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Abstract

Fine-tuning Diffusion Models remains an underexplored frontier in generative
artificial intelligence (GenAI), especially when compared with the remarkable
progress made in fine-tuning Large Language Models (LLMs). While cutting-edge
diffusion models such as Stable Diffusion (SD) and SDXL rely on supervised
fine-tuning, their performance inevitably plateaus after seeing a certain volume
of data. Recently, reinforcement learning (RL) has been employed to fine-tune
diffusion models with human preference data, but it requires at least two images
(“winner” and “loser” images) for each text prompt. In this paper, we introduce
an innovative technique called self-play fine-tuning for diffusion models (SPIN-
Diffusion), where the diffusion model engages in competition with its earlier
versions, facilitating an iterative self-improvement process. Our approach offers an
alternative to conventional supervised fine-tuning and RL strategies, significantly
improving both model performance and alignment. Our experiments on the Pick-
a-Pic dataset reveal that SPIN-Diffusion outperforms the existing supervised fine-
tuning method in aspects of human preference alignment and visual appeal right
from its first iteration. By the second iteration, it exceeds the performance of
RLHF-based methods across all metrics, achieving these results with less data.
Codes are available at https://github.com/uclaml/SPIN-Diffusion/.

1 Introduction
Diffusion models (Ho et al., 2020; Peebles and Xie, 2023; Podell et al., 2023; Nichol et al., 2021;
Rombach et al., 2022a; Song et al., 2020a) have rapidly emerged as critical entities within the realm
of generative AIs (Creswell et al., 2018; Kingma and Welling, 2013), demonstrating exceptional
capabilities in generating high-fidelity outputs. Their versatility spans a diverse area of applications,
ranging from image generation (Rombach et al., 2022a; Podell et al., 2023; Ramesh et al., 2022)
to more complex tasks like structure-based drug design (Corso et al., 2022; Guan et al., 2023),
protein structure prediction (Watson et al., 2021), text generation (Austin et al., 2021; Zheng et al.,
2023; Chen et al., 2023), and more. Prominent diffusion models in image generation, including
DALL-E (Ramesh et al., 2022), Stable Diffusion (Rombach et al., 2022b), SDXL (Podell et al., 2023),
and Dreamlike, etc., typically undergo a fine-tuning process following their initial pre-training phase.
Standard fine-tuning method for diffusion models suffers from low alignment with human preferences
and low data efficiency due to two main reasons: (1) it does not directly optimize for alignment
with human preferences, and (2) only one round of training can be performed. Recently, using
Reinforcement Learning (RL) for fine-tuning diffusion models has received increasing attention. Lee
et al. (2023) first studied the alignment of text-image diffusion models to human preferences using
reward-weighted likelihood maximization with a reward function trained on human preference data.
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Black et al. (2023) formulated the fine-tuning of diffusion models as a RL problem solved by policy
gradient optimization. In a concurrent work, Fan et al. (2023) studied a similar formulation but with
a KL regularization. Very recently, Wallace et al. (2023) have bypassed the need for training reward
functions by using Direct Preference Optimization (DPO) (Rafailov et al., 2023) for fine-tuning
diffusion models. Similar approach was proposed in Yang et al. (2023) as well.
While RL fine-tuning of diffusion methods has been proven effective, its dependency on human
preference data, often necessitating multiple images per prompt, poses a significant challenge. In
many datasets including the community-sourced ones featuring custom content, it is often the case to
have only one image associated with each prompt. This makes RL fine-tuning infeasible.
In this paper, drawing inspiration from the recently proposed self-play fine-tuning (SPIN) technique
(Chen et al., 2024) for large language models (LLM), we introduce a new supervised fine-tuning (SFT)
method for diffusion models, eliminating the necessity for human preference data in the fine-tuning
process. Central to our method is a general-sum minimax game, where both the participating players,
namely the main player and the opponent player, are diffusion models. The main player’s goal is to
discern between samples drawn from the target data distribution and those generated by the opponent
player. The opponent player’s goal is to garner the highest score possible, as assessed by the main
player. A self-play mechanism can be made possible, if and only if the main player and the opponent
player have the same structure, and therefore the opponent player can be designed to be previous
copies of the main player (Chen et al., 2024). The proposed algorithm SPIN-Diffusion overcomes
the drawbacks of both supervised fine-tuning (SFT) and RL fine-tuning. Compared with SFT, our
method is more data-efficient, by repeatedly using the prompts from the SFT dataset to improve the
model through self-play. Compared with RL fine-tuning methods, our method does not need external
reward models or expensive human-annotated winner/loser pairs.
When applying the self-play fine-tuning technique (Chen et al., 2024) to diffusion models, there
are two challenges: (a) an exponential or even infinite number of possible trajectories can lead to
the same image. The generator in a diffusion model operates through a sequence of intermediate
steps, but the performance of the generator is only determined by the quality of the image in the
last step; and (b) diffusion models are parameterized by a sequence of score functions, which are
the gradient of the probabilities rather than probabilities in LLMs. Our algorithm design effectively
surmounts these challenges by (a) designing an objective function that considers all intermediate
images generated during the reverse sampling process; and (b) decomposing and approximating
the probability function step-by-step into products related to the score function. We also employ
the Gaussian reparameterization technique in DDIM (Song et al., 2020a) to support the advanced
sampling method. All these techniques together lead to an unbiased objective function that can
be effectively calculated based on intermediate samples. For computational efficiency, we further
propose an approximate objective function, which eliminates the need for intermediate images used
in our model.
Contributions. Our contributions are summarized below:

• We propose a novel fine-tuning method for diffusion models based on the self-play mechanism,
called SPIN-Diffusion. The proposed algorithm iteratively improves upon a diffusion model
until converging to the target distribution. Theoretically, we prove that the model obtained by
SPIN-Diffusion cannot be further improved via standard SFT. Moreover, the stationary point of our
self-play mechanism is achieved when the diffusion model aligns with the target distribution.

• Empirically, we evaluate the performance of SPIN-Diffusion on text-to-image generation
tasks (Ramesh et al., 2022; Rombach et al., 2022a; Saharia et al., 2022a). Our experiments
on the Pick-a-Pic dataset (Kirstain et al., 2023), with base model being Stable Diffusion-1.5 (Rom-
bach et al., 2022b), demonstrate that SPIN-Diffusion surpasses SFT from the very first iteration.
Notably, by the second iteration, SPIN-Diffusion outperforms Diffusion-DPO (Wallace et al., 2023)
that utilizes additional data from ‘loser’ samples. By the third iteration, the images produced by
SPIN-Diffusion achieve a higher PickScore (Kirstain et al., 2023) than the base model SD-1.5
79.8% of the times, and a superior Aesthetic score 88.4% of the times.

