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Abstract. Grammar-based compression is a widely-accepted model of
string compression that allows for efficient and direct manipulations on
the compressed data. Most, if not all, such manipulations rely on the
primitive random access queries, a task of quickly returning the charac-
ter at a specified position of the original uncompressed string without
explicit decompression. While there are advanced data structures for
random access to grammar-compressed strings that guarantee theoreti-
cal query time and space bounds, little has been done for the practical
perspective of this important problem. In this paper, we revisit a well-
known folklore random access algorithm for grammars in the Chomsky
normal form, modify it to work directly on general grammars, and show
that this modified version is fast and memory efficient in practice.

Keywords: grammar-based compression · random access · straight-line
programs

1 Introduction

Random access on grammar-compressed strings has been used as a key primi-
tive in a number of efficient algorithms that directly work on compressed strings,
including pattern matching [21,27,23,35,3], compressed-string indexing [10], q-
gram frequencies [16,17], detection of palindromes and repetitions [26,19,20], con-
volutions [32], finger searches [2], and Lempel-Ziv factorizations in compressed
space [11].

Given a grammar G in the Chomsky normal form for a text T , a folklore
algorithm for this problem first computes and stores the length of the string that
each non-terminal derives in O(size(G))-time and space, where size(G) denotes
the total size of the productions in G. Then, given a position p in T , one can climb
down the corresponding path to T [p] in the derivation tree for G in O(h(G))-time,
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where h(G) denotes the height of the derivation tree of G. While h(G) can be as
small as Θ(log n) for some highly repetitive strings of length n with balanced
grammars G, h(G) can be as large as Θ(n) in the worst case. Bille et al. [4]
showed how to preprocess G in O(size(G))-time and space so that later random
access queries can be answered in O(log n)-time, irrespective of h(G). Garnardi
et al. [14] showed how to convert a given grammar G into another grammar
G′, with size(G′) = O(size(G)) and h(G′) = O(log n), that derives the same
string as the original grammar G, thus achieving O(log n)-time random access
using O(size(G))-space. Garnardi et al. [14] also presented an O(log n/ log log n)-
time random access data structure with O(size(G) logϵ n)-space for any ϵ > 0,
by generalizing the result of Belazzougui et al. [1]. This matches the cell-probe
lower bound shown by Verbin and Yu [33], for strings that are only polynomially
compressible in n.

While random access on grammars has been extensively studied in the theo-
retical perspective, as shown above, the only practical results that we are aware
of are the works by Maruyama et al. [25] and Gagie et al. [12]. However, these
approaches require specific grammar encodings and only work on RePair style
grammars, making them incompatible with recent grammar-based compression
algorithms [29,9,7]. In fact, we are not aware of a general random access algo-
rithm that will work on any grammar.

In this work, we revisit the folklore algorithm for random access to grammar
compressed strings and show that it can be improved to use significantly less
space and generalized to operate directly on any grammar. Our experiments
show that this modified folklore algorithm achieves state-of-the-art performance
in both its space requirements and run-time.

2 Preliminaries

In this section, we define syntax and review information related this paper.
Indexes start at 1.

2.1 Strings

Let Σ be an alphabet of size σ. An element in Σ∗ is called a string. The length
of a string T is denoted by |T | and n = |T |. The empty string ε is the string
of length 0, i.e. |ε| = 0. The pth character in a string T is denoted by T [p] for
1 ≤ p ≤ n, and the substring of T that begins at position p and ends at position
q is denoted by T [p..q] for 1 ≤ p ≤ q ≤ n. For convenience, let T [p..q] = ε for
p > q.

2.2 Grammar-Based Compression

A context-free grammar is a set of recursive rules that describe how to form
strings from a language’s alphabet. A context-free grammar is called an ad-
missible grammar if the language it generates consists only of a single string.
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Grammar-based compression is a compression technique that computes an ad-
missible grammar for a given string such that the computed grammar can be
stored in less space than the original string. In what follows, we will call admis-
sible grammars simply grammars.

