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In this report, we provide an initial exploration into a key but under-studied phenomenon in
enumerative combinatorics — the use of division in solving counting problems. We present a case
of one undergraduate student solving a combinatorics problem, this case is representative of a
broader phenomenon in which students may intuitively desire to account for an overcount using
subtraction, when division is a productive and useful approach. We highlight the conceptions a
student demonstrated as she progressed from using subtraction to using division successfully.
We frame our analysis in terms of a set-oriented perspective (Lockwood, 2014).
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When solving counting problems, we may find ourselves needing to remove some
undesirable outcomes from a larger set, in order to find the cardinality of the set of outcomes in
question. For example, in the problem “How many sequences of 5 digits contain at least one 9?7,
an efficient strategy is to count all possible 5-digit sequences and then to subtract those that do
not contain a 9. This strategy is common, and can be viewed as a special case of the well-known
Principle of Inclusion/Exclusion (e.g., Tucker, 2002); subtraction is a powerful tool for counting.

In some cases, however, the operation of division, and not subtraction, is most useful. In fact,
division represents an important, often necessary, way to account for overcounting. Consider the
Table Problem, which is the focus of our case study in this paper: “How many ways are there to
arrange 10 people around a circular table?” A common efficient solution involves division — we
first count the ways to arrange 10 people in a line (10!), and then we note that each of the desired
circular arrangements is actually overcounted by a factor of 10 (since each linear arrangement
can be rotated 10 times to yield equivalent circular arrangements). Thus, we can strategically
divide the number of linear arrangements by 10 to arrive at the correct answer of 9!. In such
problems, we have observed that students’ initial approach tends to focus on subtraction as a way
to account for overcounting. Our main goal in this paper is to consider and discuss ways in which
students may progress from an initial intuitive desire to subtract to a combinatorial understanding
of how and when to divide in appropriate circumstances.

There are many reasons why we might want students to develop robust, productive ways of
thinking about division in combinatorics. Indeed, it occurs frequently in problems, and it is a
fundamental aspect of why certain formulas (such as the binomial coefficients) work as they do.
As important as division is, it has not commonly been addressed in the teaching and learning of
combinatorics. We argue that better understanding division as it relates to counting could be
beneficial for students. Our motivation and goal here is to provide evidence for — and to lay
groundwork for — future studies to examine division in combinatorics.

In this report we focus on a case study of one undergraduate student, who solved the Table
Problem and, in so doing, transitioned from an approach focused on subtraction to one that
successfully leveraged division. We particularly want to highlight what conceptions about
division emerged for the student that allowed her to successfully solve the counting problem
(particularly when she was not able to use subtraction successfully). We attempt to answer the
following research questions by examining this case: What conceptions and ways of reasoning



emerged for an undergraduate student as she progressed from using subtraction to using
division to solve a counting problem that was designed to elicit division?

Literature Review and Guiding Perspectives that Situate Our Work

A Set-Oriented Perspective

Lockwood (2014) introduced a set-oriented perspective as a way of thinking about counting
“that involves attending to sets of outcomes as an intrinsic component of solving counting
problems” (p. 31). Lockwood and others have since argued for the importance of having students
connect counting to sets of outcomes in a variety of ways, connecting such a perspective to
listing (Lockwood & Gibson, 2016), highlighting its importance in helping students understand
and interpret counting formulas (e.g., Lockwood et al., 2015; Wasserman & Galarza, 2017;
Wasserman, 2019), and emphasizing its centrality to being able to engage productively with
combinatorial proof (e.g., Lockwood et al., 2020; Erickson & Lockwood, 2021a). Relatedly,
Lockwood (2013) presented a model of students’ combinatorial thinking that included three
components: counting processes, formulas and expressions, and sets of outcomes. In this model,
Lockwood emphasized the importance of sets of outcomes, suggesting affordances of having
students think about ways in which their counting processes generate and organize sets of
outcomes. Our findings in this paper help flesh out the relatively broad view of this set-oriented
perspective initially presented by Lockwood (2014). We explore how certain ways of structuring
sets of outcomes may serve to support students’ reasoning about division in solving counting
problems. The set-oriented perspective serves as a guiding theoretical principle, and a focus on
sets of outcomes is central to how we conceive of counting.

