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Abstract
We develop theory to understand an intriguing
property of diffusion models for image genera-
tion that we term critical windows. Empirically,
it has been observed that there are narrow time
intervals in sampling during which particular fea-
tures of the final image emerge, e.g. the image
class or background color (Ho et al., 2020b; Meng
et al., 2022; Choi et al., 2022; Raya & Ambro-
gioni, 2023; Georgiev et al., 2023; Sclocchi et al.,
2024; Biroli et al., 2024). While this is advan-
tageous for interpretability as it implies one can
localize properties of the generation to a small seg-
ment of the trajectory, it seems at odds with the
continuous nature of the diffusion. We propose
a formal framework for studying these windows
and show that for data coming from a mixture
of strongly log-concave densities, these windows
can be provably bounded in terms of certain mea-
sures of inter- and intra-group separation. We also
instantiate these bounds for concrete examples
like well-conditioned Gaussian mixtures. Finally,
we use our bounds to give a rigorous interpreta-
tion of diffusion models as hierarchical samplers
that progressively “decide” output features over
a discrete sequence of times. We validate our
bounds with experiments on synthetic data and
show that critical windows may serve as a useful
tool for diagnosing fairness and privacy violations
in real-world diffusion models.

1. Introduction
Diffusion models currently stand as the predominant ap-
proach to generative modeling in audio and image do-
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mains (Sohl-Dickstein et al., 2015; Dhariwal & Nichol,
2021; Song et al., 2020; Ho et al., 2020b). At their core
is a “forward process” that transforms data into noise, and
a learned “reverse process” that progressively undoes this
noise, thus generating fresh samples. Recently, a series of
works has established rigorous convergence guarantees for
diffusion models for arbitrary data distributions (Chen et al.,
2023c; Lee et al., 2023; Chen et al., 2023a; Benton et al.,
2023a). While these results prove that in some sense dif-
fusion models are entirely principled, the generality with
which they apply suggests further theory is needed to ex-
plain the rich behaviors of diffusion models specific to the
real-world distributions on which they are trained.

In this work, we focus on a phenomenon that we term crit-
ical windows. In the context of image generation, it has
been observed that there are narrow time intervals along the
reverse process during which certain features of the final
image are determined, e.g. the class, color, background (Ho
et al., 2020b; Meng et al., 2022; Choi et al., 2022; Raya &
Ambrogioni, 2023; Georgiev et al., 2023; Sclocchi et al.,
2024; Biroli et al., 2024). This suggests that even though
the reverse process operates in continuous time, there is a se-
ries of discrete “jumps” during the sampling process during
which the model “decides” on certain aspects of the output.
The existence of these critical windows is highly convenient
from an interpretability standpoint, as it lets one zoom in on
specific parts of the diffusion model trajectory to understand
how some feature of the generated output emerged.

Despite the strong empirical evidence for the existence of
critical windows (e.g. the striking Figures 3, B.6, and B.10
from Georgiev et al. (2023) and Figures 1 and 2 from (Scloc-
chi et al., 2024)), our mathematical understanding of critical
windows is very immature. Indeed, from the perspective
of prior theory,1 the different times of the reverse process
largely behave as equal-class citizens, outside the realm of
very simple toy models of data. We thus ask:

Can we prove the existence of critical windows in the
reverse process for a rich family of data distributions?

Before stating our theoretical findings, we outline the frame-
work we adopt (see Section 3.2 for a formal treatment). Also,

1See Section 2 for a discussion of concurrent works.
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Figure 1. Cartoon depiction of running forward process for time
t (to produce one of the red/yellow/green dots corresponding to
large/medium/small t) and then running reverse process (trajecto-
ries in blue) for time t to sample from some sub-mixture.

as issues of discretization, score error, and the support of the
data distribution lying on a lower-dimensional submanifold
are orthogonal to this paper, throughout we will conflate the
data distribution with the output distribution of the model
and assume the reverse process is run in continuous time
with perfect score.

1.1. General framework

Our starting point is a setup related to one in Georgiev et al.
(2023) and also explored in the concurrent work of (Scloc-
chi et al., 2024) – see Section 2 for a comparison to these
two works. Given a sample x from the data distribution
p, consider the following experiment. We run the forward
process (see Eq. (1) below) starting from x for intermediate
amount of time t to produce a noisy sample xt. We then
run the reverse process (see Eq. (2)) for time t starting from
xt to produce a new sample x′ (see Section 3 for formal
definitions). Observe that as t → ∞, the distribution over
xt converges to Gaussian, and thus the resulting distribution
over x′ converges to p. As t → 0, the distribution over x′

converges to a point mass at x – in this latter regime, it was
empirically observed by (Ho et al., 2020b) that for small
t, the distribution over x′ is essentially given by randomly
modifying low-level features of x.

Critical windows for mixture models. Qualitatively, we
can ask for the first, i.e. largest, time t for which sam-
ples from the distribution over x′ mostly share a certain
feature with x. To model this, we consider a data distribu-
tion p given by a mixture of sub-populations p1, . . . , pK .
A natural way to quantify whether x′ shares a feature with
x is then to ask whether the distribution over x′ is close
to a particular sub-mixture. E.g., if x is a cat image, and
Starg ⊂ {1, . . . ,K} denotes the sub-populations pi corre-
sponding to cat images, then one can ask whether there is
a critical window of t such that the distribution over x′ is
close to the sub-mixture given by Starg (see Figure 1).

Finally, rather than reason about specific initial samples

from p, we will instead marginalize out the randomness of x
so we can reason at a more “population” level. Concretely,
we consider x which is drawn from some pi for i ∈ Starg,
or more generally from some sub-mixture indexed by a
subset Sinit ⊂ Starg, and consider the resulting marginal
distribution over x′, which we denote by p[S

⟨t⟩
init]. So if for

instance Sinit denoted the sub-mixture of brown cats, then if
there is a critical window of times for which p[S

⟨t⟩
init] is close

to the sub-mixture given by Starg, then one can interpret
these times as the point at which, to generate a brown cat,
the diffusion model “decides” its sample will be a cat.

1.2. Our contributions

Our results are threefold: (1) we give a general characteriza-
tion of the critical window for a rich family of multimodal
distributions, (2) we specialize these bounds to specific dis-
tribution classes to get closed-form predictions, (3) we use
these to prove, under a distributional assumption, that the
reverse process is a “hierarchical sampler” that makes a
series of discrete feature choices to generate the output.

General characterization of critical window. We con-
sider distributions p which are mixtures of strongly log-
concave distributions in Rd. In Section 4, we give general
bounds on the the critical window at which p[S

⟨t⟩
init] approxi-

mates the sub-mixture given by Starg for any choice of Sinit.
These bounds depend on the total variation (TV) distance
between sub-populations inside and outside Sinit and Starg

along the forward process. We identify two endpoints (see
Eqs. (4) and (5) for formal definitions):

• Tlower: the time in the forward process at which the initial
sub-mixture indexed by Sinit and the target sub-mixture
indexed by Starg first become close in TV

• Tupper: the time in the forward process at which a com-
ponent in Starg begins to exhibit non-negligible overlap
with a component in the rest of the mixture2

Theorem 1.1 (Informal, see Theorem 4.5). Suppose p is a
mixture of strongly log-concavedistributions, and let Sinit ⊂
Starg. For any t ∈ [Tlower, Tupper], if one runs the forward
process for time t starting from the sub-mixture given by
Sinit, then runs the reverse process for time t, the result will
be close in TV to the sub-mixture given by Starg.

As we show empirically on synthetic examples (Fig. 3) these
bounds can be highly predictive of the true critical windows.

The intuition for this result is that there are two compet-
ing effects at work. On the one hand, if t is sufficiently
large, then running the forward process for time t starting
from either the initial sub-mixture given by Sinit versus the

2A priori Tlower need not be smaller than Tupper In Section 5,
we show this holds when Starg corresponds to a “salient” feature.
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target sub-mixture given by Starg will give rise to similar
distributions. So if we run the reverse process on these, the
resulting distributions will remain close, thus motivating
our definition of Tlower. On the other hand, we want these
resulting distributions to be close to the target sub-mixture
indexed by Starg. But if t is too large, they will merely be
close to p. To avoid this, we need t to be small enough that
along the reverse process, the overall score function of p to
remains close to the score function of the target sub-mixture.
Intuitively, this should happen provided the components of
p outside Starg do not overlap much with the ones inside
Starg even after running the forward process for time t, thus
motivating our definition of Tupper.

It may at first glance seem extremely strong that we require
that each sub-population form a strongly log-concave com-
ponent. e.g. in the latent space over which the diffusion
operates. We clarify that in our setting, a sub-population
might correspond to a sub-mixture consisting of multiple
such strongly log-concave components. In the example of
natural images, we can think of a particular image class as a
sub-mixture consisting of neighborhoods around different
images in the embedding space.

Concrete estimates for critical times. The endpoints of
the critical window in Theorem 1.1 are somewhat abstract.
Our second contribution is to provide concrete bounds for
these– see Section 5.2 for details. We first consider the gen-
eral setting of Theorem 1.1 where p is a mixture of strongly
log-concave distributions, under the additional assumption
that the components would be somewhat close in Wasser-
stein distance if they were shifted to all have mean zero.

Theorem 1.2 (Informal, see Theorem 5.1). Suppose p is
a mixture of 1/σ2-strongly log-concave distributions with
means µ1, . . . , µK , and let Sinit ⊂ Starg.

Suppose that for any i ∈ Starg and any j ̸∈ Starg, ∥µi −
µj∥ ≳ σ

√
d. Then there is an upper bound for Tlower,

which is dominated by lnmaxi∈Sinit,j∈Starg
∥µi − µj∥, and

there is a lower bound for Tupper, which is dominated by
lnmini∈Starg,j ̸∈Starg

∥µi − µj∥.

Theorem 1.2 shows that the start time of the critical window
scales as the log of the max distance between any component
in Sinit and any component in Starg, whereas the end time
scales as the log of the min distance between any component
in Starg and any component in [K]\Starg. We can interpret
this as saying the following about feature emergence. If
Starg corresponds to the part of the data distribution with
some particular feature, if that feature is sufficiently salient
in the sense that typical images with that feature are closer
to each other, then Tlower < Tupper, and therefore there
exists a critical window of times t during which the feature
associated to Starg emerges. For latent diffusion models in
particular, the manifold of images in latent space becomes

highly structured, so there will be “salient” features such
that images with the same “salient” feature will be closer
together in the latent space. Furthermore, the length of this
window, i.e. the amount of time after the features associated
to Starg emerge but before other features do, is logarithmic
in the ratio between the level of separation between Starg

and [K]\Starg, versus the level of separation within Starg.
This requirement of salience is also weakened for important
applications of this theory, like interpretability. 3

In Appendix C.2, we specialize the bound in Theorem 1.2 to
a sparse coding setting where the means of the components
are given by sparse linear combinations of a collection of
incoherent “dictionary vectors.” In this setting, we show
that the endpoints Tlower (resp. Tupper) have a natural inter-
pretation in terms of the Hamming distances between the
sparse linear combinations defining the means within Sinit

and Starg (resp. between Starg and [K]\Starg).

