supervised
and contrastive learning has been applied within astrophysics (Slijepcevic et al., 2024; Stein
et al., 2021; Hayat et al., 2021b; Slijepcevic et al., 2022) and used for downstream tasks
like object similarity search (Stein et al., 2021), gravitational lens finding (Stein et al., 2022),
estimation of Galactic distances (Hayat et al., 2021a), identification of rare galaxies (Walmsley
& Scaife, 2023), and data compression (Akhmetzhanova et al., 2024). For a recent review of
contrastive learning in astrophysics, see Huertas-Company et al. (2023). Beyond applications
to a single modality, ASTROCLIP (Lanusse et al., 2023) recently used contrastive learning to
learn a joint representation between galaxy images and associated spectra, showing that the
learned representation embodies relevant physical properties and can be effectively used for
downstream tasks like redshift and mass estimation. Bowles et al. (2023; 2022) introduced
a method to associate radio galaxy images with a natural language description of their
morphology by using human-generated descriptions, with the goal of deriving semantic
morphology classes and using them for classification. In contrast with previous work, our
application is the first to associate astronomical observation with the text modality in a
task-agnostic manner, showcasing the potential of language models in specialized scientific
domains like astronomy.

The rest of this paper is organized as follows. In Sec. 2, we describe the Hubble dataset used
in this work, including the curation and processing of observations as well as text captions.
In Sec. 3, we describe the methodology used to train and evaluate the model. In Sec. 4,
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we present quantitative and qualitative results of our experiments on retrieval tasks. We
discuss future prospects and conclude in Sec. 5.

2 Dataset Construction

We curate a dataset of Hubble Space Telescope (HST) image observations and corresponding
text descriptions from publicly available sources. We rely on proposal abstracts from the
Proposal Abstracts Catalog1 – a catalog of successful HST proposals – to generate captions
for the observations, optionally summarizing them via guided generation using LLMs
(described in Sec. 2.2 below). The HST has been operational since its launch on April 24,
1990, and we use available proposals and observations up to the Cycle 30 science program,
which commenced data-taking in 2022.

Table 1 shows examples of images and their corresponding (clipped) proposal abstracts. It
can be seen that the images in this dataset exhibit specific characteristics as well as artifacts
particular to HST data-taking and processing which distinguishes them from the distribution
of natural images typically used for large-scale pre-training of foundation models. This
further motivates fine-tuning on domain-specific data.

Hubble image Obs. cycle
(Year)

Prop. ID Proposal abstract (clipped)

7
(1999)

7340

Category: STELLAR EJECTA. We propose to use

the WFPC2 and STIS CCD to obtain maximum spa-

tial resolution emission-line images of the young,

oxygen- rich supernova remnants SN0540–69.3 in

the LMC and E0102.2– 7219 in the SMC. O IIIL-

ambda5007, S IILambdaLambda6724 and O IILamb-

daLambda3727 images of SN0540–69.3 will be used

to characterize the ionization structure and...

22
(2016)

13757

Category: HOT STARS. Type Ia supernovae (SN

Ia) have enormous importance to cosmology and

astrophysics, but their progenitors and explosion

mechanisms are not known in detail. Recently, ob-

servations and theoretical models have suggested

that not all thermonuclear white-dwarf supernova

explosions are normal SN Ia. In particular, type Iax

supernovae (peculiar cousins to SN Ia), are...

Table 1: Examples of Hubble images (left-most column) and corresponding clipped proposal
abstracts (right-most column). The observation cycle and corresponding year, as well as
proposal ID, are shown in the second and third columns, respectively. The proposal IDs link
to the Mikulski Archive for Space Telescopes (MAST) page corresponding to the proposal.

2.1 Hubble Data Selection and Pre-processing

Observations corresponding to individual proposal IDs are queried through the Mikulski
Archive for Space Telescopes (MAST)2 via the Astroquery (Ginsburg et al., 2019) API.
Products of type PREVIEW are filtered in, corresponding to preview postcard images. We
note that these are not science-grade observations, but rather lower-resolution images
useful for diagnostic or preview purposes. A maximum of 20 images are downloaded per
proposal ID, selected at random, in order to avoid biasing the model towards proposals
with a larger number of observations and survey-style campaigns. Images are centered and
resized to a resolution-per-side of 512 pixels. Color previews (i.e., observations taken with

1https://archive.stsci.edu/hst/proposal abstracts.html
2https://mast.stsci.edu/
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Prop. ID LLM-extracted summary