Let G = ⟨X,Σ,R, S⟩ be a grammar that generates T , where X is a set of
non-terminal characters, Σ is the alphabet of T (i.e. terminal characters) and is
disjoint from X, R is a finite relation in X × (X ∪Σ)∗, and S is the symbol in
X that should be used as the start rule when using G to generate T . R defines
the rules of G as a set of m productions {Xi → expri | 1 ≤ i ≤ m} such
that each Xi is a non-terminal in X and expri is a non-empty sequence from
(Σ ∪ {X1, . . . , Xi−1})+. The size of grammar G is the total length of the right-
hand sides of the productions and is denoted size(G) =

∑︁m
i=1 |expri|. We say

that a non-terminal Xi represents a string w if w is the (unique) string that Xi

derives. We only consider grammars with no useless rules and symbols, unless
stated otherwise. h(G) denotes the height of the derivation tree of grammar G.

In this work we will discuss three types of grammars: straight-line programs
(SLPs), Chomsky normal form (CNF) grammars, and RePair grammars. An
SLP GSLP is simply an admissible grammar. A CNF grammar GCNF is an SLP
in the Chomsky normal form, i.e. every rule (including start rule S) is of the
form Xi → c (c ∈ Σ) or Xi → XℓXr (ℓ, r < i).5 A RePair grammar GRePair,
proposed in [22], is a CNF grammar in which the start rule can have arbitrarily
many symbols in its righthand side, i.e. S → expr with expr ∈ ((X \ S) ∪Σ)+.
Any SLP can be converted to an equivalent CNF grammar [24] and any CNF
grammar can be converted to an equivalent balanced CNF grammar with height
O(log n) [14], where n is the length of the uncompressed string. See Figure 1 (a)
and (b) for example RePair and SLP grammars, respectively.

Let G be a grammar that represents a string T of length n. A random access
query on grammar G is, given a query position p (1 ≤ p ≤ n), return the
pth character T [p] in the uncompressed string T . The random access problem
on grammar-compression is to preprocess a given grammar G and build a space-
efficient (i.e. compressed) data structure on G that can quickly return the desired
character T [p] for query positions p. In practice, random access queries can be
for entire substrings T [p..q], where 1 ≤ p ≤ q ≤ n. Our experiments include
results for substring queries but our algorithm descriptions only consider the
single character version of the problem. This is because in our approach only
the first character of the substring needs to be located in G’s derivation tree; the
rest of the substring can be generated by simply traversing the derivation tree
from that location.

5 While the term SLP is often used for grammar-compression in the Chomsky normal
form, in this paper, for clarity, we use SLP to denote general admissible grammars
and CNF to denote grammars in the Chomsky normal form.
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(c) Text T and data structures for the modified folklore algorithm on GSLP

Fig. 1: Example grammars and data structures for the modified folklore algo-
rithm on string T = agagcgagagcgcgc. (a) and (b) depict the derivation trees
for a RePair grammar GRePair and an SLP grammar GSLP, respectively. (c) de-
picts the data structures used by our modified version of the folklore random
access algorithm. Note that the subscript i for each non-terminal Xi conveys
the array index of the non-terminal in the array of arrays representation of the
grammars. For simplicity, terminal characters are used directly without a proxy
non-terminal character.

3 Algorithms

In this section, we present novel algorithms for random access to grammar-
compressed strings. As before, indexes start at 1.

3.1 The Folklore Algorithm

The folklore algorithm for random access to grammar-compressed strings is for
CNF grammars. Given a grammar GCNF, the algorithm works by first computing
an array A that stores the length of the string that each non-terminal represents.
Then, given a position p in T , the corresponding path to T [p] in the deriva-
tion tree is followed by looking up the string length of each non-terminal’s left
and right characters in A to determine which character contains the position,
requiring O(log n)-time when the grammar is balanced and O(h(GCNF))-time
otherwise. See Algorithm 1 for details.



