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Abstract— Accurately predicting power system behavior is
becoming more complex with the increased penetration of
uncertain wind and solar-based renewable resources. Hence,
there is a growing motivation to transition from model-based
feedback control strategies to completely model-free counter-
parts. Reinforcement learning (RL) is a key methodology in
designing a model-free controller. Various studies have been
carried out to study voltage/frequency control strategies via RL.
However, they usually consider a simplified power system model
either by completely neglecting system differential equations
(and thus only modeling the system via power balance equa-
tions) or considering simplified generator models. Furthermore,
damping system-wide oscillations after large disturbances are
usually ignored in the controller design. In contrast, we propose
an RL-based wide-area damping controller (WADC) for an
advanced power system model with comprehensive higher-order
generator dynamics, power electronics-based wind and solar
models, and composite load dynamics. The presented controller
sends control signals to synchronous generators, wind, and
solar power plants to actively adjust their power and voltage
setpoints—thereby providing damping to the system oscillations
after large disturbances. Case studies demonstrate that the
system’s transient stability can be significantly improved after
large disturbances.

Index Terms— Reinforcement learning, solar and wind-based
power system models, feedback control, adaptive control.

I. INTRODUCTION AND MOTIVATION

ODEL-based stability analysis and state/output feed-
back control have been the mainstream approaches
to studying power system dynamics [1], [2]. These models,
based on complex differential algebraic equations (DAE)
offer invaluable insights into grid behavior, allowing for the
design of sophisticated controllers that can effectively regulate
voltage, frequency, and other critical parameters. However,
the effectiveness of model-based control is contingent upon
the accuracy of these models, which are inherently limited by
simplifications and assumptions.

As power systems become more uncertain and dynamic
due to the integration of renewables and the proliferation
of distributed energy resources, accurately modeling their
behavior becomes an increasingly daunting task. This leads
to control strategies that are inadequate for real-world chal-
lenges [3]. In response to these evolving issues, there is a
growing motivation to transition from traditional model-based
feedback control to completely model-free control approaches
[4]-[6]. This has also been highly encouraged by the recent
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developments in the wide-area monitoring systems technolo-
gies, such as phasor measurement units (PMUs) and robust
state estimation algorithms [4].

Using measurements received from the PMUs, these esti-
mation techniques can efficiently estimate all the states of the
power system including the states of generators, renewables,
loads, and network. This paves the way for completely model-
free control techniques in the future power grid.

RL is one of the key techniques in designing model-free
feedback control strategies. This is because RL is a self-
learning technique in which the agent (or in our case the
controller itself) learns the optimal control policy dynamically
by merely continuously interacting with its environment or
simulation while satisfying the objective function or goal. In
this regard, many researchers have recently proposed various
RL control algorithms for power systems. In [7], [8], an
RL-based optimal frequency controller has been proposed to
minimize frequency deviations and the required control action
for a simplified second-order power system model. Similarly,
in [9] a voltage control strategy has been proposed using deep
RL. The RL algorithm is trained to minimize the voltage
deviation on all buses by actively adjusting generator bus
voltages. However, system dynamic equations (i.e., generator
model and power electronics-based model of renewables)
are not considered; the corresponding power system is only
modeled via power balance equations between generators and
the network.

In [10]-[12] a multi-area automatic generation control
(AGC) has been designed for frequency regulation using var-
ious RL-based techniques such as a deep deterministic policy
gradient (DDPG), integral RL (actor-critic), and Q-learning
based approaches. Similarly, in [13], [14] various reactive
power control schemes have been proposed to improve system
voltages via different RL-based techniques. A comprehensive
review of the application of RL in the control and stability of
power systems can be found in [3], [15].

All of the techniques in the literature usually consider sim-
plified power system models (modeling lower order generator
models), neglect power system algebraic constraints (cur-
rent/power balance equations), and do not provide a control
mechanism for (power-electronics)-based wind/solar dynamic
models. Furthermore, most of the studies usually focus only on
minimizing voltage/frequency deviations and do not consider
damping system-wide low-frequency oscillations (LFOs) and
ultra-low frequency oscillations (ULFOs) in their architecture.
Damping LFOs and ULFOs are critical in the power grid as
they can lead to system instability and limit power transfer
capability. Furthermore, considering power system algebraic



constraints while designing a feedback control strategy is
crucial because these constraints model the network dynamics.
Thus without considering these constraints, the power system
models cannot capture the effects of various load dynamics
(such as constant impedance or motor-based loads) and topo-
logical changes (such as the tripping of transmission lines, etc)
[2].