Theorem 1.2 is quite general except for one caveat: we must
assume that the the components outside of Starg have some
level of separation. Note that a 1/σ2-strongly log-concave
distribution in d dimensions will mostly be supported on
a thin shell of radius σ

√
d (Kannan et al., 1995), so our

assumption essentially amounts to ensuring the balls that
these shells enclose, for any component inside Starg and
any component outside Starg, do not intersect.

Next, we remove this caveat for mixtures of Gaussians:
Theorem 1.3 (Informal, see Theorem 5.3). Suppose
p is a mixture of K identity-covariance Gaussians in
Rdwith means µ1, . . . , µK , and let Sinit ⊂ Starg. Then
there is an upper bound for Tlower, which is domi-
nated by lnmaxi∈Sinit,j∈Starg ∥µi − µj∥, and there is
a lower bound for Tupper, which is dominated by
lnmini∈Starg,j ̸∈Starg

∥µi − µj∥.

In fact our result extends to general mixtures of Gaussians
with sufficiently well-conditioned covariances, see Theo-
rem 5.3. We also explore the dependence on the mixing
weights of the different components (see Appendix C.1).

Hierarchical sampling interpretation. Thus far we have
focused on a specific target sub-mixture Starg, which would
correspond to a specific feature in the generated output. In
Section 6, we extend these findings to distributions with a
hierarchy of features. To model this, we consider Gaussian
mixtures with hierarchical clustering structure. This struc-
ture ensures the mixture decomposes into well-separated
clusters of components such that the separation between
clusters exceeds the separation within clusters, and further-

3If the target mixture is the same as the initial mixture, Tlower =
0 and we only need Tupper > 0 to form a critical window. This
setting is especially useful for interpretability and data attribution,
which usually examines an object x with property p and asks for
the largest time for which property p is preserved.
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more each cluster recursively satisfies the property of being
decomposable into well-separated clusters, etc. This natu-
rally defines a tree, which we call a mixture tree, where each
node of the tree corresponds to a cluster at some resolution,
with the root corresponding to the entire data distribution
and the leaves corresponding to the K individual compo-
nents of the mixture (see Definition 6.1).

If we think of every node v as being associated with a
feature, then the corresponding cluster of components is
comprised of all sub-populations which possess that feature,
in addition to all features associated to nodes on the path
from the root to v. By chaining together several applications
of Theorem 1.3, we prove the following:

Theorem 1.4 (Informal, see Theorem 6.2). For a hier-
archical mixture of identity-covariance Gaussians with
means specified by a mixture tree, for any root-to-leaf path
(v0, . . . , vL) in the mixture tree, where the leaf vL corre-
sponds to a component pi of the mixture, there exists an L
and a discrete sequence of times tvL

> . . . > tvL
such that

for all L ≤ ℓ ≤ L, the distribution if one runs the forward
process for time tvℓ

starting from the sub-mixture given by
the node vL and the reverse process for time tvℓ

, the result
will be close in TV to the sub-mixture given by node vℓ.

This formalizes the intuition that to sample from distribu-
tions with this hierarchical structure, the sampler makes
a discrete sequence of choices on the features to include.
This discrete sequence of choices corresponds to a whittling
away of other components from the score until the sampler
reaches the end component. Through adding larger scales
of noise, contributions to the score from increasingly distant
classes are incorporated into the reverse process.

2. Related work
Comparison to (Georgiev et al., 2023). Georgiev et al.
(2023) empirically studied a variant of critical windows in
the context of data attribution. For a generated image x0

given by some trajectory {xt}t∈[0,T ] of the reverse process,
they consider rerunning the reverse process starting at some
intermediate point xt in the trajectory (they refer to this as
sampling from the “conditional distribution,” which they
denote by p(· | xt)). They then compute the probability
that the images sampled in this fashion share a given feature
with x0 and identify critical times T cond

lower < T cond
upper such that

sampling from p(·|xT cond
lower

) preserves the given feature in the
original image while sampling from p(·|xT cond

upper
) does not.

Our definition is different: instead of rerunning the reverse
process, we run the forward process for time t starting from
x0 to produce xcond

t and then run the reverse process from
xcond
t to sample from p(·|xcond

t ). Note that in our definition,
even after the initial generation {xt} is fixed, there is still
randomness in xcond

t . This means that unlike the setting

in Georgiev et al. (2023), our setup is meaningful even if
the reverse process is deterministic, e.g. based on an ODE.
Additionally, our setup is arguably more flexible for data
attribution as it does not require knowledge of the trajectory
{xt}t∈[0,T ] that generated x0. In general, we expect that
our critical window thresholds are less than Georgiev et al.
(2023)’s thresholds because adding noise to the state at inter-
mediate times could also change the features. We view our
theoretical contributions as complementary to their empiri-
cal work in rigorously understanding qualitatively similar
phenomena and also use CLIP for our own experiments.

Comparison to (Raya & Ambrogioni, 2023; Sclocchi
et al., 2024; Biroli et al., 2024). We discuss the relation-
ship between our work and works by (Raya & Ambrogioni,
2023; Sclocchi et al., 2024; Biroli et al., 2024) that also
studied the critical window phenomena from a theoretical
perspective. Raya & Ambrogioni (2023) analyze the phase
transition through the Hessian of the potential and give an
end-to-end asymptotic analysis of critical windows for a dis-
crete distribution supported on two points, and some partial
results for more general discrete distributions. Sclocchi et al.
(2024) also considered running the forward process for some
time t starting from a sample and then running the reverse
process, which they refer to as “forward-backward exper-
iments.” They give accurate but non-rigorous statistical
physics-based predictions for critical windows by passing
to a mean-field approximation. Biroli et al. (2024) study a
mixture of two spherical Gaussians, and identify a phase
transition that they call “speciation” which roughly corre-
sponds to the critical time. They apply a Landau-type per-
turbative calculation to give highly precise but non-rigorous
asymptotic predictions for the transition time.

In comparison to these works, we give fully rigorous, end-to-
end bounds on the location of critical windows for a general
family of high-dimensional distributions. We find it very
interesting that critical windows can be understood through
such different and complementary theoretical lenses. For
example, Biroli et al. (2024) suggest a useful heuristic based
on the time at which the noise obscures the principal com-
ponent of the data distribution and validate this heuristic on
real data. In our mixture model setting, this is closely related
to the separation between components and thus suggests ties
from their theory and numerics to ours.

These works also conduct experiments on real data. We
defer a comparison of theirs and our experiments to Ap-
pendix A.

Theory for diffusion models. Recently several works
have proven convergence guarantees for diffusion mod-
els (De Bortoli et al., 2021; Block et al., 2022; Chen et al.,
2022; De Bortoli, 2022; Lee et al., 2022; Liu et al., 2022;
Pidstrigach, 2022; Wibisono & Yang, 2022; Chen et al.,
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2023c;d; Lee et al., 2023; Li et al., 2023a; Benton et al.,
2023b; Chen et al., 2023b; Li et al., 2024). Roughly speak-
ing, these results show that diffusion models can sample
from essentially any distribution over Rd, assuming access
to a sufficiently accurate estimate for the score function. Our
work is orthogonal to these results as they focus on showing
that diffusion models can be used to sample. In contrast, we
take for granted that we have access to a diffusion model
that can sample; our focus is on specific properties of the
sampling process. That said, there are isolated technical
overlaps, for instance the use of path-based analysis via
Girsanov’s theorem, similar to (Chen et al., 2023c).

Mixtures of Gaussians and score-based methods. Gaus-
sian mixtures have served as a fruitful testbed for the theory
of score-based methods. In (Shah et al., 2023), the au-
thors analyzed a gradient-based algorithm for learning the
score function for a mixture of spherical Gaussians from
samples and connected the training dynamics to existing
algorithms for Gaussian mixture learning like EM. In (Cui
et al., 2023), the authors gave a precise analysis of the
training dynamics and sampling behavior for mixtures of
two well-separated Gaussians using tools from statistical
physics. Other works have also studied related methods like
Langevin Monte Carlo and tempered variants (Koehler &
Vuong, 2023; Lee et al., 2018) for learning/sampling from
Gaussian mixtures. We do not study the learnability of
Gaussian mixtures. Instead, we assume access to the true
score and try to understand specific properties of the reverse
process.

3. Technical preliminaries
3.1. Probability and diffusion basics

Probability notation. We consider the following diver-
gences and metrics for probability measures. Given dis-
tributions P,Q, we use TV(P,Q) ≜ 1

2

∫
|dP − dQ|dµ to

denote the total variation distance, H2(P,Q) ≜
∫
(
√
dP −√

dQ)2dµ to denote the squared Hellinger distance, and
W2(P,Q) ≜

√
infγ∼Γ(P,Q) E(x,y)∼γ∥x− y∥2, where

Γ(P,Q) is the set of all couplings between P,Q, to de-
note the Wasserstein-2 distance. We use the following basic
relation among these quantities, a proof of which we include
in Appendix B.1 for completeness.
Lemma 3.1. For probability measures P,Q,

Ex∼P

[
dQ

dP+dQ

]
≤ 1

2

√
1− TV2(P,Q).

Let subGd(σ
2) denote the class of sub-Gaussian random

vectors in Rd with variance proxy σ2. Let SLC(β, d) denote
the set of 1/β-strongly log-concave distributions over Rd.

Diffusion model basics. Let q be a distribution over Rd

with smooth density. In diffusion models, there is a forward

process which progressively transforms samples from q into
pure noise, and a reverse process which undoes this process.
For the former, we consider the Ornstein-Uhlenbeck process
for simplicity. This is a stochastic process (Xt)t≥0 given by
the stochastic differential equation (SDE)

dXt = −Xt dt+
√
2dBt , X0 ∼ q , (1)

where (Bt)t≥0 is a standard Brownian motion. Given t ≥ 0,
let qt ≜ law(Xt), so as t → ∞, qt converges exponentially
quickly to the standard Gaussian distribution γd.

Let T ≥ 0 denote a choice of terminal time for the forward
process. For the reverse process, denoted by (X←t )t∈[0,T ],
we consider the standard reverse SDE given by

dX←t = {X←t + 2∇ ln qT−t(X
←
t )} dt+

√
2 dBt (2)

for X←0 ∼ qT , where here (Bt)t≥0 is the reversed Brownian
motion. The most important property of the reverse process
is that qT−t is precisely the law of X←t .

