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Abstract—The classical proper orthogonal decomposition
(POD) with the Galerkin projection (GP) has been revised for
chip-level thermal simulation of microprocessors with a large
number of cores. An ensemble POD-GP methodology (EnPOD-
GP) is introduced to significantly improve the training
effectiveness and prediction accuracy by dividing a large number
of heat sources into heat source blocks (HSBs) each of which may
contains one or a very small number of heat sources. Although
very accurate, efficient and robust to any power map, EnPOD-GP
suffers from intensive training for microprocessors with an
enormous number of cores. A local-domain EnPOD-GP model
(LEnPOD-GP) is thus proposed to further minimize the training
burden. LEnPOD-GP utilizes the concepts of local domain
truncation and generic building blocks to reduce the massive
training data. LEnPOD-GP has been demonstrated on thermal
simulation of NVIDIA Tesla Volta™ GV100, a GPU with more
than 13,000 cores including FP32, FP64, INT32, and Tensor Cores.
Due to the domain truncation for LEnPOD-GP, the least square
error (LSE) is degraded but is still as small as 1.6 % over the entire
space and below 1.4% in the device layer when using 4 modes per
HSB. When only the maximum temperature of the entire GPU is
of interest, LEnPOD-GP offers a computing speed 1.1 million
times faster than the FEM with a maximum error near 1.2°C over
the entire simulation time.

Keywords— Hot sports, thermal simulation, Proper orthogonal
decomposition, Galerkin projection, physics-based learning, GPUs

I. INTRODUCTION

Demands for high performance computing have drastically
increased in recent years due to the needs for scientific and
engineering computing and the explosion of machine learning,
data science, and artificial intelligence [1]-[3]. The integration
of a large number of cores in microprocessors enabling massive
parallelism and the reduction in technology nodes enhancing
the operation frequency have been a viable solution to continue
improving the computing performance. Both approaches to
satisfy the computing demands have inevitably increased power
density in microprocessors [4], and thus led to temperature
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escalation and hot spot formation. Higher power dissipation
degrades not only the computing performance but also the
reliability of microprocessors and thus shortens their lifespan
[5], [6]. To minimize the serious thermal issues, effective
thermal management techniques are needed, which require
efficient and accurate thermal simulation tools for
Microprocessors.

Among the conventional thermal simulation approaches,
popular models based on thermal circuits [7]-[9] and the
Green’s function [10]-[12] are considerably more efficient than
direct numerical simulation (DNS) that requires a large number
of degrees of freedom (DoF). Assumptions are however needed
in these efficient approaches at the cost of accuracy and/or
spatial resolution. For example, the Green’s function is a spatial
impulse response of a unit point heat source, which is not able
to account for effects of various boundary conditions (BCs)
except the adiabatic BC that can be included using the method
of image [13]. In addition, the Green’s function is limited to 2D
steady state simulations of a single layer with a heat flux
dissipation on the substrate to account for effects of 3D thermal
flow from the device layer to the substrate boundary.

Although approaches based on thermal circuits are more
efficient than the Green’s function, hot-spot temperatures may
not be captured accurately unless the RC thermal elements are
taken smaller than sizes of hot spots, which are as small as the
grid size in DNSs. Use of small elements in thermal circuits,
however, leads to a large-dimension matrix equation (i.e., a
large DoF), which then becomes as time consuming as DNSs.
It has been observed that thermal circuits usually offer an
accurate prediction over a small interval in time or near steady
state [13]-[19] due to inaccurate distributed heat transfer
resulting from approximation of lumped elements. To correct
the limit, HotSpot [8] includes one scaling factor for all lumped
thermal elements in the entire domain to adjust the time scale.