Objects and phenomena Science use cases

7340

young oxygen-rich supernova

remnants SN0540–69.3, LMC,

SMC, supernova debris, active

pulsar, synchrotron nebula

characterize ionization structure and distribution of chemically pe-

culiar debris in SN0540–69.3, determine ionization structure in the

SN debris of E0102.2–7219, provide benchmarks for models of nu-

cleosynthesis in massive stars, excitation mechanisms in extremely

metal-rich plasmas, and supernova explosion dynamics, study the

pulsar and synchrotron nebula in SN0540–69.3, investigate SN0540–

69.3’s proximity to SN 1987A in both space and time, and relation

to the same extended complex of young stars

13757

type Iax supernovae, white

dwarfs, possible companion stars,

accretion disks, luminous blue

stars

constrain progenitor systems of type Iax supernovae, distinguish

between explosion mechanisms, investigate mass transfer processes

in accretion disks, determine if type Iax supernovae originate from

massive stars

Table 2: For the Hubble proposal abstracts shown in Tab. 1, the LLM (MIXTRAL-8X7B)-
extracted summaries showing objects and phenomena (middle column) as well as potential
downstream science use cases (last column) separately. The proposal IDs (left column)
contain hyperlinks to the MAST page corresponding to the proposal.

multiple wavelength filters assigned to individual RGB channels) are manually excluded
via a filename filter in order to maintain consistency across the samples. If no appropriate
images corresponding to an abstract are found, it is excluded from the dataset.

In total, 31,859 images corresponding to 4,438 abstracts are included in the fine-tuning
dataset. 3,194 images are held out for validation, with no abstract being common between
training and validation sets in order to ensure an independent set of image-text pairs for
evaluation. The held out images correspond to 429 unique abstracts. Due to practical
limitations associated with the small size of the fine-tuning dataset, we did not use different
datasets for validation and testing, deeming the current approach sufficient for a proof-of-
principle exposition.

We note that some fraction of the image-caption pairs in the constructed dataset will
primarily concern instrumentation and/or calibration rather than scientific content. We
choose to not filter out these pairs, in order to have a larger sample of HST observations
that the model can leverage to adapt to the distinctive characteristics of Hubble images.

2.2 Abstract Summarization via Guided Generation

Raw proposal abstracts summarize the corresponding successful HST observing proposals,
which intend to make the case for allocating Hubble telescope time towards a particular set of
observations. These abstracts are written in a diversity of styles, formats, and lengths while
also being highly variable in their content. Although the abstracts can be used as-is as image
captions, we experiment with summarizing them via guided large language model (LLM)
generation to standardize the captions used for fine-tuning the CLIP model. Captions are
summarized by extracting a list of objects and phenomena, as well as potential downstream
science use cases, corresponding to the eventual imaged observation. The intended goal of
the summarization process is to increase the strength of the association signal between text
and images.

The method from Willard & Louf (2023) is used to produce an LLM-generated summary
of the abstract conforming to a particular schema, specified in JSON format. The schema
is designed to represent a list of the objects (e.g., ‘Type Ia supernova’) and phenomena
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(e.g., ‘gravitational lensing’), as well as potential downstream science uses cases (e.g., ‘set
constraints on supernova explosion models’) that could correspond to the eventual imaged
observation given the abstract text, with a minimum of 1 and a maximum of 5 elements per
list. The procedure guides the generation of LLM outputs while ensuring that the schema is
respected at every step in the generation process by masking out tokens that would violate
the intended format. By framing the problem in terms of transitions between a set of finite
states (i.e., a finite-state machine), Willard & Louf (2023) showed that guided generation can
be performed with negligible overhead compared to unconstrained generation. See App. A.1
for a more detailed description of the guidance generation method used here, including an
overview of technical details. While the schema-guided generation ensures the format of the
output, the prompt and choice of LLM will dictate the content of the generated summaries.
We use the open-weights, instruction-tuned model MIXTRAL-8X7B-INSTRUCT (Jiang et al.,
2024) to generate the summaries, with guided generation performed using the Outlines3

package. Further details on the summarization procedure, including the prompts and
schema used, are provided in App. A.2.

Examples of LLM-generated abstract summaries are shown in Tab. 2, for the same set of
abstracts as shown in Tab. 1. We train separate models using the raw abstracts and the
LLM-generated summaries, and compare their performance on downstream tasks in Sec. 4.
We note that, even after summarization, the association signal is expected to be noisy, since
parts of the summarized caption may not be directly descriptive of the observed images. The
goal of the fine-tuning process is to leverage the signal contained in this noisy association.