Arithmetic Operations in Combinatorics
With the exception of multiplication, arithmetic operations have generally not been studied
extensively in combinatorics education. Multiplication occurs so frequently in combinatorics that
the community has developed a Multiplication Principle (MP) that describes conditions under
which it is appropriate to multiply when solving a counting problem. Researchers have explored
a number of ways in which the MP is presented in the teaching and learning of combinatorics,
including its presentation in textbooks (e.g., Lockwood et al., 2017), students’ reasoning about
the MP (e.g., Lockwood & Purdy, 2020a, 2020b), and problems involving Cartesian products
(e.g., Tillema, 2013). To this point, however, adequate attention has not been paid to other
arithmetic operations in counting, especially subtraction and division. Lockwood and Reed
(2020) describe an equivalence way of thinking in combinatorics, highlighting how equivalence
relates to division in counting.
Broadly, an equivalence way of thinking in combinatorics entails recognizing equivalence
between particular outcomes, and then subsequently accounting for this equivalence. So,
when employing an equivalence way of thinking, two things happen: a) one recognizes that
in a given set of outcomes, there are certain outcomes that should be considered equivalent
(or “the same,” “duplicate,” or “identical”) for specified constraints in a situation or
problem, and b) one understands that they can use the operation of division in order to
account for the occurrence of such equivalent outcomes (Lockwood & Reed, 2020, p. 4).
Lockwood and Reed noted several places in which such equivalence and division naturally
arise among topics in combinatorics. Our point here is that division in combinatorics relates to
important underlying concepts, and it is worthwhile to pursue as a line of inquiry. Our data sheds
light on students’ conceptions of division (particularly as it relates to subtraction) that illuminate



the kinds of productive meanings and ways of reasoning that have thus far been absent from the
literature, and suggest a need for further exploration. We are thus motivated to think more
broadly about ways in which other operations can support and augment students’ combinatorial
understanding beyond just multiplication.

Methods

We present an episode taken from a series of task-based clinical interviews (Hunting, 1997)
exploring, among other things, students’ engagement with division in counting. Nine students
were recruited from a large university in the United States. The participants were a mix of six
undergraduates, one early-stage graduate, and two late-stage graduate students who were
enrolled in a math class and had taken (or were taking) a course that featured counting. There
were no selection criteria aside from their coursework and willingness to participate. We present
the work of Jillian (pseudonym), an undergraduate mathematics major, in her first interview.

Interview sessions were 90 minutes long. Because of student availability, some students
participated in few sessions (1-3) while others participated in many sessions (6-9). Consistent
with task-based clinical interviews (Hunting, 1997), the participants were asked to describe their
work as they solved multiple counting problems, and were frequently asked hypothesis-
confirming questions by the interviewer about their understandings of formulas, concepts, and
strategies both during and after they solved the problems. Participants worked on an iPad to
solve the problems, and their written work and gestures and utterances were recorded.

The interview protocol consisted of a diverse collection of counting problems, with many
problems chosen as likely to elicit use of division as part of the problem-solving process. For
instance, one might solve the Table Problem in at least three ways, though we hypothesized that
many students would be successful by leveraging division as described in the Introduction. An
alternative solution involves making an initial arbitrary choice that a single person sits first at the
table. Following this, there are 9! arrangements of the remaining 9 persons around her.

Notably, one might also solve the Table Problem with subtraction. Beginning with the 10!
linear arrangements of people, and recognizing the overcount, one might attempt to remove 9
extra outcomes for each 1 desired outcome. This leads to the insight that, if for each desired
outcome there are 9 to be removed, then you solve the problem by the difference 10! — 9x,
where x is the desired number of outcomes. Since x is also the solution, you establish the

equation 10! — 9x = x to yield the solution 11—(: = 9!. As many counting problems involving

division can be solved in multiple ways, we attempted to choose problems for which division
would be a likely solution method. We also included other problems for which division was not a
targeted solution method (e.g., problems involving sums of binomials) so students would not
anticipate that division was the targeted operation of the study. Following our focus on a set-
oriented perspective, other interventions were enacted to support student consideration of
outcome sets during their problem solving.

