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Abstract—The classical proper orthogonal decomposition 

(POD) with the Galerkin projection (GP) has been revised for 

chip-level thermal simulation of microprocessors with a large 

number of cores. An ensemble POD-GP methodology (EnPOD-

GP) is introduced to significantly improve the training 

effectiveness and prediction accuracy by dividing a large number 

of heat sources into heat source blocks (HSBs) each of which may 

contains one or a very small number of heat sources. Although 

very accurate, efficient and robust to any power map, EnPOD-GP 

suffers from intensive training for microprocessors with an 

enormous number of cores. A local-domain EnPOD-GP model 

(LEnPOD-GP) is thus proposed to further minimize the training 

burden. LEnPOD-GP utilizes the concepts of local domain 

truncation and generic building blocks to reduce the massive 

training data. LEnPOD-GP has been demonstrated on thermal 

simulation of NVIDIA Tesla Volta™ GV100, a GPU with more 

than 13,000 cores including FP32, FP64, INT32, and Tensor Cores. 

Due to the domain truncation for LEnPOD-GP, the least square 

error (LSE) is degraded but is still as small as 1.6% over the entire 

space and below 1.4% in the device layer when using 4 modes per 

HSB. When only the maximum temperature of the entire GPU is 

of interest, LEnPOD-GP offers a computing speed 1.1 million 

times faster than the FEM with a maximum error near 1.2oC over 

the entire simulation time.  

Keywords— Hot sports, thermal simulation, Proper orthogonal 

decomposition, Galerkin projection, physics-based learning, GPUs  

I. INTRODUCTION  

Demands for high performance computing have drastically 

increased in recent years due to the needs for scientific and 

engineering computing and the explosion of machine learning, 

data science, and artificial intelligence [1]-[3]. The integration 

of a large number of cores in microprocessors enabling massive 

parallelism and the reduction in technology nodes enhancing 

the operation frequency have been a viable solution to continue 

improving the computing performance. Both approaches to 

satisfy the computing demands have inevitably increased power 

density in microprocessors [4], and thus led to temperature 

escalation and hot spot formation. Higher power dissipation 

degrades not only the computing performance but also the 

reliability of microprocessors and thus shortens their lifespan 

[5], [6]. To minimize the serious thermal issues, effective 

thermal management techniques are needed, which require 

efficient and accurate thermal simulation tools for 

microprocessors.  

Among the conventional thermal simulation approaches, 

popular models based on thermal circuits [7]-[9] and the 

Green’s function [10]-[12] are considerably more efficient than 

direct numerical simulation (DNS) that requires a large number 

of degrees of freedom (DoF). Assumptions are however needed 

in these efficient approaches at the cost of accuracy and/or 

spatial resolution. For example, the Green’s function is a spatial 

impulse response of a unit point heat source, which is not able 

to account for effects of various boundary conditions (BCs) 

except the adiabatic BC that can be included using the method 

of image [13]. In addition, the Green’s function is limited to 2D 

steady state simulations of a single layer with a heat flux 

dissipation on the substrate to account for effects of 3D thermal 

flow from the device layer to the substrate boundary.  

Although approaches based on thermal circuits are more 

efficient than the Green’s function, hot-spot temperatures may 

not be captured accurately unless the RC thermal elements are 

taken smaller than sizes of hot spots, which are as small as the 

grid size in DNSs. Use of small elements in thermal circuits, 

however, leads to a large-dimension matrix equation (i.e., a 

large DoF), which then becomes as time consuming as DNSs. 

It has been observed that thermal circuits usually offer an 

accurate prediction over a small interval in time or near steady 

state [13]-[19] due to inaccurate distributed heat transfer 

resulting from approximation of lumped elements. To correct 

the limit, HotSpot [8] includes one scaling factor for all lumped 

thermal elements in the entire domain to adjust the time scale.  