Folklore Random Access for SLPs 5

Algorithm 1: Folklore Random Access
Data: Grammar GCNF, i.e. an array of integer arrays
Data: Start rule S, i.e. an index in GCNF

Data: Length lookup table A
Input: Position p in T
Output: Character T [p]

1 Xi ← S
2 while Xi is a non-terminal (Xi → XℓXr) do
3 leftLength ← A[Xi]
4 if p ≤ leftLength then
5 Xi ← GCNF[Xi]ℓ ▷ Xℓ denotes the first character in Xi’s array
6 else
7 p← p− leftLength
8 Xi ← GCNF[Xi]r ▷ Xr denotes the second character in Xi’s array
9 end

10 end
11 return Xi

While this algorithm is fast both asymptotically and in practice, it requires
much additional space. For instance, if the algorithm is given a non-CNF gram-
mar G, then an equivalent CNF grammar GCNF must be computed, which may
require introducing useless rules that increase the size of the grammar. Ad-
ditionally, using the naïve array of arrays grammar encoding [31] where each
non-terminal character is an array index, the folklore algorithm requires:

(a) 2m lg(m+ σ) bits to represent the grammar and
(b) m lg(n) bits to represent the rule string lengths,

where m denotes the number of non-terminals in GCNF, in which there are σ
rules of form Xi → c (c ∈ Σ). Note that the bits to represent the rule string
lengths require half as much space as the grammar itself!

3.2 Modified Folklore Algorithm

In our modified folklore algorithm to follow, the non-terminals are required to
be sorted (and subsequently numbered) in increasing order of their expansion
lengths. Given a grammar G with m non-terminals, we can simply sort them
in O(m logm)-time and renumber them in O(size(G))-time with O(m log(n))
bits of working space by any suitable comparison-based sorting algorithm. The
O(m log(n)) bits of information is discarded after this preprocessing. If the non-
terminals in G are already sorted, this step can be skipped.

To improve the folklore algorithm, we first observe that it can be easily
extended to work on any SLP. Specifically, given an SLP GSLP, the length of the
string each non-terminal represents is computed and stored, as before. Then the
position in T of each non-terminal character in start rule S is computed and
stored as well. Now, given a position p in T , the algorithm will first look up the
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Algorithm 2: Modified Folklore Random Access
Data: Ordered grammar GSLP, i.e. an array of integer arrays
Data: Start rule S, i.e. an index in GSLP

Data: Bitvector BX

Data: Bitvector BS

Data: Unique length array L
Input: Position p in T
Output: Character T [p]

1 r ← rank(BS , p)
2 Xi ← GSLP[S][r]
3 p← p− select(BS , r)
4 while Xi is a non-terminal (Xi → expri with expri ∈ (Σ ∪ {X1, . . . , Xi−1})+)

do
5 for Xj in GSLP[Xi] do
6 r ← rank(BX , Xj)
7 length ← L[r]
8 if p ≤ length then
9 Xi ← Xj

10 break
11 else
12 p← p− length
13 end
14 end
15 end
16 return Xi

character in the start rule that contains p and then descend the derivation tree
from this character. However, since each rule in an SLP can have arbitrarily many
symbols in its righthand side, instead of checking the left and right characters
to determine which character contains the query position, a rule’s characters are
iterated until the character containing the position is found.

Using the naïve array of arrays grammar encoding, this extended version of
the folklore algorithm requires:

(c) size(GSLP) lg(m+ σ) bits to represent the grammar and
(d) (|S| +m) lg(n) bits to represent the rule string lengths and start character

positions.

Note that when GSLP is a CNF grammar, (c) is equivalent to (a).
We observe that the following changes can be made to significantly reduce

the space requirements of (d):

1. Using the naïve grammar representation of (c) where each non-terminal char-
acter is an array index, order (and subsequently renumber) the rules by string
length – shortest to longest – with the start rule S last.

2. Create a sorted array L of the unique rule string lengths.
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3. Create a length m bitvector BX with a bit i set for the first rule Xi of each
string length in the grammar array.

4. Create a length n bitvector BS with a bit p set at the text position of each
character in start rule S.

The modified folklore algorithm can then be used by first looking up the start
rule character via a paired rank-select query on BS . The algorithm can then
descend the derivation tree by using rank queries on BX to look up each rule’s
string length in L. See Algorithm 2 for details.

