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Abstract— Accurately predicting power system behavior is
becoming more complex with the increased penetration of
uncertain wind and solar-based renewable resources. Hence,
there is a growing motivation to transition from model-based
feedback control strategies to completely model-free counter-
parts. Reinforcement learning (RL) is a key methodology in
designing a model-free controller. Various studies have been
carried out to study voltage/frequency control strategies via RL.
However, they usually consider a simplified power system model
either by completely neglecting system differential equations
(and thus only modeling the system via power balance equa-
tions) or considering simplified generator models. Furthermore,
damping system-wide oscillations after large disturbances are
usually ignored in the controller design. In contrast, we propose
an RL-based wide-area damping controller (WADC) for an
advanced power system model with comprehensive higher-order
generator dynamics, power electronics-based wind and solar
models, and composite load dynamics. The presented controller
sends control signals to synchronous generators, wind, and
solar power plants to actively adjust their power and voltage
setpoints—thereby providing damping to the system oscillations
after large disturbances. Case studies demonstrate that the
system’s transient stability can be significantly improved after
large disturbances.

Index Terms— Reinforcement learning, solar and wind-based
power system models, feedback control, adaptive control.

I. INTRODUCTION AND MOTIVATION

M
ODEL-based stability analysis and state/output feed-

back control have been the mainstream approaches

to studying power system dynamics [1], [2]. These models,

based on complex differential algebraic equations (DAE)

offer invaluable insights into grid behavior, allowing for the

design of sophisticated controllers that can effectively regulate

voltage, frequency, and other critical parameters. However,

the effectiveness of model-based control is contingent upon

the accuracy of these models, which are inherently limited by

simplifications and assumptions.

As power systems become more uncertain and dynamic

due to the integration of renewables and the proliferation

of distributed energy resources, accurately modeling their

behavior becomes an increasingly daunting task. This leads

to control strategies that are inadequate for real-world chal-

lenges [3]. In response to these evolving issues, there is a

growing motivation to transition from traditional model-based

feedback control to completely model-free control approaches

[4]–[6]. This has also been highly encouraged by the recent
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developments in the wide-area monitoring systems technolo-

gies, such as phasor measurement units (PMUs) and robust

state estimation algorithms [4].

Using measurements received from the PMUs, these esti-

mation techniques can efficiently estimate all the states of the

power system including the states of generators, renewables,

loads, and network. This paves the way for completely model-

free control techniques in the future power grid.

RL is one of the key techniques in designing model-free

feedback control strategies. This is because RL is a self-

learning technique in which the agent (or in our case the

controller itself) learns the optimal control policy dynamically

by merely continuously interacting with its environment or

simulation while satisfying the objective function or goal. In

this regard, many researchers have recently proposed various

RL control algorithms for power systems. In [7], [8], an

RL-based optimal frequency controller has been proposed to

minimize frequency deviations and the required control action

for a simplified second-order power system model. Similarly,

in [9] a voltage control strategy has been proposed using deep

RL. The RL algorithm is trained to minimize the voltage

deviation on all buses by actively adjusting generator bus

voltages. However, system dynamic equations (i.e., generator

model and power electronics-based model of renewables)

are not considered; the corresponding power system is only

modeled via power balance equations between generators and

the network.

In [10]–[12] a multi-area automatic generation control

(AGC) has been designed for frequency regulation using var-

ious RL-based techniques such as a deep deterministic policy

gradient (DDPG), integral RL (actor-critic), and Q-learning

based approaches. Similarly, in [13], [14] various reactive

power control schemes have been proposed to improve system

voltages via different RL-based techniques. A comprehensive

review of the application of RL in the control and stability of

power systems can be found in [3], [15].

All of the techniques in the literature usually consider sim-

plified power system models (modeling lower order generator

models), neglect power system algebraic constraints (cur-

rent/power balance equations), and do not provide a control

mechanism for (power-electronics)-based wind/solar dynamic

models. Furthermore, most of the studies usually focus only on

minimizing voltage/frequency deviations and do not consider

damping system-wide low-frequency oscillations (LFOs) and

ultra-low frequency oscillations (ULFOs) in their architecture.