Some recent work has been carried out to design various
centralized and decentralized RL-based damping controllers.
In particular, the study [16] designs a wide-area damping
controller based on a reduced system model. In [17] a dense
centralized damping controller has been proposed based on a
policy iteration algorithm. Similarly, in [18] a decentralized
off-policy iteration-based damping controller has been de-
signed. However, in all these studies again a simplified power
system model is considered (considering lower order generator
dynamics and neglecting system algebraic constraints) and
no feedback control mechanism for renewables such as solar
and wind-based power plants has been designed. To that
end, we design an RL-based wide-area damping controller
(RL-WADC) for an interconnected power system model with
comprehensive 9*-order synchronous generator dynamics,
detailed (power-electronics)-based wind and solar dynamics
models, and composite load dynamics consisting of constant
power, constant impedance, and motor loads. This brings the
control problem closer to being more applicable and realistic.
The technical contributions of the paper are as follows:

o We present a completely model-free approach to de-
signing a wide-area damping controller for an advanced
interconnected power system model. The presented ap-
proach considers: higher-order synchronous generators
dynamics, detailed (power electronic)-based models of
wind/solar-based power plants, models of the system al-
gebraic constraints, and various load dynamics (constant
power/impedance and motor-based loads) in its control
architecture (Section II).

« The presented approach acts as a secondary control loop
and sends additional control signals not only to the
conventional power plants but also to the renewable re-
sources (solar and wind-based power plants) so that they
can participate in improving system transient stability
after large disturbances in load/renewables (Sections III
and IV).

o We test the performance of the presented RL-WADC
under various load and renewable uncertainties on a
modified IEEE 9-bus system—which is one of the widely
used test systems in control/stability studies of power
systems. The advantages of presented RL-WADC are
also demonstrated by comparing the system dynamic
response with conventional/primary controllers of the
power system and with RL-WADC acting on top of them
(Section V).

Paper Notation. All matrices and vectors are denoted using
boldface type. Sets are represented using calligraphic font,
such as R, V, etc. The symbol R? represents the set of column
vectors with ‘a’ elements. Similarly, R®*® denotes the set

of real matrices with dimensions ‘a’ by ‘b’. The symbol O
represents a zero matrix, I denotes an identity matrix of
appropriate size, U denotes the union between two sets while
the symbol ® represents the Kronecker product. In addition,
Siﬁ_b signifies the set of positive definite matrices of size ‘a’
by ‘b’. The notation vec(M) represents the vectorization of
matrix M which is computed by stacking the columns of M
on top of each other while A denotes the half vectorization
of a symmetric matrix A with off-diagonal element taken as
2A,;. Similarly the notation B represent the half vectorization
lus the off-diagonal element of matrix B, such as for B =
Z1’> Z , B=11,3,4]" +[0,2,4] . Furthermore, the units
or all the quantities are in per unit (p.u) unless otherwise
specified, also, in some cases for brevity, the time stamp for
some of the vectors is removed such as ug(¢) is written just
as ug vice versa.

II. INTERCONNECTED POWER SYSTEM MODEL WITH
WIND, SOLAR PLANTS, AND COMPOSITE LOADS

We model a power network with R solar farms, G con-
ventional power plants, W wind-based power plants, and L,
L,, L, number of constant power, constant impedance, and
motor-based loads, respectively. The complete electrical grid
is represented via graph with £ set of transmission lines, and
N = {1,...,N} set of nodes or buses. The set of buses
N contains; G = {1,..., G} set of buses with synchronous
generators, R = {1,..., R} set of buses with solar farms,
W = {1, ..., W} setof buses connected to a wind-based power
plant, £ set of buses collecting L, L,, and Ly, loads, and U
set of non-unit buses (meaning buses not connected to any
elements), such that N = RUWUGUU U L.

The overall power network is described via nonlinear
differential-algebraic equations (NDAESs) as follows:

©(t) = f(@a, T4, u)
0= h(xzq, x4, u).