3 Methodology

3.1 Contrastive Language-Image Pre-training

Contrastive Language-Image Pre-training (CLIP; Radford et al., 2021) is a multi-modal
neural network model pre-trained on a large corpus of image-text pairs via weak supervision
using a contrastive loss. Given a minibatch B of |B| image-text pairs {(Ii, Ti)}, the goal is to
align the learned representations of corresponding (positive) pairs (Ii, Ti) while repelling
the representations of unaligned (negative) pairs (Ii, Tj ̸=i). Image and text encoders f : I →
Rnemb and g : T → Rnemb are used to map images and text to a common embedding space of
dimension nemb. We use the standard bidirectional variant of the InfoNCE (Oord et al., 2018)
contrastive loss function introduced for training CLIP-style architectures (Radford et al.,

2021), L(B) = − 1
2|B| ∑

|B|
i=1

(
log exi ·yi/τ

∑
|B|
j=1 exi ·yj/τ + log exi ·yi/τ

∑
|B|
j=1 exj ·yi/τ

)
, where xi = f (Ii)/∥ f (Ii)∥

and yi = g (Ti)/∥g (Ti)∥ are the normalized representations of the i-th image and text
caption, respectively, and τ is a learnable temperature hyperparameter. Note that this loss
treats the image and text representations symmetrically, ensuring that the two modalities
are considered on the same footing.

3.2 Fine-tuning Procedure

The base CLIP model is fine-tuned using the dataset described in Sec. 2, using either the
LLM-summarized abstracts or raw proposal abstracts paired with observations. When
using raw proposal abstracts, random chunks of the text delimited by periods are selected
on the fly to fit within the maximum token length of the text encoder. Images are augmented
via random four-fold rotations (increments of 90◦) and randomly cropped to the native
resolution of the image encoder, maintaining ∼ 20% of the area of the original image, at
each training step. Given the relatively modest size of the fine-tuning dataset, a batch size
|B| = 32 is used throughout; larger batch sizes were observed to be susceptible to overfitting.
The temperature hyperparameter τ was initialized to its pre-trained value. We emphasize
that the positive and negative image-text association is noisy and imperfect, since multiple
images can be associated with the same abstract, and the goal of the fine-tuning process is
to leverage the signal contained in this noisy association.

3https://github.com/outlines-dev/outlines
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We use the CLIP-ViT-B/16 (Radford et al., 2021) variant as the base pre-trained CLIP model.
We explore three different methods of training the model on our domain dataset: (1) Fine-
tuning the entire network starting from the pre-trained base model; (2) Freezing the base
image/text encoders and training a small projection head; and (3) Training the entire model
from scratch. For (2), we use a 2-layer MLP with 1024 hidden units and a GELU activation
layer, projecting onto the 512-dimensional common embedding space. Additional details on
the CLIP model and fine-tuning procedure are provided in App. B.

3.3 Evaluation Metrics

The model is evaluated by tracking the contrastive loss as well as the top-k% retrieval
accuracy on the held out validation set over the course of training. The retrieval accu-
racy is defined as the fraction of associated captions (either raw or LLM-summarized
abstracts) which fall within the top k% of captions by cosine similarity of the normal-
ized image and caption embeddings, averaged over the images in the validation set:

1
|V| ∑

|V|
i=1 1

[
rank

(
xi · yi; {xi · yj}|V|j=1

)
≤
⌊

k
100 |V|

⌋]
where |V| is the total number of images

in the validation set, 1[·] is the indicator function that returns 1 if the condition inside the
brackets is true and 0 otherwise, rank

(
xi · yi; {xi · yj}|V|j=1

)
is a function that returns the rank

of the cosine similarity between xi and yi among the cosine similarities between xi and all
captions yj in the validation set, and k is the percentage of top captions considered for the
retrieval accuracy. Note that this metric is symmetric in the image and text modalities.

We also qualitatively evaluate the learned embeddings through image retrieval (i.e., retriev-
ing the most relevant images from the validation set using natural language queries).

4 Results and Discussion

4.1 Quantitative Evaluation

Validation metrics during training Figure 2 shows the contrastive loss (left) and the
top-10% retrieval accuracy (right) evaluated on the held out validation set over the course
of training, for different training configurations considered. The dashed orange lines show
the metrics evaluated when training with batches where the image-text associations are
randomly shuffled. This randomized baseline is seen to do on par with random expectation
(i.e., a 10% retrieval accuracy), unlike the others, validating the presence of a significant
association signal between images and text in the dataset. Interestingly, the base pre-trained
model performs better than random expectation, with a top-10% retrieval accuracy of ∼ 15%
(as see from the left-most datum in Fig. 2 right, for the curves corresponding to fine-tuned
models). We therefore also compare the qualitative performance of the base model with the
fine-tuned models on downstream retrieval tasks.

