
Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains

Levi Lingsch 1 Mike Y. Michelis 2 3 Emmanuel de Bézenac 1 Sirani M. Perera 4 Robert K. Katzschmann 2 3

Siddhartha Mishra 1 2

Abstract
The computational efficiency of many neural op-
erators, widely used for learning solutions of
PDEs, relies on the fast Fourier transform (FFT)
for performing spectral computations. As the
FFT is limited to equispaced (rectangular) grids,
this limits the efficiency of such neural operators
when applied to problems where the input and
output functions need to be processed on gen-
eral non-equispaced point distributions. Lever-
aging the observation that a limited set of Fourier
(Spectral) modes suffice to provide the required
expressivity of a neural operator, we propose a
simple method, based on the efficient direct eval-
uation of the underlying spectral transformation,
to extend neural operators to arbitrary domains.
An efficient implementation* of such direct spec-
tral evaluations is coupled with existing neu-
ral operator models to allow the processing of
data on arbitrary non-equispaced distributions of
points. With extensive empirical evaluation, we
demonstrate that the proposed method allows us
to extend neural operators to arbitrary point dis-
tributions with significant gains in training speed
over baselines while retaining or improving the
accuracy of Fourier neural operators (FNOs) and
related neural operators.

1. Introduction
Partial Differential Equations (PDEs) are extensively used
to mathematically model interesting phenomena in science
and engineering (Evans, 2010). As closed-form or analyt-
ical solutions to solve PDEs are not available or practical,

1Seminar for Applied Mathematics, ETH Zurich, Switzerland
2ETH AI Center, ETH Zurich, Switzerland 3Soft Robotics Lab,
ETH Zurich, Switzerland 4Department of Mathematics, Embry-
Riddle Aeronautical University, Daytona Beach, FL, USA. Cor-
respondence to: Levi Lingsch <llingsch@student.ethz.ch>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

*Source code available on GitHub: https://github.
com/camlab-ethz/DSE-for-NeuralOperators

traditional numerical methods such as finite difference, fi-
nite element, and spectral methods (Quarteroni & Valli,
1994) are used to solve PDEs. Despite their tremendous
success, the prohibitively high computational cost of these
methods makes them infeasible for a variety of contexts
in PDEs ranging from high-dimensional problems to the
so-called many query scenarios (Karniadakis et al., 2021).
This high computational cost also provides the rationale for
the development of alternative data driven methods for the
fast and accurate simulation of PDEs. Hence, a wide va-
riety of machine learning algorithms have been proposed
recently in this context. These include physics-informed
neural networks (PINNs) (Raissi et al., 2019), MLPs, and
CNNs for simulating parametric PDEs (Zhu & Zabaras,
2018; Lye et al., 2020; 2021; Wandel et al., 2020) as well
as graph-based algorithms (Sanchez-Gonzalez et al., 2020;
Pfaff et al., 2020; Brandstetter et al., 2022; Equer et al.,
2023), to name a few.

However, as solutions of PDEs are expressed in terms of
the so-called solution operators, which map input func-
tions (initial and boundary data, coefficients, source terms)
to the PDE solution, operator learning, i.e., learning the
underlying operators from data, has emerged as a domi-
nant framework for applying machine learning to PDEs.
Existing operator learning algorithms include, but are not
limited to, operator networks (Chen & Chen, 1995), Deep-
ONets (Lu et al., 2019; Mao et al., 2020; Cai et al., 2021),
attention-based methods such as (Kissas et al., 2022; Cao,
2021; Prasthofer et al., 2022), and neural operators (Ko-
vachki et al., 2021b; Li et al., 2020b;c; Raonić et al., 2023).
More recently, transformer-based approach for learning op-
erators have been explored (Wu et al., 2023; Li et al., 2023),
yet operator learning in the spectral domain retains an ad-
vantage (Hao et al., 2024).

Within this large class of operator learning algorithms,
Neural Operators based on non-local spectral transforma-
tions, such as the Fourier Neural operator (FNO) (Li et al.,
2020a) and its variants (Li et al., 2021; Pathak et al., 2022)
have gained much traction and are widely applied. Apart
from favorable theoretical approximation properties (Ko-
vachki et al., 2021a; Lanthaler et al., 2023b), FNOs are at-
tractive due to their expressivity, simplicity, and computa-
tional efficiency. A key element in the computational effi-

1

https://github.com/camlab-ethz/DSE-for-NeuralOperators
https://github.com/camlab-ethz/DSE-for-NeuralOperators


Fourier-Based Neural Operators on Arbitrary Domains

Regular Grid Lattice Random

1

Figure 1: Distributions discussed in this paper. The vanilla
FNO is restricted to the regular grid, but may be applied to
a general lattice distribution, random distribution, or struc-
tured point cloud via the approach outlined in Section 2.

ciency of the FNO and its variants lies in the fact that its
underlying convolution operation is efficiently carried out
in Fourier space with the fast Fourier transform (FFT) al-
gorithm. It is well-known that the FFT is only (log-)linear
in computational complexity with respect to the number
of points at which the underlying input functions are sam-
pled. However, this computational efficiency comes at a
cost as the recursive structure of the FFT limits its appli-
cations to inputs sampled on the so-called Regular or eq-
uispaced Cartesian (Rectangular) grids, see Figure 1 left
for an illustration. This is a major limitation in practice.
In real-world applications, where information on the input
and output signals is measured by sensors, it is not always
possible to place sensors only on an equispaced grid. Simi-
larly, when data is obtained through numerical simulations,
often it is essential to discretize PDEs on irregular grids,
such as those adapted to capture relevant spatially localized
features of the underlying PDE solution or on unstructured
grids that fit the complex geometry of the underlying do-
main. See Figure 1 for examples of such non-equispaced
distributions of sample points or point clouds.

Given this context, it is imperative to design neural opera-
tors that can process input and output functions sampled on
arbitrary point distributions. Consequently, several meth-
ods have been proposed in the literature to address this lim-
itation of FNOs and modify/enhance it to handle data on
non-equispaced points. A straightforward fix would be to
interpolate data from non-equispaced point distributions to
equispaced grids. However, as shown in (Li et al., 2022),
the resulting procedure can be computationally expensive
and/or inaccurate. Li et al. (2022) propose a geometry-
aware FNO (Geo-FNO) that appends a neural network to
the FNO to learn a deformation from the underlying do-
main to a regular grid. Then, the standard FFT can be ap-
plied to the latent space of equispaced grid points. This
learned diffeomorphism corresponds to an adaptive moving
mesh (Huang & Russell, 2010). Factorized-FNO (F-FNO)
builds upon the Geo-FNO, introducing an additional bias
term in the Fourier layer and performing the Fourier trans-
form over each dimension separately (Tran et al., 2023).

The non-equispaced Fourier PDE solver (NFS) uses a vi-
sion mixer (Dosovitskiy et al., 2020) to interpolate from
a non-equispaced signal onto a regular grid, again apply-
ing the standard FNO subsequently (Lin et al., 2022). All
these methods share the same design principle, i.e., given
inputs on non-equispaced points, interpolate or transform
this data into a regular grid and then apply the FNO, lead-
ing to a natural question: Is there an alternative approach
where truncated spectral transformations, such as the dis-
crete Fourier transform (DFT) inside FNO, can be per-
formed efficiently on arbitrary point distributions?

The main goal of this paper is to propose such an alterna-
tive approach. Our starting point is the recent observation,
both theoretical as well as empirical, in (Lanthaler et al.,
2023b;a) and references therein, that in practice, only a rel-
atively small (fixed) number of Fourier modes suffice to
provide the required expressivity of FNOs and the superior
performance of FNO can be attributed to other factors such
as residual connections, high-dimensional lifting operators
and nonlinear activations. Moreover, the number of effec-
tive Fourier modes is significantly smaller than (and inde-
pendent of) the number of points at which the input and
output functions are sampled. This motivates us to design
a simple method based on an efficient direct evaluation of
truncated spectral transformations within neural operators
to extend them to arbitrary point clouds. More concretely,
our contributions to this paper are

• We present a simple, efficient method to formu-
late truncated spectral transformations, such as the
Fourier transform or spherical harmonic transform, on
arbitrary point distributions. A novel PyTorch imple-
mentation of these direct spectral evaluations is also
presented.