Using a standard bitvector the rank and select operations can be done in
O(1)-time [34,6]. However, a standard bitvector requires 64⌈|B|/64 + 1⌉ bits of
space, where |B| is the length of the bitvector. This is impractical since |BS | = n.

To minimize the space required by bitvectors BS and BX , we propose using
the sparse bitvector [30]. This bitvector answers rank queries in O(log |B|

b )-time
and select queries in O(1)-time while requiring no more than b(2+log |B|

b ) bits of
space, where b is the number of set bits. Using the sparse bitvector, the modified
folklore algorithm requires no more than |S|(2+log n

|S| )+|L|(2+log m
|L| )+|L| lg |L|

bits to represent the rule string lengths and start character positions.
We observe that the modified folklore algorithm is effectively equivalent to

the original folklore algorithm when given a CNF grammar. Since any SLP can
be converted to an equivalent balanced CNF grammar [24,14], this implies that
when using standard bitvectors the modified folklore algorithm runs in O(log n)-
time, and when using sparse bitvectors it runs in O(log n

|S| + log n log m
|L| )-time.

Without converting to the Chomsky normal form or balancing the grammar, the
worst-case run-time is O(n). However, algorithms that produce RePair gram-
mars tend to create balanced grammars, and so the expected run-time on Re-
Pair grammars is O(log n). Although the nature of SLPs in general is less pre-
dictable, the grammars of the MR-RePair algorithm we use in our experiments
have been shown to be isomorphic to grammars produced by the actual RePair
algorithm [9], so we expect these grammars to have an O(log n) run-time as well,
despite having to iterate rules’ characters when descending the derivation tree.

4 Results

In this section, we describe our implementation and experimental results.

4.1 Implementation

Our implementation of the modified folklore algorithm is called FRAS - Folk-
lore Random Access for SLPs. We implemented FRAS in C++. The bitvectors
and their respective rank and select data structures were implemented using the
Succinct Data Structure Library (SDSL) [15]. We used the naïve array of ar-
rays encoding to represent grammars [31] and implemented the sparse bitvector
variation of the folklore algorithm described in Section 3. The source code is
available at https://github.com/alancleary/FRAS.

https://github.com/alancleary/FRAS
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4.2 Experiments

We performed experiments on two corpora of data: the Pizza&Chili corpus6
and a collection of pangenomes. For each corpus, we generated grammars and
benchmarked our modified folklore algorithm (FRAS) against the original folk-
lore algorithm (Folklore), the algorithm of [25] (FOLCA), and the algorithm
of [12] (ShapedSLP7), measuring encoding size and random access run-time.
For each grammar generated, we accessed substrings of length 1, 10, 100, and
1,000 at pseudo-random positions.8 We performed this procedure 10,000 times
for each substring length and computed the average run-time. See the following
subsections for details.

Experiments were run on a server with two AMD EPYC 7543 32-Core 2.8GHz
(3.7GHz max boost) processors and 2TB of 8-channel DDR4 3200MHz memory
running CentOS Stream release 9. Note that this server is excessively overpow-
ered for these experiments and was used for the purpose of stability and accuracy
of measurement. Similar results can be achieved on a consumer laptop.

Pizza&Chili For the Pizza&Chili corpus, we generated grammars for all data
sets from the real and artificial collections. For each data set, we generated gram-
mars using Gonzalo Navarro’s implementation9 of RePair [22] and Isamu Fu-
ruya’s implementation10 of MR-RePair [9]. MR-RePair generates SLPs that are
isomorphic to RePair grammars. We included these grammars to test our hypoth-
esis that the run-times of our FRAS algorithm should be approximately equiva-
lent on an SLP as on an equivalent RePair grammar. The Folklore, FOLCA, and
ShapedSLP algorithms were not benchmarked on MR-RePair SLPs as they only
work on RePair grammars. See Table 5 in Appendix A for information about the
Pizza&Chili data sets and their respective grammars. The space used by each
algorithm is listed in Table 1 and the run-times of each algorithm are listed in
Table 2.