SPIN-Diffusion exhibits a remarkable performance improvement over current state-of-the-art fine-
tuning algorithms, retaining this advantage even against models trained with more extensive data
usage. This highlights its exceptional efficiency in dataset utilization. It is beneficial for the general
public, particularly those with restricted access to datasets containing multiple images per prompt.
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Notation. We use lowercase letters and lowercase boldface letters to denote scalars and vectors,
respectively. We use 0 : T to denote the index set {0, . . . , T}. In the function space, let F be
the function class. We use the symbol q to denote the real distribution in a diffusion process,
while pθ represents the distribution parameterized by a nueral network during sampling. The
Gaussian distribution is represented as N (µ,Σ), where µ and Σ are the mean and covariance matrix,
respectively. Lastly, Uniform{1, . . . , T} denotes the uniform distribution over the set {1, . . . , T}.

2 Related Work
Diffusion Models. Diffusion-based generative models (Sohl-Dickstein et al., 2015) have recently
gained prominence, attributed to their ability to produce high-quality and diverse samples. A popular
diffusion model is denoising diffusion probabilistic modeling (DDPM) (Ho et al., 2020). Song et al.
(2020a) proposed a denoising diffusion implicit model (DDIM), which extended DDPM to a non-
Markov diffusion process, enabling a deterministic sampling process and the accelerated generation
of high-quality samples. In addition to DDPM and DDIM, diffusion models have also been studied
with a score-matching probabilistic model using Langevin dynamics (Song and Ermon, 2019; Song
et al., 2020b). Diffusion models evolved to encompass guided diffusion models, which are designed
to generate conditional distributions. When the conditioning input is text and the output is image,
these models transform into text-to-image diffusion models (Rombach et al., 2022a; Ramesh et al.,
2022; Ho et al., 2022; Saharia et al., 2022b). They bridge the gap between textual descriptions and
image synthesis, offering exciting possibilities for content generation. A significant advancement in
text-to-image generation is the introduction of Stable Diffusion (SD) (Rombach et al., 2022a). SD
has expanded the potential of diffusion models by integrating latent variables into the generation
process. This innovation in latent diffusion models enables the exploration of latent spaces and
improves the diversity of generated content. Despite the introduction of latent spaces, generating
images with desired content from text prompts remains a significant challenge (Gal et al., 2022; Ruiz
et al., 2023). This is due to the difficulty in learning the semantic properties of text prompts with
limited high-quality data.
Fine-Tuning Diffusion Models. Efforts to improve diffusion models have focused on aligning
them more closely with human preferences. Rombach et al. (2022a) fine-tuned a pre-trained model
using the COCO dataset (Caesar et al., 2018), demonstrating superior performance compared to a
generative model directly trained on the same dataset. Podell et al. (2023) expanded the model size
of Stable Diffusion (SD) to create the SDXL model, which was fine-tuned on a high-quality but
private dataset, leading to a significant improvement in the aesthetics of the generated images. Dai
et al. (2023) further demonstrated the effectiveness of fine-tuning and highlighted the importance
of the supervised fine-tuning (SFT) dataset. In addition to using datasets with high-quality images,
Betker et al. (2023); Segalis et al. (2023) found that SFT on a data set with high text fidelity can
also improve the performance of the diffusion model. The aforementioned methods only requires
a high-quality SFT dataset. Recently, preference datasets have been studied in finetuing diffusion
models (Lee et al., 2023). Concurrently, DDPO (Black et al., 2023) and DPOK (Fan et al., 2023)
proposed to use the preference dataset to train a reward model and then fine-tune diffusion models
using reinforcement learning. Drawing inspiration from the recent Direct Preference Optimization
(DPO) (Rafailov et al., 2023), Diffusion-DPO (Wallace et al., 2023) and D3PO (Yang et al., 2023)
used the implicit reward to fine-tune diffusion models directly on the preference dataset. Furthermore,
when a differentiable reward model is available, Clark et al. (2023); Prabhudesai et al. (2023) applied
reward backpropagation for fine-tuning diffusion models. Our SPIN-Diffusion is most related to the
SFT method, as it only assumes access to high-quality image-text pairs. However, the high-quality
image-text dataset can be obtained from various sources, including selecting the winner from a
preference dataset or identifying high-reward image-text pairs through a reward model.

3 Problem Setting and Preliminaries
In this section, we introduce basic settings for text-to-image generation by diffusion models and the
self-play fine-tuning (SPIN) method.

3.1 Text-to-Image Diffusion Model

Denoising diffusion implicit models (DDIM) (Song et al., 2020a) is a generalized framework of
denoising diffusion probabilistic models (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020).
DDIM enables the fast generation of high-quality samples and has been widely used in text-to-image
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diffusion models such as Stable Diffusion (Rombach et al., 2022a). We formulate our method building
upon DDIM, which makes it more general.
Forwrd Process. Following Saharia et al. (2022b), the problem of text-to-image generation can be
formulated as conditional diffusion models. We use x0 ∈ Rd to denote the value of image pixels
where d is the dimension and use c to denote the text prompt. Given a prompt c, image x0 is drawn
from a target data distribution pdata(·|c). The diffusion process is characterized by the following
dynamic parameterized by a positive decreasing sequence {αt}Tt=1 with α0 = 1,

q(x1:T |x0) := q(xT |x0)
T∏

t=2

q(xt−1|xt,x0), (3.1)

where q(xt−1|xt,x0) represents a Gaussian distribution N (µt, σ
2
t I). Here, µt is the mean of

Gaussian defined as

µt :=
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
.

It can be derived from (3.1) that q(xt|x0) = N (
√
αtx0, (1− αt)I) for all t (Song et al., 2020a). As

a generalized diffusion process of DDPM, (3.1) reduces to DDPM (Ho et al., 2020) with a special
choice of σt =

√
(1− αt−1)/(1− αt)

√
(1− αt/αt−1).

