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ABSTRACT
Climate change has marked effects on global weather patterns and oceanic systems, impacting animal

behaviour and fitness in potentially profound ways. Despite this, we lack detailed information about
species’ responses to climatic variation. Using an 11-year tracking dataset of over 300 individual birds,
we explore the consequences of variation in the Southern Annular Mode (SAM) and Southern
Oscillation Index (SOI) for individual behaviour and fitness in wandering albatrosses Diomedea exulans
breeding in the Southern Indian Ocean. Our results reveal distinct responses between males and
females to climatic variation that align with the impacts of each climatic index on the distinct foraging
ranges of each sex. In positive SAM phases, linked to poorer foraging conditions in female ranges and
better conditions in male ranges, females exhibited behaviour consistent with reduced foraging
success: that is, fewer prey capture attempts, and more movement between feeding patches. Males,
on the other hand, showed no behavioural change. During positive SOl phases, associated with good
foraging conditions in both male and female foraging ranges, both sexes showed evidence of more
successful foraging, with birds engaging in more search behaviour, and taking shorter trips with fewer
prey capture attempts, together indicating increased food intake per unit time. We found limited
evidence for a role of individual variation, as measured through differences in personality, suggesting
that plastic responses to climate are sufficiently important so as to obscure inter-individual variation.
Supporting this was the finding that individual breeding success was unaffected by climatic variation,
suggesting that plastic foraging behaviour allows albatrosses to mitigate climate impacts and maintain

reproductive output.
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INTRODUCTION
Human impacts present a major threat to global biodiversity, with 20% of vertebrates now considered

at risk of extinction, and climate change is recognised as playing a key role (Pereira et al. 2010; Bellard
et al. 2012). Climate exerts profound influences on global weather patterns and oceanic systems, with
significant downstream consequences for ecosystems and ecological dynamics. Understanding the
ways in which animals respond to this is pertinent, particularly as significant increases in the intensity
and frequency of extreme climate events are predicted for the coming decades (Easterling et al. 2000;
Bailey and van de Pol 2016; Van De Pol et al. 2017; Wang et al. 2022). Yet while mounting evidence is
demonstrating effects of climate on phenology, demography, and behaviour across a wide range of
species (Selwood et al. 2015; Buchholz et al. 2019; Inouye 2022; Lewin et al. 2024), neither the

mechanisms underpinning these effects, nor the relationships between them, are fully resolved.

In the face of environmental change, animals have three options, often summarised as ‘adapt, move,
or die’: that is, they can adapt genetically, adjust their distribution or behaviour, or face extinction
(Wong and Candolin 2015). For many long-lived vertebrate species, contemporary climate change may
outpace genetic adaptation, leaving behavioural adjustment, such as through migratory range shifts
(Lewin et al. 2024), changes in foraging effort (Speakman et al. 2021), or alterations to communication
(Lengagne 2008), as the primary adaptive option. Behaviour therefore emerges as a crucial factor
promoting species’ ability to cope with long-term environmental change. Behavioural plasticity, the
ability of animals to adjust to environmental stimuli, varies considerably amongst individuals (Wilson
1998; Dall et al. 2004; Nussey et al. 2007; Stamps 2016), with potential impacts on the long-term
persistence or trajectory of populations if subsets of populations cannot respond appropriately to
changes in their environment. Understanding individual responses is therefore vital to predict species-
level responses to climate change. Personality traits — particularly ‘boldness’, which typically measures
the responses of individuals to novel stimuli (Sih et al. 2004; Patrick et al. 2013; Stamps and Biro 2016)
— are increasingly recognised for their association with individual variation in behavioural plasticity

(Dingemanse et al. 2010; Mathot and Dingemanse 2012; Stamps and Biro 2016; Gibelli and Dubois
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2017). Shyer individuals are observed to be more responsive to environmental changes, while bolder
individuals seem to be more fixed in their behaviours (Verbeek et al. 1994; Groothuis and Carere 2005;
Coppens et al. 2010; Adriaenssens and Johnsson 2011; Gibelli and Dubois 2017). Personality may
therefore offer a valuable, yet understudied, metric to assess individual variation in the capacity of

animals to adapt to a changing climate.

In the marine environment, climate has been found to play important roles in behaviour, survival, and
fitness in a number of species including southern elephant seals Mirounga leonina (Volzke et al. 2021),
emperor penguins Aptenodytes forsteri (Jenouvrier et al. 2012), and blue petrels Halobaena caerulea
(Guinet et al. 1998). Amongst marine fauna, seabirds offer particularly valuable indicators of the state
of marine environments due to the ease of measuring their behaviour and demography,
responsiveness to prey availability, sensitivity to weather conditions, and adaptable behaviour
(Frederiksen et al. 2007; Parsons et al. 2008; Durant et al. 2009; Mallory et al. 2010). Species that cover
large foraging distances are of particular interest due to their exposure to large temporal and spatial

environmental variation.