The video records (iPad work and gestures and utterances) were spliced together so that we
could view both the student and their work at the same time. Transcripts were made and
enhanced with images, references, and comments. The research team analyzed the data for this
report by searching the records for episodes where students utilized division in their solution,
attending particularly to problems where subtraction was involved in an earlier solution attempt.
We then reviewed the records of the episodes via conceptual analyses (Thompson, 2008) to build
second-order models of the students’ thinking, seeking viable explanations of the students’



actions and utterances in the form of theoretical models (Steffe & Thompson, 2000; Thompson,
2008). The results that we present follow from our second-order models of Jillian’s cognition.

Results
In this section, we briefly describe four episodes in Jillian’s work on this problem, as we
document her progress from her initial inclination to use subtraction to her use and justification
of division. In each episode, we comment on her reasoning and connect it to what we think are
broader important points related to student thinking on division in counting.

Episode 1: Starting from 10! with an Inclination to Subtract

Jillian had correctly solved a previous problem that asked for the number of ways to arrange
10 people in a line (the answer is 10!), and when answering the Table problem, Jillian began
with that previous solution. She understood that 10! would give her too many outcomes, and she
immediately demonstrated engagement with the sets of outcomes by identifying specific
outcomes as “the same”.

Jillian: There's going to be similar iterations, because if you have a through j [i.e. the sequence
(a,b,c,d,ef,g h,ij)], that's the same as b through a just around the circle goes j and then
come back around [to] « [i.e. (b,c,d,e,f,g h,i,j,a)],. So we’re going to have another probably,
I think, subtracting problem. So I think it would start similar to the line of 10 factorial [i.e.
arranging 10 people into a line]. It’ll give you all the possible ways to arrange them. Not
accounting for possibilities being the same iteration around the table.

Jillian thus wanted to try to solve the problem by reducing that 10! in some way to account
for duplicate rotations around the table. She went on to articulate correctly that there would be
nine duplicates for every desirable arrangement, as seen in the following excerpt.

Jillian: So, for each order of 10 that you complete. There’s going to be nine duplicates because
each order of 10 can be shifted around the table, like there’s 10 ways to express the same
thing. And so, each of these 10 iterations is going to have nine duplicates.

Jillian’s intuition was correct — in fact, she could even articulate what precisely would get
overcounted and what she wanted to remove. However, she did not see how to use the
subtraction to arrive at a solution and could not figure out what to subtract. The excerpt below
shows her reasoning that because each desirable outcome had 9 duplicates, she wanted to
subtract nine times the desirable (possible) outcomes (she wrote this in Figure 1).

Jillian: So there’s 10 iterations. [...] So each order [i.e. one desired outcome] has nine
duplicates, but there’s a lot of possible orders. [...] So number of possibilities [writing
Figure 1a]. And then I want to take away or divide or somehow remove the nine duplicates
of each of those possibilities. I think. And I believe this is a number of possibilities
[circling 10!]. So how would you find the nine duplicates worth of each of those possible?
[...] minus 9 times “possibilities”.
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Figure la and 1b: Jillian’s initial solution to the Table Problem, involving subtraction

She then clarified that she was using “possibilities” to mean two different things, and re-
stated Figure la. as “# of possibilities and duplicates — 9 duplicates of each possibility”. Jillian



realized that the possible outcomes she sought was what she was trying to solve, which felt
circular to her (note, she did not attempt to build on this towards the subtraction-based solution
mentioned in the Methods Section). At this point, enough time passed to suggest an impasse, and
the interviewer encouraged her to consider a smaller case, which we describe in Episode 2.