Generative Process. Given the sequence of {αt}Tt=1 and {σt}Tt=1, examples from the generative
model follows

pθ(x0:T |c) =
T∏

t=1

pθ(xt−1|xt, c) · pθ(xT |c), pθ(xt−1|xt, c) = N
(
µθ(xt, c, t), σ

2
t I
)
. (3.2)

Here θ belongs to the parameter space Θ and µθ(xt, c, t) is the estimator of mean µt that can be
reparameterized (Ho et al., 2020; Song et al., 2020a) as the combination of xt and a neural network
ϵθ(xt, c, t) named score function. Please see Appendix C for more details.
Training Objective. The score function ϵθ(xt, c, t) is trained by minimizing the evidence lower
bound (ELBO) associated with the diffusion models in (3.1) and (3.2), which is equivalent to
minimizing the following denoising score matching objective function LDSM:

LDSM(θ) = E
[
γt
∥∥ϵθ(xt, c, t)− ϵt

∥∥2
2

]
, (3.3)

where xt =
√
αtx0+

√
1− αtϵt and the expectation is computed over the distribution c ∼ q(·),x0 ∼

qdata(·|c), ϵt ∼ N (0, I), t ∼ Uniform{1, . . . , T}. In addition, {γt}Tt=1 are pre-specified weights
that depends on the sequences {αt}Tt=1 and {σt}Tt=1.

3.2 Self-Play Fine-Tuning

Self-Play mechanism, originating from TD-Gammon (Tesauro et al., 1995), has achieved great
successes in various fields, particularly in strategic games (Silver et al., 2017b,a). Central to Self-Play
is the idea of progressively improving a model by competing against its previous iteration. This
approach has recently been adapted to fine-tuning Large Language Models (LLMs) (Chen et al.,
2024), called self-play fine-tuning (SPIN). Considering an LLM where c is the input prompt and x0

is the response, the goal of SPIN is to fine-tune an LLM agent, denoted by pθ(·|c), based on an SFT
dataset. Chen et al. (2024) assumed access to a main player and an opponent player at each iteration
and takes the following steps iteratively:

1. The main player maximizes the expected value gap between the target data distribution pdata and
the opponent player’s distribution pθk

:
2. The opponent player generates responses that are indistinguishable from pdata by the main player.

Instead of alternating optimization, SPIN directly utilizes a closed-form solution of the opponent
player, which results in the opponent player at iteration k + 1 to copy parameters θk+1, and forming
an end-to-end training objective:

LSPIN = E
[
ℓ

(
λ log

pθ(x0|c)
pθk

(x0|c)
− λ log

pθ(x
′
0|c)

pθk
(x′

0|c)

)]
. (3.4)

Here the expectation is taken over the distribution c ∼ q(c),x ∼ pdata(x|c),x′ ∼ pθk
(x′|c), ℓ(·) is

a loss function that is both monotonically decreasing and convex, and λ > 0 is a hyperparameter.
Notably, (3.4) only requires the knowledge of demonstration/SFT data, i.e., prompt-response pairs.
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Algorithm 1 Self-Play Diffusion (SPIN-Diffusion)

Input: {(x0, c)}i∈[N ]: SFT Dataset, pθ0 : Diffusion Model with parameter θ0, K: Number of
iterations.
for k = 0, . . . ,K − 1 do

for i = 1, . . . N do
Generate real diffusion trajectories x1:T ∼ q(x1:T |x0).
Generate synthetic diffusion trajectories x′

0:T ∼ pθk
(·|c).

end for
Update θk+1 = argminθ∈Θ L̂SPIN(θ,θk), which is the empirical version of (4.8) or (4.9) .

end for
Output: θK .

4 Method
In this section, we are going to present a method for fine-tuning diffusion models with self-play
mechanism.
Consider a setting where we are training on a high-quality dataset containing image-text pairs
(c,x0) ∼ pdata(x0|c)q(c) where c is the text prompt and x0 is the image. Our goal is to fine-tune
a pretrained diffusion model, denoted by pθ, to align with the distribution pdata(x0|c). Instead
of directly minimizing the denoising score matching objective function LDSM in (3.3), we adapt
SPIN to diffusion models. However, applying SPIN to fine-tuning diffusion models presents unique
challenges. Specifically, the objective of SPIN (3.4) necessitates access to the marginal probability
pθ(x0|c). While obtaining pθ(x0|c) is straightforward in LLMs, this is not the case with diffusion
models. Given the parameterization of the diffusion model as pθ(x0:T |c), computing the marginal
probability pθ(x0|c) requires integration over all potential trajectories

∫
x1:T

pθ(x0:T |c)dx1:T , which
is computationally intractable.
In the following, we propose a novel SPIN-Diffusion method with a decomposed objective function
that only requires the estimation of score function ϵθ. This is achieved by employing the DDIM
formulation discussed in Section 3. The key technique is self-play mechanism with a focus on the
joint distributions of the entire diffusion process, i.e., pdata(x0:T |c) = q(x1:T |x0)pdata(x0|c) and
pθ(x0:T |c), instead of marginal distributions.

4.1 Differentiating Diffusion Processes

In iteration k + 1, we focus on training a function fk+1 to differentiate between the diffusion
trajectory x0:T generated by the diffusion model parameterized by pθ(x0:T |c), and the diffusion
process pdata(x0:T |c) from the data. Specifically, the training of fk+1 involves minimizing a
generalized Integral Probability Metric (IPM) (Müller, 1997):

fk+1 = argmin
f∈Fk

E
[
ℓ
(
f(c,x0:T )− f(c,x′

0:T )
)]
. (4.1)

Here, the expectation is taken over the distributions c ∼ q(·),x0:T ∼ pdata(·|c), and x′
0:T ∼ pθk

(·|c).
Fk denotes the class of functions under consideration and ℓ(·) is a monotonically decreasing and
convex function that helps stabilize training. The value of f reflects the degree of belief that the
diffusion process x0:T given context c originates from the target diffusion process pdata(x0:T |c)
rather than the diffusion model pθ(x0:T |c). We name f the test function.

4.2 Deceiving the Test Function

The opponent player wants to maximize the expected value Ec∼q(·),x0:T∼p(·|c)[fk+1(c,x)]. In
addition, to prevent excessive deviation of pθk+1

from pθk
and stabilize the self-play fine-tuning,

we incorporate a Kullback-Leibler (KL) regularization term. Putting these together gives rise to the
following optimization problem:

argmax
p

Ec∼q(·),x0:T∼p(·|c)[fk+1(c,x0:T )]− λEc∼q(·)KL
(
p(·|c)||pθk

(·|c)
)
, (4.2)

where λ > 0 is the regularization parameter. Notably, (4.2) has a closed-form solution p̂(·|c):

p̂(x0:T |c) ∝ pθk
(x0:T |c) exp

(
λ−1fk+1(c,x0:T )

)
. (4.3)
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To ensure that p̂ lies in the diffusion process space {pθ(·|c)|θ ∈ Θ}, we utilize the following test
function class (Chen et al., 2024):

Fk =

{
λ · log pθ(x1:T |c)

pθk
(x1:T |c)

∣∣∣∣θ ∈ Θ

}
. (4.4)

Given the choice of Fk in (4.4), optimizing (4.1) gives fk+1 parameterized by θk+1 in the following
form:

fk+1(c,x0:T ) = λ · log
pθk+1

(x0:T |c)
pθk

(x0:T |c)
. (4.5)

Substituting (4.5) into (4.3) yields p̂(x0:T |c) = pθk+1
(x0:T |c). In other words, θk+1 learned from

(4.1) is exactly the diffusion parameter for the ideal choice of opponent.