(1a)
(1b)
The differential equations model the detailed dynamics of so-
lar plants, wind-based generators, conventional power plants,
and composite loads while the algebraic equations describe
the algebraic constraints in the power network which are the
power/current balance equations. In (1) , € R"* denotes
algebraic states, x4 € R"¢ represents dynamic states and it
lumps solar plants, wind-based plant, loads, and conventional
power plant state variables, and 4 € R™* denotes the power
systems control inputs. The more detailed explanations about
each of these variables can be found in [1], [19], [20].

That being said, for control purposes we approximate the
overall power system model in the following linear DAE

f t:
orma Ei — Az + Bu 2)

differential equations:

algebraic equations:

T .
where x(t) = [®] )] € R" is the overall state vector

and F is a singular matrix encoding algebraic constraints with
rows of zeros.

III. PRELIMINARIES AND PROBLEM FORMULATION

Here we discuss the preliminaries and the problem for-
mulation for designing a state feedback controller for the



interconnected power system model described in (2). The
primary objective is to design a feedback control law that
minimizes a certain performance criterion or cost function.
To that end, let us consider the closed-loop dynamics of (2)
along with its performance criterion vector z € R™ as follows:

Ex = Ax + Buc (3a)
z=Cx + Duc (3b)

where the control policy uc for every k' dispatch period is
defined as

Control policy: uc(t) = ulg - K (w(t) - wk) “4)

in which * is the state vector before fault/disturbance, u§ is
the initial set point of the input u (which is usually determined
by running power flow for every dispatch period), and K €
R™= " js the feedback controller gain matrix. The main idea
in the given control law is to design a gain matrix K such that
the power system converges back to its equilibrium and its
transient stability can be improved after a large disturbance.
To do that, one first needs to design the perturbed closed-loop
dynamics whose states are then driven asymptotically to zero
while minimizing the performance criterion associated with z.
With that in mind, let us assume the power system model (2)
is disturbed by an external uncertainty (which can be because
of disturbance in load demand or renewable, etc.) and thus
the system moves from its initial equilibrium status to a new
status «’. Then, the perturbed closed loop dynamics and its
associated performance criterion vector z can be written as
follows:

EAz=(A-—BK)Ax (52)

Az =(C — DK)Az (5b)

where Ax = x —x’. The main objective of the matrix K is to
drive Az asymptotically to zero which in other words means

that the power system (2) will converge to the new steady-state
after large disturbance in system dynamics.

With little abuse of notation, for the sake of simplicity,
from now on we drop the A notation from Az, and Az and
simply use x and z instead, respectively. To that end, notice in
(2) that conventional power plants, solar plants, wind power
plants, and motor loads are dynamic systems while loads,
non-unit buses, and other interconnections are considered
static systems. Thus, the algebraic variables x, in the power
system model (the voltage and current phasors) are redundant
states and thus can be eliminated while designing a feedback
controller [2]. This can be done by finding an explicit equation
for the algebraic variables using the algebraic constraint model
and plugging it back into the system dynamical model as
follows: Considering

Add Ada
A= |:Aad Aaa:| ’
one can write the DAE system (2) into the separate dynamic
and algebraic model as follows:

Tq = AgiTq + AgaTq + Buqu (6a)
0=A,xqy+ Agexy+ Buau. (6b)

Now assuming A,, to be invertible which is a standard as-

T = [:c;— :cT]T,B: [B;'l— BI

a N

sumption in power systems [2], [20].Then an explicit equation
for the algebraic variable x, from (6b) can be written as:

Ly = Aaail(andmd - Buau)- (7)

Finally, based on this, the closed-loop model (5) can be
rewritten in equivalent ODE format as follows:

Eq(t) = (A — BKy)za(t) (8a)
21(t) = (C — DK g)z4(t) (8b)

where K; € R™*"¢ and the rest of the system matrices are
defined as:

A=Ay — AdaA;alAad, B=B;— AdaA;alBa

D=B;-C,A;B, C=C;-C,A;;Au.
Notice that the computed gain K,; from ODE (8) can be
plugged back into the complete interconnected power system
as K = [Ky; O)]. Now, by just using the knowledge of
the system matrices A, B, [21] has proposed an iterative
algorithm to design a linear state feedback controller described
as follows:

Theorem 1 ( [21]): Let K, be the initial stabilizing con-
troller gain matrix such that A — BKdO is Hurwitz and
P, € S19", k = 0,1,... be the unique solution to the
following Lyapunov equation (which is linear in Pj)
A.'P+P,A+Q+K] RKy~NK;~(NKy) =0 (9)
with K, being updated recursively at each iteration k using

Ky, =R 'YB'P,+N") (10)
where A, = A - BK,;,,Q = C'C, R = D'D, and
N =CTD. Then, A - BK, 4, 1s Hurwitz, and the solution
of P, as k — oo converges to the optimal solution of the
well-known algebraic Riccati equation (ARE) given as:
A,'P+PA.—~(PB+ N)R Y B'"P+NH+Q=0 (11)
The above technique requires the complete knowledge of the
system matrices A and B which is unrealistic as accurate
models might not be available or be uncertain specifically in
the case of power systems with high penetration of renewable
energy resources. Then, to design a similar feedback gain K ;
without the knowledge of the system matrices and just using
the data (the system state trajectories which can be computed
via PMU data, for example), we present the following problem
statement:

Problem 1: Given the state trajectories € 4(t) of the LODE
system (8a) and its performance metric (8b), design feedback
controller K; without utilizing the knowledge of system
matrices.

IV. RL-BASED FEEDBACK CONTROLLER DESIGN

Primarily based on the theory in [22], here we present
model-free RL-based centralized feedback controller design.
The presented approach computes the feedback controller gain
matrix K4 purely based on the continuous interaction with the
power system in real-time and does not require the information
of system matrices. Thus, the presented technique has a major
advantage over model-based feedback controller design as it
can adaptively tune the parameters of its gain matrix based on
the state information received.



To that end, we rewrite Eq. (8a) as
q(t) = Acwa(t) + B(Kagwa(t) +ua(t)  (12)
where uy = — K, 4. The objective of the controller is to

minimize the energy of the performance criterion vector z;
(8b) which can be written as

/ z;—zldt = / (é’wd — ﬁud)T(é’wd — ﬁud)dt
0 0

oo
= / x) Qxy+ u) Ruy — 2x) Nug dt
0

with Q, R, and N are given as in Theorem 1. Then, let us
consider the optimal cost-to-go as V(x4) = wdTPk:cd where
P, € S'}27". Notice that V (x4) is a Lyapunov function and
in the case of a model-based approach, Py can be computed
via a recursive approach given in Theorem 1 which converges
to the solution of the ARE.

With that in mind, taking the derivative of V' (x,) along the
trajectories of (12), we then get
V=a)(AP.+ P A)xq+2(us+ Ky xg) ' B "Pyxy (13)
From (9) let

X =Q+K, RK,;, — NK;, — (NK;,)". (14
Then, using (10) we can rewrite (13) as
V=—z;Xzq+ 2(uq+Kaza) (RKq4,,—N x4 (15)
With that in mind, taking integral on both sides of (15), we
then have

t+5t [i+ot
T T T
dek-:I)d’ :/ 2(ud+de_a:d) (RdeJrrN )CL’ddT
t

¢
t+0t
—/ x, Xxydr.
t

Notice that Eq. (16) does not depend on any system matrices
of the power system model. Then, if we can solve (16) for
Py, Ky, , we have a solution to the posed Problem 1.

To that end, let us define matrices 6,,,, € R %”d(”d“),
Y., € R Y, , € RSManu and P ¢ Rana(natl) g
follows:

te 17
t571:|

.
| Ta®zadr|  (17)

(16)

_ ts
xd’t27 e, &d
L

ts T
o wd@uddT}

_ |1t _ t2
6a:dmd = md’tov wd|t1a

dewd — {fttol md®$dd7,

t
deu = |:ft01 wd@“ddT,
- T

P = [Plla e 72P1ndap227 e 52Pnd—1nd7pndnd}
where s > 0 are the total number of data samples collected, P
denotes the half vectorization of symmetric matrix P with oft-

. — 1
diagonal element taken as 2F;;, and vector g € Rz7a(na+1)
given as:

_ _ 9 T
s Tdng—1Td,ng» xd,’ﬂd]

= =2 - -
Trg = [‘rd’la"' 7xd,1xd,nd71‘d$27"'

Then, (16) can equivalently be written as
P,
= =w
k [vec(KdHl)} k
where Z;, € Rex(3na(nat)+nanu) and ¥, € R* are given as
_2Tw(iwd (Ind®K£R)_2Txdu(Ind®R)]

(18)

Ek’ - [6:Eda:d b)

U, =—2Y,,,vec(N)—2Y ., vec(K, N )
— Yy, vec(X).