• We replace the standard truncated spectral transfor-
mations that underpin many widely-used neural op-
erators by the presented direct spectral evaluation, to
obtain neural operators that can efficiently handle in-
put and output data on arbitrary sample points over
domains with arbitrary geometries.

• We present a suite of extensive numerical experiments
to demonstrate that a variety of neural operators, based
on truncated spectral transformations computed using
the proposed direct approach, outperform baselines in
terms of both accuracy and efficiency (training speed)
in various scenarios involving input/output data on ar-
bitrary point distributions.

2. Methods
Transforms, such as the Fourier transform and spherical
harmonics, form the foundations of many widely-used neu-

2



Fourier-Based Neural Operators on Arbitrary Domains

Figure 2: Illustration of the truncated Fourier transform on a point cloud. We construct a matrix using the values of a set
of Fourier basis functions sampled at the positions of the sample points. The transformation between spatial and spectral
domains is directly evaluated via a matrix-vector product, where the vector contains the training data. The subscript Vj

refers to the jth row of the matrix from Equation (6).

ral operators such as FNO (Li et al., 2020a), UFNO (Wen
et al., 2022), F-FNO (Tran et al., 2023) and SFNO (Bonev
et al., 2023). In this section, we describe the calculation
of discrete forms of these transforms over nonuniform data
and the construction of suitable matrices to compute these
transforms efficiently within neural operators. To this end,
we start with a short description of this matrix construction
in the 1D case.

Forward Transformations. Any discretization of the
Fourier transform will transform a sequence of N complex
numbers x = [x0, . . . , xN−1]

T into another sequence of
complex numbers X = [X0, . . . , XN−1]

T via

Xk =
N−1∑
n=0

xne
−2πipnfk , 0 ≤ k ≤ N − 1. (1)

Here, p0, . . . , pN−1 ∈ [0, 1] are sample point positions,
f0, . . . , fN−1 ∈ [0, N ] are frequencies, and i =

√
−1.

In this work, we focus on using nonuniform sample points
with uniform (integer) frequencies; this is commonly re-
ferred to the type II NUDFT (Greengard & Lee, 2004).

Modern GPUs and machine learning libraries are opti-
mized for handling matrices. We will construct a matrix
of the form,

Vj,k =
1√
N

[
e−2πi(jpk)

]m−1,N−1

j,k=0
, (2)

where m the number of modes, truncated such that m <<
N . Then, we can computationally realize the transform (1)
by a matrix-vector product

X = Vx, (3)

relying on the optimized matrix operations provided by
popular machine learning libraries, such as PyTorch. Fur-
thermore, support for batched matrix multiplications is
already present, allowing this approach to be used for
batched data.

Extension to D-dimensional arbitrary point clouds.
The multidimensional NUDFT may be presented as

Xk =
N−1∑
n=0

xne
−2πipn·fk , (4)

transforming a D-dimensional array of complex numbers
xn into another complex D-dimensional array Xk. In this
case, pn ∈ [0, 1]D are sample points, [0, 1]D := [0, 1] ×
[0, 1] × · · · × [0, 1] (D times), fk ∈ [0, N1] × [0, N2] ×
· · · × [0, ND] are frequencies, and n = (n1, n2, . . . , nD)
and k = (k1, k2, . . . , kD) are D-dimensional vectors of
indices from 0 to N −1 := (N1−1, N2−1, . . . , ND−1).

For the purposes of neural operator learning, we again re-
arrange this summation into a matrix. We store the sample
points as a matrix P = (p0,p1, . . . ,pN−1)

T ∈ [0, 1]N×D.
Additionally, the number of frequencies, or modes, is trun-
cated at m along each spatial dimension, while higher
modes are ignored. This results in the following matrix,

Vj,k =
√

D
N

e−2πi

(
D−1∑
l=0

(⌊ j

ml ⌋ mod m)Pk,l

)mD−1,N−1

j,k=0

.

(5)
The order of the exponents is equivalent to a flattened ten-
sor product. To further illustrate the general layout of this

3



Fourier-Based Neural Operators on Arbitrary Domains

matrix, we present V for the 2D case over m modes,

V =

√
2

N



e−2πi(0p0
T+0p1

T )

e−2πi(1p0
T+0p1

T )

...
e−2πi((m−1)p0

T+0p1
T )

e−2πi(0p0
T+1p1

T )

e−2πi(1p0
T+1p1

T )

...
e−2πi((m−1)p0

T+1p1
T )

...
e−2πi(0p0

T+(m−1)p1
T )

e−2πi(1p0
T+(m−1)p1

T )

...
e−2πi((m−1)p0

T+(m−1)p1
T )



. (6)

This construction is readily implemented in a single shot
using tensorized methods, eliminating the need for less effi-
cient loop constructs. Likewise, it leverages methods which
have been highly optimized for 3D or 4D tensors, such as
torch.bmm() and torch.matmul() for PyTorch.

Data from a general point cloud is stored in a vector, thus
the transform relating x and X in the higher-dimensional
cases is as readily calculated by the matrix-vector product
(3), as in the 1D case.

In the special case that sample points lie on a lattice, it is
possible to use a more memory efficient approach which is
similar to the 2D FFT. We refer the interested reader to SM
A.2 for more details.

Extension to Spherical Harmonics. The above method
for constructing these matrices is not just limited to Fourier
transforms and can thus be integrated in other neural oper-
ators. Simply using basis functions of other spectral trans-
formations leads to a formulation that is adapted for the
underlying spectral transform algorithms, such as wavelets
or Laplace transforms. We exemplify such an extension to
the spherical harmonics below.

The spherical harmonics are derived as the eigenfunctions
of the Laplacian on the sphere. Given the maximum degree
lmax, the associated harmonics can be explicitly calculated
and arranged into a matrix as,

Vj,k =
[
CeimϕkPm

l (cos θk)
]l2max−1,N−1

j,k=0

m = j − (⌊
√
j⌋2 + ⌊

√
j⌋), l = ⌊

√
j⌋,

(7)

for any point k with polar angle θk and azimuth ϕk, where
C is a normalization constant and Pm

l is the associated
Legendre polynomial. The total number of modes is equal

to l2max, as each degree l has 2l + 1 orders m, with −m ≤
l ≤ m. Once again, the transform is computed as a matrix-
vector product as in (3).

Backward Transformations. The transformation from
the spectral domain back to the physical space is imme-
diately calculated by multiplying the data in the frequency
domain by the conjugate transpose of the forward transfor-
mation matrix,

x = V̄TX. (8)

Since this approach avoids constructing a new matrix at run
time, simply taking the adjoint is also computationally ef-
ficient. See Figure 2 for a visual summary of our algorithm
for the realization of the discrete spectral evaluations.

The conjugate transpose converts from the spectral to the
physical domain. However, it only serves as an inverse
for orthogonal forward transforms. This is easily achieved
by Euclidean Fourier transforms, when considering a sub-
sampled grid where the number of sample points along
each dimension is equal to the the number of Fourier modes
taken along each respective dimension. In the case of
spherical harmonics, however, orthogonality is preserved
only in continuous cases. Nonetheless, orthogonal trans-
formations on the sphere exist for discrete transforms under
certain restrictions. Driscoll & Healy (1994) present sam-
pling theorems for Fourier expansions and convolutions on
a sphere which preserve orthogonality, as well as an effi-
cient algorithm to compute such transforms. McEwen &
Wiaux (2011), likewise, present sampling theorems and
fast spin spherical harmonics algorithms for equiangular
sampling points on the sphere by associating the sphere
with a torus through periodic extension.

Computational Complexity. The most notable feature
of FFT is its computational efficiency. Calculating the
Fourier coefficients of a 1D signal, sampled at N points,
by using the brute force DFT, costs O(N2). In con-
trast, the FFT algorithm computes these coefficients with
O(N logN) complexity.