4.3 Decomposed Training Objective

The above two steps provide a training scheme depending on the full trajectory of x0:T . Specifically,
substituting (4.4) into (4.1) yields the update rule θk+1 = argminθ∈Θ LSPIN(θ,θk), where LSPIN is
defined as:

LSPIN = E
[
ℓ

(
λ log

pθ(x0:T |c)
pθk

(x0:T |c)
− λ log

pθ(x
′
0:T |c)

pθk
(x′

0:T |c)

)]
. (4.6)

Here the expectation is taken over the distributions c ∼ q(·),x0:T ∼ pdata(·|c),x′
0:T ∼ pθk

(·|c). To
formulate a computationally feasible objective, we decompose log pθ(x0:T |c) using the backward
process of diffusion models. Substituting (3.2) into (4.6), we have that

log pθ(x0:T |c) = log

( T∏
t=1

pθ(xt−1|xt, c) · pθ(xT |c)
)

= log pθ(xT |c) +
T∑

t=1

log
(
pθ(xt−1|xt, c)

)
= Constant −

T∑
t=1

1

2σ2
t

∥∥xt−1 − µθ(xt, c, t)
∥∥2

2
. (4.7)

where the last equality holds since pθ(xt−1|xt, c) is a Gaussian distribution N
(
µθ(xt, c, t), σ

2
t I
)

according
to (3.2), and pθ(xT |c) is approximately a Gaussian independent of θ. By substituting (4.7) into (4.6) and
introducing a reparameterization σ2

t = λT/(2βt), where βt is a fixed positive value, we obtain

LSPIN(θ,θk) = E
[
ℓ

(
−

T∑
t=1

βt

T

[∥∥xt−1 − µθ(xt, c, t)
∥∥2

2
−

∥∥xt−1 − µθk (xt, c, t)
∥∥2

2

−
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2

2
+

∥∥x′
t−1 − µθk (x

′
t, c, t)

∥∥2

2

])]
. (4.8)

Here the expectation is taken over the distributions c ∼ q(·),x0:T ∼ pdata(·|c),x′
0:T ∼ pθk

(·|c).
Note that by considering the main player (reward function) across the full trajectory (3.2), rather than
focusing solely on the final state as in Fan et al. (2023); Black et al. (2023); Wallace et al. (2023),
we are able to formulate an exact objective function up to Equation (4.8). The detailed algorithm
is presented in Algorithm 1. (4.8) naturally provides an objective function for DDIM with σt > 0,
where σt controls the determinism of the reverse process (3.2). (4.8) remains valid for deterministic
generation processes as σt → 0.

4.4 Approximate Training Objective

While (4.8) is the exact ELBO, optimizing it requires storing all intermediate images during the
reverse sampling. When the trajectory length T is large, it would require an impractical amount of
GPU memory when the loss is summed over T . Additionally, the required samples from a reverse
process are not readily accessible. To address these limitations, we propose an approximate objective
function. By applying Jensen’s inequality and the convexity of the loss function ℓ, we can give an
upper bound of (4.8) and thus move the average over t outside the loss function ℓ:

Lapprox
SPIN (θ,θk) = E

[
ℓ
(
− βt

[∥∥xt−1 − µθ(xt, c, t)
∥∥2
2
−

∥∥xt−1 − µθk
(xt, c, t)

∥∥2
2
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−
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2
2
+
∥∥x′

t−1 − µθk
(x′

t, c, t)
∥∥2
2

])]
, (4.9)

where the expectation is taken over the distributions c ∼ q(c), (xt−1,xt) ∼
pdata(xt−1,xt|c), (x′

t−1,x
′
t) ∼ pθk

(x′
t−1,x

′
t|c), t ∼ Uniform{1, . . . , T}. This approxima-

tion is directly motivated by the nature of diffusion models, which inherently decouple operations
on a per-time-step basis. We provide theoretical justifications for our approximation method in the
following sections.
The following lemma shows that Lapprox

SPIN is an upper bound of LSPIN.

Lemma 4.1. Fix θk ∈ Θ which serves as the starting point of Algorithm 1 for iteration k + 1. It
holds that LSPIN(θ,θk) ≤ Lapprox

SPIN (θ,θk) for all θ ∈ Θ.

Lapprox
SPIN eliminates the need to store all intermediate steps, as it only involves two consecutive sam-

pling steps t− 1 and t. Since the reverse process pθ(x′
1:T |x′

0, c) approximates the forward process
q(x′

1:T |x′
0), we use the per step forward process q(x′

t−1,x
′
t|x′

0) to approximate pθk
(x′

t−1,x
′
t|x′

0, c).
We can further approximate pθk

(x′
t−1,x

′
t|c) =

∫
pθk

(x′
t−1,x

′
t|x′

0, c)pθk
(x′

0|c)dx′
0 with∫

q(x′
t−1,x

′
t|x′

0)pθk
(x′

0|c)dx′
0. Substituting the corresponding terms in (4.9) with the above approxi-

mation allows us to only compute the expectation of (4.9) over the distribution c ∼ q(c), (xt−1,xt) ∼
pdata(xt−1,xt|c), (x′

t−1,x
′
t) ∼

∫
pθk

(x′
0|c)q(x′

t−1,x
′
t|x′

0)dx
′
0, t ∼ Uniform{1, . . . , T}. Further-

more, by incorporating the reparameterization of µθ into (4.8) and (4.9), we can express (4.8) and
(4.9) in terms of ϵθ(xt, c, t). Detailed derivations of (4.8) and (4.9) are provided in Appendix C.

5 Main Theory
In this section, we provide a theoretical analysis of Algorithm 1. Section 4 introduces two distinct
objective functions, as defined in (4.8) and (4.9), both of which use the loss function ℓ. Since (4.8)
is an exact objective function, its analysis closely follows the framework established by Chen et al.
(2024). Consequently, we instead focus on the approximate objective function Lapprox

SPIN defined
in (4.9), which is more efficient to optimize and is the algorithm we use in our experiments. However,
its behavior is more difficult to analyze. We begin with a formal assumption regarding the loss
function ℓ as follows.