Episode 2: Investigating a Smaller Case, Still Focusing on Subtraction

Jillian wrote out a smaller case involving three people sitting around a table, and she wrote
the outcomes in lexicographic order (Figure 2a). She noted, “So each of these [referring to abc
and acb] had two duplicates, which makes sense because there's two iterations around the table.”
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Figure 2a - 2d: Jillian’s set of outcomes for the 3-person case

Jillian then proceeded to cross off some outcomes from her list. She noted that bca and cab
were duplicates of abc, and so she crossed those off first in Figure 2b. Then, she noted that cha
and bac were duplicates of acbh, so she crossed them off next in Figure 2c. As she did this, she
wrote the expression “3! — 2(2)” in Figure 2d, and she related that expression to her previous
expression “10! — 9(possible)” in the larger case. Her language in the excerpt below shows her
relating the expression “3! — 2(2)” to her process of crossing out the outcomes from her list; the
bolded language summarizes her understanding of that equation. In this way, the smaller case
and the set of outcomes helped her confirm that her expression was correct. We want to highlight
that the expression here and the process by which she crossed out outcomes is reflected both in
how the outcomes are listed, which aligns with Lockwood’s (2013) model.

Jillian: Six original options minus [...] and then instead of multiplying by nine [in the larger
case] I will by two of each of those original options. By the previous logic, there would be
three factorial, or six, so I'm happy with that of without not accounting for order, we're
going to have the same number of options. And then instead of minus 9 times the actual
amount of possibilities [i.e. desired possibilities and duplicates], I'd say minus 2 times the
actual amount of possibilities, because there's two duplicate iterations when you have
three people and there's two legitimate possibilities that aren't duplicates. And so, the
[expression] makes sense.

Notably, Jillian realized that in this case she knew there were 2 possibilities (because she had
actually written them out and counted them), but she wasn’t sure how to get the answer in the
bigger larger 10-person case. We infer that at this point the smaller case served to support her in
confirming the formula could make sense if she knew what the number of possibilities were, but
it did not help her actually solve the problem for the larger case. The interviewer let her wait and
think, and we interpret that she had come to an impasse and was not sure how to proceed.

Episode 3: A Different Structure on the Set of Outcomes in the Smaller Case

We had hypothesized that an alternative way of organizing outcomes could help to motivate
the use of division. So, once Jillian seemed unsure of how to proceed, the interviewer intervened
by writing the outcomes in a different way (Figure 3a). He wrote the outcomes in two columns,
with each equivalent rotation of an outcome in its same column.
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Figure 3a and 3b: The interviewer’s, and Jillian’s circling of two groups of 3

Jillian noted that she had two groups of three, and she realized (because she knew that the
correct answer was 2) that to get the answer of 2 she would need to divide the 3! by 3. She
circled the two groups and said, “Yeah, three factorial, you just needed to split it into groups. But
it wouldn't be divided by two, by three.” However, she continued to reason about the formula
and the outcomes and to move back and forth between the smaller 3-person case and the original
10-person case. After some time, the interviewer re-stated her current strategy, as a means of
confirming her current reasoning about the problem.

Interviewer: So, you're thinking we can make our two [solution to the 3-case] in this case out
of three factorial divided by three. But you're noticing that your instinct is to - instead of
divide - subtract by two, because there are two duplicates.

Jillian: Yes, yeah. Because you should be able to split it [...] divide by. Oh. I guess in this

case, it would be divided by ten [11—(())!] and the other one too, divided by three [3;!]. Because

I'm dividing it into groups of three, the original and its two duplicates to see how many
groups there are because that basically doesn't count the duplicates. It just counts how
many original generators do we have, like for these different groups
We interpret that Jillian realized that although the desirable outcomes each had rwo
duplicates, she could divide by three because the groups of three include the desirable outcome
and its two duplicates. She also referred to generators, which the interviewer asked about and we
discuss in the next episode. She then related this insight about two duplicates and a group of size
three to the original 10-person case, and she said, “So wouldn't that work if we divided this [10!]
by 10 because it would split it into [...] 10, because we know each of these possibilities has 9
duplicates. So, if we split it into groups of 10, we should account for [...] the 9 in addition to all
of the original one.”
Again, Jillian articulated that the division by 10 made sense because each possibility has 9
duplicates, making a group of size 10. The interviewer wanted to ensure he correctly interpreted
her reasoning, and so he asked for additional justification, which we discuss in Episode 4.