The model trained using LLM-summarized abstracts (red lines) is seen to perform slightly
worse than the model using raw abstracts as captions (blue lines), despite the curation of the
summarized-abstract dataset intended to provide a stronger image-text association signal.
Fine-tuning a small MLP head over frozen vision and text backbones (dotted green lines)
and training from scratch with summarized abstracts as captions (yellow lines) show a non-
trivial improvement compared to the base model, although with deteriorated performance
compared to fine-tuning with either summarized or raw abstracts.

Distribution of text-image cosine similarities Figure 3 (left) shows the distribution of
cosine similarities between corresponding image and text embeddings, xi and yi, for the
base CLIP model (purple line), and for the LLM-summarized abstracts using the fine-tuned
CLIP model (red line). Distributions evaluated for a shuffled order of text embeddings –
therefore randomizing the image-text correspondence during evaluation – are shown as
dashed lines. We note that the shuffling here is performed at the evaluation stage, and not
the training stage. The distributions for the base model is seen to be sharply peaked at a
specific value, showing little diversity and being very similar between the shuffled (dashed
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Figure 2: The CLIP contrastive loss (left) and the top-10% retrieval accuracy (right) computed
on the validation set over the course of training. Shown for the dataset with summarized
abstracts as captions (red), dataset using raw proposal abstracts as captions (blue), only fine-
tuning a small MLP head (dotted green), training from scratch with summarized abstracts
as captions (yellow), and trained with shuffled image-text pairs (dashed orange).

purple) and non-shuffled (solid purple) versions. Distributions for the fine-tuned model,
on the other hand, show a clear separation when evaluated on shuffled (dashed red) and
corresponding (solid red) text-image pairs.

Retrieval accuracy Figure 3 (right) shows the retrieval accuracy as a function of the re-
trieval fraction k%. In this case, we evaluate all four models (fine-tuned on raw abstracts
(blue), fine-tuned on LLM-summarized abstracts (red), trained on LLM-summarized ab-
stracts from scratch (yellow), and the base model (purple)) on the same captions dataset –
the summarized abstracts – for a direct comparison. Remarkably, the model trained on raw
abstracts shows very similar performance when evaluated on the summarized abstracts
compared to that trained on the summarized abstracts themselves, indicating that (1) the
image-text association signal is preserved in the summarization process, and (2) the model is
able to effectively leverage meaningful concepts in the noisy raw abstracts through weak su-
pervision. The significantly worse performance of the model trained from scratch, compared
to the fine-tuned models, highlights the crucial role of the inductive bias inherited from the
base pre-trained model, which effectively captures rich associations between images and
language.

We show retrieval accuracy performance for additional variations on the model and training
configuration in App. C.

4.2 Image Retrieval

Having aligned the image and text representations, we can embed a natural language
query using the model and show the closest images by embedding from the validation
set when ranked by cosine similarity. A sketch of this procedure is shown in Fig. 1 (right).
We show these in Tabs. 3 and 4 for the base and fine-tuned models respectively using
two simple curated queries: Jupiter and SN1987A (a specific supernova). The proposal ID
corresponding to the retrieved images is shown below each image, and contains a hyperlink
to the MAST page corresponding to the proposal for further details.

While the base model shows some signs of meaningful retrieval (e.g., the image of Jupiter
in the first row of Tab. 3), associations between the retrieved images and corresponding
queries are not consistent.

The model fine-tuned with summarized abstracts, meanwhile, shows strikingly different
behavior (Tab. 4). Images looking like Jupiter are returned for the Jupiter query. However,
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Figure 3: (Left) Distribution of cosine similarities between corresponding image and text
embeddings, xi and yi, shown when using the base CLIP model (purple lines), and the
summary fine-tuned CLIP model (red line). Dashed lines correspond to models evaluated
on image-text pairs with associations shuffled. (Right) Retrieval accuracy as a function of the
retrieval fraction k for the fine-tuned model on the summarized abstracts (red), fine-tuned
on raw abstracts (blue), trained on summarized abstracts from scratch (yellow), and the
base model (purple).

this example also illustrates the model’s potential to misidentify objects, with the first and
third image actually showing Saturn with artifacts on the planet and partially obscured
rings. Supernova SN1987 itself can be seen in the three closest images for the SN1987A query.

We also evaluate the observation retrieval task more quantitatively. We design a prompt
which lets us evaluate whether the abstract corresponding to a retrieved observation is
relevant or not, with the output constrained to be a boolean using Outlines . We then
evaluated this prompt, for the base as well as fine-tuned models, on the top 10 closest
images by cosine similarity returned for 10 different queries. 38% and 77% of the retrieved
observations are deemed relevant when using the base and fine-tuned models, respectively.
The fine-tuned model is thus significantly more likely to return images relevant to the query.
The prompt and curated queries for this test are described in App. A.3.