Seabirds demonstrate flexible adjustment to rapid environmental change, but there are likely to be
limits to this, as shown at a population level by the limited advancement of breeding phenology across
seabirds (Keogan et al. 2018), despite consistent directional selection favouring earlier breeding in
many cases (Reed et al. 2009; Dobson et al. 2017; Descamps et al. 2019). Additionally, the presence of
repeatable individual behaviour, possibly reflecting fixed behavioural strategies, may constrain
responses to environmental change (Patrick and Weimerskirch 2014; Ceia and Ramos 2015; Kriiger et
al. 2019). Climate-induced environmental changes can directly alter the energetic costs of behaviour,
induce physiological stress, or lead to breeding failures or mass seabird wrecks during extreme
weather events (Hass et al. 2012; Barbraud et al. 2015; Newell et al. 2015). Indirectly, changes in
resource availability can have significant impacts. Seabirds are central-place foragers while breeding,

meaning they face spatial constraints in access to resources, which can lead to spatio-temporal match-
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mismatch between their movement and resource availability (Grémillet and Boulinier 2009). This can
lead to reduced survival and breeding success when individuals struggle to maintain foraging effort or
success (e.g. Cory’s shearwater Calonectris borealis, Pereira et al. 2020, northern gannet Morus
bassanus, Montevecchi et al. 2021, king penguins Aptenodytes patagonicus, Le Bohec et al. 2008).
Simultaneously investigating the impacts of climate on behaviour and fitness is therefore essential to
predict how seabirds will fare in the face of ongoing climate change (Jenouvrier 2013; Jenouvrier et al.

2018).

Wandering albatrosses Diomedea exulans exhibit some of the longest - in both distance and duration
- foraging trips amongst seabirds (Weimerskirch et al. 2014), during which they show high levels of
responsiveness to environmental variation (Weimerskirch et al. 2000; Richardson et al. 2018) that
varies amongst individuals (Gillies et al. 2023). Foraging behaviour differs markedly between the sexes,
with males typically undertaking much longer trips to more southerly locations, and being much more
dependent on high wind speeds for efficient movement (Shaffer et al. 2001; Wakefield et al. 2009; Clay
et al. 2020). Age also plays a role, with older males undertaking longer-distance, more southerly
foraging trips (Lecomte et al. 2010). Evidence that climate change may alter albatross behaviour is
already emerging: increases in wind speeds in the Southern Ocean have been linked to improved
breeding success, possibly due to reduced energetic costs when commuting during foraging flight
(Weimerskirch et al. 2012). However, beyond wind, little is known about the potential impacts of

environmental change on individual behaviour and breeding success in wandering albatrosses.

Disentangling the effects of environmental variation on behaviour, and ultimately, fitness, is complex.
While single metrics such as sea surface temperature (SST) or air temperature, have been linked to
changes in behaviour and phenology (e.g. loggerhead turtles Caretta caretta, Mazaris et al. 2008;
Western Australian Magpies Cracticus tibicen dorsalis, Edwards et al. 2015), such measures offer only
partial perspectives and capture relatively small-scale variation — in time, space, or both (Stenseth et

al. 2002; Le Bohec et al. 2008). Climate indices offer consolidated measures that capture much broader
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variation in the environment, integrating information over large spatial and temporal scales. While this
may come at a cost to fully understanding causative pathways of effects, such broad understanding
can inform predictions about future responses to climate change, help identify potential adaptive
responses and vulnerabilities, and provide a foundation for more detailed mechanistic studies,

improving our ability to predict the impacts of expected future change.

Across the Southern Ocean, the leading modes of climate variation are the Southern Annular Mode
(SAM) and Southern Oscillation Index (SOI; Rogers and van Loon 1982; Thompson and Wallace 2000;
Fogt and Marshall 2020). SAM describes variability in the strength and position of a belt of westerly
winds encircling the Antarctic, which contracts towards and expands away from the south pole during
positive and negative phases respectively (Lovenduski and Gruber 2005; Fogt and Marshall 2020), with
pronounced consequences for the wider environment dependent on latitude. Positive SAM phases
enhance wind strength and upwelling south of the Antarctic Polar Front (approximately 50-60° S),
where male wandering albatrosses primarily forage, while north of this, where females forage, the
effects are opposite (Lovenduski and Gruber 2005). The Southern Oscillation Index measures sea level
pressure differences between Tahiti and Darwin, Australia (Wang et al. 2016; Wang et al. 2022).
Positive SOI, which at an extreme may indicate La Nifia events, is linked to positive zonal wind stress -
indicating strong westerly winds, decreases in SST, and increased upwelling across the Southern Ocean
(Newell et al. 1982; McPhaden et al. 2020; Wang et al. 2022). Very negative values indicate El Nifo
events, a warming phase associated with decreased upwelling and weakened winds. Patterns of SAM
and SOI are expected to change in the coming decades: climate models predict more frequent and
intense El Nifio/La Nifia events and shifts in the intensity and position of the westerly winds associated
with the SAM (Easterling et al. 2000; Fogt and Marshall 2020; McPhaden et al. 2020; Wang et al. 2022).
Changes to both indices will have significant effects on oceanographic, atmospheric, and