Assumption 5.1. The function ℓ(t) : R → R in (4.9) is monotonically decreasing, i.e., ∀t, ℓ′(t) ≤ 0
and satisfies ℓ′(0) < 0. In addition, ℓ(t) is a convex function.

Assumption 5.1 can be satisfied by various commonly used loss functions in machine learning. This
includes the correlation loss ℓ(t) = 1− t, the hinge loss ℓ(t) = max(0, 1− t), and the logistic loss
ℓ(t) = log(1 + exp(−t)). In our experiments, we are using the logistic loss.
To understand the behavior of SPIN-Diffusion, let us first analyze the gradient of the objective
function (4.9),

∇Lapprox
SPIN = E

[
(−βtℓ

′
t)︸ ︷︷ ︸

Reweighting

·
(
∇θ

∥∥xt−1 − µθ(xt, c, t)
∥∥2
2︸ ︷︷ ︸

Matching

−∇θ

∥∥x′
t−1 − µθ(x

′
t, c, t)

∥∥2
2︸ ︷︷ ︸

Pushing

)]
, (5.1)

where the expectation is taken over the distributions c ∼ q(c), (xt−1,xt) ∼
pdata(xt−1,xt|c), (x′

t−1,x
′
t) ∼ pθk

(x′
t−1,x

′
t|c). (D.3) can be divided into three parts:

• Reweighting: ℓ′(·) in the “Reweighting” term is negative and increasing because ℓ() is
monotonically decreasing and convex according to Assumption 5.1. Therefore, −βtℓ

′
t =

−βtℓ
′( − βt

[
∥xt−1 − µθ(xt, c, t)∥22 − . . . + ∥x′

t−1 − µθk
(x′

t, c, t)∥22
])

is always non-negative.
Furthermore, −βtℓ

′
t decreases as the argument inside ℓ() increases.

• Matching: The “Matching” term matches µθ(xt, c, t) to xt−1 coming from pairs (xt−1,xt),
that are sampled from the target distribution. This increases the likelihood of (xt−1,xt) ∼
pdata(xt−1,xt) following the generative process (3.2).

• Pushing: Contrary to the “Matching” term, the “Pushing” term pushes µθ(x
′
t, c, t) away from

x′
t−1 coming from pairs (x′

t−1,x
′
t) drawn from the synthetic distribution pθk

(x′
t−1,x

′
t). Therefore,

the “Pushing” term decreases the likelihood of these samples following the process in the generative
process (3.2).
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The “Matching” term aligns conceptually with the LDSM in SFT, as both aim to maximize the
likelihood that the target trajectory x0:T follows the generative process described in (3.2). The
following theorem shows a formal connection, which is pivotal for understanding the optimization
dynamics of our method.

Theorem 5.2. Under Assumption 5.1, if θk is not the global optima of LDM in (3.3), there exists an
appropriately chosen βt, such that θk is not the global minima of (4.9) and thus θk+1 ̸= θk.

Theorem 5.2 suggests that the optimization process stops only when θ reaches global optimality
of LDSM. Consequently, the optimal diffusion model θ∗ found by Algorithm 1 cannot be further
improved using LDSM. This theoretically supports that SFT with (3.3) cannot improve over SPIN-
Diffusion. It is also worth noting that Theorem 5.2 does not assert that every global minimum of
LDSM meets the convergence criterion (i.e., θk+1 = θk), particularly due to the influence of the
“Pushing” term in (D.3). The following theorem provides additional insight into the conditions under
which Algorithm 1 converges.

Theorem 5.3. Under Assumption 5.1, if pθk
(·|x) = pdata(·|x), then θk is the global minimum

of (4.9) for any λ ≥ 0.

Theorem 5.3 shows that Algorithm 1 converges when pθ(·|x) = pdata(·|x), indicating the efficacy
of SPIN-Diffusion in aligning with the target data distribution. In addition, while Theorems 5.2
and 5.3 are directly applicable to (4.9), the analogous conclusion can be drawn for (4.8) as well (see
Appendix D for a detailed discussion).

6 Experiments
In this section, we conduct extensive experiments to demonstrate the effectiveness of SPIN-Diffusion.
Our results show that SPIN-Diffusion outperforms other baseline fine-tuning methods including SFT
and Diffusion-DPO.

6.1 Experiment Setup

Models, Datasets and Baselines. We use the stable diffusion v1.5 (SD-1.5) (Rombach et al., 2022a)
as our base model. While adopting the original network structure, we use its Huggingface pretrained
version2, which is trained on LAION-5B (Schuhmann et al., 2022) dataset, a text-image pair dataset
containing approximately 5.85 billion CLIP-filtered image-text pairs. We use the Pick-a-Pic dataset
(Kirstain et al., 2023) for fine-tuning. Pick-a-Pic is a dataset with pairs of images generated by
Dreamlike3 (a fine-tuned version of SD-1.5) and SDXL-beta (Podell et al., 2023), where each pair
corresponds to a human preference label. We also train SD-1.5 with SFT and Diffusion-DPO (Wallace
et al., 2023) as the baselines. For SFT, we train the model to fit the winner images in the Pick-a-
Pic (Kirstain et al., 2023) trainset. In addition to the Diffusion-DPO checkpoint provided by Wallace
et al. (2023)4 (denoted by Diffusion-DPO), we also fine-tune an SD-1.5 using Diffusion-DPO and
denote it by “Diffusion-DPO (reproduced)”.
Evaluation. We use the Pick-a-Pic test set, PartiPrompts (Yu et al., 2022) and HPSv2 (Wu et al.,
2023) as our evaluation benchmarks. We defer the detailed introduction and results of PartiPrompts
and HPSv2 to Appendix A.3. Our evaluation rubric contains two dimensions, human preference
alignment and visual appeal. For visual appeal assessment, we follow Wallace et al. (2023); Lee
et al. (2024) and use Aesthetic score. For human-preference alignment, we employ reward models
including PickScore (Kirstain et al., 2023), ImageReward (Xu et al., 2023) and HPS (Wu et al., 2023).
All these reward models are trained according to the Bradley-Terry-Luce (Bradley and Terry, 1952)
model on different human-labeled preference datasets. For each prompt, we generate 5 images and
choose the image with highest average score over those four metrics (best out of 5). We report the
average of HPS, PickScore, ImageReward and Aesthetic scores over all the prompts. To investigate
how the scores align with human preference, we further compare the accuracy of these reward models
on a small portion of the Pick-a-Pic training set. It is worth noticing that PickScore is most aligned
with human preference according to the experiments conducted by Kirstain et al. (2023).