Girsanov’s theorem. The following is implicit in an ap-
proximation argument due to (Chen et al., 2023c) which is
applied in conjunction with Girsanov’s theorem. This lets
us compare the path measures of the solutions to two SDEs
with the same initialization:

Theorem 3.2 (Section 5.2 of (Chen et al., 2023c)). Let
(Yt)t∈[0,T ] and (Y ′

t )t∈[0,T ] denote the solutions to

dYt = bt(Yt) dt+
√
2dBt , Y0 ∼ q

dY ′
t = b′t(Y

′
t ) dt+

√
2dBt , Y ′

0 ∼ q .

Let q and q′ denote the laws of YT and Y ′
T respectively. If

bt, b
′
t satisfy that

∫ T

0
EQ ∥bt(Yt) − b′t(Yt)∥2 dt < ∞, then

KL(q∥q′) ≤
∫ T

0
EQ ∥bt(Yt)− b′t(Yt)∥2 dt.

3.2. Main framework: noising and denoising mixtures

We will consider data distributions p given by mixture
models. For component distributions p1, . . . , pK over
Rd and mixing weights w1, . . . , wK summing to 1, let
p ≜

∑
i wip

i. Let µi denote the mean of pi. For any
nonempty S ⊂ [K], we define the sub-mixture pS by
pS ≜

∑
i∈S

wi∑
j∈S wj

pi. Let (XS
t )t∈[0,T ] denote the for-

ward process given by running Eq. (1) with q = pS , let
pSt denote the law of XS

t , and let (X←,S

t ) denote the re-
verse process given by running Eq. (2) with q = pS . When
S = {i}, we drop the braces in the superscripts. Given
intermediate time T̂ ∈ [0, T ], we denote the path measure
for (X←,S

t )t∈[0,T̂ ] by P←,S

T̂
∈ C([0, T̂ ],Rd).

The targeted reverse process. The central object of study
in this work is a modification of the reverse process for the
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overall mixture p in which the initialization is changed from
pT to an intermediate point in the forward process for a sub-
mixture. Concretely, given T̂ ∈ [0, T ] and nonempty S ⊂
[K], define the modified reverse process (X←t [S⟨T̂ ⟩])t∈[0,T̂ ]
to be given by running the reverse SDE in Eq. (2) with
q = p, with terminal time T̂ instead of T , and initialized
at pS

T̂
instead of pT̂ . We denote the law of X←t [S⟨T̂ ⟩] by

pT−t[S
⟨T̂ ⟩] and the path measure for (X←t [S⟨T̂ ⟩])t∈[0,T̂ ] by

P←[S⟨T̂ ⟩] ∈ C([0, T̂ ],Rd). When t = T , we omit the
subscript in the former.

1. Draw a sample X from the sub-mixture pS

2. Run forward process for time T̂ from X to produce X ′

3. From terminal time T̂ , run the reverse process starting
from X ′ for time t to produce X←t [S⟨T̂ ⟩]

Because this process reverses the forward process condi-
tioned on a particular subset S of the original mixture com-
ponents, we refer to (X←t [S⟨T̂ ⟩])t∈[0,T̂ ] as the S-targeted

reverse process from noise level T̂ . We caution that the
S-targeted reverse process should not be confused with the
standard reverse process where the data distribution is taken
to be pS , as the score function being used in the targeted
process is that of the full mixture p rather than that of pS .

Mixture model parameters. We consider the following
quantities for a given mixture model, which characterize
levels of separation within and across subsets of the mixture.
Given S, S′ ⊂ [K], define

R ≜ max
i∈[K]

∥µi∥ w(S, S′) ≜ max
i∈S,j∈S′

∥µi − µj∥

∆(S) ≜ min
ℓ∈S,j∈[K]−S

∥µℓ − µj∥ W ≜ max
i,j∈[K]

wi

wj
.

Lastly, we characterize the level of imbalance across sub-
populations via W ≜ maxi,j∈[K]

wi

wj
.

4. Master theorem for critical times
Recall that Sinit ⊂ Starg ⊂ [K] denote the two sub-
mixtures we are interested in. In the notation of Section 3.2,
we wish to establish upper and lower bounds on the time T̂
at which

TV(p[S
⟨T̂ ⟩
init ], p

Starg) (3)

becomes small.

Given error parameter 0 < ϵ < 1, define

Tlower(ϵ) ≜ inf{t ∈ [0, T ] : TV(pSinit
t , p

Starg

t ) ≤ ϵ} (4)

Tupper(ϵ) ≜ sup{t ∈ [0, T ] : TV(pit, p
j
t ) ≥ 1− ϵ2/2

∀i ∈ Starg, j ∈ [K]− Starg} . (5)

When ϵ is clear from context, we refer to these times as
Tlower and Tupper. Based on the intuition above, we expect

that Eq. (3) is small provided T̂ ≥ Tlower and T̂ ≤ Tupper.
In this section, we prove that this is indeed the case for any
p given by a mixture of strongly log-concave distributions.4

Assumption 4.1 (Strong log-concavity). For some Ψ2 ≥ 1,
pi ∈ SLC(Ψ2, d).

Assumption 4.2 (Smooth components). For some L > 0
and for all t ≥ 0, the score ∇ ln pit is L-Lipschitz.

Assumption 4.3 (Moment bound). For some M ≥ 1 and
for all i ∈ [K] and t ∈ [0, T ], E ∥Xi

t∥4 ≤ M .

Finally, our bounds will depend on how large the score for
any component is over samples from any other component:

Assumption 4.4 (Score bound). For some M ≥ 0 and for
all i, j ∈ [K], t ∈ [0, T ], EX∼pj

t
∥∇ ln pit(X)∥4 ≤ M .

We compute M for various examples in Section 5.2, but for
now one can safely think of M as scaling polynomially in
the dimension and in the parameter R.

4.1. Main result and proof sketch

We are now ready to state our main bound for the critical
time T̂ at which Eq. (3) becomes small.

Theorem 4.5. Let Sinit ⊂ Starg ⊂ [K]. For ϵ > 0, if
T̂ ≥ Tlower(ϵ) and T̂ ≤ Tupper(ϵ), then

TV(p[S
⟨T̂ ⟩
init ], p

Starg) ≲ ϵ
√

WK2
(
R

2
+M2+

√
MΨ4+

√
M
)
.

(6)

The proof of Theorem 4.5 relies on the following technical
lemma whose proof we defer to Appendix B.2.

Lemma 4.6. Under Assumptions 4.1, 4.3, and 4.4,
EX∼pi

t
∥∇ ln pjt (X) − ∇ ln pℓt(X)∥4 ≲ e−4t(R

4
+ M4 +

MΨ8 +M) ∀i, j, ℓ ∈ [K].

Informally, this lemma quantities the extent to which the
score functions for pj and pℓ become close over the course
of the forward process, as measured by an average sample
from any other component of the mixture.

Proof of Theorem 4.5. By data processing inequality and
definition of Tlower, Tupper, for all i ∈ Starg, j ̸∈ Starg,

TV(pSinit
t , p

Starg

t ) ≤ ϵ ∀t ∈ [T̂ , T ] (7)

TV(pit, p
j
t ) ≥ 1− ϵ2/2 ∀t ∈ [0, T̂ ] , (8)

4It turns out that the only place where we need strong log-
concavity of the components in the mixture is in the rather technical
estimate of Lemma 4.6, which is also much stronger than what
is necessary for Theorem 4.5. It suffices to show the LHS of
Lemma 4.6 integrates to a finite value. While we only prove
the bound in that Lemma rigorously for strongly log-concave
components, we expect it to hold even for more general families
of non-log-concave distributions.

6
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By data processing inequality and triangle inequality,

TV(p[S
⟨T̂ ⟩
init ], p

Starg) ≤ TV(P←[S
⟨T̂ ⟩
init ], P

←,Starg

T̂
)

≤ TV(P←[S
⟨T̂ ⟩
init ], P

←[S
⟨T̂ ⟩
targ])︸ ︷︷ ︸

(I)

+TV(P←[S
⟨T̂ ⟩
targ], P

←,Starg

T̂
)︸ ︷︷ ︸

(II)

.

As P←[S⟨T̂ ⟩
init ] and P←[S

⟨T̂ ⟩
targ] are the path measures for the

solutions to the same SDE with initializations pSinit

T̂
and

p
Starg

T̂
respectively, we can use data processing again to

bound (I) via

TV(P←[S
⟨T̂ ⟩
init ], P

←[S
⟨T̂ ⟩
targ]) ≤ TV(pSinit

T̂
, p

Starg

T̂
) ≤ ϵ. (9)

To bound (II), we apply Pinsker’s and Theorem 3.2 to bound

TV(P←[S
⟨T̂ ⟩
targ], P

←,Starg

T̂
)2 by

∫ T̂

0

E ∥∇ ln pt(X
Starg

t )−∇ ln p
Starg

t (X
Starg

t )∥2 dt .

We have the following identity (see Appendix B.3 for proof):

Lemma 4.7. ∥∇ ln p
Starg

t − ∇ ln pt
∥∥2 =

∥∥∇ ln p
Starg

t −

∇ ln p
[K]−Starg

t

∥∥2 · (∑
i∈[K]−Starg

wip
i
t∑

i∈[K] wipi
t

)2

.

Using this expression, we can invoke Cauchy-Schwarz to
separate the two terms that appear on the right-hand side.
We bound these two terms in turn. Recalling the definition
of W and also applying Lemma 3.1, we see that for any
j ∈ Starg,

Epj
t

(∑
i∈[K]\Starg

wip
i
t∑

i∈[K] wipit

)4
≤

∑
ℓ∈[K]\Starg

Epj
t

[ wℓp
ℓ
t

wjp
j
t + wℓpℓt

]
≲ KW max

ℓ∈[K]\Starg

√
1− TV2(pℓt, p

j
t ) ≲ KWϵ2 ,

where in the last step we used Eq. (7). By convexity, the
same bound thus holds when the expectation on the left-hand
side is replaced by an expectation with respect to p

Starg

t .

By the same convexity argument, to bound
E
∥∥∇ ln p

Starg

t (X
Starg

t ) − ∇ ln p
[K]−Starg

t (X
Starg

t )
∥∥4,

it suffices to show that the expectations

E
∥∥∇ ln p

Starg

t (Xi
t)−∇ ln p

[K]−Starg

t (Xi
t)
∥∥4 (10)

for all i ∈ [K] are bounded. Moreover, the score of a mix-
ture is a weighted average of the scores of the components,
∇ ln p

Starg

t =
∑

i∈Starg

wip
i
t∑

j∈Starg
wjp

j
t

∇ ln pit. By the trian-

gle inequality, ∥∇ ln p
Starg

t (Xi
t)−∇ ln p

[K]−Starg

t (Xi
t)∥ is

at most the difference between two elements of a weighted
score. Thus, we have

E
∥∥∇ ln p

Starg

t (X
Starg

t )−∇ ln p
[K]−Starg

t (X
Starg

t )
∥∥4

≤ EiE max
i,j∈Starg

ℓ∈[K]−Starg

∥∥∇ ln pjt (X
i
t)−∇ ln pℓt(X

i
t)
∥∥4

≤ K3 max
i,j∈Starg

ℓ∈[K]−Starg

E
∥∥∇ ln pjt (X

i
t)−∇ ln pℓt(X

i
t)
∥∥4.