Hence, it is natural to wonder why one should reconsider
matrix multiplication techniques in our setting. The max-
imum performance gain with FFT occurs when the FFT
computes all the Fourier coefficients, or modes, of an un-
derlying signal. Furthermore, peak efficiency is reached
for points on a dyadic interval. While the number of modes
to compute may be truncated, the interconnected nature of
the self-recursive radix-2 FFT algorithm makes it difficult
in practice to attain peak efficiency. We refer the reader to
SM Figure 4 for a visual representation of the FFT algo-
rithm. Thus, in the case of truncated modes, matrix multi-
plication techniques could be competitive vis a vis compu-
tational cost. As observed in Barnett et al. (2019), a direct

4



Fourier-Based Neural Operators on Arbitrary Domains

10 20 30 40 50 60

Modes

0.80

0.85

0.90

0.95
T

ra
in

in
g

T
im

e
(s

)

FFT

DSE

Figure 3: Ablation study to compare the FNO training time
using the FFT and the direct spectral evaluations (DSE) for
the 1D Burgers’ equation on equispaced data.

evaluation is competitive or more efficient when the num-
ber of modes is on the order of 101 or fewer.

Moreover, for neural operators, only a small subset of
nonzero modes are required to approximate the operator (Li
et al., 2020a; Lanthaler et al., 2023b;a), independent of the
number of points. Therefore, the computational complex-
ity of the proposed approach cost O(mN) as the matrix
structure can be fully determined in O(mN) as opposed
to O(N2) (Gohberg & Olshevsky, 1994b; Pan, 2001; Go-
hberg & Olshevsky, 1994a). We also present an ablation
study in Figure 3, varying the number of modes and observ-
ing the computation time for the 1D Burgers experiment,
described in Section 3. Results for computation time as
the number of modes is varied for 2D equispaced grids, 2D
point clouds, and spherical geometries are presented SM
Table 4. Directly evaluating the Fourier transform is clearly
more efficient within the typical range of 12 to 32 modes
required for by FNO (Li et al., 2020a), and it remains more
efficient even up to 64 modes. This figure suggests that
direct spectral evaluations will be faster to run in practice.

A detailed discussion on the computational complexity of
the matrix method presented here, both for Fourier trans-
forms and Spherical harmonics is provided in SM A.3.

3. Experimental Results
In this section, our aim is to investigate the performance
of the presented Direct Spectral Evaluations (DSE) within
various neural operator architectures on a challenging suite
of diverse PDE tasks.

Implementation, Training Details and Baselines. A
key contribution of this paper is a new implementation of
the presented matrix multiplications in PyTorch, which en-
ables us to efficiently compute Fourier transforms. Within
a neural network, an efficient O(mN) algorithm must also
be parallelizable to handle batches, as this massively speeds
up the training process. Batches of data with the same

or different point distributions are easily handled by the
torch.matmul() and torch.bmm() functions.

In all experiments, we use a simple grid search to select the
hyperparameters. We train all models until convergence.
We also use the L1-loss function, which produced both a
lower L1-error and L2-error than the L2-loss. The test error
was measured in all experiments as the relative L1 error.

As baselines, we use the geometric diffeomorphism (Ge-
ometric Layer), described by Li et al. (2022) in exper-
iments where the underlying domain has a complicated,
non-equispaced geometry, when applicable. For the one di-
mensional experiment, we use a cubic interpolation scheme
on the nonequispaced data, as well as two Nonuniform FFT
approaches. For the experiments on a lattice, we take the
model’s performance over the original grid as a baseline.
To apply the SFNO in the spherical example, we explore
radial-basis function interpolation schemes using both a
Gaussian kernel with variance 0.1 and a linear kernel.

To show the effectiveness as well as the generality of DSE,
we implement it within several prominent neural operators,
namely the FNO, UFNO (Wen et al., 2022), FFNO (Tran
et al., 2023), and SFNO (Bonev et al., 2023) (for data on
the sphere). Model sizes are chosen to be as close as pos-
sible when comparing the DSE and the baselines. All ex-
periments are performed on the Nvidia GeForce RTX 3090
with 24GB memory.

Benchmark 1: Burgers’ Equation. The one-
dimensional viscous Burgers’ equation is a widely
considered model problem for fluid flow given by

∂tu(x, t) + ∂x

(
1

2
u2(x, t)

)
= ν∂xxu(x, t),

u(x, 0) = u0(x),

(9)

where x ∈ (0, 1), t ∈ (0, 1], u denotes the fluid velocity
and ν the viscosity. We follow (Li et al., 2020a) in fix-
ing ν = 0.1 and considering the operator that maps the
initial data u0 to the solution u(·, T ) at final time T = 1.
The training and test data, presented in (Li et al., 2020a)
for this problem, is used. We start by comparing the stan-
dard version of FNO (with FFT) to FNO with the DSE for
data sampled on an equispaced grid. The difference be-
tween the resulting test errors is negligible, because the un-
derlying algorithm is the same in this case modulo small
numerical errors, as reported in Table 1. Moreover, the
training times per epoch were also comparable. In contrast,
for data sampled from points drawn from a contracting-
expanding distribution, illustrated in SM Figure 5, the pro-
posed method was 5% more accurate on average when
compared to FNO with a cubic interpolation, interpolating
data from the contracting-expanding distribution to an eq-
uispaced grid. However, the training time with the DSE

5



Fourier-Based Neural Operators on Arbitrary Domains

Table 1: Performance results for all experiments, comparing the DSE approach to various baselines. Directly evaluating
the Fourier transform or spherical harmonics over the given domain offers clear advantages in speeding up training time,
improving the testing error, or both across a variety of experiments with both equispaced grids and unusual geometries.

Model Method Training Time (per epoch) L1 Test Error

1D: Burgers’ Equation
Equispaced Distribution:

FNO DSE 0.72s 0.0551%
FFT 0.78s 0.0575%

Contracting-Expanding Distribution:

FNO

DSE 0.11s 0.184%
FFT + Cubic Interpolation 1.00s 0.195%
KB-NUFFT 30.0s 0.346%
Toeplitz-NUFFT 0.85s 0.740%

2D Nonequispaced Lattice: Shear Layer

FNO DSE on Noneq. Lattice 57s 5.53%
FFT on Equispaced Grid 251s 6.76%

UFNO DSE on Noneq. Lattice 68s 5.61%
FFT on Equispaced Grid 287s 6.61%

FFNO DSE on Noneq. Lattice 108s 12.4%
FFT on Equispaced Grid 380s 12.4%

2D Nonequispaced Lattice: Specific Humidity

FNO DSE on Noneq. Lattice 1.5s 4.65%
FFT on Equispaced Grid 15s 5.09%

UFNO DSE on Noneq. Lattice 2.5s 3.91%
FFT on Equispaced Grid 23s 4.34%

FFNO DSE on Noneq. Lattice 2.3s 4.41%
FFT on Equispaced Grid 26s 5.02%

2D Point Cloud: Flow Past Airfoil

FNO DSE 2.8s 0.220%
Geometric Layer 6.2s 1.20%

UFNO DSE 2.6s 0.380%
Geometric Layer 7.1s 0.679%

FFNO DSE 2.1s 0.650%
Geometric Layer 6.9s 2.10%

2D Point Cloud: Elasticity

FNO DSE 0.41s 1.96%
Geometric Layer 0.71s 2.39%

UFNO DSE 0.60s 2.05%
Geometric Layer 1.0s 2.16%

FFNO DSE 0.28s 1.73%
Geometric Layer 0.44s 2.20%

Random Spherical Point Cloud: Shallow Water Equations

SFNO
DSE 15s 3.88%
Gaussian Interpolation 86s 7.29%
Linear Interpolation 71s 12.7%

FNO
DSE 16s 5.39%
Gaussian Interpolation 92s 8.41%
Linear Interpolation 83s 15.2%

6



Fourier-Based Neural Operators on Arbitrary Domains

was notably improved, by almost a factor of 4, when com-
pared to the interpolation baseline. Note that the cubic
interpolation was computed beforehand and its cost not
taken into account in reporting the training time. In ad-
dition, we draw comparisons with relevant Nonuniform
FFT (NUFFT) algorithms with PyTorch implementations,
namely the Kaiser-Bessel and Toeplitz NUFFT (Muckley
et al., 2020). The performance of these approaches is rel-
atively poor, as they fundamentally rely on an interpola-
tion+FFT scheme.