2https://huggingface.co/runwayml/stable-diffusion-v1-5
3https://dreamlike.art/
4https://huggingface.co/mhdang/dpo-sd1.5-text2image-v1
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Table 1: The results on the Pick-a-Pic test set. We report the mean of PickScore, HPS, ImageReward
and Aesthetic over the whole test set. We also report the average score over the three evaluation
metrics. SPIN-Diffusion outperforms all the baselines in terms of four metrics. For this and following
tables, we use blue background to indicate our method, bold numbers to denote the best and
underlined for the second best.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2699 5.7691 0.8159 21.1983 7.0133
SFT (reproduced) 0.2749 5.9451 1.1051 21.4542 7.1948
Diffusion-DPO 0.2724 5.8635 0.9625 21.5919 7.1726
Diffusion-DPO (reproduced) 0.2753 5.8918 1.0495 21.8866 7.2758

SPIN-Diffusion-Iter1 0.2728 6.1206 1.0131 21.6651 7.2679
SPIN-Diffusion-Iter2 0.2751 6.2399 1.1086 21.9567 7.3951
SPIN-Diffusion-Iter3 0.2759 6.2481 1.1239 22.0024 7.4126

6.2 Main Results

In this subsection, we provide empirical evidence demonstrating the superiority of our SPIN-Diffusion
model over previous fine-tuning baselines based on the network structure of SD1.5.
Comparison in Terms of Average Score. The results are presented in Table 1. While all fine-tuning
algorithms yield improvements over the SD1.5 baseline, at iteration 1, our SPIN-Diffusion not only
exceeds the original DPO checkpoint but also surpasses SFT in both Aesthetic score and PickScore.
At iteration 2, the superiority of our model becomes even more pronounced, particularly in terms of
Aesthetic score, where it consistently outperforms other fine-tuning methods, indicating a dominant
performance in visual quality. Furthermore, at iteration 3, our model’s HPSv2 score surpasses all
competing models, highlighting the effectiveness and robustness of the SPIN-Diffusion approach.
Specifically, on the Pick-a-Pic dataset, while SFT achieves a PickScore of 21.45, and Diffusion-DPO
has a slightly higher score of 21.45, SPIN-Diffusion achieves 22.00 at iteration 3, showing a total
improvement of 0.80 over the original SD1.5 checkpoint. Furthermore, SPIN-Diffusion demonstrates
exceptional performance in terms of Aesthetic score, achieving 6.25 at iteration 3, which significantly
surpasses 5.86 achieved by Diffusion-DPO and 5.77 by SD1.5.
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Figure 1: Left: winning rate in percentage of SFT, Diffusion-DPO, Diffusion-DPO (reproduced) and
SPIN-Diffusion over SD1.5 checkpoint. Right: winning rate in percentage of SFT, Diffusion-DPO,
Diffusion-DPO (reproduced) and SPIN-Diffusion over SD1.5 checkpoint. SPIN-Diffusion shows a
much higher winning rate than SFT and Diffusion-DPO tuned models.

Comparison in Terms of Winning Rate. We further validate our claim by a comparative analysis
of the winning rate for our trained model. The winning rate is defined as the proportion of prompts
for which a model’s generated images exceed the quality of those produced by another model. This
experiment is conducted on the Pick-a-Pic test set. We show both the winning rate over SD-1.5,
as well as the winning rate over Diffusion-DPO (reproduced) in Figure 1. The complete results
are detailed in Tables 3 and 4 in Appendix A.2. We observe that throughout fine-tuning, our SPIN-
Diffusion tremendously beats the baselines. When competing with SD-1.5, SPIN-Diffusion achieves
an impressive winning rate of 90.0% at iteration 2, which further increases to 91.6% at iteration
3. This winning rate surpasses 73.2% achieved by SFT and 84.8% achieved by Diffusion-DPO
(reproduced). When competing with Diffusion-DPO (reproduced), at iteration 3, SPIN-Diffusion
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SD-1.5 SFT Diffusion-DPO (ours) SPIN-Diffusion-Iter1 SPIN-Diffusion-Iter2 SPIN-Diffusion-Iter3Figure 2: We show the images generated by different models. The prompts are “a very cute boy,
looking at audience, silver hair, in his room, wearing hoodie, at daytime, ai language model, 3d art,
c4d, blender, pop mart, blind box, clay material, pixar trend, animation lighting, depth of field, ultra
detailed”, “painting of a castle in the distance” and “red and green eagle”. The models are: SD-1.5,
SFT, Diffusion-DPO (reproduced), SPIN-Diffusion-Iter1, SPIN-Diffusion-Iter2, SPIN-Diffusion-
Iter3 from left to right. SPIN-Diffusion demonstrates a notable improvement in image quality. The
quantitative evaluation of the aesthetic score of the above images is in Table 5.

achieves a winning rate of 56.2% on HPS, 86.8% on Aesthetic, 62.4% on PickScore, 55.8% on Image
Reward, and has an overall winning rate of 70.2%.

6.3 Qualitative Analysis

We illustrate the qualitative performance of our model on three prompts coming from the Pick-a-Pic
test dataset. We prompt SD-1.5, SFT, Diffusion-DPO (reproduced), and SPIN-Diffusion at iteration 1
to 3 and present the generated images in Figure 2. Compared to the baseline methods, SPIN-Diffusion
demonstrates a notable improvement in image quality, even more apparent than the improvements
in scores. This is especially evident in aspects such as aligning, shading, visual appeal, and the
intricacy of details within each image. This qualitative assessment underscores the effectiveness of
SPIN-Diffusion in producing images that are not only contextually accurate but also visually superior
to those generated by other existing models.