meteorological conditions.
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We aimed to investigate how individual wandering albatrosses respond to SAM and SOI conditions and
whether this affects their reproductive output. Changes in the SAM and SOl in the Southern Ocean
have profound impacts on ocean currents and weather patterns at large spatial scales, which we
anticipated would have behavioural consequences. Using an 11-year tracking dataset from the Crozet
Islands in the Southern Indian Ocean, we investigated how changes in the SOl and SAM related to
breeding success and foraging behaviour. By incorporating personality, a fixed trait known to constrain
plasticity, we explored consistent individual variation in responses to these indices. By comparing
individual responsiveness and breeding success changes, we aimed to indirectly assess how climate
affects foraging behaviour and subsequent reproduction, giving essential insight into the capacity of

albatrosses to buffer environmental variation and future climate change.
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METHODS

GPS tracking

We tracked the movements of 346 wandering albatrosses (175 males, 171 females) during the
incubation period (January to April) of 2010 to 2021. Albatrosses were sampled from Possession Island
(Crozet Islands archipelago, Southern Indian Ocean, 46°24'S, 51°46' E). Since 1965, each year all adults
and chicks in the study population have been captured by hand and equipped with a metal leg-ring
and a plastic leg-ring bearing a unique identification number (Weimerskirch 2018). Adults are sexed

based on size and plumage dimorphism within breeding pairs (Weimerskirch et al. 2005).

Each albatross was fitted with a GPS logger (IgotU 120/600, Mobile Action Technology, weighing up to
32g, max 0.5% body mass; X-GPS and Centurion, Sextant Technology, NZ weighing 60-75g, max 1.21%
body mass; see details in Weimerskirch et al. 2018; Weimerskirch et al. 2020), which was deployed
dorsally using thin strips of marine Tesa tape (Weimerskirch et al. 2014) and retrieved after the bird
had completed at least one complete foraging trip. There is presently no evidence for an effect of such
loggers on survival probability or breeding success in wandering albatrosses (Barbraud and
Weimerskirch 2012). GPS loggers recorded fixes at frequencies ranging from 1 to 15 minutes, and the

resulting data were resampled to give fixes at 15-minute intervals.

Measuring boldness

Every year, the ‘boldness’ of all birds in the Possession Island colony is measured by observing how
individuals react to the approach of a human observer (see (Patrick et al. 2013) for full details). The
observer noted each bird’s behaviours as they approached from a 5-meter distance, stopping short of
the reaching the bird itself. Behaviours were recorded using a 5-point ordinal scale ranging from 0 to
4, where 0 = no response; 1 = bird lifts head; 2 = bird rises onto tarsi; 3 = bird vocalises; 4 = bird stands
up. Using this scale, higher scores indicate bolder birds. Using these measurements, we estimated
boldness by extracting individual-level best linear unbiased predictors from an ordinal generalised

linear mixed model (GLMM) that was fitted to boldness scores using the R package MCMCglmm
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(Hadfield 2010). The model has been used in previous studies of this population (Patrick et al. 2013;
Gillies et al. 2023) and full details on the methodology can be found therein. The model included the
fixed effects of observation number and observer ID (typically one observer per year), a random
intercept for individual ID, and a random effect for the additive genetic variance, represented as the

matrix of pairwise relatedness among all individuals.

Climate variables

Data on SAM indices were accessed from the National Center for Atmospheric Research Climate Data

portal (https://legacy.bas.ac.uk/met/gjma/sam.html) on 2022-01-20 (Marshall 2003). Monthly SAM

indices were calculated as numerical values representing the differences in monthly zonal sea level
pressure at 40°S and 60°S. The data are observation-based, collected from six monitoring stations at
each latitude. Monthly SOI indices were downloaded from the National Weather Service — Climate
Prediction Center on 2022-01-20 (National Weather Service - Climate Prediction Center 2022). SOl is
calculated as the standardised difference between anomalies in sea level pressure between Tahiti and
Darwin, Australia, normalised by the monthly standard deviation. Further details available in the

Appendix. SAM and SOI were not significantly correlated over the study period (Appendix).