Episode 4: Ultimately Justifying the Division
In this final episode, we document Jillian’s understanding of why division made sense. The
exchange below highlights how she came to talk about the groups of 3 (in the smaller case) or 10
(in the larger case) as including the desirable outcome and its duplicates.
Jillian: Yeah. So over here [ smaller case] [...] I'm counting abc and acbh [draws arrows in
Figure 3b] as our like “generators” [air quotes], any one of these [group members] could be
a generator [...]
Interviewer: And so, by generator there, you mean [...] abc you said could be swapped out for
any of the others. So, what makes that, like, a generator? Or what does generator mean.
Jillian: Yeah. I guess it's almost like if there was an operation that rotated them or something
like it’s operating on itself over and over again [...]



Interviewer: [ After confirming that Jillian was not formally referring to algebraic groups] So
for you, maybe in layman's terms we would say you've got abc but you could generate any
of the other duplicates from abc.

Jillian: Yes, yes, yes, yes, yes. It's like, it’s kids or something. You have abc and then you have
all of the family of abc. And I know that there’s going to be in this [larger] case, there’s
going to be nine children of every parent. If we were to split it into groups of ten, even if
the kids got all jumbled up and they weren’t the right groups of ten, we still should account
for the fact that each one is multiplied by ten different iterations.

Interviewer: So, we take the one generator, as you’ve been calling it, and you multiply by ten.
That gives you like the entire collection of iterations.

Jillian: Yes. And so, if we divide by ten, we should get the number of generators.

Jillian could reason about the whole set of outcomes being split up into groups, and in this
way she understood that the division was giving her the number of generators. We infer that she
understood that each group would have one generator, and so the division would yield the
number of desirable groups and, ultimately, of desirable outcomes.

Discussion and Conclusion

We highlight a couple of points of discussion here and articulate potential implications. In
accounting for Jillian’s transition from subtraction to division, we think that a key understanding
was focusing not just on the number of duplicates (2 duplicates or 9 duplicates in the respective
cases), but thinking of the entire sets of equivalent outcomes, including the desirable outcomes
and the duplicates (a total of 3 or 10 in the respective cases); we call these the equivalence
classes. Transitioning from a focus on a 1:2 or a 1:9 ratio and instead thinking of 3 or 10 seemed
important in understanding the appropriate use of division. An implication then is that while
subtraction of duplicates is useful, it is valuable to think of those duplicates not in a ratio to the
desirable outcome but as part of a set (or equivalence class) with the desirable outcome itself.
Jillian’s notion of a generator was one useful way to think about this.

Another observation is that reasoning about sets of outcomes and a set-oriented perspective
was useful, but certain ways of structuring the sets of outcomes might be associated with
different solution strategies. The common lexicographic ordering of outcomes first accompanied
Jillian’s duplicate-removal strategy, whereas grouping the outcomes into equivalence classes
provided a way for Jillian to focus on the 3 and the 10 (the sizes of the groups, rather than the
sizes of the groups of duplicates). This re-orientation towards division gives insight into more
nuances about sets of outcomes and how they might relate to processes and formulas that may be
particularly suggestive of operations. Indeed, we feel that the listing and expression in Figures
2a-2d highlight Jillian’s movement between components of Lockwood’s (2013) model, and
reinforce the currently underexplored idea that different lists of outcomes may be suggestive of
different processes and expressions.

A final point and potential implication is that there are natural connections between counting
problems and equivalence, and problems that focus on division in counting may offer rich
opportunities and contexts in which to explore such connections. We believe that there is much
more work to be done to investigate students’ reasoning about division in combinatorics, and we
hope that researchers will undertake systematic explorations into how students use and come to
understand division in combinatorics.
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