Taking an unconventional path, proper orthogonal
decomposition (POD) [20], [21] of solution data, together with
the Galerkin projection (GP) of the heat transfer equation, has
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recently been applied successfully to thermal simulations of
microprocessors to achieve high efficiency and accuracy with
fine resolution [22], [23]. Using POD-GP, the thermal problem
is projected from a physical domain onto a POD space
represented by a finite set of optimal basis functions (or POD
modes) trained by temperature data obtained from DNSs of the
problem. The GP of the heat transfer equation onto the POD
space is further applied to close the model, which incorporates
heat transfer principles into the model. The training has
previously been performed globally for POD-GP (hereafter
named GPOD-GP) in the entire processor subjected to variation
of dynamic power maps (PMs) to generate a set of global POD
modes, where the dynamic PM provides the strengths and
locations of dynamic heat sources in the processor induced by
real-time workload. This classical POD-GP approach offers an
accurate prediction of the dynamic thermal profile in a multi-
core processor using a small number of modes if the dynamic
power map (PM) is within the training range [22], [23]. In
situations slightly outside the bounds of the training settings,
the accuracy deteriorates; however, good accuracy can still be
reached with more modes included [22]. This effective learning
ability of GPOD-GP stems from the GP of the heat transfer
equation, which enforces the physical (heat transfer) principles
as a guidance to reach a good prediction. This is very different
from the mainstream machine learning methods based on neural
networks, whose predictions usually fail for situations beyond
the training [24].

To generate effective POD modes for GPOD-GP to achieve
efficiency and accuracy, dynamic PMs applied in the training
must cover enough spatial variations in dynamic power source
locations. This can be easily achieved for processors with a
small number of cores. For processors with hundreds of cores,
the intensive training effort become prohibitive, and an
ensemble POD-GP model (EnPOD-GP) is proposed, which
drastically simplifies the training to generates good quality data
and enhances the accuracy of the model. For processors with
considerably more cores, domain truncation is applied to data
collection to develop a local EnPOD-GP model (LEnPOD-GP),
together with generic building blocks, to further minimize the
training effort.

II. CLASSICAL PROPER ORTHOGONAL DECOMPOSITION WITH
GALERKIN PROJECTION

Spatiotemporal temperature T (7, t) can be represented by a
linear combination of a set of basis functions 7; (or modes),
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where a;(t) is the weighting coefficient of n(r) and M is the
selected number of modes (i.e., the DoF). The modes in the
classical POD-GP reduced order model (or GPOD-GP) are
trained globally by temperature data collected from the entire
domain in dynamic DNSs subjected to parametric variations.
By maximizing the mean square of the temperature data
projection onto the POD modes over the entire simulation
domain, the maximization process leads to an eigenvalue

problem,

f (T(r,0) @ T, 1)) n(r")dQ = n(7), (2)
Q

where n(7) is the eigenfunction, / is the eigenvalue, @ is the
tensor operator and (-) denotes the average over the training
data sets.

To determine a;(t), one can perform the GP of the heat
transfer equation onto each POD mode,
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where p, k and C are the density, thermal conductivity and
specific heat, respectively, and P, (7,t) is the interior power
density and dS is the outward differential surface vector. A set
of M-dimensional ordinary differential equations (ODEs) for
a;(t) can be shown as,
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where ¢; j, g;; and p; are elements of the thermal capacitance
matrix, the thermal conductance matrix and the power vector in
the POD space. These elements are defined in terms of integrals
of n and Vn, and their expressions are given in [23]. p;(t) in (4)
accounts for the interior power dissipation and boundary heat
flux in the POD space defined on the right hand side of (3).
These elements in the POD space can be pre-evaluated from
POD modes and save in a library. T(#,t) in the simulation
domain can be determined via (1) once a; (t) are solved from (4)
with a selected DoF of M.

III. ENSEMBLE POD-GP MODEL

A. EnPOD-GP Background

To minimize the intensive computing effort needed in POD
mode training for GPOD-GP, the number of heat sources in a
training domain needs to be small enough. For processors with
many cores, one can divide the heat sources (provided by FUs
and cores) into several heat source blocks (HSBs), where each
block consists of a small number of heat sources (e.g., 1 to 4).
An individual POD-GP model (IPOD-GP) can be built for each
HSB; i.e., POD modes for each IPOD-GP are trained separately
from others for the entire processor, responding to random
dynamic power excitations in each source block. Thus, each
IPOD-GP offers the temperature solution induced by the power
dissipated by the corresponding HSB. An ensemble POD-GP
model (EnPOD-GP) can then be constructed by summing
temperatures resulting from all TPOD-GPs in the entire
processor using the superposition principle. T(7,t) in the
processor is then given as,
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where the indices represent the ith mode of the nth HSB, N, is
the total number of HSBs in the processor and the weighting
coefficients for the the nth HSB can be expressed in a vector