Taking an unconventional path, proper orthogonal 

decomposition (POD) [20], [21] of solution data, together with 

the Galerkin projection (GP) of the heat transfer equation, has 
This work was supported by the National Science Foundation under 

Grant Nos: ECCS-2003307 and OAC- 2118079.  

979-8-3503-6433-0/24/$31.00 ©2024 IEEE                               1341                                                  23rd IEEE ITHERM Conference    



recently been applied successfully to thermal simulations of 

microprocessors to achieve high efficiency and accuracy with 

fine resolution [22], [23]. Using POD-GP, the thermal problem 

is projected from a physical domain onto a POD space 

represented by a finite set of optimal basis functions (or POD 

modes) trained by temperature data obtained from DNSs of the 

problem. The GP of the heat transfer equation onto the POD 

space is further applied to close the model, which incorporates 

heat transfer principles into the model. The training has 

previously been performed globally for POD-GP (hereafter 

named GPOD-GP) in the entire processor subjected to variation 

of dynamic power maps (PMs) to generate a set of global POD 

modes, where the dynamic PM provides the strengths and 

locations of dynamic heat sources in the processor induced by 

real-time workload. This classical POD-GP approach offers an 

accurate prediction of the dynamic thermal profile in a multi-

core processor using a small number of modes  if the dynamic 

power map (PM) is within the training range [22], [23]. In 

situations slightly outside the bounds of the training settings, 

the accuracy deteriorates; however, good accuracy can still be 

reached with more modes included [22]. This effective learning 

ability of GPOD-GP stems from the GP of the heat transfer 

equation, which enforces the physical (heat transfer) principles 

as a guidance to reach a good prediction. This is very different 

from the mainstream machine learning methods based on neural 

networks, whose predictions usually fail for situations beyond 

the training [24]. 

To generate effective POD modes for GPOD-GP to achieve 

efficiency and accuracy, dynamic PMs applied in the training 

must cover enough spatial variations in dynamic power source 

locations. This can be easily achieved for processors with a 

small number of cores. For processors with hundreds of cores, 

the intensive training effort become prohibitive, and an 

ensemble POD-GP model (EnPOD-GP) is proposed, which 

drastically  simplifies the training to generates good quality data 

and enhances the accuracy of the model. For processors with 

considerably more cores, domain truncation is applied to data 

collection to develop a local EnPOD-GP model (LEnPOD-GP), 

together with generic building blocks, to further minimize the 

training effort. 

II. CLASSICAL PROPER ORTHOGONAL DECOMPOSITION WITH 

GALERKIN PROJECTION 

Spatiotemporal temperature ⃑,  can be represented by a 

linear combination of a set of basis functions  (or modes), 

⃑,  =   ⃑
 , 1  

where  is the weighting coefficient of ⃑  and M is the 

selected number of modes (i.e., the DoF). The modes in the 

classical POD-GP reduced order model (or GPOD-GP) are 

trained globally by temperature data collected from the entire 

domain in dynamic DNSs subjected to parametric variations. 

By maximizing the mean square of the temperature data 

projection onto the POD modes over the entire simulation 

domain, the maximization process leads to an eigenvalue 

problem,  

 〈⃑,  ⊗ ⃑, 〉 ⃑ΩΩ =  ⃑, 2 

where ⃑  is the eigenfunction, λ is the eigenvalue, ⊗ is the 

tensor operator and 〈∙〉 denotes the average over the training 

data sets.  

To determine , one can perform the GP of the heat 

transfer equation onto each POD mode,  

   + ∇ ∙ ∇ ΩΩ =  ΩΩ +  ∇ ∙ ⃗ ,  3  
where  ,   and   are the density, thermal conductivity and 

specific heat, respectively, and  ⃑,  is the interior power 

density and ⃗ is the outward differential surface vector. A set 

of M-dimensional ordinary differential equations (ODEs) for  can be shown as, 

 , 
 +  ,


 =  ,  = 1  , 4 

where ,,  , and  are elements of the thermal capacitance 

matrix, the thermal conductance matrix and the power vector in 

the POD space. These elements are defined in terms of integrals 

of  and ∇, and their expressions are given in [23].   in (4) 

accounts for the interior power dissipation and boundary heat 

flux in the POD space defined on the right hand side of (3). 