Note that we chose to illustrate qualitative performance on image retrieval using the model
fine-tuned on summarized abstracts, rather than raw abstracts. Although the two models
show very similar quantitative performance on retrieval metrics (as shown in Fig. 3), they
exhibit characteristically different behaviors in terms of images retrieved, with the summary
fine-tuned models generally retrieving images that look more visually “relevant” to a
domain expert. We emphasize that for scientific usefulness, the goal is not necessarily to
correctly retrieve the most relevant objects, but rather to identify a diverse set of interesting
candidates for manual follow-up and further analysis. By diverse, we mean that retrieved
observations may contain different types of objects or phenomena, which may be relevant
to the query in distinct ways.

The fine-tuned model can similarly be used for description/text retrieval, akin to the
traditional zero-shot classification setting, where the closest text snippets from a curated list
are returned given an observed astronomical image. We show examples of the text retrieval
task in App. D.

5 Outlook and Conclusions

We present PAPERCLIP, a method for training domain-specific multi-modal models for
astrophysics that associates observations imaged by telescopes with natural language in a
common embedding space. We showcase an application to Hubble Space Telescope (HST)
observations, where the model is fine-tuned from a pre-trained CLIP model using abstracts
of successful Hubble proposals, optionally summarized, leveraging a noisy association
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Query Top-3 most similar images using base off-the-shelf CLIP model

Jupiter

6028 10170 10170

SN1987A

13830 15475 14594

Table 3: For two text queries (left-most column), the three most similar images from the
validation dataset by cosine similarity when using the base (off-the-shelf) CLIP model
(CLIP-ViT-B/16). The proposal ID associated with each image is given below the image and
contains a hyperlink to the MAST page corresponding to the proposal.

Query Top-3 most similar images using summary fine-tuned CLIP model

Jupiter

11956 6028 11956

SN1987A

11653 11653 8648

Table 4: Same as Tab. 3, but using the summary fine-tuned CLIP model.

signal between text and images. We show that PAPERCLIP significantly outperforms the
base CLIP model in quantitative metrics, such as retrieval accuracy, as well as quality of
text-to-image and image-to-text retrieval. We also introduce a novel LLM summarization
process which leverages guided generation to distill the content of proposal abstracts while
preserving salient information. Overall, the procedure demonstrates the efficacy of fine-
tuning generalist pre-trained models on small amounts of domain-specific data, in particular
astronomical datasets, and leveraging text as an interface for interacting with the data.

Although the model explored here is fine-tuned using postage stamp images (i.e., preview-
quality and not science-grade data), we highlight potential immediate as well as downstream
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use cases. A model trained using weakly-supervised image-text pairs can be used to query
large amounts of unlabeled survey data e.g., PHANGS (Lee et al., 2022), COSMOS (Scoville
et al., 2007) for objects or use-cases of interest using natural language, as well as to efficiently
find patterns in such data that may not be apparent using specialized models or manual
inspection. The learned representations, having shown to correlate with physical charac-
teristics of imaged objects, can also be fine-tuned via transfer learning to adapt to either
specific tasks e.g., classification (Wei et al., 2020) or segmentation (Hausen & Robertson,
2020), or observations imaged by other telescopes.

Finally, while the CLIP model is restricted to retrieving nearest-neighbour associations
within and across text/image modalities, the learned embeddings can be used as a starting
point for training or fine-tuning multi-modal large-language models for interacting with
survey data and receiving responses in natural language form, as well as grounding the
responses based on an existing set of observations.
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it will be important for the community to consider norms and guidelines around the
appropriate use and attribution of various data sources for model training and evaluation,
including qualitative textual data, to ensure transparency and maintain trust.
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supervised representation learning for astronomical images. The Astrophysical Journal
Letters, 911(2):L33, 2021b.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre,
Andreas Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for
JAX, 2023. URL http://github.com/google/flax.

Lukas Heinrich, Michael Kagan, Samuel Klein, Matthew Leigh, Tobias Golling, John An-
drew Raine, and Margarita Osadchy. Masked particle modeling on sets: Towards self-
supervised high energy physics foundation models. arXiv preprint arXiv:2401.13537,
2024.

Marc Huertas-Company and François Lanusse. The dawes review 10: The impact of deep
learning for the analysis of galaxy surveys. arXiv preprint arXiv:2210.01813, 2022.

Marc Huertas-Company, Regina Sarmiento, and Johan H Knapen. A brief review of con-
trastive learning applied to astrophysics. RAS Techniques and Instruments, 2(1):441–452,
2023.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007. doi: 10.1109/MCSE.2007.55.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian
Bressand, et al. Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL
http://arxiv.org/abs/1412.6980.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Busson-
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A Details on the Abstract Summarization Procedure

We provide additional details of the abstract summarization procedure, including a brief
overview of the guided generation method used, as well as the prompts and schema used
for the summarization task.