7 Conclusion
This paper presents SPIN-Diffusion, an innovative fine-tuning approach tailored for diffusion models,
particularly effective in scenarios where only a single image is available per text prompt. By
employing a self-play mechanism, SPIN-Diffusion iteratively refines the model’s performance,
converging towards the target data distribution. Theoretical evidence underpins the superiority of
SPIN-Diffusion, demonstrating that traditional supervised fine-tuning cannot surpass its stationary
point, achievable at the target data distribution. Empirical evaluations highlight SPIN-Diffusion’s
remarkable success in text-to-image generation tasks, surpassing the state-of-the-art fine-tuning
methods even without the need for additional data. This underscores SPIN-Diffusion’s potential to
revolutionize the practice of diffusion model fine-tuning, leveraging solely demonstration data to
achieve unprecedented performance levels.
Limitations While our theoretical analysis ensures that θk is the only global optimum of our objective
function, it relies on the assumption that the data distribution can be adequately represented by the
parameterized family. Additionally, as our methodology is fundamentally a distribution matching
algorithm, it cannot, in principle, exceed the performance of the underlying data distribution. Finally,
although SPIN-Diffusion is data-efficient, it requires additional sampling overhead. The high sampling
cost can be alleviated by software-level upgrades such as larger batch size, and memory-efficient
attention backends. On the algorithm level, advanced sampling acceleration techniques also offer
promising improvements. These techniques are orthogonal to our efforts in improving the performance
of fine-tuning diffusion models, and therefore we decide to explore them as a future work.
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Broader Impact
This approach enhances model performance across diverse benchmarks without the need for supervi-
sion from more advanced models, facilitating better alignment of AI with human preferences. This
improvement bolsters the reliability and safety of AI systems in the field of text-to-image generation.
It provides a more effective and scalable method for model fine-tuning, resulting in cost reductions
and the expedited deployment of models that more accurately reflect human aesthetic and content
preferences.
However, there exists the potential for overfitting, which may not lead to genuine improvements
in real-world applications. Adhering too closely in creative fields such as text-to-image generation
could inadvertently perpetuate existing societal biases in the generated imagery. Furthermore, the
capability to finely tune alignment with human preferences could be exploited for unethical ends,
such as crafting tailored and manipulative content or disseminating false information.

A Additional Details for Experiments
A.1 Hyperparameters

We train the SPIN-Diffusion on 8 NVIDIA A100 GPUs with 80G memory. In training the SPIN-
Diffusion, we use the AdamW optimizer with a weight decay factor of 1e − 2. The images are
processed at a 512× 512 resolution. The batch size is set to 8 locally, alongside a gradient accumula-
tion of 32. For the learning rate, we use a schedule starting with 200 warm-up steps, followed by
linear decay. We conduct a grid search on the learning rate, coefficient βt, and number of training
steps, and choose the hyperparameters that perform the best on the validation set. We set the learning
rate at 2.0e − 5 for the initial two iterations, reducing it to 5.0e − 8 for the third iteration. The
coefficient βt is chosen as 2000 for the first iteration, increasing to 5000 for the subsequent second
and third iterations. The trend in different learning rate and βt choices reveals that later iterations
typically benefit from more conservative updates. Training steps are 50 for the first iteration, 500 for
the second, and 200 for the third. In training the DPO model, we employ the same AdamW optimizer
and maintain a batch size of 8 and a gradient accumulation of 32. The learning rate is set to 2.0e− 5,
and βt is set to 2000. The total number of training steps for DPO is 350. In SFT training, we use 4
NVIDIA A6000 GPUs. We use the AdamW optimizer with a weight decay of 0.01. The local batch
size is set to 32 and the global batch size is set to 512. Our learning rate is 1e-5, with linear warmup
for 500 steps with no learning rate decay. We save checkpoints every 500 steps and evaluate the
checkpoints on Pick-a-Pic validation. We select the best checkpoint, trained after 2000 steps as our
SFT checkpoint.
During generation, we use a guidance scale of 7.5, and fixed the random seed as 5775709.

A.2 Additional Results

In this section, we first illustrate the main results shown in Table 1 by Figure 3 and a radar plot
Figure 4.
We present the median scores of baselines and SPIN-Diffusion on Pick-a-Pic testset in Table 2. The
results are consistent to the results in Table 1. We present the detailed winning rate of baselines and
SPIN-Diffusion over SD-1.5 in Table 3 and the winning rate over Diffusion-DPO in Table 4. We
present the aesthetic scores of the images in Figure 2 in Table 5.

A.3 Additional Ablation Study

We conduct ablation study to investigate several aspects in the performance of SPIN-Diffusion.

Continual Training for More Epochs. We further study the training behavior of SPIN-Diffusion
by continual training within iteration 1. Both iteration 1 and iteration 2 commence training from
the same checkpoint. However, for subsequent epochs in iteration 1, images generated by SD-1.5
are used, with SD-1.5 also serving as the opponent player. In contrast, during iteration 2, both the
generated images and the opponent player originate from the iteration 1 checkpoint. The results
shown in Figure 5 are reported on the 500 prompts validation set of Pick-a-Pic. We observe that
in terms of PickScore, HPS, and average score, continual training on iteration 1 even results in a
performance decay. Even in terms of Aesthetic score, continual training cannot guarantee a consistent
improvement. Compared to training for more epochs in iteration 1, iteration 2 has a much more ideal
performance. These results show the key role in updating the opponent.
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Figure 3: Comparison between SPIN-Diffusion at different iterations with SD-1.5, SFT and Diffusion-
DPO. SPIN-Diffusion outperforms SFT at iteration 1, and outperforms all the baselines after itera-
tion 2. In the legend, Diffusion-DPO (ours) denotes our reproduced version of Diffusion-DPO.
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Figure 4: The main result is presented in radar chart. The scores are adjusted to be shown on the
same scale. Compared with the baselines, SPIN achieves higher scores in all the four metrics and the
average score by a large margin. In the legend, Diffusion-DPO (ours) denotes our reproduced version
of Diffusion-DPO.

Evaluation on Other Benchmarks We also conduct experiment on PartiPrompts (Yu et al., 2022)
and HPSv2 (Wu et al., 2023). PartiPrompts consist of 1632 prompts that contains a wide range of
categories and difficulties that beyond daily scenarios and natural objects. HPSv2 is a text-image
prefence dataset, where the prompts come from DiffusionDB and MSCOCO (Lin et al., 2014) dataset.
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Table 2: The results of median scores on Pick-a-Pic test set. We report the median of PickScore,
HPSv2, ImageReward and Aesthetic over the whole test set. We also report the average score over
the four evaluation metric. SPIN-Diffusion outperforms all the baselines regarding HPS, Aesthetic,
PickScore and the average score, which agrees with the results of mean scores.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2705 5.7726 0.9184 21.1813 7.0357
SFT (reproduced) 0.2750 5.9331 1.3161 21.4159 7.2350
Diffusion-DPO 0.2729 5.8837 1.1361 21.6064 7.2248
Diffusion-DPO (reproduced) 0.2756 5.8895 1.2219 21.8995 7.3216

SPIN-Diffusion-Iter1 0.2739 6.1297 1.1366 21.6464 7.2967
SPIN-Diffusion-Iter2 0.2751 6.2385 1.3059 22.0101 7.4574
SPIN-Diffusion-Iter3 0.2761 6.2769 1.3073 22.0703 7.4827

Table 3: The winning rate over SD-1.5 Pick-a-Pic testset. SPIN-Diffusion shows the highest winning
rate over SD-1.5 among all the baselines.