These elements in the POD space can be pre-evaluated from 

POD modes and save in a library. ⃑,   in the simulation 

domain can be determined via (1) once  are solved from (4) 

with a selected DoF of M. 

III. ENSEMBLE POD-GP MODEL 

A. EnPOD-GP Background 

To minimize the intensive computing effort needed in POD 

mode training for GPOD-GP, the number of heat sources in a 

training domain needs to be small enough. For processors with 

many cores, one can divide the heat sources (provided by FUs 

and cores) into several heat source blocks (HSBs), where each 

block consists of a small number of heat sources (e.g., 1 to 4). 

An individual POD-GP model (IPOD-GP) can be built for each 

HSB; i.e., POD modes for each IPOD-GP are trained separately 

from others for the entire processor, responding to random 

dynamic power excitations in each source block. Thus, each 

IPOD-GP offers the temperature solution induced by the power 

dissipated by the corresponding HSB. An ensemble POD-GP 

model (EnPOD-GP) can then be constructed by summing 

temperatures resulting from all IPOD-GPs in the entire 

processor using the superposition principle. ⃑,   in the 

processor is then given as, 



⃑,  =   ,,⃑



 , 5 

where the indices represent the th mode of the th HSB,  is 

the total number of HSBs in the processor and the weighting 

coefficients for the the th HSB can be expressed in a vector 

form as ⃗ = ,, ,, ,, … , , , … , , .  In this study, 

Mn = M; i.e., the number of ODEs for each HSB is identical. 

The equivalent ith-mode eigenvalue for the entire processor is 

defined as,  

 =   ,

 , 6 

where  is the area fraction of the th HSB. Using EnPOD-

GP, , in (5) is solved from the nth set of ODEs in (4) induced 

by nth HSB. Although  sets of ODEs needed to be solved 

when using EnPOD-GP, each set is independent, i.e., the 

system matrix of the ODEs is highly sparse unlike GPOD-GP 

where none of the elements in the ODE system matrix is zero.  

Eigenvalues represent the mean squared temperature 

information captured by  . Since Mn = M in this study, the 

relative least square error (LSE) of the solution predicted by 

EnPOD-GP can be theoretically estimated as 

 =   
  

 , 7 

where  is the number of temperature data sets for generating 

POD modes and there are same number of data samples in each 

HSBs in this study. Numerically, the LSE induced by EnPOD-

GP with respect to DNS can be estimated from the predicted 

temperature as 

 =   ⃗, Ω




  (⃗, )  






 Ω , (8) 

where (⃗, ) is the temperature difference between the DNS 

and EnPOD-GP at the ith time step,  is the total number of 

time steps, and  is the ambient temperature. 

Note that the number of heat sources in an HSB needs to be 

small enough to generate a set of robust POD modes. One can 

have the following choices: (i) each HSB representing one heat 

source induced by only one FU, (ii) each HSB consisting of a 

few FUs each having an individual power source, or (iii) each 

HSB represented by one heat source with a total power of 

several FUs. Among these 3 choices, the first two offer more 

localized power excitations to capture more realistic hot spots. 

The first choice leads to more sets of ODEs while each set 

includes a small number of modes. The second one requires 

fewer sets of ODEs; however, each set needs more modes to 

reach a similar accuracy. The last one offers more efficient 

training and fewer sets of ODEs but may estimate 

unrealistically low hot-spot temperatures. To optimize both 

accuracy and efficiency, combinations of these 3 choices can 

be applied over the entire chip, depending on the power levels 

of the heat sources and their sizes. To simplify the 

demonstration, only one heat source is used in each HSB in this 

investigation. 