We found that FRAS consistently used less space than Folklore, especially
on the MR-RePair grammars. However, FRAS was also consistently slower than
Folklore. This is expected as both FOLCA and ShapedSLP also use less space
than Folklore but are slower. FRAS, however, consistently used more space than
FOLCA and ShapedSLP but was also much faster. Moreover, FRAS was faster
than FOLCA and ShapedSLP on every data set and query size, and it was the
only algorithm of the three to achieve sub-microsecond run-times.

Interestingly, FRAS on MR-RePair grammars did not use much more space
than FOLCA and ShapedSLP but it was the fastest of all the algorithms, ex-
6 https://pizzachili.dcc.uchile.cl/
7 Note that in [12] “SLP” refers to RePair grammars, thus ShapedSLP is only com-

patible with RePair grammars.
8 Pseudo-random numbers were generated on a uniform distribution using the

xoroshiro128+ generator [5]. The generator was seeded so that the same numbers
were used by every algorithm.

9 https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz
10 https://github.com/izflare/MR-RePair

https://pizzachili.dcc.uchile.cl/
https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz
https://github.com/izflare/MR-RePair
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cluding Folklore. This suggests that although the size of the rules in MR-RePair
grammars is unbounded FRAS is acheiving the expected run-time and is faster
than FRAS on RePair grammars simply because MR-RePair grammars are typ-
ically smaller.

Pangenomes A pangenome is a collection of genomes from the same species.
The ability to efficiently store and access these data at scale is an important
problem in bioinformatics [8]. Grammar-based compression is particularly well
suited to compressing these data as the size of the grammars scales relative to
information content, rather than input size [28]. To demonstrate the practicality
of our algorithm, we generated grammars for three pangenomes: the 12 yeast
assemblies from the Yeast Population Reference Panel (YPRP) [36]; the 25 Maize
assemblies from the nested association mapping (NAM) population [18]; and
1000 copies of Human chromosome 19 (c1000) used by Gagie et al. in [12].
Grammars were generated using BigRePair as it is currently the only grammar-
based compression algorithm that can generate grammars for the NAM and
c1000 data sets [13]. See Table 6 in Appendix A for information about these
data sets and their respective grammars. The space used by each algorithm is
listed in Table 3 and the run-times of each algorithm are listed in Table 4.

As with the Pizza&Chili corpus, we found that FRAS consistently used less
space than Folklore and was consistently slower. And, again, FRAS consistently
used more space than FOLCA and ShapedSLP but was also much faster, beating
FOLCA and ShapedSLP on every data set and query size.

5 Conclusion

In this work, we showed how the folklore algorithm for random access to grammar-
compressed strings can be modified to work on any grammar and achieve good
space and run-time performance in practice. We believe this is the first random
access algorithm for grammar-compressed strings that works directly on any
grammar, thus further enhancing the usefulness of the algorithm. In future work
we would like to further improve the modified folklore algorithm by representing
the grammar in a manner that uses less space with minimal effect on run-time
performance.

Acknowledgments. The work of Alan M. Cleary, Joseph Winjum, and Jordan Dood
was support by NSF award number 2105391. The work of Shunsuke Inenaga was sup-
ported by JSPS KAKENHI grant numbers JP 20H05964, JP23K24808, JP23K18466.
We would like to thank the authors of [12] for sharing the c1000 data set with us. You
saved us much time and computation.
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Table 1: The space used by the random access algorithms benchmarked on the
Pizze&Chili corpus. Data Set is the names of the data sets and what collection
they belong to. The MR-FRAS, FRAS, Folklore, FOLCA, and ShapedSLP
columns are the space used by each algorithm, where MR-FRAS is FRAS run
on MR-RePair grammars; all other results are on RePair grammars. All space
is in megabytes.