A.1 Guided LLM Generation with Outlines

As mention in Sec. 2.2, we employ the guided generation method introduced by Willard &
Louf (2023) and implemented in Outlines to ensure that the LLM summarization of the raw
proposal abstracts adheres to specific pattern, specified in JSON format (Sec. A.2 below),
which we briefly describe here. This approach represents the desired output format as a
finite-state machine (FSM) that encodes the JSON schema as a regular expression. The JSON
schema constraint is therefore first converted into a regular expression.

The key idea then is to pre-compute an index that maps each state of the FSM to the subset of
tokens from the LLM’s vocabulary that can be generated from that state while still allowing
for a valid completion of the pattern. By doing so, we can efficiently determine the valid next
tokens at each step of the generation process without having to check the entire vocabulary.

Formally, let M = (Q, Σ, δ, q0, F) be the FSM representing the regular expression, where Q
is the set of states, Σ is the alphabet of the regular expression, δ : Q × Σ → Q is the transition
function between states, q0 is the start state, and F ⊆ Q is the set of accept states which
terminate the generation. An index σ : Q → P(V) is first constructed, where V is the LLM’s
token vocabulary and P(V) denotes the power set of V. For each state q ∈ Q, σ(q) contains
the allowed tokens that can be generated from state q while maintaining the possibility of
reaching an accept state. The construction of σ involves finding all token sequences that,
when processed by the FSM starting from each state q, lead to an accept state.

During the sequential generation process, the current FSM state qt is kept track of after
sampling each token vt. At each step t, the LLM’s output logits are masked based on the
valid next tokens σ(qt), setting the logits of invalid tokens to −∞. The next token is then
sampled from the categorical distribution defined by the unmasked logits, and the FSM
transitions to the next state qt+1 = δ(qt, vt+1), where vt+1 ∈ Σ is the token in the regular
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expression alphabet corresponding to the sampled token. This process continues until an
accept state with no outgoing transitions is reached, indicating a valid completion of the
pattern.

A.2 Prompts and Schema Used for Summarization

We list here the prompts and schema (i.e., desired output formats) used for guided text
generation via Outlines package interfacing with the MIXTRAL-8X7B-INSTRUCT open-
weights large language model.

The following schema, specified using the data-validation package Pydantic , is used to
guide the generation of the summaries, intended to produce between one and five objects
and hypotheses, as well as science use cases, given a raw proposal abstract. Both fields are
of type conlist, a Pydantic type that represents a constrained list.

1 from pydantic import BaseModel, conlist
2

3 class ConstrainedResponseHST(BaseModel):
4 objects_and_phenomena: conlist(str, min_length=1, max_length=5)
5 science_use_cases: conlist(str, min_length=1, max_length=5)

The following prompt function is used to produce a list of one to five possible objects and
phenomena shown in HST observations downstream of a proposal abstract, as well as
one to five possible science use cases, in the format native to Outlines . "<s>[INST]" and
"[/INST]" are start and end instruction delimiters, respectively, for the MIXTRAL-8X7B model.

1 import outlines
2

3 @outlines.prompt
4 def prompt_fn(abstract):
5 """<s>[INST] You are an expert astrophysicist, with broad expertise across

observational and theoretical astrophysics. You are able to extract core
information from astrophysical texts.

6

7 Abstract: "{{abstract}}"
8

9 Based on the above observational proposal abstract, your task is to summarize the
nature of the eventual observations. You will identify the astrophysical

objects and phenomena, as well as the potential science use cases described
in the abstract.

10

11 Follow these instructions exactly:
12 - Mention up to 5 items for both categories; do not mention more than 5 items in

either category.
13 - Choose the most relevant ones if there are more than 5 items in a category.
14 - Never mention the Hubble Space Telescope, HST, or the HST archive.
15 - Mention the class (e.g., barred spiral galaxy) and not just the specific

instance (e.g., Andromeda).
16 - Name the objects in the science use cases, if appropriate.
17 - Write out full names of objects in addition to acronyms.
18 - Do not list irrelevant objects which do not describe the eventual observation,

such as units or proposal Cycle numbers. List fewer but more relevant objects
, if in doubt.