Damping LFOs and ULFOs are critical in the power grid as

they can lead to system instability and limit power transfer

capability. Furthermore, considering power system algebraic



constraints while designing a feedback control strategy is

crucial because these constraints model the network dynamics.

Thus without considering these constraints, the power system

models cannot capture the effects of various load dynamics

(such as constant impedance or motor-based loads) and topo-

logical changes (such as the tripping of transmission lines, etc)

[2].

Some recent work has been carried out to design various

centralized and decentralized RL-based damping controllers.

In particular, the study [16] designs a wide-area damping

controller based on a reduced system model. In [17] a dense

centralized damping controller has been proposed based on a

policy iteration algorithm. Similarly, in [18] a decentralized

off-policy iteration-based damping controller has been de-

signed. However, in all these studies again a simplified power

system model is considered (considering lower order generator

dynamics and neglecting system algebraic constraints) and

no feedback control mechanism for renewables such as solar

and wind-based power plants has been designed. To that

end, we design an RL-based wide-area damping controller

(RL-WADC) for an interconnected power system model with

comprehensive 9th-order synchronous generator dynamics,

detailed (power-electronics)-based wind and solar dynamics

models, and composite load dynamics consisting of constant

power, constant impedance, and motor loads. This brings the

control problem closer to being more applicable and realistic.

The technical contributions of the paper are as follows:

• We present a completely model-free approach to de-

signing a wide-area damping controller for an advanced

interconnected power system model. The presented ap-

proach considers: higher-order synchronous generators

dynamics, detailed (power electronic)-based models of

wind/solar-based power plants, models of the system al-

gebraic constraints, and various load dynamics (constant

power/impedance and motor-based loads) in its control

architecture (Section II).

• The presented approach acts as a secondary control loop

and sends additional control signals not only to the

conventional power plants but also to the renewable re-

sources (solar and wind-based power plants) so that they

can participate in improving system transient stability

after large disturbances in load/renewables (Sections III

and IV).

• We test the performance of the presented RL-WADC

under various load and renewable uncertainties on a

modified IEEE 9-bus system—which is one of the widely

used test systems in control/stability studies of power

systems. The advantages of presented RL-WADC are

also demonstrated by comparing the system dynamic

response with conventional/primary controllers of the

power system and with RL-WADC acting on top of them

(Section V).

Paper Notation. All matrices and vectors are denoted using

boldface type. Sets are represented using calligraphic font,

such asR,N , etc. The symbolRa represents the set of column

vectors with ‘a’ elements. Similarly, R
a×b denotes the set

of real matrices with dimensions ‘a’ by ‘b’. The symbol O

represents a zero matrix, I denotes an identity matrix of

appropriate size, ∪ denotes the union between two sets while

the symbol ¹ represents the Kronecker product. In addition,

S
a×b
++ signifies the set of positive definite matrices of size ‘a’

by ‘b’. The notation vec(M) represents the vectorization of

matrix M which is computed by stacking the columns of M

on top of each other while Â denotes the half vectorization

of a symmetric matrix A with off-diagonal element taken as

2Aij . Similarly the notation B̄ represent the half vectorization

plus the off-diagonal element of matrix B, such as for B =
[

1 2
3 4

]

, B̄ = [1, 3, 4]¦ + [0, 2, 4]¦. Furthermore, the units

for all the quantities are in per unit (p.u) unless otherwise

specified, also, in some cases for brevity, the time stamp for

some of the vectors is removed such as uG(t) is written just

as uG vice versa.