Statistical analysis

All data processing and statistical analyses were carried out in R version 4.3.0 (R Core Team, 2023).
Effects are presented as mean and [95% confidence interval] or mean * standard deviation, unless
otherwise specified. We interrogated fitted models by conducting diagnostic checks, including visual
examination of residuals for normality, patterns, or trends, and assessing overdispersion using

dispersion ratio checks.

Effect of climate on behaviour
We aimed to determine how climate indices influenced albatross foraging behaviour and reproductive
success. First, we fitted a three-state hidden Markov model (HMM) to the GPS tracking dataset using

the R package momentuHMM (McClintock and Michelot 2018) in order to categorise 15-minute fixes
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GPS into the three discrete behavioural states: rest, travel, and search. Models were fitted to males
and females separate due to their known differences in movement behaviour (Shaffer et al. 2001; Clay
et al. 2020; Gillies et al. 2023). Step length and turning angle were used as input variables, modelled
with a Von Mises and a Gamma distribution respectively, and previous studies that made use of this
dataset were used to guide parameterisation (Clay et al. 2020; Gillies et al. 2023). Using these inputs,
the model identified rest as fixes with low speeds and low to moderately concentrated turning angles,
search as fixes with moderate speeds and moderate to wide turning angles, and travel as fixes with

high speeds and concentrated turning angles.

From these three broad behavioural categories, we calculated metrics of foraging behaviour that
would be most likely to be shaped by climate: the number of landings per day of the foraging trip, the
ratio of time spent in search relative to travel, the total distance covered over the trip in kilometres,
and the median distance travelled between search bouts (justification in Appendix). We fitted GLMMs
to each metric, with the fixed effects of monthly climate index (SAM or SOI), boldness, and their
interaction using the g1mmTMB package in R (Brooks et al. 2017). We controlled for age, which is also
known to affect foraging behaviour in wandering albatrosses (Lecomte et al. 2010; Froy et al. 2015),
by including it as a fixed effect. Models were fitted separately for each sex and climate index (SAM or
SOI) to reduce model complexity and therefore aid convergence and interpretation. All models
included individual ID and year as random effects to account for repeated measures of the same
individuals over time and annual variation, respectively. Total distance and median distance between
search bouts was modelled with a Gamma distribution with a log link to reflect the positive right
skewed nature of the response. Ratio of search relative to travel was modelled with a beta distribution
due to its proportional nature. As a discrete count variable, number of landings per day was modelled

with a Poisson distribution.
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Effect of climate on reproductive success

We next examined the relationship between climatic variation and breeding to determine whether
effects of climate on reproduction might be indirectly mediated by effects on foraging behaviour.
Existing literature suggests that either SAM and SOI could have impacts prior to, during the breeding
season, or both. We therefore averaged the monthly values of each index for September and
November (pre-breeding) and January to April (breeding). December was excluded as a mixture of pre-

breeding and breeding activity takes place during this month.

We considered available breeding success data for the entire Possession Island population, gathered
between 1980 and 2020 (3052 individuals), to maximise available variation in the SAM and SOI. We
fitted binomial GLMMs to the binomial variable current ‘breeding success’ (success vs failure), which
considered only those birds that attempted to breed. To reduce model complexity, each climate index
was fitted in a separate model. Models included the fixed effects of mean breeding and pre-breeding
climate index (SAM or SOl respectively), age, and boldness. Interactions between age and each climate
index (breeding and pre-breeding) were included to account for the idea that older or younger
individuals may be differentially equipped to cope with environmental variation; a further three-way
interaction was included between age, climate index, and boldness to account for the additional effect
that boldness may have on this relationship. Non-significant interaction terms were removed from the
model to ensure accurate appraisal of fixed effects (Engqvist 2005). Age was incorporated as a
quadratic predictor, due to its known curvilinear association with breeding success (Weimerskirch
1992). All variables were centred and scaled to aid model convergence and interpretation of effects.
Models were fitted for each sex separately due to known sex-related differences in responses to the
environment (Weimerskirch et al. 2018; Clay et al. 2020) and to avoid the involvement of complex four-
way interactions. Individual ID and year were included as random effects to control for repeated

individual measures and interannual variation respectively.
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All handling and experimental procedures were conducted in accordance with guidance and rules
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269
270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

RESULTS
We obtained 690 foraging trips, giving an average of 2.02 + 1.41 trips per bird. Trips lasted a mean

8.1 + 5.7 days. As previously reported (Weimerskirch et al., 2012a), females had more northerly

foraging distributions compared to males (Figure 1).