form as d, = [an1, Aoz Anss s An) ...,an,Mn]T. In this study,
M, = M, i.e., the number of ODEs for each HSB is identical.
The equivalent ith-mode eigenvalue for the entire processor is
defined as,
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2= A, (©)
n=1

where w,, is the area fraction of the nth HSB. Using EnPOD-
GP, a,; in (5) is solved from the nth set of ODEs in (4) induced
by nth HSB. Although Ny, sets of ODEs needed to be solved
when using EnPOD-GP, each set is independent, i.e., the
system matrix of the ODEs is highly sparse unlike GPOD-GP
where none of the elements in the ODE system matrix is zero.

Eigenvalues represent the mean squared temperature
information captured by n. Since M, = M in this study, the
relative least square error (LSE) of the solution predicted by
EnPOD-GP can be theoretically estimated as
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where N; is the number of temperature data sets for generating
POD modes and there are same number of data samples in each
HSBs in this study. Numerically, the LSE induced by EnPOD-
GP with respect to DNS can be estimated from the predicted
temperature as

LSE = ZL e?(7, ti)dﬂ/lZ:: J.Q [T t) —T,]12dQ, (8)

where e(7, t;) is the temperature difference between the DNS
and EnPOD-GP at the ith time step, N, is the total number of
time steps, and T, is the ambient temperature.

Note that the number of heat sources in an HSB needs to be
small enough to generate a set of robust POD modes. One can
have the following choices: (i) each HSB representing one heat
source induced by only one FU, (ii) each HSB consisting of a
few FUs each having an individual power source, or (iii) each
HSB represented by one heat source with a total power of
several FUs. Among these 3 choices, the first two offer more
localized power excitations to capture more realistic hot spots.
The first choice leads to more sets of ODEs while each set
includes a small number of modes. The second one requires

fewer sets of ODEs; however, each set needs more modes to
reach a similar accuracy. The last one offers more efficient
training and fewer sets of ODEs but may estimate
unrealistically low hot-spot temperatures. To optimize both
accuracy and efficiency, combinations of these 3 choices can
be applied over the entire chip, depending on the power levels
of the heat sources and their sizes. To simplify the
demonstration, only one heat source is used in each HSB in this
investigation.

It should be pointed out that post processing via (5) in
general takes considerably more time than solving ODEs in (4).
Unlike any DNSs or thermal circuits that need to perform
simulation over the entire simulation time and domain to be
able obtain dynamic thermal solution, for POD-GP based
approaches T(7,t) in (5) can be selectively determined at any
point in time and space. Most thermally related applications in
microprocessors only need thermal information near high
temperature regions, such as the device layer or the high-power
FUs (e.g., cores). Some applications (e.g., thermal-aware
tasking scheduling and reliability assessment) may only need
the peak temperature distribution in high-power FUs or even
just the peak temperature of the entire processors. In these
situations, the EnPOD-GP computing speed could be improved
by one or 2 orders of magnitude.

Fig. 1. Floorplan of the quad-core CPU, AMD ATHLON II X4 610e [25], with
an area of 14 X 12 mm?,

B. Demonstration of EnPOD-GP in a Quad-Core CPU

EnPOD-GP is demonstrated in dynamic thermal simulation
of a quad-core CPU, AMD ATHLON II X4 610e CPU with its
floorplan given in Fig. 1 [25]. To train the POD modes,
temperature data are collected from the FEM simulation tool,
FEniCS [26] with resolution of 0.093 x 0.08 x 0.042 mm?3 (a
mesh of 150 X 150 X 17). There are 13 FUs in this CPU,
including four Cores, four L2 Caches, one Northbridge, one
DDR3 Channels and three I/Os. PMs in this demonstration are
generated from gem5 [27] and McPAT [28] using several
benchmarks [29], where one uniform dynamic power source is
generated in each FU. Due to the limit of gemS5 that does not
generate power in three I/O’s and one DDR3 Channels, there
are thus 9 FUs with power dissipation implemented in EnPOD-
GP as HSBs. The EnPOD-GP system thus includes 9 sets of
ODEs (thus 9 sets of POD modes with each set for an IPOD-
GP ), and the number of ODEs (i.e., the number of modes) in
each set can be determined by the eigenvalue spectrum
generated from thermal data, based on the desired accuracy