Benchmark 2: Shear Layer. We follow a recent work
on convolutional neural operators (Raonić et al., 2023) in
considering the incompressible Navier-Stokes equations

∂u

∂t
+ u · ∇u+∇p = ν∆u, ∇ · u = 0. (10)

Here, u ∈ R2 is the fluid velocity and p is the pressure. The
underlying domain is the unit square with periodic bound-
ary conditions and the viscosity ν = 4×10−4, only applied
to high-enough Fourier modes (those with amplitude ≥ 12)
to model fluid flow at very high Reynolds-number. The so-
lution operator maps the initial conditions u(t = 0) to the
solution at final time T = 1. We consider initial condi-
tions representing the well-known thin shear layer prob-
lem (Bell et al., 1989; Lanthaler et al., 2021) (see (Raonić
et al., 2023) for details), where the shear layer evolves via
vortex shedding to a complex distribution of vortices (see
SM Figure 10a for an example of the flow). The train-
ing and test samples are generated, with a spectral viscos-
ity method (Lanthaler et al., 2021) of a fine resolution of
10242 points, from an initial sinusoidal perturbation of the
shear layer (Lanthaler et al., 2021), with layer thickness of
0.1 and 10 perturbation modes, the amplitude of each sam-
pled uniformly from [−1, 1] as suggested in (Raonić et al.,
2023). As seen from SM Figure 10a, the flow shows inter-
esting behavior with sharp gradients in two mixing regions,
which are in the vicinity of the initial interfaces. However,
the flow is nearly constant further away from this mixing
region. Hence, we will consider input functions being sam-
pled on a lattice shown in SM Figure 6 which is adapted to
resolve regions with large gradients of the flow. On the
other hand, the FFT based FNO, UFNO and FFNO base-
lines are tested on the equispaced point distribution. From
Table 1, we observe that the proposed method is marginally
more accurate while consistently being 4 times faster per
training epoch across all models, demonstrating a signifi-
cant computational advantage on this benchmark.

Benchmark 3: Surface-Level Specific Humidity. Next,
we focus on a real world data set and learning task where
the objective is to predict the surface-level specific humid-
ity over South America at a later time (6 hours into the
future), given inputs such as wind speeds, precipitation,

evaporation, and heat exchange at a given time. The ex-
act list of inputs is given in SM Table 2. The physics of
this problem are intriguingly complex, necessitating a data-
driven approach to learn the underlying operator. To this
end, we use the (MERRA-2) satellite data to forecast the
surface-level specific humidity (EarthData, 2021 - 2023).
Moreover, we are interested in a more accurate regional
prediction, namely over the Amazon rainforest. Hence, for
models with the DSE, we will sample data on points on a
lattice that is more dense over this rainforest, while being
sparse (with smooth transitions) over the rest of the globe,
see SM Figure 7 for visualization of this lattice. Test er-
ror is calculated over the region, shown in SM Figure 10b.
The results, presented in Table 1, show that the localization
capabilities of the proposed method not only offer more ac-
curate results, but DSE based neural operators are also one
order of magnitude faster to train than the baselines. The
greater accuracy is also clearly observed in SM Figure 10b,
where we observe that the FNO-DSE is able to capture ele-
ments such as the formation of vortices visible in the lower
right hand corner and the mixing of airstreams over the Pa-
cific Ocean.

Benchmark 4: Flow Past Airfoil. We also investigate
transonic flow over an airfoil, as governed by the compress-
ible Euler equations, with the problem setup considered in
(Li et al., 2022). The underlying operator maps the air-
foil shape to the pressure field. In this case, the underlying
distribution of sample points changes between each input
(airfoil shape). Directly formulating the Fourier transform
within neural operators, one can readily handle this situa-
tion. As baselines, we augment FNO, UFNO and FFNO
with the geometric layer of Geo-FNO as proposed in (Li
et al., 2022). To have a fair comparison with DSE based
models, we allow Geometric layer based models to learn
the underlying diffeomorphism online. The test errors, pre-
sented in Table 1 show that DSE-based models are both
much more accurate and much faster to train than the geo-
metric layer based baselines.

Benchmark 5: Elasticity-P. Again, we follow (Li et al.,
2022), to investigate the performance of this method on
hyper-elastic materials. We take the data, exactly as out-
lined in their work, predicting the stress as output. Again,
we train all models (FNO, UFNO, FFNO) on the point
cloud data with DSE and with the geometric layer (as pro-
posed in (Li et al., 2022)) as a baseline. For each underlying
model, the DSE is more accurate than the geometric layer
while being significantly faster to train.

Benchmark 6: Spherical Shallow Water Equations.
We follow the recent work on spherical neural operators
(Bonev et al., 2023) by considering the shallow water equa-
tions on a rotating sphere. In this experiment, training data

7



Fourier-Based Neural Operators on Arbitrary Domains

is generated on the fly such that new data is used for train-
ing and evaluation in every epoch, as described in (Bonev
et al., 2023). For each sample, we draw points from a ran-
dom uniform distribution over the sphere to create a point
cloud, as opposed to a grid, see SM Figure 9 for an illustra-
tion of this point cloud. These may correspond to sensors
over the globe in real-world applications. The training data
for both models each have approximately 5000 points. As
baselines, we considered SFNO but with data interpolated
back to a regular grid on the sphere using either linear inter-
polation or radial basis function interpolation with a Gaus-
sian kernel. We also compare the FNO on the interpolated
data with the DSE approach on the point cloud data. The
results, presented in Table 1, clearly show that SFNO using
DSE readily outperforms baselines on the interpolated data
in terms of both accuracy as well as training speed. This
difference is very pronounced for the baselines based on in-
terpolation, which are both expensive as well as inaccurate.
As expected the FNO-DSE model performs significantly
worse than the SFNO-DSE model which takes into account
the underlying spherical geometry. Additionally, we pro-
vide the baseline comparison of the SFNO and FNO on the
original (not from interpolation) grid in SM Table 6 as a
reference to their relative performance. Likewise, we test
a trained SFNO model on samples with varying numbers
of collocation points. These results, presented in Table 7
show that this method is capable of retaining performance,
even when trained on grids at different resolutions.

Summarizing, the results of the numerical experiments
clearly demonstrate that DSE is able to handle data sam-
pled on arbitrary point distributions and to accurately ap-
proximate the underlying operators. It readily outperforms
baselines, based either on interpolation or geometric trans-
formations, both on accuracy as well as on training speed.
This is particularly evident on problems where the data is
sampled on point clouds and where other operator learning
methods such as U-Nets or convolutional neural operators
cannot be readily applied.

4. Discussion
Summary. Widely used neural operators such as FNO and
its variants are limited to input/output data sampled on eq-
uispaced grids as the underlying spectral transformations
can only be efficiently evaluated on this data structure. To
expand the range of such neural operators, we propose re-
placing the standard computations of these spectral trans-
formations within neural operators with a simple, general
method that leverages the low number of (truncated) modes
to efficiently compute the spectral transform even on arbi-
trary sampling point distributions (point clouds). By de-
sign, our method is able to process data on arbitrary point
distributions with low computational cost. A novel Py-

Torch implementation is also presented to realize the pro-
posed approach that we term as the Direct Spectral Evalu-
ation (DSE).

DSE is flexible enough to be embedded within any neural
operator that uses non-local spectral transformations. We
test with a variety of neural operators such as FNO, UFNO,
FFNO, and recently SFNO for data on a sphere. Moreover,
DSE is general enough to handle point distributions rang-
ing from equispaced grids through lattices to randomly dis-
tributed point clouds. We investigate the efficiency of the
proposed DSE by testing it in conjunction with a variety
of available neural operators on a suite of benchmarks that
correspond to a variety of PDEs as well as sampling point
distributions. In all the considered benchmarks, DSE out-
performed the baselines (based either on interpolation or
learnable geometric differomorphisms as proposed in (Li
et al., 2022)) both in terms of accuracy as well as training
speed, even showing order of magnitude speedups in some
cases. Additionally, we present in SM Table 7, the gen-
eralization capabilities of the DSE approach to be applied
to point clouds not encountered during training time, even
when the number of points varies greatly. Thus, we present
a novel yet simple method that can be used readily within
neural operators to handle input/output data sampled on ar-
bitrary point distributions and learn the underlying opera-
tors accurately and efficiently.