Thus we can conclude by applying Lemma 4.6 and
bound E

∥∥∇ ln p
Starg

t (X
Starg

t ) − ∇ ln pt(X
Starg

t )
∥∥2 by

O(ϵ
√
WK2(R

2
+M2+

√
MΨ4+

√
M)e−2t). Integrating

over [0, T̂ ] completes the proof.

5. Instantiating the master theorem
We now consider cases where we can provide concrete
bounds on Tlower, Tupper. Our bounds here hold indepen-
dent of the Assumptions in Section 4.

5.1. General mixtures with similar components

We first consider the case where the components of the
mixture are “similar” in the sense that if we take any two
components and translate them to both have mean zero, then
they are moderately close in Wasserstein distance. Here, we
obtain the following bounds on Tlower and Tupper:

Lemma 5.1. Let ϵ > 0. For i ∈ [K], let pi denote the
density of the i-th component of the mixture model p after
being shifted to have mean zero. Suppose W2(p

i, pj) ≤ Υ

for all i, j ∈ [K]. Then Tlower(ϵ) ≤
{
ln(w(Sinit, Starg) +

Υ) + ln 1
ϵ +

1
2 ln 2

}
∨ 3. Additionally, if pi0 ∈ subGd(σ

2)

for all i ∈ [K], then Tupper(ϵ) ≥ ln∆(Starg) − lnσ −
ln
√
8d ln 6 + 8 ln 4/ϵ2 − ln 3− 1

2 ln 8.

Proof sketch of Lemma 5.1, see Appendix B.4. For Tlower,
we apply Pinsker’s inequality and a Wasserstein smooth-
ing to upper bound the TV between components in the
initial and target mixture in terms of the Wasserstein-2
distance of the components, which decreases at the rate
of O(e−t(w(Sinit, Starg) + Υ)). For Tupper, we use sub-
Gaussian concentration bounds to lower bound the TV be-
tween components in Send and [K]− Send.

Note that because all α-strongly log-concave distributions
are sub-Gaussian with variance proxy Θ(1/α), under As-
sumption 4.1 of Section 4 the above applies for σ ≍ Ψ.

When the terms Υ,Ψ, 1/ϵ are sufficiently small, our bounds
on Tlower and Tupper are dominated by lnw(Sinit, Starg)
and ln∆(Starg) respectively. Recall that w(Sinit, Starg)

7
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and ∆(Starg) respectively correspond to the maximum dis-
tance between any two component means from Sinit and
Starg, and the minimum distance from Starg to the rest
of the mixture. This, combined with our master theorem,
has the favorable interpretation that as long as the separa-
tion between components within Sinit and Starg is domi-
nated by the separation between components in Starg vs.
outside Starg, then there is a non-empty window of times
T̂ ∈ [Tlower, Tupper] such that the Sinit-targeted reverse
process from noise level T̂ results in samples close to Starg.

5.2. Mixtures of well-conditioned Gaussians

We now suppose p is a mixture of Gaussians, with pi =
N (µi,Σi). At time t ≥ 0 in the forward process, if
µi(t) ≜ e−tµi and Σi(t) ≜ e−2tΣi + (1 − e−2t)Id,
then pit = N (µi(t),Σi(t)), pt =

∑
wiN (µi(t),Σi(t)).

We also define σ2
max(t) := maxi σ

2
max(Σi(t)), σ2

min(t) =
mini σ

2
min(Σi(t)), and R(t) = e−t maxi ∥µi∥.

Assumption 5.2. There exists λ ≤ 1 ≤ λ such that for all
t ≥ 0, λ ≤ σ2

min(Σi) ≤ σ2
max(Σi) ≤ λ. Note that the same

bound immediately holds for σ2
min(t), σ

2
max(t) as a result.

We can prove analogous bounds to Lemmas 3.1 and 4.6
in terms of these parameters, see Lemmas B.14 and 4.6 in
Appendices B.5 and B.6. Using these ingredients, we prove
in Appendix B.7 the following:
Theorem 5.3. Take any Sinit ⊂ Starg ⊂ [K]. For
sufficiently small ϵ, there exists Tlower and Tupper such

that Tlower ≤ 1
2 ln

(
2dλ−λ

λ + 1
λw(Sinit, Starg)

2
)
+ ln 1

ϵ

and also Tupper ≥ ln∆(Starg) + 1
2 lnλ − ln 4 −

1
2 ln ln

(
λ
√

KW
[
(λ−λ)

2
(R(0)2+λd)+R(0)2

]
λ2∆(Starg)2ϵ2

)
and such that

for any T̂ ∈ (Tlower, Tupper), TV(p[S
⟨T̂ ⟩
init ], p

Starg) ≲ ϵ.

To get intuition for the bound, consider the simpler scenario
where the covariances are the identity matrix.
Example 1. (K Gaussians with identity covariance) Let
Σi

0 = Id for all i ∈ [K]. Then, for any Sinit ⊂ Starg ⊂
[K], Tlower = lnw(Sinit, Starg) + ln 1/ϵ and Tupper =

ln∆(Starg) − ln 4 − 1
2 ln ln

R(0)2
√

KW
ϵ2∆(Starg)2

. The dominant
terms are lnw(Sinit, Starg) and ln∆(Starg), which depend
on the intra- and inter-group distances of the means. In
Fig. 3, we plot these critical times and the final membership
of the noised then denoised points for a Gaussian mixture.
We see that our bounds match real class membership.

6. Hierarchy of classes
In this section, we consider a sequence of critical win-
dows that enable sampling from a sequence of nested sub-
mixtures. Figure 3 hints at this idea, that as we noise for

longer time periods, we sample from more and more com-
ponents. Before we continue, it will be useful to formalize
our model of a hierarchy of classes as a tree.

Definition 6.1. We define a mixture tree as a tuple
(T, h, f,R). A tree T = (V,E) of height H = O(

√
lnR)

is associated with a height function h : V → N map-
ping vertices to their distance to the root and a func-
tion f : V → 2[K]\{∅} satisfying the following: (1)
f(root) = [K]; (2) if u is a parent of v, f(v) ⊂ f(u);
(3) for distinct i, j ∈ [K] with leaf nodes w, v such that
i ∈ f(w), j ∈ f(v), if u is the lowest common ancestor of
w, v, then ∥µi − µj∥ ∈ (1± δ) ln R

2h(u)2
with δ < 0.01.

Intuitively, the sequence of increasing critical windows of
the noising and denoising process acts as a path up a mix-
ture tree from some leaf. Within each critical window, the
noising and denoising process is sampling from every class
in the corresponding node in the path to the root. The
class means have to be within a constant factor of ln R

2h2 ,
where h is the height of their lowest common ancestor, to
both ensure statistical separation from components outside
the target mixture and small statistical distance within the
target mixture. To make the critical times more explicit,
we consider the setting of a mixture of identity covariance
Gaussians (see proof in Appendix B.8):

Theorem 6.2. Let all Σi = Id, ∥µi∥ = R, and wi =
1
K .

For i ∈ [K], consider the path u1, u2, u3, . . . , uH′ where
u1 is the leaf node with i ∈ f(u1) and uH′ is the root.
There exists k ∈ [1, 2, . . . ,H ′], sufficiently large R,H ′, and
sufficiently small ϵ such that there is a sequence of times
T1 < T2 < · · · < Tk with TV(p[{i}⟨Tℓ⟩], pf(uℓ)) ≲ ϵ.

This model also captures the intuition that diffusion models
select more substantial features of an image before resolving
finer details. When one ascends a tree of sub-mixtures from
a leaf to the root through noising, one is essentially adding
contributions to the score from more and more components
of the mixture. Similarly, when a diffusion model samples
from a hierarchy, it can be seen as ignoring negligible com-
ponents of the mixture from the score until it reaches the
end component.

7. Critical windows in Stable Diffusion
In this section, we give an example of a critical window in
Stable Diffusion v2.1 (SD2.1) to corroborate our theory. We
generated images of cars and chose color, background, and
size as our features. We noised and denoised each image
for t = 350 to 490 time and plotted percentage of feature
agreement with the base image vs. time (Figure 5). We defer
experimental details to Appendix D. Note the background
feature: from time step 480 to 490, the percentage of images
with the same background as the original image drops by
25%. The size feature also sees a substantial drop from 470
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to 490 by 15%. The agreement for the color also decreases
significantly but the drop is much less sharp and occurs
between time steps 450 to 470. Our theory for hierarchical
sampling suggests that the diffusion model selects the car’s
size and background before deciding the color. This experi-
ment also implies that critical windows can exist when the
target mixture is different from the initial mixture, because
noising and denoising to [450, 470] is sampling from the
superclass of cars that have the same size and background
as the original car but different colors.

8. Applications to fairness and privacy
8.1. Fairness

Generative models can reproduce social biases with their
outputs (Luccioni et al., 2023). Do potentially biased
features like gender have critical windows? This could
help design specific interventions to narrow ranges in the
diffusion process to improve image diversity (Raya &
Ambrogioni, 2023). We studied outputs of photo portraits
of laboratory technician on SD2.1 (Luccioni et al., 2023),
sampled 200 images (see Figure 6 for examples), and
created an analogous plot of critical times (Figure 2). To
determine gender, we against used a CLIP model and
tested whether a given image had higher dot product with
the prompt appended with ”, male” or ”, female”.
We can see a large drop in agreement between t = 80
and t = 84, from over 80% to roughly 50%, suggesting
a critical window for the gender feature. If the male and
female classes are not well-separated at time t = 80, then
the noising and denoising procedure should result in a
more equal mix of images from both classes. This confirms
the intuition of our theory that different categories are
well-separated before a critical window.

Figure 2. Critical window for gender feature in the experiment on
images of laboratory technicians generated by SD2.1. Critical
window demarcated with double-sided horizontal arrows.

8.2. A new Membership Inference Attack

Membership Inference Attacks (MIAs) are a class of privacy
attacks that try to identify whether a candidate sample be-
longed to training data (Shokri et al., 2017), and are relevant
for diffusion models because of their substantial privacy and
copyright risks (Carlini et al., 2023). We present a simple
MIA (NoiseDenoise) based on the distance between a can-
didate and noised and denoised copies (see Appendix E.2
for more experimental details). We applied our attack to a
DDPM that was trained on CIFAR-10 in (Duan et al., 2023)
and compare it to their methods SecMIstat and SecMInn.
Their attacks exploit a deterministic approximation of the
forward and reverse process of a DDPM to estimate the
sampling error of a candidate image. Figure 7 and Table
1 show that SecMIstat and SecMInn outperform NoiseDe-
noise, but 11/23 of the train points NoiseDenoise identifies
at FPR = 0.01 and 21/140 of the train points identified
at FPR = 0.05 are not classified correctly by SecMIstat or
SecMInn at the same FPR thresholds, suggesting NoiseDe-
noise can be a complementary approach to these methods.