It should be pointed out that post processing via (5) in 

general takes considerably more time than solving ODEs in (4). 

Unlike any DNSs or thermal circuits that need to perform 

simulation over the entire simulation time and domain to be 

able obtain dynamic thermal solution, for POD-GP based 

approaches (⃑, ) in (5) can be selectively determined at any 

point in time and space. Most thermally related applications in 

microprocessors only need thermal information near high 

temperature regions, such as the device layer or the high-power 

FUs (e.g., cores). Some applications (e.g., thermal-aware 

tasking scheduling and reliability assessment) may only need 

the peak temperature distribution in high-power FUs or even 

just the peak temperature of the entire processors. In these 

situations, the EnPOD-GP computing speed could be improved 

by one or 2 orders of magnitude. 

 

Fig. 1. Floorplan of the quad-core CPU, AMD ATHLON II X4 610e [25], with 

an area of 14  12 . 

B. Demonstration of EnPOD-GP in a Quad-Core CPU 

EnPOD-GP is demonstrated in dynamic thermal simulation 

of a quad-core CPU, AMD ATHLON II X4 610e CPU with its 

floorplan given in Fig. 1 [25]. To train the POD modes, 

temperature data are collected from the FEM simulation tool, 

FEniCS [26] with resolution of 0.093  0.08  0.042  (a 

mesh of 150  150  17 ). There are 13 FUs in this CPU, 

including four Cores, four L2 Caches, one Northbridge, one 

DDR3 Channels and three I/Os. PMs in this demonstration are 

generated from gem5 [27] and McPAT [28] using several 

benchmarks [29], where one uniform dynamic power source is 

generated in each FU. Due to the limit of gem5 that does not 

generate power in three I/O’s and one DDR3 Channels, there 

are thus 9 FUs with power dissipation implemented in EnPOD-

GP as HSBs. The EnPOD-GP system thus includes 9 sets of 

ODEs (thus 9 sets of POD modes with each set for an IPOD-

GP ), and the number of ODEs (i.e., the number of modes) in 

each set can be determined by the eigenvalue spectrum 

generated from thermal data, based on the desired accuracy 



estimated from (7), as described below.  

 

Fig. 2. LSE of EnPOD-GP vs. the number of modes per IPOD-GP for thermal 

simulation of the quad-core CPU. The inset includes the equivalent eigenvalue 

spectrum estimated in (6) using the eigenvalues for all 9 IPOD-GPs. 

 

Fig. 3. (a) Dynamic temperature at the intersection of Paths A and B shown in 

Fig. 1. (b) and (c) Temperature distributions in x along Path A and in y along 

Path B. EnPOD-GP results are presented as the number of modes per IPOS-GP. 

Using IPOD-GP to construct EnPOD-GP, each IPOD-GP is 

independent of each other. Each of the 9 sets of POD modes is 

thus trained separately by random dynamic power excitation. 

The equivalent eigenvalue of EnPOD-GP given in (6) for the 

processor is displayed in the inset of Fig. 2. The rapid 

eigenvalue reduction for EnPOD-GP observed in Fig. 2 thus 

leads to an  near 2.2%, 0.58% and 0.1% with just 2, 3 

and 5 modes per HSB, respectively. Moreover, the LSE 

evaluated from (8) in EnPOD-GP thermal simulations of the 

processor induced by 3 different PMs generated from gem5 

[27], McPAT [28] and benchmarks [29] are nearly identical and 

accurately predicted by   until computer precision is 

reached. The LSE stays near 0.01% beyond 8 modes. As 

illustrated in Fig. 3, excellent accuracy of EnPOD-GP with 3 

modes per HSB (27 modes in total) is observed for thermal 

solution in time and space subjected to one of the PMs used in 

Fig. 2, compared to FEniCS-FEM simulation.  