Related Work. Nonequispaced FFT (NUFFT) algorithms
have already been developed (Dutt & Rokhlin, 1993;
Beylkin, 1995; Dutt & Rokhlin, 1995; Liu & Nguyen,
1998; Kircheis & Potts, 2023) as well as libraries for effi-
cient GPU implementations (Shih et al., 2021) and PyTorch
implementations (Muckley et al., 2020). The techniques
frequently used in these NUFFTs or approximated inverse
NUFFT include interpolation, windowing, and/or sampling
along with FFT to achieve O(n log n) complexity algo-
rithms (Selva, 2018; Heinig & Rost, 1984; Gelb & Song,
2014; Kunis & Potts, 2007; Ruiz-Antolin & Townsend,
2018; Averbuch et al., 2016; Kircheis & Potts, 2019; 2018;
Kunis, 2006; Perera et al., 2022). Essentially, the NUFFT
involves interpolating to the equispaced grid followed by
the FFT. However, interpolation based-approaches has al-
ready been shown to be sub-optimal for the case of neural
operator learning on arbitrary (Li et al., 2022). Further-
more, interpolation within the operator structure increases
the computation time, making it more efficient to interpo-
late data to a grid before training or testing and simply ap-
ply the standard FNO. The NUDFT is rarely used, as many
applications of Fourier transforms require all Fourier coef-
ficients, resulting in O(n2) cost (Bagchi & Mitra, 1999).
However, this is not the case for the neural operators that
we consider, and thus the proposed DSE avoids the rapidly
growing computational costs associated with NUDFT. In
some implementations, the Geo-FNO also uses a nonequis-

8



Fourier-Based Neural Operators on Arbitrary Domains

paced Fourier transform in conjunction with the diffeomor-
phism. As opposed to constructing a standard matrix, (Li
et al., 2022) construct an N+1 tensor, N being the number
of spatial dimensions. This geometric-Fourier layer then
transforms the problem to a set of points on a regular grid,
where the FFT is used. While the nonequispaced transfor-
mation does have some similarities to that proposed here,
the proposed method differs fundamentally in its use, lead-
ing to notable differences in the results. The construction
and multiplication we offer in our implementation are fast
and efficient, allowing us to use the nonequispaced trans-
formation within each Fourier layer, as opposed to trans-
forming the data to an equispaced grid through some slower
transformation process and then apply the FFT. Likewise,
this method allows us to avoid the need for any sort of dif-
feomorphism. In practice, we found the diffeomorphism
layer difficult to train in tandem with the Fourier layer
of the FNO. This process often requires careful tuning of
the associated diffeomorphism loss, as well as the need to
freeze this layer after some point of time and to retrain the
FNO with the diffeomorphism model fixed. In contrast, the
FNO-DSE converges just as reliably as the basic FNO and
we see the same behavior with variants of FNO such as
UFNO and FFNO.

Limitations and Future Work. The elements of the ma-
trix are directly related to the positions of the data points
for a given problem. Thus, if all training samples have dif-
ferent point clouds, a different matrix must be constructed
for each sample. Constructing the matrices at run time,
i.e., during training, hinders performance; however, this is
mitigated by the tensorized matrix construction methods
available in the implementation. As outlined by the results,
the run-time matrix construction is still able to outperform
other techniques for handling point cloud data. Finally, we
would like to highlight the potential of the DSE for dealing
with very general spectral transformations for data sampled
on arbitrary point distributions. We have considered both
Fourier transforms and Spherical harmonics in this paper
but other relevant spectral transforms such as Wavelets or
Laplace transforms will also be considered in future work.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning, specifically for applications in scien-
tific computing. There are many potential societal conse-
quences of our work, none of which we feel must be specif-
ically highlighted here.

Acknowledgement
Sirani M. Perera’s work was partially supported by the NSF
award number 2229473.

References
Averbuch, A., Shabat, G., and Shkolnisky, Y. Direct inver-

sion of the three-dimensional pseudo-polar fourier trans-
form. SIAM Journal on Scientific Computing, 38(2):
A1100–A1120, 2016.

Bagchi, S. and Mitra, S. K. The nonuniform discrete
Fourier transform and its applications in signal process-
ing. Springer Science and Business Media, 1999. doi:
10.1007/978-1-4615-4925-3.

Barnett, A. H., Magland, J. F., and af Klinteberg, L. A
parallel non-uniform fast Fourier transform library based
on an “exponential of semicircle” kernel. SIAM J. Sci.
Comput., 41(5):C479–C504, 2019.

Bell, J., Collela, P., and Glaz, H. M. A second-order projec-
tion method for the incompressible Navier-Stokes equa-
tions. J. Comput. Phys., 85:257–283, 1989.

Beylkin, G. On the fast fourier transform of functions
with singularities. Applied and Computational Har-
monic Analysis, 2(4):363–381, 1995.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical fourier
neural operators: Learning stable dynamics on the
sphere, 2023.

Brandstetter, J., Worrall, D. E., and Welling, M. Mes-
sage Passsing Neural PDE solvers. arXiv preprint
arXiv:2202.03376, 2022.

Cai, S., Wang, Z., Lu, L., Zaki, T. A., and Karniadakis,
G. E. DeepM&Mnet: Inferring the electroconvection
multiphysics fields based on operator approximation by
neural networks. Journal of Computational Physics,
436:110296, 2021.

Cao, S. Choose a transformer: Fourier or galerkin. In
35th conference on neural information processing sys-
tems, 2021.

9



Fourier-Based Neural Operators on Arbitrary Domains

Chen, T. and Chen, H. Universal approximation to nonlin-
ear operators by neural networks with arbitrary activa-
tion functions and its application to dynamical systems.
IEEE Transactions on Neural Networks, 6(4):911–917,
1995.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale. CoRR, abs/2010.11929, 2020. URL
https://arxiv.org/abs/2010.11929.

Driscoll, J. R. and Healy, D. M. Computing fourier trans-
forms and convolutions on the 2-sphere. Advances in
Applied Mathematics, 15(2):202–250, 1994. ISSN 0196-
8858. doi: 10.1006/aama.1994.1008.

Dutt, A. and Rokhlin, V. Fast fourier transforms for noneq-
uispaced data. SIAM Journal on Scientific Computing,
14(6):1368–1393, 1993.

Dutt, A. and Rokhlin, V. Fast fourier transforms for noneq-
uispaced data ii. Applied and Computational Harmonic
Analysis, 2:85–100, 1995.

EarthData, N. Modern-era restrospective analysis for re-
search and applications (merra-2) 2-dimensional data
collection., 2021 - 2023.

Equer, L., Rusch, T., and Mishra, S. Multi-scale
message passing neural pde solvers. arXiv preprint
arXiv:2302.03580, 2023.

Evans, L. C. Partial differential equations, volume 19.
American Mathematical Soc., 2010.

Gelb, A. and Song, G. A frame theoretic approach to the
nonuniform fast fourier transform. SIAM Journal on Nu-
merical Analysis, 52(3):1222–1242, 2014.

Gohberg, I. and Olshevsky, V. Fast algorithms with prepro-
cessing for matrix-vector multiplication problems. Jour-
nal of Complexity, 10(4):411–427, 1994a. ISSN 0885-
064X. doi: https://doi.org/10.1006/jcom.1994.1021.
URL https://www.sciencedirect.com/
science/article/pii/S0885064X84710211.

Gohberg, I. and Olshevsky, V. Complexity of
multiplication with vectors for structured ma-
trices. Linear Algebra and its Applications,
202:163–192, 1994b. ISSN 0024-3795. doi:
https://doi.org/10.1016/0024-3795(94)90189-9.
URL https://www.sciencedirect.com/
science/article/pii/0024379594901899.

Greengard, L. and Lee, J.-Y. Accelerating the nonuniform
fast fourier transform. SIAM Review, 46(3):443–454,
2004. doi: 10.1137/S003614450343200X.

Hao, Z., Su, C., Liu, S., Berner, J., Ying, C., Su, H., Anand-
kumar, A., Song, J., and Zhu, J. Dpot: Auto-regressive
denoising operator transformer for large-scale pde pre-
training, 2024.

Heinig, G. and Rost, K. Algebraic Methods for Toeplitz-
Like Matrices and Operators. Akademie-Verlag, Berlin,
1984.