II. INTERCONNECTED POWER SYSTEM MODEL WITH

WIND, SOLAR PLANTS, AND COMPOSITE LOADS

We model a power network with R solar farms, G con-

ventional power plants, W wind-based power plants, and Lz ,

Lp, Lk, number of constant power, constant impedance, and

motor-based loads, respectively. The complete electrical grid

is represented via graph with E set of transmission lines, and

N = {1, ..., N} set of nodes or buses. The set of buses

N contains; G = {1, ..., G} set of buses with synchronous

generators, R = {1, ..., R} set of buses with solar farms,

W = {1, ...,W} set of buses connected to a wind-based power

plant, L set of buses collecting Lz , Lp, and Lk loads, and U
set of non-unit buses (meaning buses not connected to any

elements), such that N = R∪W ∪ G ∪ U ∪ L.

The overall power network is described via nonlinear

differential-algebraic equations (NDAEs) as follows:

differential equations: ẋ(t) = f(xa,xd,u) (1a)

algebraic equations: 0 = h(xa,xd,u). (1b)

The differential equations model the detailed dynamics of so-

lar plants, wind-based generators, conventional power plants,

and composite loads while the algebraic equations describe

the algebraic constraints in the power network which are the

power/current balance equations. In (1) xa ∈ R
na denotes

algebraic states, xd ∈ R
nd represents dynamic states and it

lumps solar plants, wind-based plant, loads, and conventional

power plant state variables, and u ∈ R
nu denotes the power

systems control inputs. The more detailed explanations about

each of these variables can be found in [1], [19], [20].

That being said, for control purposes we approximate the

overall power system model in the following linear DAE

format:
Eẋ = Ax+Bu (2)

where x(t) =
[

x¦

d x¦
a

]¦
∈ R

n is the overall state vector

and E is a singular matrix encoding algebraic constraints with

rows of zeros.

III. PRELIMINARIES AND PROBLEM FORMULATION

Here we discuss the preliminaries and the problem for-

mulation for designing a state feedback controller for the



interconnected power system model described in (2). The

primary objective is to design a feedback control law that

minimizes a certain performance criterion or cost function.

To that end, let us consider the closed-loop dynamics of (2)

along with its performance criterion vector z ∈ R
n as follows:

Eẋ = Ax+BuC (3a)

z = Cx+DuC (3b)

where the control policy uC for every kth dispatch period is

defined as

Control policy: uC(t) = uk
0 −K

(

x(t)− xk
)

(4)

in which xk is the state vector before fault/disturbance, uk
0 is

the initial set point of the input u (which is usually determined

by running power flow for every dispatch period), and K ∈
R

nu×n is the feedback controller gain matrix. The main idea

in the given control law is to design a gain matrix K such that

the power system converges back to its equilibrium and its

transient stability can be improved after a large disturbance.

To do that, one first needs to design the perturbed closed-loop

dynamics whose states are then driven asymptotically to zero

while minimizing the performance criterion associated with z.

With that in mind, let us assume the power system model (2)

is disturbed by an external uncertainty (which can be because

of disturbance in load demand or renewable, etc.) and thus

the system moves from its initial equilibrium status to a new

status x′. Then, the perturbed closed loop dynamics and its

associated performance criterion vector z can be written as

follows:

E∆ẋ=(A−BK)∆x (5a)

∆z = (C −DK)∆x (5b)

where ∆x = x−x′. The main objective of the matrix K is to

drive ∆x asymptotically to zero which in other words means

that the power system (2) will converge to the new steady-state

after large disturbance in system dynamics.

With little abuse of notation, for the sake of simplicity,

from now on we drop the ∆ notation from ∆x, and ∆z and

simply use x and z instead, respectively. To that end, notice in

(2) that conventional power plants, solar plants, wind power

plants, and motor loads are dynamic systems while loads,

non-unit buses, and other interconnections are considered

static systems. Thus, the algebraic variables xa in the power

system model (the voltage and current phasors) are redundant

states and thus can be eliminated while designing a feedback

controller [2]. This can be done by finding an explicit equation

for the algebraic variables using the algebraic constraint model

and plugging it back into the system dynamical model as

follows: Considering

A =

[

Add Ada

Aad Aaa

]