Females Males
20°E

Figure 1. Foraging tracks of wandering albatrosses Diomedea exulans tracked during the study.
Possession Island indicated with black triangle. Grey tracks show individual bird movements; shaded
polygons indicate 90% (lightest), 75% (mid), and 50% (darkest) utilisation distributions for all females
(vellow polygons) and males (blue polygons). Pink dotted line shows approximate location of Antarctic
Polar Front (Orsi and Harris 2019). Map and GPS tracks displayed in a Lambert azimuthal equal-area

projection, centred on Possession Island.

Over the past 60 years, SAM has shown a gradual tendency to become more positive over time (B =
0.02 +0.004, t = 5.11, p < 0.001), while SOI has been relatively stable (B = 0.002 + 0.007,t=0.22, p =
0.83; Figure 2). The range of SAM and SOI values observed during the study period (SAM: -2.1- 4.9;
SOl: -3.6, 4.5) were broad but did not encompass the most extreme negative indices observed over

the range of the past 60 years (SAM: -7.7, 4.9; SOI: -6, 4.8).
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Figure 2. Temporal trends in the Southern Annular Mode and Southern Oscillation Index. Black line
shows changes in the annual average for each index; green-blue shading indicates standard error.
Orange line and orange shading indicate regression and associated 95% confidence interval of change

in index over time.

Effect of climate on behaviour

While changes in the SOI were found to have significant effects on foraging behaviour for both males

and females, only females were affected by changes in the SAM.

Females decreased the number of landings they made per day with increases in SAM and SOI (Figure
3, 4); males decreased their number of landings in response to SOl only (Figure 4, Table 1). For a one-
point increase in SAM, females made 8.22 % fewer landings; for a one-point increase in SOI, they made
15.52 % fewer. Male responses to SOl depended on boldness. Shyer males had a reduced response to
SOI, reducing landings by 10.24 % for a one-point increase in the SOI, while bolder birds reduced
landings by 17.76 %. Overall, bolder males made more landings per day, with a mean of 23.7 landings

per day versus 20.4 for shyer males.
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The amount of time females spent in search behaviour relative to travel was affected by SAM
conditions but not the SOI; males were unaffected by either index (Figure 3; Table 1). In positive SAM
conditions, females reduced their search time relative to travel; a one-point increase in the SAM was

associated with a 5.49 % decrease in time spent in search relative to travel.

We found that the total distance covered by birds on foraging trips decreased as SOl increased (Figure
3, Table 1). A one-point change in the SOl was associated with a 13.31 % decrease in travel distance
for females and a 14.76 % change for males. There was no effect of SAM on total travel distance for
either sex. However, for females, a one-point change in the SAM Was associated with a 5.03 % increase

in the distance travelled between search bouts.
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males in blue. Lines and shaded areas indicate the regression and 95% confidence intervals for the

effect of SOI. Male responses in panel D are categorized by boldness, with lighter lines for shyer birds

(10th percentile), intermediate lines for moderate birds (50th percentile), and darker lines for bolder

birds (90th percentile). Each data point represents a single foraging trip.
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Table 1. Model estimates from set of generalised linear mixed effects models examining the effect of the Southern Annular Mode (SAM) and Southern Oscillation
Index (SOI) on foraging behaviour. Total path distance was fitted with a Gamma distribution (log link); ratio search: travel with a beta distribution, and landings
per day with a Poisson distribution (log link): estimates are provided on the relevant link scale. An odds ratio of 1 suggests no effect, an odds ratio greater than
1 suggests a positive association, and an odds ratio less than 1 suggests a negative association. Significant p values and associated beta estimates and test
statistics are highlighted in bold if they were found to be significant in both sexes; they are highlighted in bold and italics if they were found to be significant in