9. Conclusion
We consider noising and denoising samples from a mixture
model and the resulting critical times of this process over
which features emerge. We provide theory for the empir-
ical observation from Raya & Ambrogioni (2023), Biroli
et al. (2024), Georgiev et al. (2023), and (Sclocchi et al.,
2024) that discrete features are decided within short win-
dows in the sampling process. We identified and proved
a relationship between these critical windows and statisti-
cal distances between components in the initial and target
sub-mixture. This same question was studied mathemati-
cally in recent and concurrent works (Raya & Ambrogioni,
2023; Sclocchi et al., 2024; Biroli et al., 2024), and our
rigorous non-asymptotic bounds for mixture models nicely
complement the precise statistical physics-based insights
derived in those works. We also present preliminary experi-
ments describing critical windows for features in SD2.1, and
demonstrate our framework’s value for fairness and privacy.

Limitations and future directions. The most immediate
follow-up would be to eliminate the logarithmic dependence
on dimension for Tupper for more general distributions be-
yond well-conditioned Gaussians. Another direction is to
discover analogues of critical windows for continuous fea-
tures. Some features, e.g., color, more naturally belong
to a continuum rather than discrete bins, but our theorems
require strong statistical separation between components
inside and outside the target sub-mixture. Furthermore,
this work presents exciting empirical opportunities for inter-
pretability, designing better samplers, and data attribution.
It would also be interesting to systematically characterize
the critical times of features over diverse prompts.
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A. Related Works continued
Critical window experiments on real data. Numerous studies have investigated the critical window phenomenon in
diffusion models (Ho et al., 2020b; Raya & Ambrogioni, 2023; Biroli et al., 2024; Sclocchi et al., 2024). These papers
demonstrate a dramatic jump in the similarity of some feature within a narrow time range, either under our noising and
denoising framework (Sclocchi et al., 2024) or the ”conditional sampling” framework (Georgiev et al., 2023; Raya &
Ambrogioni, 2023; Biroli et al., 2024) described above. The main distinguishing factors between these different experiments
are the diffusion models tested, the varying definitions of what a “feature” entails, and the method to determine whether a
given image has a certain feature. Raya & Ambrogioni (2023); Georgiev et al. (2023); Sclocchi et al. (2024); Biroli et al.
(2024) identify the critical windows of class membership for unconditional diffusion models operating in pixel space that
were trained on small, hand-labeled datasets like MNIST or CIFAR-10. Biroli et al. (2024) were able to obtain precise
predictions for the critical times for a simple diffusion model trained on two classes. Raya & Ambrogioni (2023); Georgiev
et al. (2023); Biroli et al. (2024) trained supervised classifiers to sort image generations into different categories, whereas
Sclocchi et al. (2024) employed the hidden layer activations of an ImageNet classifier to define high- and low-level features
of an image and computed the cosine similarity of the embeddings of the base and new image. Among all these empirical
results, our experimental setup most closely mirrors Figure B.10 of Georgiev et al. (2023); we both experiment with
StableDiffusion 2.1, manually inspect the image for potential features, and use CLIP instead of a supervised classifier to
label images into different categories. That said, recall from the discussion at the beginning of this section that this paper
and Georgiev et al. (2023)’s experiments examine different critical window frameworks (noise and denoise vs. conditional
sampling).

B. Deferred proofs
B.1. Proof of Lemma 3.1

Lemma B.1. For probability measures P,Q, Ex∼P

[
dQ

dP+dQ

]
≤ 1

2

√
1− TV2(P,Q).

Proof. Let LC(P,Q) ≜ 1
2

∫ (dP−dQ)2

d(P+Q) dµ denote the Le Cam distance. It suffices to show

Ex∼P

[ dQ

dP + dQ

]
=

1

2
(1− LC(P,Q)) ≤ 1

2
(1− 1

2
H2(P,Q)) ≤ 1

2

√
1− TV2(P,Q).

We exhibit the leftmost equality by noting dPdQ = 1
4

(
(dP + dQ)2 − (dP − dQ)2

)
,

Ex∼P

[
dQ

dP + dQ

]
=

∫
dPdQ

d(P +Q)
(11)

=
1

4

[∫
(dP + dQ)2 − (dP − dQ)2

d(P +Q)

]
(12)

=
1

4

[
2−

∫
(dP − dQ)2

d(P +Q)

]
(13)

=
1

2
[1− LC(P,Q)] . (14)

The first inequality follows from LC(P,Q) ≥ 1
2H

2(P,Q) (see p.48 in (LeCam, 1986)). The second inequality follows from

rearranging 4TV2(P,Q) ≤ H2(P,Q)(4−H2(P,Q)) (see p.47 in (LeCam, 1986)) into 1− 1
2H

2(P,Q) ≤
√

1− TV2(P,Q).

B.2. Proof of Lemma 4.6

Lemma B.2. Under Assumption 4.1, the Hessian of ln pit for i ∈ [K] is between

1

e−2tΨ2 + 1− e−2t
Id ⪯ ∇2(− ln pit) ⪯

1

1− e2t
Id. (15)
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Proof. Using the preservation of strong log-concavity (see p.71 in in (Saumard & Wellner, 2014) or (Henningsson & Åström,
2006)), we find that for i ∈ [K],

pit ∈ SLC(e−2tΨ2 + (1− e−2t), d).

By Proposition 2.23 of (Saumard & Wellner, 2014), this implies ∇2(− ln pit) ⪰ 1
e−2tΨ2+(1−e−2t) . For the second inequality,

we follow the proof of Proposition 7.1. in (Saumard & Wellner, 2014) for the convolution Xi
t = e−tXi

0+N (0, (1−e−2t)Id).
Let X := e−tXi

0, Y := N (0, (1− e−2t)Id), Z := Xi
t , and let pX , pY , pZ be their respective densities. Because

∇(− ln pZ)(z) =
−∇pZ(z)

pZ(z)
= EX∼pX

[pY (z −X) · ∇ (− ln pY (z −X))] · 1

pZ(z)
= E[∇(− ln pY )(Y )|X + Y = z],

(16)

we can compute the Hessian with the product rule,

∇2(− ln pZ)(z) = ∇
{
EX∼pX

[pY (z −X) · ∇ (− ln pY (z −X))] · 1

pZ(z)

}
(17)

= −EX∼pX

[
pY (z −X)∇ ln pY (z −X)(∇ ln pY (z −X))⊤

]
· 1

pZ(z)
(18)

+ EX∼pX
[pY (z −X)∇2(− ln pY (z −X))] · 1

pZ(z)
(19)

+ EX∼pX
[pY (z −X)∇(ln pY (z −X))] · 1

pZ(z)
· ∇pZ(z)

pZ(z)
(20)

= −E[∇ ln pY (Y )(∇ ln pY (Y ))⊤|X + Y = z] + E[∇2(− ln pY (Y ))|X + Y = z] (21)

+ (E[∇ ln pY (Y )|X + Y = z])
⊗2 (22)

= −Var(∇(− ln pY (Y ))|X + Y = z) + E[∇2(− ln pY (Y ))|X + Y = z] (23)

⪯ 1

1− e−2t
Id, (24)

where the last line uses Var(∇(− ln pY (Y ))|X + Y = z) ⪰ 0 and E[∇2(− ln pY (Y ))|X + Y = z] = 1
1−e−2t Id.

Lemma B.3. For t > 0.001, we have the following inequality on the score at the origin,

∥∇ ln pit(0)∥ ≲ e−t [∥µi∥+M ] . (25)

Proof. By the definition of a convolution, we can explicitly compute

∇ ln pit(0) =
−
∫
Rd p

i
0 (u) fN (0,(1−e−2t)Id)(−ue−t) 0−ue−t

1−e−2t du∫
Rd pi0 (u) fN (0,(1−e−2t)Id)(−ue−t)du

=
e−t

1− e−2t

∫
Rd p

i
0 (u) fN (0,(1−e−2t)Id)(−ue−t)udu∫

Rd pi0 (u) fN (0,(1−e−2t)Id)(−ue−t)du
.

(26)

Note that for all t ≥ 0.001, fN (0,(1−e−2t)Id) is Ω-Lipschitz for some Ω > 0. Thus, we can bound the distance between the
numerator and µifN (0,(1−e−2t)Id)(0) with the triangle inequality and Assumption 4.3,∥∥∥∥∫

Rd

pi0 (u) fN (0,(1−e−2t)Id)(−ue−t)udu− µifN (0,(1−e−2t)Id)(0)

∥∥∥∥ (27)

≤
∫
Rd

pi0 (u)
∥∥fN (0,(1−e−2t)Id)(−ue−t)− fN (0,(1−e−2t)Id)(0)

∥∥ · ∥u∥du (28)

≤ Ωe−t

∫
Rd

pi0(u)∥u∥2du ≤ Ωe−tM. (29)

The denominator also approaches fN (0,(1−e−2t)Id)(0) at the rate of O(e−t), and we can express a bound on the distance
from fN (0,(1−e−2t)Id)(0) in terms of M using Jensen’s inequality,∥∥∥∥∫

Rd

pi0 (u) fN (0,(1−e−2t)Id)(−ue−t)du− fN (0,(1−e−2t)Id)(0)

∥∥∥∥ ≤ e−t

∫
Rd

pi0 (u) ∥u∥du ≤ e−tM. (30)
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Thus there exists 0 ≤ ϵ1, ϵ2 ≤ max(Ω, 1) and w ∈ Sd−1 such that for all t ≥ 0.001, we have the score bound∥∥∇ ln pit(0)
∥∥ =

e−t

1− e−2t

∥∥∥∥fN (0,(1−e−2t)Id)(0)µi +Ωe−tMϵ1w

fN (0,(1−e−2t)Id)(0) + e−tMϵ2

∥∥∥∥ ≲ e−t [∥µi∥+M ] . (31)

Lemma B.4. Under Assumptions 4.1, 4.3, and 4.4, EX∼pi
t
∥∇ ln pjt (X) − ∇ ln pℓt(X)∥4 ≲ e−4t(R

4
+ M4 + MΨ8 +

M) ∀i, j, ℓ ∈ [K].