estimated from (7), as described below.
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Fig. 2. LSE of EnPOD-GP vs. the number of modes per IPOD-GP for thermal

simulation of the quad-core CPU. The inset includes the equivalent eigenvalue
spectrum estimated in (6) using the eigenvalues for all 9 IPOD-GPs.
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Fig. 3. (a) Dynamic temperature at the intersection of Paths A and B shown in
Fig. 1. (b) and (c) Temperature distributions in x along Path A and in y along
Path B. EnPOD-GP results are presented as the number of modes per IPOS-GP.

Using IPOD-GP to construct EnPOD-GP, each [IPOD-GP is
independent of each other. Each of the 9 sets of POD modes is

thus trained separately by random dynamic power excitation.
The equivalent eigenvalue of EnPOD-GP given in (6) for the
processor is displayed in the inset of Fig. 2. The rapid
eigenvalue reduction for EnPOD-GP observed in Fig. 2 thus
leads to an LSE}p,, near 2.2%, 0.58% and 0.1% with just 2, 3
and 5 modes per HSB, respectively. Moreover, the LSE
evaluated from (8) in EnPOD-GP thermal simulations of the
processor induced by 3 different PMs generated from gem5
[27], McPAT [28] and benchmarks [29] are nearly identical and
accurately predicted by LSE;., until computer precision is
reached. The LSE stays near 0.01% beyond 8 modes. As
illustrated in Fig. 3, excellent accuracy of EnPOD-GP with 3
modes per HSB (27 modes in total) is observed for thermal
solution in time and space subjected to one of the PMs used in
Fig. 2, compared to FEniCS-FEM simulation.

In addition to simple training of each individual HSB,
results illustrated in Figs. 2 and 3 from EnPOD-GP simulation
of the AMD quad-core CPU have demonstrated several
advantages of EnPOD-GP. The training of POD modes with
simple random power excitations is remarkably effective and
leads to a robust ENPOD-GP methodology that is independent
of dynamic and spatial power source variations. Using any PM,
a very accurate prediction of spatiotemporal thermal solution
can be achieved with just 2 or 3 modes per HSB (per FU in this
case) and yet its LSE can be pre-estimated accurately from (7).

The DoF needed for EnPOD-GP is the selected number of
modes M per HSB (or per [IPOD-GP) multiplied by N, (the
number of HSBs). Thus, the DoF equals 27 in EnPOD-GP if 3
modes per IPOD-GP for 9 sets of ODEs are used. Compared to
FEniCS-FEM, the reduction of DoF is 4 orders of magnitude
(150 x 150 x 17/27). The decrease in computing time,
compared to FEniCS-FEM simulation is near 2,600 times if 3
modes per HSB is used (LSE = 0.78%) to evaluate the
temperature in the entire process and 3,500 times if 2 modes
per HSB are used (LSE = 2.8%). In cases where only
temperature at several points in space/time need to be evaluated
from (5), at least a one-order reduction in computing speed can
be achieved.

IV. LocAL ENSEMBLE POD-GP MODEL

Although the training is considerably simpler and more
effective than GPOD-GP, the intensive training effort needed
for EnPOD-GP still becomes intolerable when too many HSBs
need to be trained in a microprocessor with thousand or more
cores to generate numerous sets of POD modes. With some
modifications described below based on concepts of thermal
length As and generic building blocks, a local EnPOD-GP
model (LEnPOD-GP) is proposed to significantly minimize the
training effort for GPUs with thousand or more cores.

In order to describe the developed LEnPOD-GP model more
clearly, a workflow diagram is included in Fig. 4, which
illustrates each step needed to develop LEnPOD-GP, perform
simulation in POD space, and then post process the solution in
POD space to obtain temporospatial temperature in a GPU. This
diagram is used throughout in this section to offer a better
understanding of LEnPOD-GP.
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Ngy, is the number of generic building blocks each represented by an [IPOD-GP
model. However, Ny, is the number of HSBs or truncated domains that are all
covered by Ny, IPOD-GPs. In this study for the GPU, Ny,=16 and N, = 404.
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Also, a, = [an,lfan,ZJ s an,M] and P, = [pn,lfpn,ZJ ...,pn,M] with M as the number
of modes used in each truncated domain to represent the solution.