only one sex. Non-significant interactions were dropped.
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Estimate (odds ratio*) and 95% confidence interval z value p value
Response Predictor
F m F m F m
SAM 0.92 [0.89, 0.95] 1.01[0.98, 1.04] -480 054 <0.001  0.59
Boldness 1.07 [0.99, 1.16] 1.01 [0.94, 1.09] 1.63 0.27 0.10 0.78
Age 1.00[0.99, 1.01] 1.01 [1.00, 1.02] 0.00 1.59 0.99 0.11
Number of landings sol 0.84 [0.82, 0.87] 0.85 [0.83, 0.88] -10.41 -10.25 <0.001 <0.001
Boldness 1.07 [1.00, 1.15] 1.03 [0.96, 1.10] 1.84 0.71 0.066 0.48
Age 1.00[0.99, 1.01] 1.01 [1.00, 1.02] 006 172 0.95 0.085
S0l x boldness 0.97 [0.96, 0.99] -3.42 0.001
SAM 0.8 [0.82, 0.94] 0.95 [0.90, 1.00] -3.55 -1.94 <0.001 0.003
Boldness 1.00[0.92, 1.09] 0.95 [0.87, 1.03] 003  -1.23 0.98 0.053
Ratio search: travel Age 1.00[0.99, 1.01] 1.00[0.99, 1.01] 042  0.23 0.67 0.82
SOl 1.03 [0.93, 1.13] 1.02 [0.97, 1.08] 0.57 0.78 0.57 0.43
Boldness 0.99 [0.91, 1.08] 0.94 [0.87, 1.03] -0.16  -1.37 0.87 0.17
Age 1.00[0.99, 1.01] 1.00[0.99, 1.01] 011  0.44 0.92 0.66
SAM 1.04 [0.96, 1.12] 1.05 [0.97, 1.14] 1.00 1.26 0.32 0.21
Boldness 1.04 [0.95, 1.15] 1.04 [0.94, 1.15] 0.92 0.74 0.36 0.46
Total path distance (km) Age 1.00[0.99, 1.01] 1.01 [1.00, 1.03] 039 156 0.70 0.12
sol 0.88 [0.83, 0.94] 0.87 [0.81, 0.94] -4.16  -3.49 <0.001 <0.001
Boldness 1.05 [0.96, 1.15] 1.04 [0.94, 1.15] 1.14 0.82 0.25 0.41
Age 1.00 [0.99, 1.01] 1.01 [1.00, 1.02] -0.13 1.62 0.90 0.10
SAM 1.05 [1.02, 1.08] 1.03 [1.00, 1.07] 3.06 1.84 0.002 0.066
Boldness 0.98 [0.94, 1.03] 1.02 [0.97, 1.07] 069 091 0.49 0.36
Median distance between search patches (km) Age 1.00 [0.99, 1.00] 1.00 [1.00, 1.01] 037 149 0.71 0.14
SOl 1.00 [0.97, 1.02] 1.00 [0.97, 1.02] 033  -0.20 0.74 0.85
Boldness 0.99 [0.95, 1.04] 1.02 [0.98, 1.07] 034 098 0.74 0.33
Age 1.00 [0.99, 1.00] 1.00 [1.00, 1.01] -0.86  1.34 0.39 0.18

*Estimate for number of landings is an Incidence Rate Ratio due to Poisson distribution.
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Effect of climate on reproductive success

Mean breeding success for the entire Possession Island study colony between 1980 and 2020 was high
at 77.96 £ 3.93% (mean weighted by annual sample size) and has been increasing annually (Table 2).
We found no evidence for effects of SAM or SOI on individual breeding success for either sex, and no
effect of boldness (Figure 5, Table 2). The relationship between age and breeding success was
quadratic, with breeding success gradually increasing until around 25-30 years, at which point it

declined.
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339  Figure 5. Breeding success as a function of changes in the Southern Annular Mode and Southern
340  Oscillation Index during breeding and pre-breeding periods. Points indicate mean breeding success for
341 each year (labelled); size indicates sample for each year. Older year boxes coloured in lighter shades of
342  green, more recent years in darker shades.

343



344 Table 2. Model estimates from binomial generalised linear mixed effects models examining the effect of the Southern Annular Mode (SAM) and Southern

345 Oscillation Index (SOI), averaged (mean) for the breeding and non-breeding periods, on individual reproductive success. Non-significant interactive effects were

346 iteratively dropped from the models. Significant p values and associated beta estimates and test statistics are highlighted in bold. Estimates are provided as

347 odds ratios; an odds ratio of 1 suggests no effect, an odds ratio greater than 1 suggests a positive association, and an odds ratio less than 1 suggests a negative

348 association.

Odds ratio and 95% confidence interval z value p value
SAM Sol SAM SOl SAM SOl

Predictor F M F M F M F M F M F M
Age 1.23 (1.13,1.33) 1.19 (1.10, 1.29) 1.23(1.13,1.33) 1.20(1.11,1.30) | 490 433 | 494 4.50| <0.001 <0.001 | <0.001 <0.001
Age2 0.82 (0.78, 0.87) 0.85(0.81,0.90) | 0.82(0.78,0.87) 0.85(0.81,0.90) | -7.18 -5.98 | -7.20 -6.00| <0.001 <0.001 | <0.001 <0.001
Mean SAM pre-
breeding 0.98 (0.91, 1.05) 1.03 (0.94, 1.13) 1.06 (0.91, 1.23) 1.10(0.92,1.33) | -0.59 056 | 0.74 1.05 0.55 0.58 0.46 0.30
Mean SAM
breeding 1.07 (0.99, 1.15) 1.06 (0.96, 1.18) 1.00 (0.86, 1.17) 1.00 (0.83, 1.20) 1.79 1.20| 0.05 -0.03 0.073 0.23 0.96 0.98
Boldness 0.94 (0.87, 1.03) 0.97 (0.90, 1.05) 0.94 (0.86, 1.02) 0.97(0.90,1.05) | -1.36 -0.72 | -1.40 -0.70 0.18 0.47 0.16 0.48
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DISCUSSION
Over an 11-year period, we observed that climatic variation significantly impacted the behaviour of

wandering albatrosses, yet did not impact their breeding success, suggesting that albatrosses are able
to buffer the effects of climate on their foraging ecology to preserve their reproductive success. This
work adds to a growing body of evidence suggesting that behavioural plasticity may be an essential
mechanism by which animals can adjust to the changing environment and ultimately buffer the
negative impacts of widescale climatic change (Bradshaw and Holzapfel 2006; Charmantier et al. 2008;

Grémillet and Boulinier 2009; Moritz and Agudo 2013).