19 - Each science case listed must be self-contained but succinct.
20 - Only write in English.
21 - Do not list items that are too generic (e.g., galaxy, faint object, kinematics)
22 - The total length of text should not exceed 80 words.
23 - Present your lists in a comma-separated format; no dashed or numbered lists.
24

25 Example output: {'objects_and_phenomena':'spiral galaxies, galaxy clusters,
supernova remnants', 'science_use_cases':'model galactic structure and
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evolution, characterize dark matter distribution in clusters, analyze
expansion rates of supernova remnants'}

26

27 Answer in JSON format. The JSON should be a dictionary with keys "
objects_and_phenomena" and "science_use_cases".

28

29 [/INST]
30 """

A.3 Prompt Used for Quantitative Evaluation of Observation Retrieval

The following prompt was used to evaluate the relevance of abstracts corresponding to
retrieved images to a query, when quantitatively assessing the observation retrieval task.

1 import outlines
2

3 @outlines.prompt
4 def prompt_fn(abstract, query):
5 """[INST]
6 You are an expert astrophysicist, with broad expertise across observational and

theoretical astrophysics.
7

8 Abstract: "{{abstract}}"
9 Query: "{{query}}"

10

11 The above is an abstract for a proposed observation taken by the Hubble Space
Telescope (labeled "Abstract"), and an object or concept (labeled "Query").

12

13 Could the observations corresponding to the abstract contain the query? Be
precise, and do not contain related concepts or objects.

14

15 Your response should be either True or False. Only return True if the query is
closely related to the abstract, and the downstream observation could be
relevant to the query.

16 [/INST]
17 """

The queries used in the evaluation were ["globular cluster", "dwarf galaxy",
"SN1987A", "strong lensing", "galaxy clusters", "interstellar medium", "dark
matter", "spiral galaxies", "lyman alpha", "comets"].

B Additional Model and Training Details

We use the CLIP-ViT-B/16 (Radford et al., 2021) variant as the base pre-trained CLIP model.
This model uses a 12-layer, 12-head, 768-embedding dimension vision transformer with
patch size 16 × 16 as the image encoder (Dosovitskiy et al., 2020) and a 12-layer, 8-head,
512-embedding dimension text sequence transformer as the text backbone (Vaswani et al.,
2017). The text encoder has a maximum length of 77 tokens and the image encoder has a
native resolution of 224 × 224 pixels. Linear projection layers map the outputs of the image
and text encoders to a common embedding space of dimension nemb = 512. In total, the
model contains ∼ 149 million trainable parameters. This model was originally pre-trained
on ∼ 400 million image-text pairs from internet data.

All models were trained over 20,000 steps with 2000 linear warmup steps using the AdamW
optimizer (Loshchilov & Hutter, 2019; Kingma & Ba, 2015) with learning rate 10−5 and
weight decay 10−3. Training takes approximately 3 hours on 4 Nvidia A100 GPUs. Models
were instantiated using the Transformers (Wolf et al., 2019) library and trained using
packages from the Jax (Bradbury et al., 2018) ecosystem.
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C Additional Variations on Model and Training

Figure 4 shows the retrieval accuracy as a function of the retrieval fraction for further
variations of the model or training, evaluated and trained on summarized abstracts. The red
line corresponds to the model trained on summarized abstract described in the main text
(fine-tuned on CLIP-ViT-B/16 with constant learning rate LR = 10−5 after linear warmup).
The purple line corresponds to the base CLIP-ViT-B/16 model.

Curves for the model fine-tuned on the larger base CLIP model CLIP-ViT-L/14 (dotted red),
with a smaller learning rate LR = 10−6 (dashed green), and with a cosine learning rate
schedule (green) are also shown. All these models are seen to perform similarly, with the
exception of the model trained with smaller learning rate showing degraded performance.
Given the similar performance between CLIP-ViT-L/14 (∼ 428 million parameters) and
CLIP-ViT-B/16 (∼ 149 million parameters), we chose the latter as the base model in the
main text for computational efficiency.
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Figure 4: Same as Fig. 3 (right) – retrieval accuracy as a function of the retrieval fraction
– for further variations on the model or training. The red and purple lines correspond
to the model trained on summarized abstract, described in the main text, and the base
CLIP-ViT-B/16 model, respectively. Curves for the model fine-tuned on the larger base CLIP
model CLIP-ViT-L/14 (dotted red), with a smaller learning rate LR = 10−6 (dashed green),
and with a cosine learning rate schedule (green) are also shown.

D Text Retrieval Task

We can use images from the validation set as queries and retrieve the most relevant text
chunks (e.g., objects and use cases) from a curated list.

The following curated categories are used in the text retrieval experiment in Sec. 4. These
are derived by initially prompting CLAUDE 24, having attached a subsample of 30 proposal
abstracts in the online interface to be used as context, to produce a list of categories
corresponding to typical HST observations. The list is then manually curated to remove
similar entries and ensure a representative sample of categories.