Data Set MR-FRAS FRAS Folklore FOLCA ShapedSLP

re
al

Escherichia_Coli 17.2 22.9 41.1 13.8 14.0
cere 16.3 23.7 37.4 13.1 14.0
coreutils 9.8 16.6 22.7 7.9 9.0
einstein.de.txt 0.4 0.5 0.7 0.3 0.3
einstein.en.txt 0.9 1.2 1.9 0.7 0.6
influenza 8.0 8.8 17.6 6.1 5.5
kernel 5.6 9.2 13.0 4.5 5.0
para 21.3 29.5 49.3 17.4 18.2
world_leaders 1.7 2.1 3.4 1.1 1.1

ar
ti
fic

ia
l fib41 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

rs.13 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
tm29 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1

Table 2: Random access run-times for grammars built on the Pizze&Chili corpus.
Data Set is the names of the data sets and what collection they belong to.
The MR-FRAS, FRAS, Folklore, FOLCA, and ShapedSLP columns are
the algorithms benchmarked and their query run-times, where MR-FRAS is
FRAS run on MR-RePair grammars; all other results are on RePair grammars.
For the run-times, 1, 10, 100, and 1,000 are the lengths of the substrings
queried. All run-time are in microseconds.

Data Set MR-FRAS FRAS Folklore FOLCA ShapedSLP
1 10 100 1,000 1 10 100 1,000 1 10 100 1,000 1 10 100 1,000 1 10 100 1,000

re
al

Escherichia_Coli 1.8 1.9 3.4 17.7 5.8 6.0 8.4 29.2 1.1 1.2 2.2 12.0 25.0 26.3 42.0 191.2 21.0 22.7 42.5 238.7
cere 1.3 1.5 3.0 16.2 4.4 4.7 7.2 28.5 1.0 1.1 2.1 10.9 17.7 19.4 34.7 182.3 14.2 16.3 36.5 235.8
coreutils 17.5 17.8 19.5 34.5 42.2 42.7 46.3 69.1 6.4 7.2 9.5 20.9 156.0 158.3 180.7 355.4 242.9 247.2 276.7 491.9
einstein.de.txt 0.8 1.0 2.4 15.2 1.4 1.6 3.4 19.0 0.5 0.7 1.6 10.0 10.6 12.3 28.1 176.7 6.6 8.6 27.8 217.6
einstein.en.txt 1.0 1.2 2.8 16.5 1.3 1.5 3.4 19.2 0.7 0.8 1.8 10.2 11.8 13.6 30.2 184.2 6.2 8.3 27.7 217.9
influenza 0.3 0.5 2.2 17.1 0.5 0.6 2.3 17.0 0.6 0.7 1.6 10.4 10.6 12.3 27.3 172.1 3.0 5.0 24.1 213.6
kernel 5.1 5.3 7.0 21.6 15.2 15.9 18.1 36.0 1.9 2.2 3.4 13.3 51.7 54.6 72.3 241.3 60.5 64.3 85.7 289.7
para 0.9 1.1 2.6 17.4 1.8 2.2 4.8 27.4 0.8 1.0 2.1 11.9 13.2 14.9 30.7 182.3 5.8 7.7 27.0 218.8
world_leaders 0.5 0.7 1.9 13.0 1.1 1.3 2.7 14.5 0.6 0.7 1.3 7.6 11.8 13.3 28.6 166.7 5.7 7.7 26.7 214.0

ar
ti
fic

ia
l fib41 0.9 1.0 1.2 7.4 1.0 1.0 1.2 7.4 0.2 0.3 0.6 3.6 2.6 3.3 10.4 81.3 4.2 5.7 20.8 172.1

rs.13 0.9 1.0 1.3 7.9 0.9 1.0 1.2 7.4 0.3 0.3 0.6 3.8 3.1 3.8 11.2 85.8 4.7 6.2 22.0 179.1
tm29 0.9 0.9 1.2 7.0 0.8 0.9 1.3 7.6 0.2 0.3 0.6 3.7 2.8 3.6 10.6 80.9 4.7 6.3 22.5 183.1



Folklore Random Access for SLPs 11

Table 3: The space used by the random access algorithms benchmarked on the
Pangenome corpus. Data Set is the names of the data sets and the FRAS,
Folklore, FOLCA, and ShapedSLP columns are the space used by each al-
gorithm. All results are on BigRePair grammars. All space is in megabytes.