A. LEnPOD-GP Background

Thermal Length: Temperature induced by a heat source
diffuses and decays in space. To simplify the characterization
of the decreasing profile, thermal length Ay based on the
concept of the exponential diffusion profile is used even though
the profile is not exactly exponential. That is, A is defined as
the distance measured vertically from an HSB boundary to a
location where the temperature decreases to 36.8% of the HSB
boundary temperature. Temperature induced by each HSB at a
distance several thermal lengths away from the HSB can be
neglected. A truncated local domain containing the HSB is
defined for collecting the training data with the domain
boundaries several thermal lengths away from the HSB unless
the HSB is very close to GPU boundaries, as shown in the
floorplan of Fig. 4(a) for 2 truncated domains. For example, the
truncated local domain for the mth HSB is smaller because it is
very close to the GPU boundaries. Using the training data
collected from each truncated local domain, instead of the entire
processor, one set of POD modes for each IPOD-GP (i.e., each
HSB) is trained for the truncated domain, as indicated in Fig.
4(a). This substantially reduces the training effort for a large
processor with a large number of cores. The distance between
the HSB and the truncated local domain boundary can be varied
to obtain the desired accuracy. In this investigation, five
thermal lengths are taken to ensure the temperature induced by
the HSB beyond the truncated domain is negligible.

Generic building blocks: Microprocessors in general consist
of many repeated units or generic building blocks. For a
processor with hundreds or thousands of cores/FUs, one [POD-
GP model for one generic block can then be trained to represent
many identical truncated local domains containing identical
HSBs, where each HSB may include several cores and/or FUs.
This will significantly reduce the number of truncated training
domains (i.e., Ngp,the number of generic building blocks or

IPOD-GPs), which significantly minimizes the training effort
and memory space. However, for some identical HSBs whose
distance from any edge of the processor is less than the selected
number of thermal lengths, separate training is needed to
include the boundary effects on the processor edge for these
truncated domains, such as the mth HSB in Fig. 4(a).

B. Training of LEnPOD-GP for Tesla V100 Volta GV 100
GPU

The Tesla Volta™ GV100 GPU whose floorplan shown in
Fig. 5 is selected to demonstrate the learning capability and
accuracy for LEnPOD-GP. The Tesla GV100 GPU’s thermal
design power (TDP) is as high as 300W with a die size of 8§15
mm? and 21.1 billion transistors. There are 80 stream
multiprocessor (SMs) in the GPU and each SM comprises four
texture units and four processing blocks (PBs), where each PB
consists of 16 FP32 Cores, 8 FP64 Cores, 16 INT32 Cores and
two Tensor Cores. There are thus 13,440 cores in total. For this
demonstration, 404 HSBs are selected, where each HSB
represents each of 320 PBs, all 4 texture units within each of 80
SMs, one L2 cache, one high-speed hub or 2 memory
interfaces. The areas of most cores/FUs in the selected GPU are
considerably smaller than those in the quad-core CPU shown in
Fig. 1. For example, there are 320 identical PBs (each includes
42 cores), and area of each PB is 18 times smaller than that of
each of the CPU cores in Fig. 1 (0.5 X 1.79 mm? vs. 4.78 x 3.45
mm?). The chip area of Volta GV100 is however around 4.9
times larger than that of the AMD quad-core CPU (28.6 x 28.5
mm? vs. 14 x 12 mm?). This induces smaller-size hot spots in
a considerably larger GPU than the CPU. To capture these
smaller-size hot spots accurately in the training data collected
from DNS, a finer mesh of 675 X 673 x 17 is used in the GPU
(compared to 150 x 150 x 17 in the CPU).
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Fig. 5. floorplan of Tesla Volta GV100 GPU, together with zoom-in views of
SM and PB [30]. The size of chip is 28.65 x 28.5 x 0.72 mm®. Lines A and B
on the floorplan indicate the plotting paths for temperature profiles shown in
Fig. 8.