Huang, W. and Russell, R. D. Adaptive Moving Mesh Meth-
ods, volume 174. Springer Science and Business Media,
2010.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris, P.,
Wang, S., and Yang, L. Physics informed machine learn-
ing. Nature Reviews Physics, pp. 1–19, may 2021. doi:
10.1038/s42254-021-00314-5. URL www.nature.
com/natrevphys.

Kircheis, M. and Potts, D. Direct inversion of the nonequi-
spaced fast fourier transform. 11 2018.

Kircheis, M. and Potts, D. Direct inversion of the noneq-
uispaced fast fourier transform. Linear Algebra and its
Applications, 575:106–140, 2019.

Kircheis, M. and Potts, D. Fast and direct inverion meth-
ods for the multivariate nonequispaced fast fourier trans-
form. 2 2023.

Kissas, G., Seidman, J. H., Guilhoto, L. F., Preciado, V. M.,
Pappas, G. J., and Perdikaris, P. Learning operators
with coupled attention. Journal of Machine Learning
Research, 23(215):1–63, 2022.

Kovachki, N., Lanthaler, S., and Mishra, S. On universal
approximation and error bounds for fourier neural oper-
ators. 07 2021a.

Kovachki, N., Li, Z., Liu, B., Azizzadensheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural op-
erator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481v3, 2021b.

Kunis, S. Nonequispaced fft generalisation and inversion.
PhD. dissertation, Inst. Math., Univ. Lübeck, Lübeck,
2006.

Kunis, S. and Potts, D. Stability results for scattered data
interpolation by trigonometric polynomials. SIAM Jour-
nal on Scientific Computing, 29:1403–1419, 2007.

Lanthaler, S., Mishra, S., and Parés-Pulido, C. Statistical
solutions of the incompressible euler equations. Math-
ematical Models and Methods in Applied Sciences, 31
(02):223–292, Feb 2021. ISSN 1793-6314. doi: 10.
1142/s0218202521500068. URL http://dx.doi.
org/10.1142/s0218202521500068.

10

https://arxiv.org/abs/2010.11929
https://www.sciencedirect.com/science/article/pii/S0885064X84710211
https://www.sciencedirect.com/science/article/pii/S0885064X84710211
https://www.sciencedirect.com/science/article/pii/0024379594901899
https://www.sciencedirect.com/science/article/pii/0024379594901899
www.nature.com/natrevphys
www.nature.com/natrevphys
http://dx.doi.org/10.1142/s0218202521500068
http://dx.doi.org/10.1142/s0218202521500068


Fourier-Based Neural Operators on Arbitrary Domains

Lanthaler, S., Li, Z., and Stuart, A. M. The nonlocal neural
operator: Universal approximation, 2023a.

Lanthaler, S., Molinaro, R., Hadorn, P., and Mishra, S.
Nonlinear reconstruction for operator learning of pdes
with discontinuities. In International Conference on
Learning Representations, 2023b.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A. M., and Anandkumar, A.
Fourier neural operator for parametric partial differen-
tial equations. CoRR, abs/2010.08895, 2020a. URL
https://arxiv.org/abs/2010.08895.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Stu-
art, A. M., Bhattacharya, K., and Anandkumar, A. Mul-
tipole graph neural operator for parametric partial differ-
ential equations. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M. F., and Lin, H. (eds.), Advances in
Neural Information Processing Systems (NeurIPS), vol-
ume 33, pp. 6755–6766. Curran Associates, Inc., 2020b.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., Liu, B., Stu-
art, A. M., Bhattacharya, K., and Anandkumar, A. Mul-
tipole graph neural operator for parametric partial differ-
ential equations. In Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M. F., and Lin, H. (eds.), Advances in
Neural Information Processing Systems (NeurIPS), vol-
ume 33, pp. 6755–6766. Curran Associates, Inc., 2020c.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. arXiv preprint arXiv:2111.03794, 2021.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries, 2022.

Li, Z., Shu, D., and Farimani, A. B. Scalable transformer
for pde surrogate modeling, 2023.

Lin, H., Wu, L., Huang, Y., Li, S., Zhao, G., and Li, S. Z.
Non-equispaced fourier neural solvers for pdes, 2022.

Liu, Q. and Nguyen, N. An accurate algorithm for nonuni-
form fast fourier transforms (NUFFTs). IEEE Mi-
crowave and Guided Wave Letters, 8(1):18–20, 1998.
doi: 10.1109/75.650975.

Lu, L., Jin, P., and Karniadakis, G. E. DeepONet: Learn-
ing nonlinear operators for identifying differential equa-
tions based on the universal approximation theorem of
operators. CoRR, abs/1910.03193, 2019. URL http:
//arxiv.org/abs/1910.03193.

Lye, K. O., Mishra, S., and Ray, D. Deep learning
observables in computational fluid dynamics. Journal of

Computational Physics, 410:109339, 2020. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2020.109339.
URL https://www.sciencedirect.com/
science/article/pii/S0021999120301133.

Lye, K. O., Mishra, S., Ray, D., and Chandrashekar,
P. Iterative surrogate model optimization (ISMO):
An active learning algorithm for PDE constrained
optimization with deep neural networks. Com-
puter Methods in Applied Mechanics and Engi-
neering, 374:113575, 2021. ISSN 0045-7825.
doi: https://doi.org/10.1016/j.cma.2020.113575.
URL https://www.sciencedirect.com/
science/article/pii/S004578252030760X.

Mao, Z., Lu, L., Marxen, O., Zaki, T., and Karniadakis,
G. E. DeepMandMnet for hypersonics: Predicting the
coupled flow and finite-rate chemistry behind a normal
shock using neural-network approximation of operators.
Preprint, available from arXiv:2011.03349v1, 2020.

McEwen, J. D. and Wiaux, Y. A novel sampling theorem on
the sphere. IEEE Transactions on Signal Processing, 59
(12):5876–5887, December 2011. ISSN 1941-0476. doi:
10.1109/tsp.2011.2166394. URL http://dx.doi.
org/10.1109/TSP.2011.2166394.

Muckley, M. J., Stern, R., Murrell, T., and Knoll,
F. TorchKbNufft: A high-level, hardware-
agnostic non-uniform fast Fourier transform. In
ISMRM Workshop on Data Sampling & Image
Reconstruction, 2020. Source code available at
https://github.com/mmuckley/torchkbnufft.

Pan, V. Y. Structured Matrices and Polynomials: Unified
Superfast Algorithms. Birkhauser/Springer, Boston/New
York, 2001.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,
Azizzadenesheli, K., Hassanzadeh, p., Kashinath, K.,
and Anandkumar, A. Fourcastnet: A global data-driven
high-resolution weather model using adaptive fourier
neural operators. arXiv preprint arXiv:2202.11214,
2022.

Perera, S. M., Lingsch, L., Madanayake, A., Mandal, S.,
and Mastronardi, N. A fast dvm algorithm for wideband
time-delay multi-beam beamformers. the IEEE Trans-
actions on Signal Processing, 70:5913–5925, 2022. doi:
10.1109/TSP.2022.3231182.

Pfaff, T., Fortunato, M., Sanchez-Gonzalez, A., and
Battaglia, P. W. Learning mesh-based simulation with
graph networks. CoRR, abs/2010.03409, 2020. URL
https://arxiv.org/abs/2010.03409.

11

https://arxiv.org/abs/2010.08895
http://arxiv.org/abs/1910.03193
http://arxiv.org/abs/1910.03193
https://www.sciencedirect.com/science/article/pii/S0021999120301133
https://www.sciencedirect.com/science/article/pii/S0021999120301133
https://www.sciencedirect.com/science/article/pii/S004578252030760X
https://www.sciencedirect.com/science/article/pii/S004578252030760X
http://dx.doi.org/10.1109/TSP.2011.2166394
http://dx.doi.org/10.1109/TSP.2011.2166394
https://arxiv.org/abs/2010.03409


Fourier-Based Neural Operators on Arbitrary Domains

Prasthofer, M., De Ryck, T., and Mishra, S. Vari-
able input deep operator networks. arXiv preprint
arXiv:2205.11404, 2022.

Quarteroni, A. and Valli, A. Numerical approximation
of Partial differential equations, volume 23. Springer,
1994.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework
for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Compu-
tational Physics, 378:686–707, 2019.

Raonić, B., Molinaro, R., Rohner, T., Mishra, S., and
de Bezenac, E. Convolutional neural operators. arXiv
preprint arXiv:2302.01178, 2023.