To that end, Eq. (18) can efficiently be solved in least-squares
sense for the variables P, vec(Ky, ., ) as follows:

Py =Te \—1l=T
|:V6C(de+1):| = Bk E0) B T (19
If (19) has a solution, then the iterative model-based procedure
to compute the feedback gain K, given by (9) and (10) in
Theorem 1 can be replaced by model-free approach in (19).
With that in mind, we now present a key assumption on the
constructed data matrices Y ,,, Y 5,,, Which if gets satisfied
guarantees the convergence of (19) to the solution of the
corresponding ARE.

Assumption 1: The rank of matrix [Tw azgs Yo du] isequal
to (3na(ng + 1) + nany).

Notice that Assumption 1 is satisfied by collecting sufficiently
many samples and by adding exploration noise in the control
inputs as explained in Section V.

Theorem 2: Given Assumption 1 is satisfied then the re-
cursive solution of (19) as k — oo converges to the optimal
solution given by the corresponding ARE.

Proof: First, we need to prove that (19) has a unique
solution which means we have to show that for

= Py -

g |:V€C(de+1 ):| ©
P, and vec(Kg, ) only has trivial solution, i.., P, = o0,
vec(Ky,,,) = O. This can be proved by contradiction.
Let us assume W = [Y Z] " where Y € R"™*7 and
Z € R™ XM js a non-zero solution to (20). Now, for
Yz, € R 3na(nat1) Eq. (18) can be expanded and rewritten
as follows:

o
§ vec(Kq, )

= [Ta,, 2Y0] [(X —2N)T, vee(N)T] "
or by (20) we have

[Yzu 2Yosa] [(X —2N)T, vee(N)T] = 0. (21)

By Assumption 1 we know that [Xz,, 2, ] has a full-
column rank, which means that (21) only has trivial solution
thus implying N = O and X = O. Now from (9) with
X = O we have

(20)

—
=
—

} =2, ,uvec(N)—2Y 4z, (N)-Tz,(X)

A.'Y+Y A, = 0. (22)

Since A, is Hurwitz, then the only solution for (22)is Y = O.
Then, from (10) with Y = 0 and IN = O we have Z = O,
thus W = O which contradicts with our assumption that
W £ O. Thus, a unique solution exists for Eq. (19).

With that in mind, since P, and vec(K,, ,,) can uniquely
be determined, then the policy iteration in (19) is equivalent
to (9) and (10) and thus by Theorem 1 the convergence to the
ARE solution is guaranteed. This completes the proof. [ ]
Computing controller gain matrix K, by solving (19) gives
us a model-free approach to designing an optimal feedback
controller. The presented approach does not require any in-
formation regarding the power system model and thus is an



Algorithm 1: RL-WADC for Interconnected Power Systems

1 Save data: Simulate power system model (8) with
control input u(t) = ug + e(t) and construct the data
matrices given (17) until Assumption 1 is satisfied.

2 Compute K iteratively: Starting with initial
stabilizing controller K4, compute K4, recursively
for k = 0,1, ... via solving the following equation till
|13k — ﬁk_1| < € where € is a user-defined threshold

Py =Te \—1mT
|:V6C(de+1):| = (BB &y .

3 Apply the controller: Remove the exploration noise
e(t) from the control input, design K as
K = [K,; O], and apply the following control
policy to the complete NDAE power system model

uc(t) =uf — K (m(t) — :ck) .

adaptive approach that can finely tune its controller gain matrix
depending on the received data. This is especially useful for the
power grid with uncertain renewable resources and dynamic
loads. In the following section, we assess the performance of
the presented RL-WADC through numerical case studies on an
interconnected power system model with detailed renewable
dynamics and various composite loads.