,x =
[

x¦

d x¦
a

]¦
,B =

[

B¦

d B¦
a

]¦

one can write the DAE system (2) into the separate dynamic

and algebraic model as follows:

ẋd = Addxd +Adaxa+Budu (6a)

0 = Aadxd +Aaaxa+Buau. (6b)

Now assuming Aaa to be invertible which is a standard as-

sumption in power systems [2], [20].Then an explicit equation

for the algebraic variable xa from (6b) can be written as:

xa = Aaa
−1(−Aadxd −Buau). (7)

Finally, based on this, the closed-loop model (5) can be

rewritten in equivalent ODE format as follows:

ẋd(t) = (Ã− B̃Kd)xd(t) (8a)

z1(t) = (C̃ − D̃Kd)xd(t) (8b)

where Kd ∈ R
nu×nd and the rest of the system matrices are

defined as:

Ã = Add −AdaA
−1
aaAad, B̃ = Bd −AdaA

−1
aaBa

D̃ = Bd −CaA
−1
aaBa, C̃ = Cd −CaA

−1
aaAad.

Notice that the computed gain Kd from ODE (8) can be

plugged back into the complete interconnected power system

as K = [Kd O]. Now, by just using the knowledge of

the system matrices Ã, B̃, [21] has proposed an iterative

algorithm to design a linear state feedback controller described

as follows:

Theorem 1 ( [21]): Let Kd0
be the initial stabilizing con-

troller gain matrix such that Ã − B̃Kd0
is Hurwitz and

Pk ∈ S
nd×nd

++ , k = 0, 1, ... be the unique solution to the

following Lyapunov equation (which is linear in Pk)

Ac
¦Pk+PkAc+Q+K¦

dk
RKdk

−NKdk
−(NKdk

)¦=0 (9)

with Kdk
being updated recursively at each iteration k using

Kdk+1
= R−1(B̃¦Pk +N¦) (10)

where Ac = Ã − B̃Kdk
, Q = C̃¦C̃, R = D̃¦D̃, and

N = C̃¦D̃. Then, Ã− B̃Kdk
is Hurwitz, and the solution

of Pk as k → ∞ converges to the optimal solution of the

well-known algebraic Riccati equation (ARE) given as:

Ac
¦P+PAc−(PB̃ +N)R−1(B̃¦P +N¦)+Q=0 (11)

The above technique requires the complete knowledge of the

system matrices Ã and B̃ which is unrealistic as accurate

models might not be available or be uncertain specifically in

the case of power systems with high penetration of renewable

energy resources. Then, to design a similar feedback gain Kd

without the knowledge of the system matrices and just using

the data (the system state trajectories which can be computed

via PMU data, for example), we present the following problem

statement:

Problem 1: Given the state trajectories xd(t) of the LODE

system (8a) and its performance metric (8b), design feedback

controller Kd without utilizing the knowledge of system

matrices.

IV. RL-BASED FEEDBACK CONTROLLER DESIGN

Primarily based on the theory in [22], here we present
model-free RL-based centralized feedback controller design.

The presented approach computes the feedback controller gain

matrix Kd purely based on the continuous interaction with the

power system in real-time and does not require the information

of system matrices. Thus, the presented technique has a major

advantage over model-based feedback controller design as it

can adaptively tune the parameters of its gain matrix based on

the state information received.



To that end, we rewrite Eq. (8a) as

ẋd(t) =Acxd(t)+ B̃(Kdk
xd(t) + ud(t)) (12)

where ud = −Kdk
xd. The objective of the controller is to

minimize the energy of the performance criterion vector z1
(8b) which can be written as
∫ ∞

0

z¦

1 z1dt =

∫ ∞

0

(C̃xd − D̃ud)
¦(C̃xd − D̃ud)dt

=

∫ ∞

0

x¦

d Qxd + u¦

d Rud − 2x¦

d Nud dt

with Q, R, and N are given as in Theorem 1. Then, let us

consider the optimal cost-to-go as V (xd) = x¦

d Pkxd where

Pk ∈ S
nd×nd

++ . Notice that V (xd) is a Lyapunov function and

in the case of a model-based approach, Pk can be computed

via a recursive approach given in Theorem 1 which converges

to the solution of the ARE.