Data Set FRAS Folklore FOLCA ShapedSLP
YPRP 49.9 75.4 25.9 31.4
Maize 3779.6 6400.4 2529.8 3020.2
c1000 122.3 217.4 86.5 80.6

Table 4: Random access run-times for grammars built on the Pangenome corpus.
Data Set is the names of the data sets and the FRAS, Folklore, FOLCA,
and ShapedSLP columns are the algorithms benchmarked and their query run-
times. For the run-times, 1, 10, 100, and 1,000 are the lengths of the substrings
queried. All results are on BigRePair grammars. All run-time are in microsec-
onds.

Data Set FRAS Folklore FOLCA ShapedSLP
1 10 100 1,000 1 10 100 1,000 1 10 100 1,000 1 10 100 1,000

YPRP 1.8 2.2 5.7 37.4 0.9 1.1 2.5 14.7 11.5 13.3 29.6 187.1 2.9 4.9 24.9 220.1
Maize 3.9 4.4 8.5 44.5 3.1 3.6 5.7 24.0 22.3 24.3 44.3 233.6 9.0 11.2 35.1 269.5
c1000 3.2 3.6 7.4 41.0 2.5 2.7 4.8 21.2 16.4 18.3 34.8 192.2 6.9 9.2 31.1 242.2
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A Appendix

Table 5: Data sets used from the Pizze&Chili corpus. Data Set is the names of
the data sets and what collection they belong to, Size is the number of charac-
ters in each data set, and MR-RePair and RePair are information about the
grammars generated for these data sets. For the grammars, Rules is the number
of rules in the grammars, Depth is the maximum depth of the grammars, Start
is the size of the start rules, and Size is the total lengths of the right-hand sides
of the rules in each grammar, excluding the start rule.

Data Set Size
MR-RePair RePair

Rules Depth Start Size Rules Depth Start Size

re
al

Escherichia_Coli 112,689,515 712,228 23 712,484 1,595,881 2,012,087 3,279 1,601,482 4,024,174
cere 461,286,644 836,956 29 648,659 3,392,707 2,561,292 1,359 655,298 5,122,584
coreutils 205,281,778 437,054 30 153,775 2,270,187 1,821,734 43,728 153,346 3,643,468
einstein.de.txt 92,758,441 21,787 42 12,683 71,709 49,949 269 12,665 99,898
einstein.en.txt 467,626,544 49,565 48 62,591 150,233 100,611 1,355 62,473 201,222
influenza 154,808,555 429,027 28 897,657 1,088,872 643,587 366 886,836 1,287,174
kernel 257,961,616 246,596 34 69,537 1,304,343 1,057,914 5,822 69,427 2,115,828
para 429,265,758 1,079,287 30 1,134,361 4,157,167 3,093,873 487 1,147,650 6,187,746
world_leaders 46,968,181 100,293 30 98,397 309,222 206,508 463 94,327 413,016

ar
ti
fic

ia
l fib41 267,914,296 38 40 3 76 38 40 3 76

rs.13 216,747,218 55 45 121 26 66 47 24 132
tm29 268,435,456 51 29 6 126 75 45 6 150

Table 6: Data sets used from the Pangenome corpus. Data Set is the names of
the data sets, Size is the number of characters in each data set, and BigRePair
is information about the grammars generated for these data sets. For the gram-
mars, Rules is the number of rules in the grammars, Depth is the maximum
depth of the grammars, Start is the size of the start rules, and Size is the total
lengths of the right-hand sides of the rules in each grammar, excluding the start
rule.

Data Set Size
BigRePair

Rules Depth Start Size
YPRP 143,169,450 5,911,887 37 642,828 11,823,774
Maize 55,270,577,570 432,651,138 47 79,378,700 865,302,276
c1000 59,125,115,010 12,898,128 45 4,495,360 21,300,896
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