V. CASE STUDIES

The presented RL-WADC has been tested on a modified
IEEE 9-bus test network. This test system consists of one
conventional steam power plant at Bus 1, a solar farm at Bus
2, a wind power plant at Bus 3, constant power and constant
impedance loads at Buses 5 and 6, and a motor load at Bus
8. Further details about the parameters of solar/wind farms,
conventional power plants, and dynamics of the test system
used in this study can be found in [1], [19], [20].

All the simulations are carried out on a personal computer
with 64GB RAM and an Intel 9 — 11900K processor. The
power system NDAE dynamics have been modeled in MAT-
LAB R2021a and are simulated using odel5s MATLAB
DAEs solver. The initial conditions for the odel5s are
computed using power flow studies in MATPOWER through
function runpf. The volt-ampere base for the power system
is chosen to be S, = 100MVA while the frequency base is
selected to be w, = 1207rad/s. It is worth mentioning here
that in the above test system, to meet the overall load demand
in the steady state, on average 63% of the power is generated
by the renewables (both solar and wind power plants), hence
it can be considered as a renewable heavy power grid.

To design the RL-WADC based feedback controller gain
matrix K; the main requirement is to compute the data
matrices 05,5,, Yz,2,, Yz,u as given in (17). To do that,
the power system model is simulated with exploration noise
in the initial control policy and the data matrices are saved
until Assumption 1 is satisfied. Notice that, since the power
system model is already stable, the initial control gain K, is

— with RL-WADC
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Fig. 1. Performance under abrupt load disturbance: Active power injected
and relative speed of solar and wind power plant, respectively.
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Fig. 2. Performance under renewable and load disturbance: DC link voltage
and relative speed of both solar and wind power plant.

then chosen to be zero. The selection of the type of exploration
noise is not trivial in RL-based and other machine learning-
based techniques and various types of noises have been used
in the literature such as sum of sinusoids, exponentially
decreasing noise, and random bounded noise and vice versa.
In this work, we have used a sum of sinusoids with different
frequencies as exploration noise in the initial control policy
as given in [22]. The overall implementation of the presented
RL-WADC is summarized in Algorithm 1. Notice that in the
case of parametric uncertainty the Algorithm 1 can simply be
repeated to adjust gain matrix K accordingly.

A. Performance under transient conditions

Here we assess the performance of the presented RL-WADC
under transient conditions created by various disturbances
in renewables and load demand. To that end, we initially
test the performance of RL-WADC by adding, right after
t > 0, a random step increasing in load demand at Bus
6. This can be a result of a sudden generator disconnection
or a transmission line trip, hence increasing the overall load
demand of the power network. The system dynamic response
with just system primary controllers and with RL-WADC
acting on top of them is shown in Fig. 1. Notice that the
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Fig. 3. Performance under renewable and load disturbance: solar plant slip
(top left), generator slip (top right) and frequency (bottom left), and wind
power plant current (bottom right).

primary/conventional controllers in the test power system
include an automatic voltage regulator (AVR), governor, and
power system stabilizer (PSS) for conventional power plants
[20] and proportional-integral (PI) type controllers for both
solar and wind power plants [19], [20]. The proposed RL-
WADC acts on top of these primary controllers and sends
additional control signals via input w. The overall objective
of the proposed RL-WADC is to improve system transient
stability by adding damping to the system oscillation and
bringing the system back close to its nominal/equilibrium
value after a large disturbance.

To that end, we can see from Fig. 1 that without the
proposed controller the power output from both solar and
wind power plants have oscillations while with RL-WADC
there is significant damping. Similarly, for the frequencies of
both solar and wind power plants, we can see that without
RL-WADC after disturbance their frequencies dip close to
0.99 (pu) while with the proposed controller the overall dip is
around 0.994 (pu), thus improving system frequency nadir.

To further advocate the performance of the presented RL-
based damping controller, here we add further disturbance this
time by decreasing load demand by 20% and solar irradiance
by 10% on the solar power plant. The results are presented in
Figs. 2 and 3. We can see from Fig. 2 that with the proposed
controller after disturbance there is significant damping in
the slip of synchronous generator, wind, and solar power
plant showing significant improvements in LFOs and ULFOs.
Similarly, from Fig. 3 we can see that there is a significant
damping in the system oscillations thus the overall transient
stability after the large disturbance has been improved.
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