4https://claude.ai/
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1 ["star forming galaxies", "lyman alpha", "dust", "crowded stellar field", "core-
collapse supernova", "cosmology", "gravitational lensing", "supernovae", "
diffuse galaxies", "globular clusters", "stellar populations", "interstellar
medium", "black holes", "dark matter", "galaxy clusters", "galaxy evolution",
"galaxy formation", "quasars", "circumstellar disks", "exoplanets", "Kuiper

Belt objects", "solar system objects", "cosmic web structure", "distant
galaxies", "galaxy mergers", "galaxy interactions", "star formation", "
stellar winds", "brown dwarfs", "white dwarfs", "nebulae", "star clusters", "
galaxy archeology", "galactic structure", "active galactic nuclei", "gamma-
ray bursts", "stellar nurseries", "intergalactic medium", "dark energy", "
dwarf galaxies", "barred spiral galaxies", "irregular galaxies", "starburst
galaxies", "low surface brightness galaxies", "ultra diffuse galaxies", "
circumgalactic medium", "intracluster medium", "cosmic dust", "interstellar
chemistry", "star formation histories", "initial mass function", "stellar
proper motions", "binary star systems", "open clusters", "pre-main sequence
stars", "protostars", "protoplanetary disks", "jets and outflows", "
interstellar shocks", "planetary nebulae", "supernova remnants", "red giants"
, "Cepheid variables", "RR Lyrae variables", "stellar abundances", "stellar
dynamics", "compact stellar remnants", "Einstein rings", "trans-Neptunian
objects", "cosmic microwave background", "reionization epoch", "first stars",
"first galaxies", "high-redshift quasars", "primordial black holes", "

resolved binaries", "binary stars"]

The following prompt is used to generate the initial list before manual curation: “Here is
a list of Hubble proposals. Base on this, please provide a list of about 100 strings, each describing
a science target or use case for observations imaged by the Hubble Space Telescope. You may use
these proposals and also rely on your general knowledge. For example, [”gravitational lensing”,

”supernovae”, ”diffuse galaxies”, ...]”

We show the result of image-to-text retrieval in Tab. 5, for the base (second column) as well
as summary fine-tuned (third column) models, using four observations (left-most column)
from the validation set.

The top four text associations are shown for each image query. The ‘ground truth’ sum-
marized abstract is shown in the right column. The base as well as fine-tuned models are
seen to return a mix of relevant and less-relevant associations, although showing different
qualitative behavior. Purely qualitatively, the fine-tuned model is seen to consistently return
more relevant associations compared to the base model.

The second row (an image of supernova 1987A) highlights an interesting pattern – the base
model erroneously attributes the object at the center of the image to a gravitational lens,
while the fine-tuned model correctly identifies it as a supernova remnant. This kind of
reasonable misattribution is common when querying the base model, and largely absent in
the fine-tuned model.
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Hubble image Top-4 text
(base off-the-shelf)

Top43 text
(summary
fine-tuned)

Summarized
abstract

(objects; ‘ground
truth’)

1. high-redshift quasars
2. gravitational lensing
3. white dwarfs
4. dwarf galaxies

1. dwarf galaxies
2. RR Lyrae variables
3. red giants
4. trans-Neptunian objects

isolated dwarf galaxies, WLM,

Pegasus Dwarf Irregular

Galaxy, stellar mass, main

sequence stars

1. gravitational lensing
2. supernovae
3. binary star systems
4. circumstellar disks

1. supernova remnants
2. protostars
3. galactic structure
4. core-collapse supernova

supernova SN 1987A, circum-

stellar ring, supernova rem-

nant, shocked ring, radioac-

tive isotopes

1. gravitational lensing
2. high-redshift quasars
3. ultra diffuse galaxies
4. galaxy clusters

1. galaxy clusters
2. lyman alpha
3. intracluster medium
4. dark energy

X-ray luminous galaxy clus-

ters, eMACS clusters, Balmer

Break Galaxies, Lyman-break

galaxies, gravitational tele-

scopes

1. star clusters
2. globular clusters
3. open clusters
4. stellar populations

1. globular clusters
2. star clusters
3. galactic structure
4. crowded stellar field

pre-main sequence stars,

Large Magellanic Cloud,

young clusters, color-

magnitude diagrams,

main-sequence turn offs

Table 5: Text snippets from a curated list most closely matching a given image query (left-
most column) by cosine similarity of respective embeddings, shown for the base off-the-shelf
(CLIP-ViT-B/16) and summary fine-tuned models. The ‘ground truth’ LLM-summarized
abstract (only objects/phenomena) is shown in the right-most column.
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