As discussed above, thermal data are collected from the
truncated domain for each of HSBs within 54, beyond the
HSB. A, of an HSB on each side is influenced by chip
thickness, materials, the HSB width vertical to the heat
diffusion direction, and the aspect ratio of HSB. Ay is pre-
evaluated in DNSs for widths between 1mm and 19 mm, and it
is found that Ay varies from 0.8mm to 1.5mm for a chip
thickness of 720 um. The evaluated thermal length for each
HSB is thus applied in data collection from the truncated
generic local domain. Also, for some HSBs with a distance less
than 54, from any of the processor edges, such as the mth HSB
in Fig. 4(a), the training is performed separately.
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Fig. 6. Equivalent eigenvalues of LEnPOD-GP for thermal data collected from
Tesla Volta GV100 GPU.
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Fig. 7. LSE of thermal simulation of the Volta GV100 using LEnPOD-GP.

For LEnPOD-GP, DNSs of the generic local domain for each
HSB is performed to train its [POD-GP using random dynamic
power excitations applied to the HSB. As shown in Fig. 4(a), the
training data are utilized to solve POD modes and eigenvalues
that are then applied to evaluate model parameters (i.e., matrix
and vector elements in (4)) for each IPOD-GP. Based on the
above consideration of thermal length and generic building
blocks to select the generic truncated local domain (including
the local domains whose HSBs are close to the processor edges),
only 16 IPOD-GPs (i.e., Ny, = 16) are needed to represent

thermal solutions induced by 404 HSBs (i.e., 404 sets of ODEs,
or Ny, = 404) to construct LEnPOD-GP for the Tesla Volta
GV100 GPU. Equivalent eigenvalues qu of LEnPOD-GP
accounting for 404 sets of POD modes (404 truncated local
domains) in this entire GPU evaluated from (6) represented by
16 I-PODGPs are shown Fig. 6. This eigenvalue spectrum
declines rapidly to an extremely small value and becomes
flattened beyond the 21th mode due to computer prevision.
LSE 4., estimated from (7) predicts an idea LSE near 3.2%,
0.9% and 0.36% with 2, 3 and 4 modes per truncated local
domain, respectively, as shown in Fig. 7.

C. Demonstration of LEnPOD-GP for Tesla V100 Volta GV
100 GPU

In the demonstration of LEnPOD-GP, the PM of the Tesla
Volta™ GV100 GPU is adopted from [30]{3H, where a
configurable GPU power simulator, AccelWattch, is developed
and validated by GPU benchmarks. However, AccelWattch
only generates the total power for each category of power
components without the spatial power density distribution. To
generate a PM for the demonstration used in Fig. 4(b), the total
power dissipation of each category is randomly distributed
among all components within the category based on the
location of each component given in the floorplan. For
example, the total power consumed by texture units obtained
from AccelWattch is partitioned into 80 portions randomly, and
each portion is assigned to all 4 texture units in each of 80 SMs
(since all 4 texture units in each SM is taken as one HSB).

In this demonstration, 404 sets of ODEs given in (4) are first
solved, as shown in Fig. 4(b), where each set includes M POD
modes (i.e., M ODEs). Post processing is then performed in (5)
using @, to first obtain the dynamic temperature profile in each
truncated domain T, (7, t) and then for the entire chip T (7, t), as
detailed in Fig. 4(b). The numerical LSE with respect to the
FEniCS-FEM solution is presented in Fig. 7, compared with
LSE;pe, - Because the temperature responding to each HSB
outside its truncated local domain is ignored for all 404 power
source blocks and thermal gradients are relatively large in this
case, LSE from LEnPOD-GP for the entire GPU is larger than
LSEpeo, unlike EnPOD-GP for the quad-core CPU where LSE
agrees well with LSE,,, below 8 modes. Nevertheless, using a
small number of modes per local domain, LEnPOD-GP still
offers an accurate prediction of the thermal profile in the entire
GPU with high thermal gradients and many crucial hot spots.
For the entire domain, LSE in this case for the GPU shown in
Fig. 7 reaches 2.18% or 1.6% with 3 or 4 modes per local
domain, respectively, and remains at 1.5% beyond 4 modes. In
most regions below the device (or heating) layer, temperature
is low and close to the ambient, where the error tends to be
larger. The LSE in the heating (device) layer, as shown in Fig.
7, is reduced to 1.87%, 1.39% or 1.3% when using 3, 4 or 5
modes, respectively. Dynamic temperature evolution at the
intersection of Paths A and B (see Fig. 5) is given in Fig. 8(a).
The temperature profiles along Paths A and B at = 25 ms are
illustrated in Figs. 8(b) and 8(c), respectively. Using 3 or more
modes, results derived from LEnPOD-GP agree quite well with
those obtained from rigorous FEniCS-FEM.