Proof. For t < 0.001, we can prove the lemma by directly appealing to the bounded fourth moments of the scores
∇ ln qt(X),∇ ln pt(X) by Assumption 4.4,

EX∼pi
t
∥∇ ln pjt (X)−∇ ln pℓt(X)∥4 ≲ EX∼pi

[
∥∇ ln pj(X)∥4 + ∥∇ ln pℓ(X)∥4

]
≲ M. (32)

For t ≥ 0.001, it suffices to bound the difference with the scores of the standard normal by the triangle inequality,

EX∼pi
t
∥∇ ln pjt (X)−∇ ln pℓt(X)∥4 ≲ EX∼pi

t
∥∇ ln pjt (X)−∇ ln fN (0,Id)(X)∥4 (33)

+ EX∼pi
t
∥∇ ln pℓt(X)−∇ ln fN (0,Id)(X)∥4 (34)

Both terms with pjt , p
ℓ
t are controlled by the same procedure. For j, we can write

EX∼pi
t
∥∇ ln pjt (X)−∇ ln fN (0,Id)(X)∥4 ≲ EX∼pi

t
∥(∇(ln pjt − ln fN (0,Id)))(X)−∇(ln pjt − ln fN (0,Id))(0)∥4

+ ∥∇ ln pjt (0)∥4.

By Lemma B.2,∇2(− ln pjt + ln fN (0,Id))’s eigenvalues are in [ e−2t(1−Ψ2)
e−2tΨ2+1−e−2t ,

e−2t

1−e2t ] ⊂ [−Ψ2e−2t, 1000e−2t]. Thus
∇ ln pjt − ln fN (0,Id) is globally 1000Ψ2e−2t-Lipschitz. Combining with Lemma B.3, we can conclude

EX∼pi
t
∥∇ ln pjt (X)−∇ ln fN (0,Id)(X)∥4 ≲ e−8t

[
EX∼pi

t
Ψ8∥X∥4

]
+ e−4t

[
∥µi∥4 +M4

]
≲ e−4t

[
∥µj∥4 +M4 +MΨ8

]

B.3. Proof of Lemma 4.7

Lemma B.5. ∥∇ ln p
Starg

t −∇ ln pt
∥∥2 =

∥∥∇ ln p
Starg

t −∇ ln p
[K]−Starg

t

∥∥2 · (∑
i∈[K]−Starg

wip
i
t∑

i∈[K] wipi
t

)2

.

Proof. This follows by some simple algebraic manipulations:

∥∥∇ ln p
Starg

t −∇ ln pt
∥∥2 =

∥∥∥∥∥
∑

i∈Starg
wi∇pit∑

i∈Starg
wipit

−
∑

i∈[K] wi∇pit∑
i∈[K] wipit

∥∥∥∥∥
2

(35)

=

∥∥∥∥∥∥
(

1∑
i∈Starg

wipit
− 1∑

i∈[K] wipit

) ∑
i∈Starg

wi∇pit −
∑

i∈[K]−Starg
wi∇pit∑

i∈[K] wipit

∥∥∥∥∥∥
2

(36)

=

∥∥∥∥∥∥
 ∑

i∈[K]−Starg
wip

i
t(∑

i∈Starg
wipit

)(∑
i∈[K] wipit

)
 ∑

i∈Starg

wi∇pit −
∑

i∈[K]−Starg
wi∇pit∑

i∈[K] wipit

∥∥∥∥∥∥
2

(37)

=

(∑
i∈[K]−Starg

wip
i
t∑

i∈[K] wipit

)2
∥∥∥∥∥
∑

i∈Starg
wi∇pit∑

i∈Starg
wipit

−
∑

i∈[K]−Starg
wi∇pit∑

i∈[K]−Starg
wipit

∥∥∥∥∥
2
 (38)

=

(∑
i∈[K]−Starg

wip
i
t∑

i∈[K] wipit

)2 ∥∥∇ ln p
Starg

t −∇ ln p
[K]−Starg

t

∥∥2 .
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B.4. Proof of Lemma 5.1

Lemma B.6. Consider mixture P =
∑

i aiPi and mixture Q =
∑

i biQi. If TV(Pi, Qj) ≤ ϵ for all i, j, then

TV(P,Q) ≤ ϵ.

Proof. This is a simple application of triangle inequality,

1

2

∫
|
∑
i

aidPi −
∑
j

bjdQj | ≤
1

2

∑
i

ai

∫
|dPi −

∑
j

bjdQj | ≤
1

2

∑
i

ai
∑
j

bj

∫
|dPi − dQj | ≤ ϵ. (39)

Lemma B.7. (Short-time regularization) Convolving with the normal distribution bounds KL in terms of W2,

KL(p ∗ N (0, σ2)||q ∗ N (0, σ2)) ≤ 1

2σ2
W2(p, q)

2

Proof. By the joint convexity of KL, it suffices to show for p = δx and q = δy . Then,

KL(N (x, σ2)||N (y, σ2)) =
∥x− y∥2

2σ2
. (40)

Lemma B.8. Let ϵ > 0. For i ∈ [K], let pi denote the density of the i-th component of the mixture model p after

being shifted to have mean zero. Suppose W2(p
i, pj) ≤ Υ for all i, j ∈ [K]. Then Tlower(ϵ) ≤

{
ln(w(Sinit, Starg) +

Υ) + ln 1
ϵ + 1

2 ln 2
}
∨ 3. Additionally, if pi0 ∈ subGd(σ

2) for all i ∈ [K], then Tupper(ϵ) ≥ ln∆(Starg) − lnσ −
ln
√
8d ln 6 + 8 ln 4/ϵ2 − ln 3− 1

2 ln 8.

Proof of bound on Tlower in Lemma 5.1. Define hℓ
t to be the density of e−tXℓ

t for ℓ ∈ [K]. We apply Pinsker’s inequality
and treat the convolution with Gaussian noise in the forward process as a regularization parameter to control KL in terms of
the Wasserstein-2 distance. For i ∈ Sinit and j ∈ Starg we can control the KL via Lemma B.7,

TV(piTlower
, pjTlower

) ≤
√

KL(piTlower
||pjTlower

) ≤ W2(h
i
Tlower

, hj
Tlower

). (41)

We use a coupling argument to control W2(h
i
Tlower

, hj
Tlower

). Let π ∈ Γ(f
i

0, f
j

0) be the optimal coupling, and define the
coupling in Γ(piTlower

, pjTlower
) that samples (X,Y ) ∼ π and returns (e−Tlower(X + µi), e

−Tlower(Y + µj)). The cost of this
coupling is

W2(h
i
Tlower

, hj
Tlower

) ≤
√
E∥e−Tlower(X − Y ) + e−Tlower(µi − µj)∥2 ≤ e−Tlower

√
2 (E∥X − Y ∥2 + ∥µi − µj∥2) (42)

≤
√
2e−t [Υ + ∥µi − µj∥] (43)

Thus TV(pit, p
j
t ) ≤

√
2 [∥µi − µj∥+Υ] e−t ≤ ϵ, and we can conclude by applying Lemma B.6 to obtain an overall bound

on TV(pSinit

Tlower
, p

Starg

Tlower
).

Lemma B.9. Consider sub-Gaussian random vectors {Xi}ni=1 in Rd with variance proxies {σ2
i }ni=1. Let S =

∑n
i=1 αiXi.

Then, S ∈ subGd(
∑n

i=1 α
2
iσ

2
i ).

Proof. This proof is trivial.

Lemma B.10. (Theorem 1.19 of (Rigollet & Hutter, 2023)) Let X ∈ subGd(σ
2). Then, for any t ≥ 0,

P[∥X∥ > t] ≤ 6d exp(−t2/(8σ2)). (44)
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Lemma B.11. Consider two random vectors X,Y ∈ Rd with probability density functions PX , PY and means µX , µY

such that X − µX and Y − µY are sub-Gaussian random vectors with variance proxy σ2. Let R = σ
√

8d ln 6 + 8 ln 1/ϵ.
If ∥µX − µY ∥ > 2R then

TV(X,Y ) ≥ 1− ϵ

Proof. By B.10, P(∥X − µX∥ ≥ R),P(∥Y − µY ∥ ≥ R) ≤ ϵ, and B≤R(µX) and B≤R(µY ) are disjoint by definition.
Thus,

TV(X,Y ) =
1

2

∫
Rd

|dPX − dPY | ≥
1

2

∫
B≤R(µX)

dPX − dPY +
1

2

∫
B≤R(µY )

dPY − dPX ≥ 1− ϵ. (45)

Proof of bound on Tupper in Lemma 5.1. By Lemma B.9, pit is sub-Gaussian with variance proxy 2σ2 for all t ≥ 0. For
i ∈ Starg, j ∈ [K]− Starg, ∥µi

t − µj
t∥ > 3σ

√
8d ln 6 + 8 ln 4/ϵ2 implies TV(pit, p

j
t ) ≥ 1− ϵ2/4 by Lemma B.11.

B.5. Score difference bound for Gaussian mixtures

Here we prove the following key ingredient in the proof of Theorem 5.3, in analogy to Lemma 4.6 in the proof of the master
theorem:

Lemma B.12. For any nonempty S ⊂ [K] and j ∈ S, we have

Ex∼pj
t

[∥∥∥∇ ln pSt −∇ ln p
[K]−S
t

∥∥∥4] ≲ e−4t

λ4

[(
λ− λ

)4
(R(0)4 + λ

2
d2) +R(0)4

]
. (46)

To prove this, we need an auxiliary result:

Lemma B.13. Let A,B ∈ Rd×d be two PSD matrices with singular values in [σ, σ]. For any v ∈ Rd,

∥(A−B)v∥ ≤ 2(σ − σ)∥v∥.