Variation in SAM differentially impacted the foraging ranges of female and male albatrosses. Positive
SAM phases are associated with less favourable conditions for female foraging, marked by weaker
winds and increased sea surface temperature (see Figure 1 in Lovenduski and Gruber 2005), and in
such conditions females were found to land less frequently and to increase their travel time relative to
searching. Landing is associated with prey capture attempts (Weimerskirch et al. 1997; Weimerskirch
and Guionnet 2002), suggesting that females were making fewer attempts to capture prey items.
Combined with observations that both relative travelling behaviour and the distance travelled
between bouts of searching behaviour increased, this suggests that females were encountering fewer
feeding patches during positive SAM phases. Conversely, positive SAM phase in male foraging ranges
correlate with improved foraging conditions — specifically, increased wind speeds, cooler SST, and
possibly increased chlorophyll levels. Despite this, male behaviour did not show adjustment in
response to SAM. This may be due to the spatial variability of SAM effects, which tend to be beneficial
in the south but disadvantageous in the north. As Figure 1 illustrates, males forage both north and
south of the Antarctic Polar Front and so could experience improved or diminished foraging conditions
depending on their chosen foraging location, potentially masking an overall relationship with foraging
success. Alternatively, it is possible that this dichotomy emerges from between-sex differences in
plasticity, a pattern that has been observed across a very small, but diverse, range of other species

(Bonier et al. 2007; Meuthen et al. 2018; Brand et al. 2023). It is difficult, however, to disentangle this
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from the fact that females are also probably exposed to greater variation in foraging habitat quality as
they typically forage north of the Antarctic Polar Front, where oceanographic conditions are more
variable. Conditions in male foraging grounds are generally good for foraging, being characterised by
stronger winds and cooler temperatures, and so further positive change may not have had detectable
effects (Wakefield et al. 2009; Clay et al. 2020). The increasing trend for positive SAM in recent years

may further obscure effects on male behaviour (Figure 3; Abram et al. 2014; Fogt and Marshall 2020).

Variation in SOI affects female and male foraging ranges similarly, with positive phases correlating with
cooler SST and stronger winds, the former being thought to indicate better foraging conditions while
the latter makes at-sea travel more efficient (Richardson et al. 2018; Evans et al. 2021). During positive
SOl phases, both sexes showed behaviours that in combination may indicate successful foraging; that
is, fewer landings and shorter foraging distances (thought to be indicative of successful trips;
Salamolard and Weimerskirch 1993; Shaffer et al. 2003; Weimerskirch et al. 2007). Females
additionally spent more time in search behaviour. These responses may suggest birds were
experiencing more successful foraging trips, making fewer prey capture attempts that were either
more successful or resulted in the capture of more or larger prey. While it is unclear why males
responded to SOI variation, but not SAM, the greater variability in SOI during the study period may

have made its effects more detectable as compared to SAM.

By incorporating the metric ‘boldness’ in our analyses, we aimed to quantify the role of individual
variation in responses to climate. Overall, boldness had a limited impact on individual behavioural
responses to longer-term environmental change: personality was only found to be important in male
responses to the SOI, where shy males were found to adjust their number of landings to a lesser extent
than bolder males, contrasting with theoretical work predicting that shyer individuals should be more
attuned to their environment (Mathot and Dingemanse 2012; Snell-Rood 2013; Stamps 2016; Gibelli
and Dubois 2017), though this effect was modest. Female responses did not depend on personality, a

surprising result given that previous work indicates that boldness influences short-term behavioural
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responses to specific environmental factors, such as instantaneous wind conditions, in female
wandering albatrosses (Gillies et al. 2023). This is unlikely to reflect a lack of perceived ‘risk’ as birds
experienced a full spectrum of environmental conditions, which should include both ‘risky’ and ‘non-
risky’ scenarios. Instead, this discrepancy indicates that while personality traits may affect immediate,
short-term behavioural adjustments, they might not significantly impact long-term responses to
broader climatic factors. This is consistent with previous findings that boldness has a minimal impact
on female demographic rates (Van de Walle et al. 2024) and overall breeding success (Gillies et al.
2023). These findings support the idea that behavioural plasticity is a crucial mechanism by which
species buffer potential impacts of environmental variation on their fitness (Komers 1997; Chevin et

al. 2010; Beever et al. 2017).