In addition to simple training of each individual HSB, 

results illustrated in Figs. 2 and 3 from EnPOD-GP simulation 

of the AMD quad-core CPU have demonstrated several 

advantages of EnPOD-GP. The training of POD modes with 

simple random power excitations is remarkably effective and 

leads to a robust ENPOD-GP methodology that is independent 

of dynamic and spatial power source variations. Using any PM, 

a very accurate prediction of spatiotemporal thermal solution 

can be achieved with just 2 or 3 modes per HSB (per FU in this 

case) and yet its LSE can be pre-estimated accurately from (7). 

The DoF needed for EnPOD-GP is the selected number of 

modes M per HSB (or per IPOD-GP) multiplied by Nhb (the 

number of HSBs). Thus, the DoF equals 27 in EnPOD-GP if 3 

modes per IPOD-GP for 9 sets of ODEs are used. Compared to 

FEniCS-FEM, the reduction of DoF is 4 orders of magnitude (150  150  17/27).  The decrease in computing time, 

compared to FEniCS-FEM simulation is near 2,600 times if 3 

modes per HSB is used (LSE ≈ 0.78%) to evaluate the 

temperature  in the entire process and 3,500 times if 2 modes 

per HSB are used (LSE ≈ 2.8%). In cases where only 

temperature at several points in space/time need to be evaluated 

from (5), at least a one-order reduction in computing speed can 

be achieved.  

IV. LOCAL ENSEMBLE POD-GP MODEL  

Although the training is considerably simpler and more 

effective than GPOD-GP, the intensive training effort needed 

for EnPOD-GP still becomes intolerable when too many HSBs 

need to be trained in a microprocessor with thousand or more 

cores to generate numerous sets of POD modes. With some 

modifications described below based on concepts of thermal 

length λth and generic building blocks, a local EnPOD-GP 

model (LEnPOD-GP) is proposed to significantly minimize the 

training effort for GPUs with thousand or more cores. 

In order to describe the developed LEnPOD-GP model more 

clearly, a workflow diagram is included in Fig. 4, which 

illustrates each step needed to develop LEnPOD-GP, perform 

simulation in POD space, and then post process the solution in 

POD space to obtain temporospatial temperature in a GPU. This 

diagram is used throughout in this section to offer a better 

understanding of LEnPOD-GP. 



 

Fig. 4. Workflow chart for (a) development of LEnPOD-GP and (b) simulation 

(solving ODEs) in POD space and post processing to obtain (⃗, ) in a GPU.  is the number of generic building blocks each represented by an IPOD-GP 

model. However,  is the number of HSBs or truncated domains that are all 

covered by  IPOD-GPs. In this study for the GPU, =16 and  = 404. 

Also, ⃗ = ,, ,, … , ,
and ⃗ = ,, ,, … , ,

with M as the number 

of modes used in each truncated domain to represent the solution. 

A. LEnPOD-GP Background 

Thermal Length: Temperature induced by a heat source 

diffuses and decays in space. To simplify the characterization 

of the decreasing profile, thermal length λth based on the 

concept of the exponential diffusion profile is used even though 

the profile is not exactly exponential. That is, λth is defined as 

the distance measured vertically from an HSB boundary to a 

location where the temperature decreases to 36.8% of the HSB 

boundary temperature. Temperature induced by each HSB at a 

distance several thermal lengths away from the HSB can be 

neglected. A truncated local domain containing the HSB is 

defined for collecting the training data with the domain 

boundaries several thermal lengths away from the HSB unless 

the HSB is very close to GPU boundaries, as shown in the 

floorplan of Fig. 4(a) for 2 truncated domains. For example, the 

truncated local domain for the mth HSB is smaller because it is 

very close to the GPU boundaries. Using the training data 

collected from each truncated local domain, instead of the entire 

processor, one set of POD modes for each IPOD-GP (i.e., each 

HSB) is trained for the truncated domain, as indicated in Fig. 