With that in mind, taking the derivative of V (xd) along the

trajectories of (12), we then get

V̇ =x¦

d(A
¦

cPk+PkAc)xd+2(ud+Kdk
xd)

¦B̃¦Pkxd (13)

From (9) let

X = Q+K¦

dk
R̃Kdk

−NKdk
− (NKdk

)¦. (14)

Then, using (10) we can rewrite (13) as

V̇ =−x¦

dXxd+ 2(ud+Kdk
xd)

¦(RKdk+1
−N¦)xd. (15)

With that in mind, taking integral on both sides of (15), we

then have

x¦

dPkxd

∣

∣

∣

t+δt

t
=

∫ t+δt

t

2(ud+Kdk
xd)

¦(RKdk+1
−N¦)xddÄ

−

∫ t+δt

t

x¦

d XxddÄ. (16)

Notice that Eq. (16) does not depend on any system matrices

of the power system model. Then, if we can solve (16) for

Pk,Kdk+1
we have a solution to the posed Problem 1.

To that end, let us define matrices δxdxd
∈ R

s× 1
2
nd(nd+1),

Υxdxd
∈ R

s×n2
d , Υxdu ∈ R

s×ndnu , and P̂ ∈ R
1
2
nd(nd+1) as

follows:

δxdxd
=
[

x̄d

∣

∣

t1

t0
, x̄d

∣

∣

t2

t1
, x̄d

∣

∣

t3

t2
, · · · , x̄d

∣

∣

ts

ts−1

]¦

Υxdxd
=
[

∫ t1

t0
xd¹xddÄ, · · · ,

∫ ts

ts−1
xd¹xddÄ

]¦

Υxdu =
[

∫ t1

t0
xd¹uddÄ, · · · ,

∫ ts

ts−1
xd¹uddÄ

]¦

(17)

P̂ =
[

P11, · · · , 2P1nd
, P22, · · · , 2Pnd−1nd

, Pndnd

]¦

where s > 0 are the total number of data samples collected, P̂

denotes the half vectorization of symmetric matrix P with off-

diagonal element taken as 2Pij , and vector x̄d ∈ R
1
2
nd(nd+1)

given as:

x̄d =
[

x̄2
d,1, · · · , x̄d,1x̄d,nd

, x̄2
d,2, · · · , x̄d,nd−1x̄d,nd

, x̄2
d,nd

]¦

Then, (16) can equivalently be written as

Ξk

[

P̂k

vec(Kdk+1
)

]

= Ψk (18)

where Ξk ∈ R
s×( 1

2
nd(nd+1)+ndnu) and Ψk ∈ R

s are given as

Ξk=
[

δxdxd
, −2Υxdxd

(Ind
¹K¦

dk
R)−2Υxdu(Ind

¹R)
]

Ψk=− 2Υxduvec(N)−2Υxdxd
vec(K¦

dk
N¦)

−Υxdxd
vec(X).

To that end, Eq. (18) can efficiently be solved in least-squares

sense for the variables P̂k, vec(Kdk+1
) as follows:

[

P̂k

vec(Kdk+1
)

]

= (Ξ¦

k Ξk)
−1

Ξ
¦

k Ψk. (19)

If (19) has a solution, then the iterative model-based procedure

to compute the feedback gain Kd given by (9) and (10) in

Theorem 1 can be replaced by model-free approach in (19).

With that in mind, we now present a key assumption on the

constructed data matrices Υxdxd
, Υxdu which if gets satisfied

guarantees the convergence of (19) to the solution of the

corresponding ARE.