As albatrosses are long-lived and thus prioritise self-maintenance over reproductive investment, poor
foraging conditions during the breeding season could negatively impact their offspring’s survival and
development through reduced care or provisioning quality (Stearns 1992). Despite this, we found no
effect of SAM or SOI on individual breeding success. It is possible that negative impacts on female
foraging were offset by the success of their male partners, given the contrasting impacts on their
respective foraging ranges. Alternatively, or additionally, albatrosses may have mechanisms to mitigate
environmental impacts before they impact reproductive output. As capital breeders, the costs of
reproduction in wandering albatrosses are likely to be paid from resources accumulated prior to
breeding, with resources gained during the breeding season being allocated to maintaining parental
condition rather than being passed to offspring (Jonsson 1997). Indeed, previous work has shown that
albatrosses experiencing improved foraging conditions during provisioning do not invest this extra
energy into their chick (Berrow and Croxall 2001). However, our measure of breeding success considers
only chick survival until fledging, and so may not capture long-term fitness impacts. Previous research
indicates potential cohort effects due to environmental variation (Fay et al. 2015; Fay et al. 2016),
highlighting the need for additional measures such as chick body condition and recruitment to fully

understand the fitness impacts of climatic variation on albatrosses. Furthermore, conditions during
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the pre-breeding season can have significant consequences for the probability of attempting to breed,
even if it does not have effects on breeding success directly (Van de Walle et al. 2024). Future studies
should explore potential long-term effects on reproduction, including impacts on offspring quality,
breeding frequency and probability, or reproductive lifespan, given known carry-over effects from
current to future reproduction in seabirds (Catry et al. 2013; Fayet et al. 2016; Moe et al. 2017; Harris

et al. 2020).

Ultimately, the finding that breeding success was unaffected by climatic variation may suggest that all
individuals are selected to behaviourally buffer this variation, at least within a season. This may
additionally help explain the finding that personality did not have strong effects on behaviour, if
responses to climate are so conserved that they mask any potential effects of boldness. However, our
study captures only an 11-year snapshot of climatic variation, during which time the most extreme
negative values of SAM and SOl were not observed. Wandering albatrosses are capable of considerable
behavioural feats, travelling several thousand kilometres in a single foraging trip, and so are adept at
behaviourally buffering variation, something that has also been observed in their responses to long-
term changes in wind conditions (Weimerskirch et al. 2012). However, there are almost certainly limits
to the environmental variation that birds can withstand. Indeed, previous work has found that
wandering albatrosses do have a maximum tolerable wind speed that they act to avoid (Nourani et al.
2023), suggesting that more extreme variation could in theory lead to among-individual differences in
responses that we were unable to capture. Furthermore, as the breeding season progresses, the ability
to buffer environmental variation may become particularly critical as the chick hatches and the
energetic demands of provisioning therefore increase. Such demands may restrict the capacity of
albatrosses’ behavioural coping mechanisms, which could significantly affect foraging efficiency and,

consequently, reproductive success.

Our study sheds light on the relationship between climatic variation, foraging behaviour, and

reproductive success in wandering albatrosses. While we observed significant impacts of changes in



452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

SAM and SOI on foraging behaviour, these did not translate into effects on reproductive success. This
suggests that the behavioural plasticity exhibited by seabirds, including albatrosses, may provide some
protection against the broader effects of climate warming. However, it remains unclear whether
environmental effects may still impact overall fitness, or whether small effects that are undetectable
at this scale could accumulate over albatrosses’ entire lifecycles. Moreover, this plasticity is unlikely to
be limitless (Somveille et al. 2020), particularly as climate variability intensifies, exposing animals to
extremes of environmental variation to which they cannot adapt. Seabirds have already experienced
mass die-offs, wrecks, and heat stress associated with extremes of wind and temperature (Lempidakis
et al. 2022; Nourani et al. 2023). Similar trends have been observed for terrestrial species when
extreme conditions exceed the capacity of species to behaviourally adjust or lead to the expression of
catastrophically maladaptive behaviour (Santini et al. 2016; van Baaren and Candolin 2018; Sharpe et
al. 2021). Such effects may be compounded by anthropogenic impacts such as fishing, introduced
predators, land-use change, or pollutants (Thuiller et al. 2006; Goutte et al. 2014; Oro 2014; Barbraud
et al. 2021). Our results offer insight into these complex dynamics, highlighting the importance of
understanding the limits of behavioural plasticity and how it interacts with anthropogenic pressures

to predict the likely fate of species in our changing environment.
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