4(a). This substantially reduces the training effort for a large 

processor with a large number of cores. The distance between 

the HSB and the truncated local domain boundary can be varied 

to obtain the desired accuracy. In this investigation, five 

thermal lengths are taken to ensure the temperature induced by 

the HSB beyond the truncated domain is negligible.    

Generic building blocks: Microprocessors in general consist 

of many repeated units or generic building blocks. For a 

processor with hundreds or thousands of cores/FUs, one IPOD-

GP model for one generic block can then be trained to represent 

many identical truncated local domains containing identical 

HSBs, where each HSB may include several cores and/or FUs. 

This will significantly reduce the number of truncated training 

domains (i.e.,  ,the number of generic building blocks or 

IPOD-GPs), which significantly minimizes the training effort 

and memory space. However, for some identical HSBs whose 

distance from any edge of the processor is less than the selected 

number of thermal lengths, separate training is needed to 

include the boundary effects on the processor edge for these 

truncated domains, such as the mth HSB in Fig. 4(a). 

B. Training of LEnPOD-GP for Tesla V100 Volta GV 100 

GPU 

The Tesla Volta™ GV100 GPU whose floorplan shown in 

Fig. 5 is selected to demonstrate the learning capability and 

accuracy for LEnPOD-GP. The Tesla GV100 GPU’s thermal 

design power (TDP) is as high as 300W with a die size of 815 

mm2 and 21.1 billion transistors. There are 80 stream 

multiprocessor (SMs) in the GPU and each SM comprises four 

texture units and four processing blocks (PBs), where each PB 

consists of 16 FP32 Cores, 8 FP64 Cores, 16 INT32 Cores and 

two Tensor Cores. There are thus 13,440 cores in total.  For this 

demonstration, 404 HSBs are selected, where each HSB 

represents each of 320 PBs, all 4 texture units within each of 80 

SMs, one L2 cache, one high-speed hub or 2 memory 

interfaces. The areas of most cores/FUs in the selected GPU are 

considerably smaller than those in the quad-core CPU shown in 

Fig. 1. For example, there are 320 identical PBs (each includes 

42 cores), and area of each PB is 18 times smaller than that of 

each of the CPU cores in Fig. 1 (0.5 × 1.79 mm2 vs. 4.78 × 3.45 

mm2). The chip area of Volta GV100 is however around 4.9 

times larger than that of the AMD quad-core CPU (28.6  28.5 

mm2 vs. 14  12 mm2). This induces smaller-size hot spots in 

a considerably larger GPU than the CPU. To capture these 

smaller-size hot spots accurately in the training data collected 

from DNS, a finer mesh of 675  673  17 is used in the GPU 

(compared to 150  150  17 in the CPU).  

 

Fig. 5. floorplan of Tesla Volta GV100 GPU, together with zoom-in views of 

SM and PB [30]. The size of chip is 28.65 × 28.5 × 0.72 mm3. Lines A and B 

on the floorplan indicate the plotting paths for temperature profiles shown in 

Fig. 8. 



As discussed above, thermal data are collected from the 

truncated domain for each of HSBs within 5λth beyond the 

HSB. λth of an HSB on each side is influenced by chip 

thickness, materials, the HSB width vertical to the heat 

diffusion direction, and the aspect ratio of HSB. λth is pre-

evaluated in DNSs for widths between 1mm and 19 mm, and it 

is found that λth varies from 0.8mm to 1.5mm for a chip 

thickness of 720 µm. The evaluated thermal length for each 

HSB is thus applied in data collection from the truncated 

generic local domain. Also, for some HSBs with a distance less 

than 5λth from any of the processor edges, such as the mth HSB 

in Fig. 4(a), the training is performed separately. 

 

Fig. 6. Equivalent eigenvalues of LEnPOD-GP for thermal data collected from 

Tesla Volta GV100 GPU. 