Assumption 1: The rank of matrix
[

Υxdxd
, Υxdu

]

is equal

to ( 12nd(nd + 1) + ndnu).

Notice that Assumption 1 is satisfied by collecting sufficiently

many samples and by adding exploration noise in the control

inputs as explained in Section V.

Theorem 2: Given Assumption 1 is satisfied then the re-

cursive solution of (19) as k → ∞ converges to the optimal

solution given by the corresponding ARE.

Proof: First, we need to prove that (19) has a unique

solution which means we have to show that for

Ξk

[

P̂k

vec(Kdk+1
)

]

= O (20)

P̂k and vec(Kdk+1
) only has trivial solution, i.e., P̂k = O,

vec(Kdk+1
) = O. This can be proved by contradiction.

Let us assume W =
[

Y Z
]¦

where Y ∈ R
nd×nd and

Z ∈ R
nu×nd , is a non-zero solution to (20). Now, for

Υx̄d
∈ R

s× 1
2
nd(nd+1) Eq. (18) can be expanded and rewritten

as follows:

Ξk

[

P̂k

vec(Kdk+1
)

]

=−2Υxduvec(N)−2Υx̄d
(N̄)−Υx̄d

(X̂)

=
[

Υx̄d
, 2Υxdu

] [

(X̂ − 2N̄)¦, vec(N)¦
]¦

or by (20) we have
[

Υx̄d
, 2Υxdu

] [

(X̂ − 2N̄)¦, vec(N)¦
]¦

= O. (21)

By Assumption 1 we know that
[

Υx̄d
, 2Υxdu

]

has a full-

column rank, which means that (21) only has trivial solution

thus implying N = O and X = O. Now from (9) with

X = O we have

Ac
¦Y +Y Ac = O. (22)

Since Ãc is Hurwitz, then the only solution for (22) isY = O.

Then, from (10) with Y = 0 and N = O we have Z = O,

thus W = O which contradicts with our assumption that

W ̸= O. Thus, a unique solution exists for Eq. (19).

With that in mind, since P̂k and vec(Kdk+1
) can uniquely

be determined, then the policy iteration in (19) is equivalent

to (9) and (10) and thus by Theorem 1 the convergence to the

ARE solution is guaranteed. This completes the proof.

Computing controller gain matrix Kd by solving (19) gives

us a model-free approach to designing an optimal feedback

controller. The presented approach does not require any in-

formation regarding the power system model and thus is an



Algorithm 1: RL-WADC for Interconnected Power Systems

1 Save data: Simulate power system model (8) with

control input u(t) = u0 + e(t) and construct the data

matrices given (17) until Assumption 1 is satisfied.

2 Compute Kd iteratively: Starting with initial

stabilizing controller Kd0
compute Kdk

recursively

for k = 0, 1, ... via solving the following equation till

|P̂k − P̂k−1| < ϵ where ϵ is a user-defined threshold
[

P̂k

vec(Kdk+1
)

]

= (Ξ¦

k Ξk)
−1

Ξ
¦

k Ψk.

3 Apply the controller: Remove the exploration noise

e(t) from the control input, design K as

K = [Kd O], and apply the following control

policy to the complete NDAE power system model

uC(t) = uk
0 −K

(

x(t)− xk
)

.

adaptive approach that can finely tune its controller gain matrix

depending on the received data. This is especially useful for the

power grid with uncertain renewable resources and dynamic

loads. In the following section, we assess the performance of

the presented RL-WADC through numerical case studies on an

interconnected power system model with detailed renewable

dynamics and various composite loads.

V. CASE STUDIES

The presented RL-WADC has been tested on a modified

IEEE 9-bus test network. This test system consists of one

conventional steam power plant at Bus 1, a solar farm at Bus

2, a wind power plant at Bus 3, constant power and constant

impedance loads at Buses 5 and 6, and a motor load at Bus

8. Further details about the parameters of solar/wind farms,

conventional power plants, and dynamics of the test system

used in this study can be found in [1], [19], [20].