Proof. We subtract both Av,Bv by σI and apply the triangle inequality,

∥(A−B)v∥ = ∥(A− σI)v − (B − σI)v∥ ≤ ∥(A− σI)v∥+ ∥(B − σI)v∥ ≤ 2(σ − σ)∥v∥. (47)

Proof of Lemma B.12. We explicitly compute ∇ ln pSt and ∇ ln p
[K]−S
t and their difference,

∇ ln pSt =
∑
i∈S

wip
i
t∑

j∈S wjp
j
t

(
−(Σt

i)
−1(x− µi(t))

)
(48)

∇ ln p
[K]−S
t =

∑
i∈[K]−S

wip
i
t∑

j∈S wjp
j
t

(
−(Σt

i)
−1(x− µi(t))

)
(49)

∇ ln pSt −∇ ln p
[K]−S
t = −

∑
i∈S

wip
i
t∑

j∈S wjp
j
t

(Σt
i)

−1 −
∑

i∈[K]−S

wip
i
t∑

j∈[K]−S wjp
j
t

(Σt
i)

−1

x (50)

+

∑
i∈S

wip
i
t∑

j∈S wjp
j
t

(Σt
i)

−1µi(t)−
∑

i∈[K]−S

wip
i
t∑

j∈[K]−S wjp
j
t

(Σt
i)

−1µi(t)

 . (51)

Both
∑

i∈S
wip

i
t∑

i∈S wipi
t
(Σt

i)
−1,
∑

i∈[K]−S
wip

i
t∑

i∈S wipi
t
(Σt

i)
−1 are PSD matrices with singular values in

[1/σ2
max(t), 1/σ

2
min(t)]. Thus, by Lemma B.13, we can bound the first term in the difference in terms of the
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norm of x,∥∥∥∥∥∥
∑

i∈S

wip
i
t∑

j∈S wjp
j
t

(Σt
i)

−1 −
∑

i∈[K]−S

wip
i
t∑

j∈[K]−S wjp
j
t

(Σt
i)

−1

x

∥∥∥∥∥∥ ≤
(
1/σ2

min(t)− 1/σ2
max(t)

)
∥x∥. (52)

By the triangle inequality, we can bound the second term with the singular values as well,∥∥∥∥∥∥
∑
i∈S

wip
i
t∑

j∈S wjp
j
t

(Σt
i)

−1µi(t)−
∑

i∈[K]−S

wip
i
t∑

j∈[K]−S wjp
j
t

(Σt
i)

−1µi(t)

∥∥∥∥∥∥ ≲ R(t)/σ2
min(t). (53)

We can decompose E
x∼p

{j}
t

∥x∥4 into R(t), σ2
max(t), d with the triangle inequality,

Ex∼pj
t
∥x∥4 ≲ R(t)4 + σ2

max(t)
2Ex∼pj

t
∥Σi(t)

−1/2(x− µi(t))∥4 ≲ R(t)4 + σ2
max(t)

2d2. (54)

Combining these inequalities, we obtain

Ex∼pj
t

[∥∥∥∇ ln pSt −∇ ln p
[K]−S
t

∥∥∥4] ≲ (1/σ2
min(t)− 1/σ2

max(t)
)4

(R(t)4 + σ2
max(t)

2d2) +R(t)4/σ2
min(t)

4 (55)

≤ e−4t

λ4

[(
λ− λ

)4
(R(0)4 + λ

2
d2) +R(0)4

]
. (56)

B.6. Ratio bound for Gaussian mixtures

Here we prove the other key ingredient in the proof of Theorem 5.3, in analogy to Lemma 3.1 in the proof of the master
theorem:
Lemma B.14. For any S ⊂ [K] and j ∈ S, we have

Ex∼pj
t

(∑
i∈[K]−S wip

i
t∑

i∈[K] wipit

)4

≲ KW exp
{
−e−2t∆(Starg)

2/(8λ)
}
. (57)

We will need the following helper lemmas:
Lemma B.15. (p. 51 of (Pardo, 2005)) Let P ∼ N (µP ,ΣP ) and Q ∼ N (µQ,ΣQ). Then,

H2(P,Q) = 2− 2
|ΣP |1/4|ΣQ|1/4∣∣∣ΣP+ΣQ

2

∣∣∣1/2 exp

{
−1

8
(µP − µQ)

⊤
[
ΣP +ΣQ

2

]−1

(µP − µQ)

}
.

Lemma B.16. For positive semi-definite Σi,Σj , we have an AM-GM-style inequality for their determinants,

|Σi| · |Σj | ≤
∣∣∣∣Σi +Σj

2

∣∣∣∣2 .
Proof. It suffices to show 1 ≤

∣∣∣∣ 1+Σ
−1/2
i ΣjΣ

−1/2
i

2

∣∣∣∣ · ∣∣∣∣ 1+Σ
−1/2
j ΣiΣ

−1/2
j

2

∣∣∣∣. Both (Σ
−1/2
i ΣjΣ

−1/2
i )−1 = Σ

1/2
i Σ−1

j Σ
1/2
i and

Σ
−1/2
j ΣiΣ

−1/2
j have the same spectrum and the same algebraic multiplicities. They are also positive semi-definite, which

means the geometric multiplicities of their eigenvalues sum to d. Thus, we can conclude that both matrices have the
same multiset of eigenvalues. Letting λ1, λ2, . . . , λd > 0 be the eigenvalues of (Σ−1/2

i ΣjΣ
−1/2
i )−1,Σ

−1/2
j ΣiΣ

−1/2
j , the

right-hand side can be bounded by∣∣∣∣∣1 + Σ
−1/2
i ΣjΣ

−1/2
i

2

∣∣∣∣∣ ·
∣∣∣∣∣1 + Σ

−1/2
j ΣiΣ

−1/2
j

2

∣∣∣∣∣ ≥
d∏

i=1

(
1 + 1/λi

2

)(
1 + λi

2

)
=

d∏
i=1

2 + 1/λi + λi

4
≥ 1.
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Proof of Lemma B.14. Because Ex∼pj
t

(∑
i∈[K]−S wip

i
t∑

i∈[K] wipi
t

)4

≤
∑

ℓ∈[K]−S Ex∼pj
t

[
wℓp

ℓ
t∑

i∈[K] wipi
t

]
, it suffices to bound

Ex∼pj
t

[
wℓp

t
ℓ

wℓpt
ℓ+wjp

j
t

]
for any ℓ ∈ [K] − S. Using the Hellinger distance bound in Lemma 3.1 and the computations

in Lemmas B.15 and B.16, we have

Ex∼pj
t

[
wℓp

t
ℓ

wℓptℓ + wjp
j
t

]
≤ W

|Σℓ(t)|1/4|Σj(t)|1/4∣∣∣Σℓ(t)+Σj(t)
2

∣∣∣1/2 exp

{
−e−2t

8
(µℓ − µj)

⊤
[
Σℓ(t) + Σj(t)

2

]−1

(µℓ − µj)

}
(58)

≲ W exp
{
−e−2t∆(Starg)/(8λ)

}
. (59)

B.7. Proof of Theorem 5.3

Theorem 5.3. Take any Sinit ⊂ Starg ⊂ [K]. For sufficiently small ϵ, there exists Tlower and Tupper such

that Tlower ≤ 1
2 ln

(
2dλ−λ

λ + 1
λw(Sinit, Starg)

2
)

+ ln 1
ϵ and also Tupper ≥ ln∆(Starg) + 1

2 lnλ − ln 4 −

1
2 ln ln

(
λ
√

KW
[
(λ−λ)

2
(R(0)2+λd)+R(0)2

]
λ2∆(Starg)2ϵ2

)
and such that for any T̂ ∈ (Tlower, Tupper), TV(p[S

⟨T̂ ⟩
init ], p

Starg) ≲ ϵ.

Proof. As in the proof of Theorem 4.5, we apply the data processing inequality to obtain

TV(p[S
⟨T̂ ⟩
init ], p

Starg) ≤ TV(P←[S
⟨T̂ ⟩
init ], P

←[S
⟨T̂ ⟩
targ]) + TV(P←[S

⟨T̂ ⟩
targ], P

←,Starg

T̂
). (60)

We begin with TV(pSinit

T̂
, p

Starg

T̂
). By Lemma B.6, it suffices to show for any i ∈ Sinit, j ∈ Starg, TV(pi

T̂
, pj

T̂
) ≤ ϵ. To

control this quantity, we use Pinsker’s inequality to write in terms of KL and the KL formula for two Gaussians, and further
bound the determinant and trace in terms of λ, λ.

TV(pi
T̂
, pj

T̂
) ≤

√
KL(pi

T̂
, pj

T̂
) (61)

=

√
ln

|Σj(T̂ )|
|Σi(T̂ )|

+ d

[
1

d
tr(Σ−1

j Σi)− 1

]
+ (µi(T̂ )− µj(T̂ ))⊤Σj(T̂ )−1(µi(T̂ )− µj(T̂ )) (62)

≤

√√√√d

[
ln

(
e−2T̂λ+ 1− e−2T̂

e−2T̂λ+ 1− e−2T̂

)
+

e−2T̂λ+ 1− e−2T̂

e−2T̂λ+ 1− e−2T̂
− 1

]
+

1

λ
∥µi − µj∥2e−2T̂ (63)

We now use the inequality ln(x) ≤ x− 1 and note e−2tλ+1−e−2t

e−2tλ+1−e−2t − 1 ≤ e−2t λ−λ
λ ,

TV(pi
T̂
, pj

T̂
) ≤

√
2e−2T̂ d(λ− λ)/λ+

1

λ
∥µi − µj∥2e−2T̂ ≤ ϵ (64)

Now we bound TV(P←[S
⟨T̂ ⟩
targ], P

←,Starg

T̂
). Following the main Cauchy-Schwarz split in Theorem 4.5, we can apply

Lemmas B.12 and B.14 to control the score error for t ∈ [0, T̂ ],

E
[
∥∇ ln p

Starg

t (X
Starg

t )−∇ ln p
[K]
t (X

Starg

t )∥2
]

(65)

≲ e−2t

√
KW

[(
λ− λ

)2
(R(0)2 + λd) +R(0)2

]
λ2 exp

{
−e−2tλ∆(Starg)

2/(16λ)
}
. (66)

The integral from 0 to T̂ is∫ T̂

0

E
[
∥∇ ln p

Starg

t (X
Starg

t )−∇ ln p
[K]
t (X

Starg

t )∥2
]
dt (67)

≲

√
KWλ

[(
λ− λ

)2
(R(0)2 + λd) +R(0)2

]
λ2∆(Starg)2

exp
{
−e−2Tupper∆(Starg)

2/(16λ)
}
≲ ϵ2. (68)

19



Critical windows: non-asymptotic theory for feature emergence in diffusion models

B.8. Proof of Theorem 6.2

Theorem 6.2. Let all Σi = Id, ∥µi∥ = R, and wi =
1
K . For i ∈ [K], consider the path u1, u2, u3, . . . , uH′ where u1 is the

leaf node with i ∈ f(u1) and uH′ is the root. There exists k ∈ [1, 2, . . . ,H ′], sufficiently large R,H ′, and sufficiently small
ϵ such that there is a sequence of times T1 < T2 < · · · < Tk with TV(p[{i}⟨Tℓ⟩], pf(uℓ)) ≲ ϵ.

Proof. Using the notation from Example 1, let

T j
lower = lnw(f(uj), f(uj+1)) + ln 1/ϵ (69)

T j
upper = ln∆(f(uj+1))− ln 4− 1

2
ln ln

R2

ϵ2∆(f(uj+1))2
. (70)

It suffices to show that for a sufficiently large k, for all j ≤ k, we have both T j
upper − T j

lower > 0 and T j+1
lower − T j

upper > 0.
By our definition of the mixture tree, we know

w(f(uj), f(uj+1)) ∈
[
(1− δ)

R

2(H′−j)2
, (1 + δ)

R

2(H′−j)2

]
∆(f(uj+1)) ∈

[
(1− δ)

R

2(H′−j−1)2
, (1 + δ)

R

2(H′−j−1)2

]
.