 

Fig. 7. LSE of thermal simulation of the Volta GV100 using LEnPOD-GP. 

For LEnPOD-GP, DNSs of the generic local domain for each 

HSB is performed to train its IPOD-GP using random dynamic 

power excitations applied to the HSB. As shown in Fig. 4(a), the 

training data are utilized to solve POD modes and eigenvalues 

that are then applied to evaluate model parameters (i.e., matrix 

and vector elements in (4)) for each IPOD-GP. Based on the 

above consideration of thermal length and generic building 

blocks to select the generic truncated local domain (including 

the local domains whose HSBs are close to the processor edges), 

only 16 IPOD-GPs (i.e.,   = 16) are needed to represent 

thermal solutions induced by 404 HSBs (i.e., 404 sets of ODEs, 

or   = 404) to construct LEnPOD-GP for the Tesla Volta 

GV100 GPU. Equivalent eigenvalues 


 of LEnPOD-GP 

accounting for 404 sets of POD modes (404 truncated local 

domains) in this entire GPU evaluated from (6) represented by 

16 I-PODGPs are shown Fig. 6. This eigenvalue spectrum 

declines rapidly to an extremely small value and becomes 

flattened beyond the 21th mode due to computer prevision. 

  estimated from (7) predicts an idea LSE near 3.2%, 

0.9% and 0.36% with 2, 3 and 4 modes per truncated local 

domain, respectively, as shown in Fig. 7. 

C. Demonstration of LEnPOD-GP for Tesla V100 Volta GV 

100 GPU 

In the demonstration of LEnPOD-GP, the PM of the Tesla 

Volta™ GV100 GPU is adopted from [30][31], where a 

configurable GPU power simulator, AccelWattch, is developed 

and validated by GPU benchmarks. However, AccelWattch 

only generates the total power for each category of power 

components without the spatial power density distribution. To 

generate a PM for the demonstration used in Fig. 4(b), the total 

power dissipation of each category is randomly distributed 

among all components within the category based on the 

location of each component given in the floorplan. For 

example, the total power consumed by texture units obtained 

from AccelWattch is partitioned into 80 portions randomly, and 

each portion is assigned to all 4 texture units in each of 80 SMs 

(since all 4 texture units in each SM is taken as one HSB).  

In this demonstration, 404 sets of ODEs given in (4) are first 

solved, as shown in Fig. 4(b), where each set includes M POD 

modes (i.e., M ODEs). Post processing is then performed in (5) 

using ⃑ to first obtain the dynamic temperature profile in each 

truncated domain ⃗,  and then for the entire chip ⃗, , as 

detailed in Fig. 4(b). The numerical LSE with respect to the 

FEniCS-FEM solution is presented in Fig. 7, compared with 

 . Because the temperature responding to each HSB 

outside its truncated local domain is ignored for all 404  power 

source blocks and thermal gradients are relatively large in this 

case, LSE from LEnPOD-GP for the entire GPU is larger than 

, unlike EnPOD-GP for the quad-core CPU where LSE 

agrees well with  below 8 modes. Nevertheless, using a 

small number of modes per local domain, LEnPOD-GP still 

offers an accurate prediction of the thermal profile in the entire 

GPU with high thermal gradients and many crucial hot spots. 

For the entire domain, LSE in this case for the GPU shown in 

Fig. 7 reaches 2.18% or 1.6% with 3 or 4 modes per local 

domain, respectively, and remains at 1.5% beyond 4 modes. In 

most regions below the device (or heating) layer, temperature 

is low and close to the ambient, where the error tends to be 

larger. The LSE in the heating (device) layer, as shown in Fig. 

7, is reduced to 1.87%, 1.39% or 1.3% when using 3, 4 or 5 

modes, respectively. Dynamic temperature evolution at the 

intersection of Paths A and B (see Fig. 5) is given in Fig. 8(a). 