The computational speedup (estimated in Intel Xeon Gold
6130 dual CPUs) for predicting the temperature in the entire
GPU using LEnPOD-GP with 3 modes is around 900 times,
compared to FEniCS-FEM. For the device layer, the efficiency
improvement over FEniCS-FEM becomes 4,380 times. For
applications related to thermal issues at the chip level of
microprocessors, thermal information is usually only of interest
in high temperature regions, i.e., in the high-power density
cores and FUs. As mentioned above, differently from DNSs or
thermal circuits, once the ODEs are solved (which is very fast)
for LEnPOD-GP, one can select just a certain points in time or
space to evaluate temperature from (5). When using 3 modes
per HSB in LEnPOD-GP to calculate only the maximum
temperature in the entire chip, a computational speedup of more
than 1.1 or 0.7 million times over FEniCS-FEM can be
achieved when 3 or 4 modes per HSB is implemented in
LEnPOD-GP. The maximum error of the maximum chip
temperature at all time steps predicted by LEnPOD-GP is near
1.2 °C or 1.18 °C when using 3 or 4 modes per HSB,
respectively. These results indicate that, although the
application of the truncated local domains in LEnPOD-GP
slightly degrades the LSE in the entire processor, the maximum
peak temperature in the entire chip remains accurate with a
superior computational speed over the DNS.
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Fig. 8. (a) Dynamic temperature at the intersection of Paths A and B indicated
in Fig. 5. (b) and (c) Temperature profiles at t =25 ms along Path A and Path B,
respectively, derived from FEniCS-FEM and LEnPOD-GP.

V. CONCLUSIONS

The classical POD-GP simulation methodology suffers
from intensive computational training of the POD modes in
order to improve accuracy for microprocessors with a large
number of cores. EnPOD-GP and LEnPOD-GP have been
proposed to minimize the intensive training effort and improve
simulation accuracy. EnPOD-GP has been applied to an AMD
quad-core CPU with 9 HSBs each represented by a set of POD
modes. It has been demonstrated in this case that EnPOD-GP is
very accurate, efficient and robust to any dynamic PMs.
Compared to FEniCS-FEM, an LSE near 0.78% is achieved
with a 2,600-time computational speedup using 3 modes per
HSB. To further minimize the training effort for processors
with an enormous number of cores, LEnPOD-GP is developed,
which applies local domain truncation for each HSB, together
with generic building blocks, to reduce the massive amount of
training data. In the demonstration of LEnPOD-GP on thermal
simulation of Tesla Volta™ GV100 (a GPU with more than
13,000 cores), 16 generic truncated domains are trained to
represent 404 truncated local domains for 404 HSBs. Even
though the accuracy is degraded by neglecting temperature
outside each of 404 truncated domains, the LSE is still as small
as 1.87%, 1.39% or 1.3% in the device layer when using 3, 4 or
5 modes per HSB, respectively.

The saving in computational time to obtain the dynamic
temperature distribution in the entire GPU using LEnPOD-GP
with 3 modes per HSB for the selected GPU is near 900 times,
compared to FEniCS-FEM. In the device layer, it is about 4,380
times. When evaluating only the peak temperature of the entire
GPU at every time step, LEnPOD-GP offers a reduction in
computational time over 1.1 million times, compared to
FEniCS-FEM, with a maximum error near 1.2°C. Since
LEnPOD-GP does not need to post process dynamic
temperature over the entire simulation space or time, the
computational speedup will be even more for applications
where the peak temperature is needed only at certain intervals
of time.
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