All the simulations are carried out on a personal computer

with 64GB RAM and an Intel i9 − 11900K processor. The

power system NDAE dynamics have been modeled in MAT-

LAB R2021a and are simulated using ode15s MATLAB

DAEs solver. The initial conditions for the ode15s are

computed using power flow studies in MATPOWER through

function runpf. The volt-ampere base for the power system

is chosen to be Sb = 100MVA while the frequency base is

selected to be wb = 120Ãrad/s. It is worth mentioning here

that in the above test system, to meet the overall load demand

in the steady state, on average 63% of the power is generated

by the renewables (both solar and wind power plants), hence

it can be considered as a renewable heavy power grid.

To design the RL-WADC based feedback controller gain

matrix Kd the main requirement is to compute the data

matrices δxdxd
, Υxdxd

, Υxdu as given in (17). To do that,

the power system model is simulated with exploration noise

in the initial control policy and the data matrices are saved

until Assumption 1 is satisfied. Notice that, since the power

system model is already stable, the initial control gain Kd0
is
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Fig. 1. Performance under abrupt load disturbance: Active power injected
and relative speed of solar and wind power plant, respectively.
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Fig. 2. Performance under renewable and load disturbance: DC link voltage
and relative speed of both solar and wind power plant.

then chosen to be zero. The selection of the type of exploration

noise is not trivial in RL-based and other machine learning-

based techniques and various types of noises have been used

in the literature such as sum of sinusoids, exponentially

decreasing noise, and random bounded noise and vice versa.

In this work, we have used a sum of sinusoids with different

frequencies as exploration noise in the initial control policy

as given in [22]. The overall implementation of the presented

RL-WADC is summarized in Algorithm 1. Notice that in the

case of parametric uncertainty the Algorithm 1 can simply be

repeated to adjust gain matrix K accordingly.

A. Performance under transient conditions

Here we assess the performance of the presented RL-WADC

under transient conditions created by various disturbances

in renewables and load demand. To that end, we initially

test the performance of RL-WADC by adding, right after

t > 0, a random step increasing in load demand at Bus

6. This can be a result of a sudden generator disconnection

or a transmission line trip, hence increasing the overall load

demand of the power network. The system dynamic response

with just system primary controllers and with RL-WADC

acting on top of them is shown in Fig. 1. Notice that the
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Fig. 3. Performance under renewable and load disturbance: solar plant slip
(top left), generator slip (top right) and frequency (bottom left), and wind
power plant current (bottom right).

primary/conventional controllers in the test power system

include an automatic voltage regulator (AVR), governor, and

power system stabilizer (PSS) for conventional power plants

[20] and proportional-integral (PI) type controllers for both

solar and wind power plants [19], [20]. The proposed RL-

WADC acts on top of these primary controllers and sends

additional control signals via input u. The overall objective

of the proposed RL-WADC is to improve system transient

stability by adding damping to the system oscillation and

bringing the system back close to its nominal/equilibrium

value after a large disturbance.

To that end, we can see from Fig. 1 that without the

proposed controller the power output from both solar and

wind power plants have oscillations while with RL-WADC

there is significant damping. Similarly, for the frequencies of

both solar and wind power plants, we can see that without

RL-WADC after disturbance their frequencies dip close to

0.99 (pu) while with the proposed controller the overall dip is

around 0.994 (pu), thus improving system frequency nadir.

To further advocate the performance of the presented RL-

based damping controller, here we add further disturbance this

time by decreasing load demand by 20% and solar irradiance

by 10% on the solar power plant. The results are presented in

Figs. 2 and 3. We can see from Fig. 2 that with the proposed

controller after disturbance there is significant damping in

the slip of synchronous generator, wind, and solar power

plant showing significant improvements in LFOs and ULFOs.

Similarly, from Fig. 3 we can see that there is a significant

damping in the system oscillations thus the overall transient

stability after the large disturbance has been improved.
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