T j+1
lower − T j

upper > 0 follows from

T j+1
lower = ln

[
(1− δ)

R

2(H′−j−1)2

]
+ ln

1

ϵ
≥ ln

[
(1 + δ)

R

2(H′−j−1)2

]
− 1

2
ln ln

R2

ϵ2∆(f(uj+1))2
≥ T j

upper.

for sufficiently small ϵ. We have T j
upper − T j

lower > 0 if

ln

[
(1 + δ)

R

2(H′−j)2

]
+ ln(1/ϵ) ≤ ln

[
(1− δ)

R

2(H′−j−1)2

]
− ln 4− 1

2
ln ln

 R2

ϵ2
(
(1− δ) R

2(H′−j−1)2

)2
 (71)

ln
1 + δ

1− δ
+ ln

1

ϵ
+ ln 4 +

1

2
ln
[
2(H ′ − j − 1)2 ln 2− 2 ln(1− δ)ϵ

]
≤ (2(H ′ − j)− 1) ln 2. (72)

This is true for sufficiently small j and large H ′.
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B.9. Critical windows experiment for Gaussians

Figure 3. Example of critical times and proportion in each cluster as a function of noise timesteps. A point belongs to a cluster if its
distance to the cluster mean is ≤ 5. All clusters have identity covariance; cluster 0 has mean (−15100); cluster 1 has mean (−14900);
cluster 2 has mean (14900); cluster 3 has mean (15100). We compute the thresholds t1, t2, t3, t4 with ϵ = 0.1 with the formulae from
Example 1. By noising for t ≤ t1, we only sample from cluster 1. By noising for t ∈ [t2, t3], we sample from clusters 0, 1. By noising
for t ≥ t4, we sample from all clusters.

C. Other concrete calculations for critical windows
Here we include two additional calculations, one for Gaussian mixtures with imbalanced mixing weights, and one in a
dictionary learning setting, that were deferred to the appendix due to space constraints.

C.1. Dependence of Tupper, Tlower on mixing weights

Consider the scenario of two Gaussians with identity covariance.
Example 2. (Two Gaussians with identity covariance) Let K = 2, p10 = N (µ, Id), p20 = N (−µ, Id). Then, focusing on
component 1 we have

Tone = ln ∥µ∥ − ln 2− 1

2
ln ln

√
2w2/w1

4ϵ2
(73)

Tall = ln ∥µ∥+ ln 2 + ln 1/ϵ (74)

When T̂ ≤ Tone, then TV(p[{1}⟨T̂ ⟩], p{1}) ≲ ϵ. When T̂ ≥ Tall, TV(p[{1}⟨T̂ ⟩], p{1,2}) ≲ ϵ. We can see that as w2

increases, the cutoff Tone becomes smaller, though the amount by which it decreases only scales at O(ln lnw2/w1).

C.2. Sparse dictionary example

Now we consider a dictionary learning setting, in which classes are described by subsets of nearly-orthogonal feature
vectors. Consider a set of F = {f1, f2, . . . , fn} unit vectors, such that for all distinct i, j, cov(fi, fj) ≤ δ. Fix some large
R = Ω(d). Consider the families of random variables Yℓ = {Y ∈ Rℓ : E[Y ] = 0, Y ∈ subGℓ(σ

2)}. We define scalar
random variables YS,i ∈ Y1 for S ⊂ F and i ∈ [n], that represent the scaling along each feature vector, and YS ∈ Yd,
which represents variation not along the features. Classes are subsets S ⊂ F of cardinality |S| ≤ S̃, such that a sample
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X ∼ pSt has the distribution of
∑

i∈S(YS,i +R)fi + YS . We let the Wasserstein-2 distance between any centered classes
be less than Υ. We can characterize the Tlower, Tupper in terms of the Hamming distances H between classes. We define
H(S, S′) := maxi∈S,j∈S′ H(i, j) and H(S) = minℓ∈S,j∈[K]−S H(i, j). By parameter setting with Corollary 5.1, we can
write Tlower, Tupper in terms of Hamming distances between classes.

Corollary C.1. We have that Tlower(ϵ) ≤ 3 ∨
{
ln 1

ϵ + 1
2 ln 2 + ln(R

√
H(Sinit, Send) + d2δ + Υ)

}
and Tupper(ϵ) ≥

ln
(
R
√

H(Send)− d2δ
)
− ln(σ

√
S̃ + 1)− ln

√
8d ln 6 + 8 ln 4/ϵ2 − ln 3− 1

2 ln 8.

Proof. We show that ∥µi − µj∥ is only slightly differs from a constant factor from the Hamming distance,

∥µi − µj∥2 = R2

∥∥∥∥∥∥
∑
ℓ∈i\j

fℓ −
∑
ℓ∈j\i

fℓ

∥∥∥∥∥∥
2

∈
[
R2(H(i, j)− d2δ), R2(H(i, j) + d2δ)

]
This completes Tlower. For Tupper, we also need to upper bound the variance proxies for each component. Letting
X ∼

∑
i∈S YS,ifi + YS , we can compute for all u ∈ Sd−1 the expectation E[exp(su⊤X)],

E[exp(su⊤X)] = E[exp(su⊤X)] = E
(
exp

(
su⊤YS

))∏
i∈S

E
(
exp

(
su⊤fiYi

))
≤ exp

(
s2σ2/2

)∏
i∈S

exp
(
s2σ2(u⊤fi)

2/2
)

≤ exp

(
s2σ2(|S|+ 1)

2

)
≤ exp

(
s2σ2(S̃ + 1)

2

)
.

Thus X ∈ subGd(σ(S̃ + 1)).
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D. Critical windows in Stable Diffusion V2.1
Here we include experimental details for the car critical window experiment, which was moved to the appendix because
of space constraints. We produced 250 images from SD2.1., using 500 time steps from the DDPM scheduler (Ho et al.,
2020a) and the prompt ”Color splash wide photo of a car in the middle of empty street,
detailed, highly realistic, brightly colored car, black and white background.” (see
Figure 4). We used the CLIP with the ViT-B/32 Transformer architecture to label our images (Radford et al., 2021)
according to the subject matter of their background (”car in a city/on a road/in a field”), color intensity
(”black or white/pale colored/brightly colored car”), and size (”big/medium/small car”).
We chose the prompt with the largest dot product with the image according to CLIP as the feature label.

Figure 4. Example images of cars generated by SD2.1 that we subsequently noised and denoised to produce Figure 5.

Figure 5. Percentage of agreement vs. noising amount in the experiment on images of cars generated by SD2.1 (see Section 7 for details).
The critical window for each feature is demarcated with double-sided horizontal arrows.
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E. Applications to Fairness and Privacy
Here we include more results from our fairness and privacy experiments, which were moved to the appendix because of
space constraints.

E.1. Fairness

Figure 6. Example images generated by SD2.1 from the prompt “Photo portrait of a laboratory technician,” that we
subsequently noised and denoised for 100 timesteps to produce Figure 2.

E.2. Membership Inference Attack (MIA)

Method. Let Θ be the set of possible models and X be the set of possible inputs, herein the diffusion model and candidate
image distribution, respectively. Let Dtrain be the training data and D be the distribution from which the training data was
drawn. To evaluate a MIA, we sample with probability 1

2 some x ∼ Dtrain and otherwise sample x ∼ D. We rigorously
describe our attack NoiseDenoise(M) : Θ × X → R. For a diffusion model θ ∈ Θ, let q(xt|xt−1) denote the T -step
forward process and pθ(xt−1|xt) denote the learned denoising process. Let T ∈ (0, T ) denote the number of noising steps
of our attack and N the number of samples of our attack. For x ∈ X , we generate N samples x̃i

T ∼ q(xT |x0 = x) and
x̃i
0 ∼ pθ(x0|xT = x̃i

T ) for i ∈ [N ]. Our attack is the average L2 difference between x̃i
0 and x for i ∈ [N ], and we predict x

to belong to the training data if M(θ, x) ≤ τ ,

M(θ, x) =
1

N

∑
i∈[N ]

∥x̃i
0 − x∥2. (75)

Note that this method has already demonstrated some promising results in identifying whether an image was generated by a
diffusion model (Li & Wang, 2023). We present a conceptual explanation of our attack as follows. A diffusion model θ
implicitly defines a pushforward distribution θ∗γ

d on images. For a candidate image x, we can view θ∗γ
d as a mixture of a

ball around x, i.e. some BR(x) with R > 0, and the remainder of the distribution. Within a ball BR(x), we expect diffusion
models to typically place more of the mass close to x when x ∈ Dtrain because training data have smaller losses. Thus we
have greater separation from the remainder of the distribution for training data, and based on our theoretical framework, we
can noise and denoise x ∈ Dtrain for more time steps than x /∈ Dtrain and obtain samples close to x.

Our justification is similar to the logic characterizing diffusion model memorization in the independent and concurrent
work of Biroli et al. (2024). (Biroli et al., 2024) considers the volume of neighborhoods around training data to identify
critical times in their ”collapse” regime, while we relate the size of these neighborhoods to our critical window theorems and
develop these intuitions into a MIA. Additionally, this technique can be viewed as the diffusion model analogue of language
model methods which perturb the inputs as part of MIAs (Li et al., 2023b) or machine-generated text detection (Mitchell
et al., 2023).

Resutls. We tested our attack on a DDPM that was trained on CIFAR-10 in (Duan et al., 2023) and we compare it to
their methods SecMIstat and SecMInn. Both their attacks exploit a deterministic approximation of the forward and reverse
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process of a DDPM to estimate the sampling error of a candidate image. SecMIstat is the error itself while SecMInn is a
neural network trained on the errors at different timesteps. We set N = 10 and T̂ = 50 (with T = 100), and compare all
methods with 1000 training data samples and 1000 CIFAR-10 held-out samples. As in (Duan et al., 2023), we present ROC
curves, AUC statistics, and TPRs at low FPRs of all MIAs, see Figure 7 and Table 1 in Appendix E.2.

As in (Duan et al., 2023), we present ROC curves, AUC statistics, and TPRs at low FPRs of all MIAs, see Figure 7 and
Table 1. Both Figure 7 and Table 1 show that SecMIstat and SecMInn outperform NoiseDenoise. However, 11 of 23 of
the train points NoiseDenoise identifies at FPR = 0.01 and 21 of 140 of the train points identified at FPR = 0.05 are
not classified correctly by SecMIstat or SecMInn at the same FPR thresholds, suggesting NoiseDenoise can serve as a
complementary approach to these methods.

Method AUC TPR.01 TPR.05

NoiseDenoise .6636 .023 .14
SecMIstat .8847 .073 .344
SecMInn .9132 .245 .609

Table 1. For each attack, we report the AUC, TPR at FPR .01, and TPR at FPR .05.

Figure 7. ROC curves of different methods.
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