Ruiz-Antolin, D. and Townsend, A. A nonuniform fast
fourier transform based on low rank approximation.
SIAM Journal on Scientific Computing, 40(1):A529–
A547, 2018.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to sim-
ulate complex physics with graph networks. CoRR,
abs/2002.09405, 2020. URL https://arxiv.org/
abs/2002.09405.

Selva, J. Efficient type-4 and type-5 non-uniform fft meth-
ods in the one-dimensional case. IET Signal Processing,
12(1):74–81, 2018.

Shih, Y., Wright, G., Andén, J., Blaschke, J., and Barnett,
A. H. cufinufft: a load-balanced gpu library for general-
purpose nonuniform ffts, 2021.

Tran, A., Mathews, A., Xie, L., and Ong, C. S. Fac-
torized fourier neural operators. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=tmIiMPl4IPa.

Wandel, N., Weinmann, M., and Klein, R. Unsupervised
deep learning of incompressible fluid dynamics. CoRR,
abs/2006.08762, 2020. URL https://arxiv.org/
abs/2006.08762.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A.,
and Benson, S. M. U-fno – an enhanced fourier neural
operator-based deep-learning model for multiphase flow,
2022.

Wu, H., Hu, T., Luo, H., Wang, J., and Long, M. Solving
high-dimensional pdes with latent spectral models, 2023.

Zhu, Y. and Zabaras, N. Bayesian deep convolutional
encoder–decoder networks for surrogate modeling and
uncertainty quantification. Journal of Computational
Physics, 336:415–447, 2018.

Supplementary Material for:
Fourier-Based Neural Operators on Arbitrary Domains

A. Technical Details
A.1. The FFT Signal Flow Graph.

The signal flow graph provides a graphical representa-
tion of the FFT algorithm. Radix-2, recursive algorithms
such as the FFT are highly dependent on the positions of
the data. Violating this principle makes using similar ap-
proaches difficult, as the processes can not be easily ”un-
tangled” in some sense.

x(0) y(0)

x(1) y(2)

x(2) y(4)

x(3) y(6)

x(4) y(1)

x(5) y(3)

x(6) y(5)

x(7) y(7)

e
−iπ
4

−i

e
−3iπ

4

−i

−i

Figure 4: The 8-point fast Fourier transform signal flow
graph. x and y represent the signal in the physical and
Fourier domain, respectively. Dashed lines represent a mul-
tiplication by -1, red elements denote a multiplication by
that factor, and converging arrows represent a sum.

A.2. Transformations on the 2D Lattice

The 2D FFT is calculated as two 1D FFTs along each axis,
as

X = FxFT , (11)

where F is the FFT, transforming an array x ∈ CN0×N1

to an array X ∈ CN0×N1 . N0 and N1 correspond to the
number of points along the first and second spatial axes,
respectively.

We may mirror this transformation on any 2D lattice, i.e,
the tensor product of 1D point distributions along each axis
(see SM Figure 1). To do this, we construct two matrices,
V0 ∈ Cm×N0 and V1 ∈ CN1×m, corresponding to the
sample points of data points along the first and second axis,
respectively.

X = V1xV
T
2 . (12)

The operational complexity of this approach is equivalent
to that of Section 2; however, the matrices contain only m×

12

https://arxiv.org/abs/2002.09405
https://arxiv.org/abs/2002.09405
https://openreview.net/forum?id=tmIiMPl4IPa
https://openreview.net/forum?id=tmIiMPl4IPa
https://arxiv.org/abs/2006.08762
https://arxiv.org/abs/2006.08762


Fourier-Based Neural Operators on Arbitrary Domains

(N0 + N1) values, while those in the general case contain
m2 × (N0 × N1) values. Therefore, this approach may
be more efficient depending on the distribution of sample
points.

A.3. On Computational Complexity of the Direct
Evaluation of Fourier Transforms.

The matrix-vector product, as described in Section 2 of the
main text, is broken down into a vector with N components
via inner products of vectors, requiring 2N real multipli-
cations and 2(N − 1) real additions having a real-valued
input, a total of 4N2 − 2n flops. In the implementation,
the number of rows is reduced from N to a constant m s.t.
m << N , as determined by the number of modes chosen
for a given problem. Thus, for the 1D case, the total num-
ber of flops is 4Nm− 4N , therefore only growing linearly
with the problem size. For the D-dimensional nonequis-
paced data, we construct a matrix with size N columns but
the number of rows mtotal = (m1)(m2) . . . (mD), where
mj is the number of modes taken along the jth spatial di-
mension. Thus, the complexity of the transform using the
direct evaluation is reduced from O(N2) to O(mtotalN).
Finally, we note here that the existing non-uniform FFT has
the complexity of order O(RN log(N)), where R is based
on diagonally scaled FFT. Thus, applying the existing non-
uniform FFT on FNO won’t reduce the complexity of the
direct evaluation on the neural operator with the complex-
ity reduction of order O(mtotalN).

For the extension to the spherical harmonics, we pre-
compute the Legendre polynomials over N points as an
evaluation problem with O(N) complexity. Once these are
pre-computed, we call these polynomials to calculate the
spherical harmonics with complexity O(l2), e.g. the order
l is calculated using an odd number of harmonics from 1 to
the order l. Thus, the associated spherical harmonics can be
computed using O(N l2) complexity, where l << N . Fi-
nally, arranging harmonics into the truncated matrix form
followed by the matrix-vector products into vector forms
(as described above) reduces the complexity to O(Nl2) as
opposed to O(N2 l3).

The question may arise; Can the number of modes really
be said to be constant with respect to the number of points,
as more points may be used for more complex problems,
necessitating more modes? A priori, it is not possible to
say how many modes must be selected for a problem of
given complexity or resolution - these must be determined
through model selection, varying the number of modes, and
choosing the model that minimizes the error over the vali-
dation set. This model selection process has revealed that
there is often a point where increasing the number of modes
results in worse performance, i.e. increasing the number
of modes will not automatically result in increased perfor-

mance. With regard to the sharp features and large gra-
dients that may arise in complex sets of PDEs or high-
resolution data, the lifting layer and the skip connections
of the model architecture are much more capable of resolv-
ing such features than the Fourier layers. The Fourier lay-
ers serve to propagate information throughout the domain.
Thus, we maintain the position that the number of modes is
fixed with respect to the number of points.

B. Experimental Details
B.1. Point Distributions

We investigate both a uniform and a contracting-expanding
distribution to help lay the foundation for the proposed
method. These distributions are visualized in Figure 5.

For the two dimensional experiments, we investigate lat-
tices as well as random or structured data on a point cloud,
simplified illustrations of which are provided in Figure 1.
A lattice with a nonuniform distribution along one axis
(Shear Layer) and a lattice with a nonuniform distribution
along both axes (Surface-Level Specific Humidity) are in-
vestigated and visualized in Figures 6 and 7. Point cloud
data with varying geometries are investigated in the Airfoil
and Elasticity experiments. We provide visualizations of
several airfoil point clouds in Figure 8.

Finally, we investigate the performance of spherical har-
monics models on a random distribution over the sphere.
The original point cloud, the random points, and the grid
generated by interpolating from the random points are
shown in Figure 9.

13



Fourier-Based Neural Operators on Arbitrary Domains

0 1000 2000 3000 4000 5000 6000 7000 8000

x

Uniform

Contracting-Expanding

Figure 5: Point distributions used in the Burgers’ equation experiments. Data is selected from the uniform distribution
to construct the contracting-expanding distribution and random distribution. The space between points in the contracting-
expanding distribution grows from a point in both directions according to a geometric distribution.

Figure 6: Nonequispaced lattice for the shear layer problem. Sampling is dense close the interface region, smoothly
becoming sparse further from this region.

(a) FNO point distribution. The points displayed in this im-
age have been subsampled from the original distribution to
maintain clarity in the figure.

(b) Nonequispaced lattice point distribution. A densely sam-
pled region is located over South America and the lattice be-
comes more sparse further from this region.

Figure 7: Distributions used within the surface-level specific humidity experiment.

14



Fourier-Based Neural Operators on Arbitrary Domains

(a) (b) (c)

Figure 8: Several point distributions around airfoils and their associated pressure distributions.