The temperature profiles along Paths A and B at t = 25 ms are 

illustrated in Figs. 8(b) and 8(c), respectively.  Using 3 or more 

modes, results derived from LEnPOD-GP agree quite well with 

those obtained from rigorous FEniCS-FEM. 



The computational speedup (estimated in Intel Xeon Gold 

6130 dual CPUs) for predicting the temperature in the entire 

GPU using LEnPOD-GP with 3 modes is around 900 times, 

compared to FEniCS-FEM. For the device layer, the efficiency 

improvement over FEniCS-FEM becomes 4,380 times. For 

applications related to thermal issues at the chip level of 

microprocessors, thermal information is usually only of interest 

in high temperature regions, i.e., in the high-power density 

cores and FUs. As mentioned above, differently from DNSs or 

thermal circuits, once the ODEs are solved (which is very fast) 

for LEnPOD-GP, one can select just a certain points in time or 

space to evaluate temperature from (5). When using 3 modes 

per HSB in LEnPOD-GP to calculate only the maximum 

temperature in the entire chip, a computational speedup of more 

than 1.1 or 0.7 million times over FEniCS-FEM can be 

achieved when 3 or 4 modes per HSB is implemented in 

LEnPOD-GP. The maximum error of the maximum chip 

temperature at all time steps predicted by LEnPOD-GP is near 

1.2 oC or 1.18 oC when using 3 or 4 modes per HSB, 

respectively. These results indicate that, although the 

application of the truncated local domains in LEnPOD-GP 

slightly degrades the LSE in the entire processor, the maximum 

peak temperature in the entire chip remains accurate with a 

superior computational speed over the DNS.  

 
Fig. 8. (a) Dynamic temperature at the intersection of Paths A and B indicated 

in Fig. 5. (b) and (c) Temperature profiles at t =25 ms along Path A and Path B, 

respectively, derived from FEniCS-FEM and LEnPOD-GP. 

V. CONCLUSIONS  

The classical POD-GP simulation methodology suffers 

from intensive computational training of the POD modes in 

order to improve accuracy for microprocessors with a large 

number of cores. EnPOD-GP and LEnPOD-GP have been 

proposed to minimize the intensive training effort and improve 

simulation accuracy. EnPOD-GP has been applied to an AMD 

quad-core CPU with 9 HSBs each represented by a set of POD 

modes. It has been demonstrated in this case that EnPOD-GP is 

very accurate, efficient and robust to any dynamic PMs. 

Compared to FEniCS-FEM, an LSE near 0.78% is achieved 

with a 2,600-time computational speedup using 3 modes per 

HSB. To further minimize the training effort for processors 

with an enormous number of cores, LEnPOD-GP is developed, 

which applies local domain truncation for each HSB, together 

with generic building blocks, to reduce the massive amount of 

training data. In the demonstration of LEnPOD-GP on thermal 

simulation of Tesla Volta™ GV100 (a GPU with more than 

13,000 cores), 16 generic truncated domains are trained to 

represent 404 truncated local domains for 404 HSBs. Even 

though the accuracy is degraded by neglecting temperature 

outside each of 404 truncated domains, the LSE is still as small 

as 1.87%, 1.39% or 1.3% in the device layer when using 3, 4 or 

5 modes per HSB, respectively.  

The saving in computational time to obtain the dynamic 

temperature distribution in the entire GPU using LEnPOD-GP 

with 3 modes per HSB for the selected GPU is near 900 times, 

compared to FEniCS-FEM. In the device layer, it is about 4,380 

times. When evaluating only the peak temperature of the entire 

GPU at every time step, LEnPOD-GP offers a reduction in 

computational time over 1.1 million times, compared to 

FEniCS-FEM, with a maximum error near 1.2oC. Since 

LEnPOD-GP does not need to post process dynamic 

temperature over the entire simulation space or time, the 

computational speedup will be even more for applications 

where the peak temperature is needed only at certain intervals 

of time.  
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