Figure 9: The original distribution of points (left) is sampled from at locations chosen randomly along the surface of a
sphere (middle). To compare with baselines, which require a uniform distribution, we use a radial-basis function interpo-
lation scheme with a Gaussian kernel and a variance of 0.1 to interpolate from the random points back up to a grid (right)
as well as a linear interpolation schemer.

B.2. Additional Training Details and Results.

We use 16 different parameters to make predictions for the
Surface-Level Specific Humidity experiments. These are
listed in this subsection in Table 2. We also show the pre-
dictions of several models for several experiments in Figure
10. Table 3 provides information on the distributions of the
minimum median relative L1 test error given different ini-
tial seeds. We also provide histograms showing the error
for all test samples in Figures 11 and 12. We present ad-
ditional results for the training times as a function of the
number of modes for the Burgers, 2D Specific Humidity,
2D Airfoil, and Spherical Shallow Water experiments in
Table 4. Finally, we include Table 5 to show the sizes of
the various models.

B.3. Generalization Capabilities for the SWE
Experiments.

First, we provide the errors of the FNO and SFNO on their
respective grids for the Shallow Water Equations experi-

ments on the Sphere in Table 6. We find that the training
times are approximately 30 seconds, twice that of the DSE
approaches on the unstructured data, and the errors over
the collocation points are equivalent to those of the DSE
approach.

We also present the results for the SFNO-DSE on new sets
of points which are unseen at training time. We vary the
number of points, providing a sensitivity analysis. The re-
sults, in Table 7, show that the error remains constant.

15



Fourier-Based Neural Operators on Arbitrary Domains

Table 2: Inputs for the surface level specific humidity predictions.

Acronym in MERRA-2 Input Units

CDH heat exchange coefficient kg
m2s

CDQ moisture exchange coefficient kg
m2s

EFLUX total latent energy flux W
m2

EVAP evaporation from turbulence kg
m2s

FRCAN areal fraction of anvil showers 1
FRCCN areal fraction of convective showe 1
FRCLS areal fraction of large scale show 1
HLML surface level height m
QLML surface level specific humidity 1
QSTAR surface moisture scale kg

kg

SPEED surface wind speed m
s2

TAUX eastward surface stress N
m2

TAUY northward surface stress N
m2

TLML surface air temperature K
ULML surface eastward wind m

s
VLML surface northward wind m

s

Table 3: The mean and standard deviation of the median test errors among 10 models trained with different random seeds
at initialization of the structured proposed method for the Burgers’ experiments.

Data Distribution Model Method Mean±Std

Uniform FNO FFT 0.0650 ± 0.0051%
Uniform FNO DSE 0.0653 ± 0.0074%
Contracting-Expanding FNO FFT+Interpolation 0.2076 ± 0.0087%
Contracting-Expanding FNO DSE 0.1973 ± 0.0069%

Table 4: Average training times for several experiments as the number of modes is varied.

Modes Burgers Humidity Airfoil SWE
FFT DSE FFT DSE Geo-FNO Direct SFNO DSE

8 0.93 0.81 15.3 12.3 3.5 1.9 72.6 17.1
10 0.94 0.81 15.3 12.1 4.4 2.5 72.3 17.1
12 0.94 0.81 15.0 12.6 5.6 3.3 72.0 17.6
14 0.94 0.81 15.2 12.6 6.9 4.0 72.1 17.3
16 0.95 0.82 15.2 12.6 8.5 5.2 72.1 17.3
18 0.95 0.82 15.2 12.6 10.4 7.0 72.3 18.1
20 0.95 0.82 15.4 12.8 12.5 9.1 72.4 17.4
22 0.95 0.82 15.5 13.1 14.8 10.3 72.8 18.6
24 0.95 0.83 15.3 12.9 17.2 11.8 72.1 17.8
26 0.95 0.83 15.2 13.2 20.1 14.1 72.6 18.1
28 0.94 0.83 15.0 12.9 – 16.0 73.0 19.5
30 0.94 0.83 15.4 13.1 – 18.0 72.5 18.5
32 0.94 0.83 15.2 13.1 – 20.7 72.3 20.71

16



Fourier-Based Neural Operators on Arbitrary Domains

(a) Horizontal velocity for the Shear Layer experiment

(b) Surface-level specific humidity over South America.

(c) Pressure distributions around an airfoil.

Figure 10: These figures display examples of the ground truth, the target which the FNO-DSE, FNO, or Geo-FNO attempt
to match. Left: Ground Truth. Center: FNO-DSE Right: FNO for (a) and (b) and Geo-FNO for (c).

(a) Uniform. (b) Contracting-Expanding.

Figure 11: Histograms displaying the distribution of test errors for the different point distributions of the Burgers’ numerical
experiments using the proposed method.

17



Fourier-Based Neural Operators on Arbitrary Domains

(a) Shear Layer. (b) Surface-Level Specific Humidity.

Figure 12: Histograms displaying the distribution of test errors for the two-dimensional numerical experiments on the
lattice using the proposed method with the FNO model.

18



Fourier-Based Neural Operators on Arbitrary Domains

Table 5: Model sizes in terms of the number of parameters. Within an experiment, the models are constructed to have
similarly sized convolution and spectral convolution layers. This results in the FFNO often having an order of magnitude
fewer parameters, a key contribution outlined by (Tran et al., 2023). The UFNO models have the most parameters due to
the extra U-Net layers, and the Geometric Layer results in a slightly higher number of parameters as well.

Model Method No. Parameters No. Modes

1D: Burgers’ Equation
Equispaced Distribution:

FNO DSE 287425 16
FFT 287425 16

Contracting-Expanding Distribution:

FNO DSE 287425 16
Interpolation 287425 16

2D Lattice: Shear Layer

FNO DSE 3162881 20
Full Grid 3162881 20

UFNO DSE 3750401 20
Full Grid 3750401 20

FFNO DSE 423041 20
Full Grid 423041 20

2D Lattice: Specific Humidity

FNO DSE 8398049 32
Full Grid 8398049 32

UFNO DSE 8691553 32
Full Grid 8691553 32

FFNO DSE 537697 32
Full Grid 537697 32

2D Point Cloud: Flow Past Airfoil

FNO DSE 1188577 12
Geometric Layer 1250339 12

UFNO DSE 1482081 12
Geometric Layer 1840163 12

FFNO DSE 500673 14
Geometric Layer 526787 14

2D Point Cloud: Elasticity

FNO DSE 1484289 12
Geometric Layer 1546403 12

UFNO DSE 1778049 12
Geometric Layer 1840163 12

FFNO DSE 526787 14
Geometric Layer 533441 14

Random Spherical Point Cloud: Shallow Water Equations

SFNO
DSE 39749251 l = 22
Gaussian Interpolation 39201536 l = 22
Linear Interpolation 39201536 l = 22

FNO
DSE 31978563 20
Gaussian Interpolation 39201536 20
Linear Interpolation 39201536 20

19



Fourier-Based Neural Operators on Arbitrary Domains

Method Training Time (per epoch) Error over Collocation Points

SFNO 30s 3.60%
FNO 32s 5.74%

Table 6: Accuracy of the SFNO and FNO for the Spherical Shallow Water Equations when trained on the original 256×512
grid which has been sub-sampled to a 51× 102 grid. At inference time, we calculate the error over the collocation points,
i.e. those used in the random distribution. These models achieve similar results to the proposed approach when the data
has not undergone interpolation.

Approximate No. Points Error

4000 6.36%
8000 5.64%
15000 5.44%
29000 5.39%
50000 5.43%

Table 7: Accuracy of the SFNO-DSE on test sets of the Spherical Shallow Water Equations experiment with new random
distributions of varying size. Each test set consists of 64 samples. The model was trained on data sets of approximately
5000 points. All point distributions and test samples used in this evaluation were not seen during training. The results show
that the proposed method is able to generalize to new point distributions of varying resolution.

20


	Introduction
	Methods
	Experimental Results
	Discussion
	Technical Details
	The FFT Signal Flow Graph.
	Transformations on the 2D Lattice
	On Computational Complexity of the Direct Evaluation of Fourier Transforms.

	Experimental Details
	Point Distributions
	Additional Training Details and Results.
	Generalization Capabilities for the SWE Experiments.