Model PickScore ↑ HPS ↑ ImageReward ↑ Aesthetic ↑ Average ↑
SFT (reproduced) 62.4 82.0 75.0 70.8 73.2
Diffusion-DPO 78.4 75.8 65.0 65.4 79.8
Diffusion-DPO (reproduced) 83.8 81.2 71.2 69.0 84.8

SPIN-Diffusion-Iter1 75.4 70.0 65.8 86.0 80.8
SPIN-Diffusion-Iter2 86.6 82.6 72.6 92.2 90.0
SPIN-Diffusion-Iter3 87.0 86.2 77.0 93.8 91.6

Table 4: The winning rate over Diffusion DPO (reproduced) on Pick-a-Pic testset. SPIN-Diffusion
shows the highest winning rate over Diffusion DPO (reproduced) among all the baselines.

Model PickScore ↑ HPS ↑ ImageReward ↑ Aesthetic ↑ Average ↑
SD-1.5 16.2 20.8 28.8 31.0 15.2
SFT (reproduced) 26.8 48.2 51.4 52.8 35.2
Diffusion-DPO 30.6 29.4 36.8 45.2 30.4

SPIN-Diffusion-Iter1 37.2 35.6 40.6 74.8 47.4
SPIN-Diffusion-Iter2 56.8 49.0 52.6 86.6 68.2
SPIN-Diffusion-Iter3 62.4 56.2 55.8 86.8 70.2

Table 5: Aesthetic scores of pictures in Figure 2

SD-1.5 SFT Diffusion-DPO (reproduced) SPIN-Diffusion Iter1 Iter2 Iter3
Boy 6.171 6.096 6.072 6.158 6.407 6.831

Castle 6.180 6.346 5.995 6.886 6.993 6.940

Eagle 4.927 5.428 5.289 5.601 6.103 6.189

Table 6: The size of benchmark datasets in our evaluation
Benchmarks Pick-a-Pic PartiPrompts HPSv2

# Prompts 500 1630 3200

In our experiment, we use the prompts from its test set, which contains 3200 prompts. We use the
same evaluation metrics as before and the results are shown in Table 7 and 8. The results show that,
on both PartiPrompts and HPSv2, SPIN-Diffusion achieves a comparable performance with Diffusion
DPO (reproduced) and surpasses other baseline models at the first iteration. SPIN-Diffusion further
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Figure 5: The evaluation results on Pick-a-Pic validation set of continual training within SPIN-
Diffusion iteration 1, and SPIN-Diffusion iteration 2. The x-axis is the number of epochs. Consecutive
epochs in iteration 1 reach their limit quickly while switching to iteration 2 boosts the performance.

Table 7: The results of mean scores on PartiPrompts. We report the mean and median of PickScore,
HPS, ImageReward and Aesthetic score over the whole dataset. We also report the average score over
the four evaluation metrics. SPIN-Diffusion outperforms all the baselines in terms of four metrics.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2769 5.6721 0.9196 21.8926 7.1903
SFT (reproduced) 0.2814 5.8568 1.1559 21.9719 7.3165
Diffusion-DPO 0.2815 5.7758 1.1495 22.2723 7.3698

SPIN-Diffusion-Iter1 0.2783 5.9073 0.9952 22.1221 7.3257
SPIN-Diffusion-Iter2 0.2804 6.0533 1.0845 22.3122 7.4326
SPIN-Diffusion-Iter3 0.2813 6.0534 1.0893 22.3435 7.4419

reaches an average score of 7.4326 and 7.5244 on PartiPrompts and HPSv2 dataset respectively at
second iteration, which outpuerforms all other baselines by a large margin. These results consolidate
our statement that SPIN shows a superior performance over both SFT and DPO. We also conduct
qualitative result on PartiPrompts and the results are shown in Figure 6.
Remarks on LoRA fine-tuning While LoRA is a parameter-efficient fine-tuning method that focuses
on reducing trainable parameters under resource constraints, it is orthogonal to SPIN-Diffusion,
which utilizes a self-play mechanism for fine-tuning. We also provide SFT (LoRA) fine-tuning
results in Figure 11. We can see that full fine-tuning generally surpasses the performance of LoRA
fine-tuning. Therefore, we leave the exploration of LoRA version of SPIN-Diffusion to future work.
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Table 8: The results of median scores on PartiPrompts. We report the mean and median of PickScore,
HPS, ImageReward and Aesthetic score over the whole dataset. We also report the average score over
the four evaluation metrics. SPIN-Diffusion outperforms all the baselines in terms of four metrics.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2781 5.6823 1.1247 21.9339 7.2548
SFT (reproduced) 0.2781 5.6823 1.1247 21.9339 7.2548
Diffusion-DPO 0.2822 5.7820 1.3823 22.3251 7.4429

SPIN-Diffusion-Iter1 0.2793 5.8926 1.1906 22.1632 7.3814
SPIN-Diffusion-Iter2 0.2810 6.0400 1.2857 22.2998 7.4766
SPIN-Diffusion-Iter3 0.2825 6.0480 1.3095 22.3361 7.4940

Table 9: The results of mean scores on HPSv2. We report the mean and median of PickScore, HPS,
ImageReward and Aesthetic score over the whole dataset. We also report the average score over the
four evaluation metrics. SPIN-Diffusion outperforms all the baselines in terms of four metrics.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2783 5.9017 0.8548 21.4978 7.1332
SFT (reproduced) 0.2846 6.0378 1.1547 21.8549 7.333
Diffusion-DPO 0.2843 6.0306 1.1391 22.3012 7.4388

SPIN-Diffusion-Iter1 0.2804 6.1943 1.0133 21.8778 7.3415
SPIN-Diffusion-Iter2 0.2838 6.3403 1.1145 22.2994 7.5095
SPIN-Diffusion-Iter3 0.2849 6.342 1.1292 22.3415 7.5244

Table 10: The results of median scores on HPSv2. We report the mean and median of PickScore,
HPS, ImageReward and Aesthetic score over the whole dataset. We also report the average score over
the four evaluation metrics. SPIN-Diffusion outperforms all the baselines in terms of four metrics.

Model HPS ↑ Aesthetic ↑ ImageReward ↑ PickScore ↑ Average ↑
SD-1.5 0.2781 5.8529 0.9324 21.4825 7.1365
SFT (reproduced) 0.2847 6.0057 1.308 21.8211 7.3549
Diffusion-DPO 0.2847 5.9878 1.3085 22.2854 7.4666

SPIN-Diffusion-Iter1 0.2803 6.1519 1.1331 21.858 7.3558
SPIN-Diffusion-Iter2 0.2839 6.3401 1.2711 22.2577 7.5382
SPIN-Diffusion-Iter3 0.2849 6.3296 1.2853 22.3029 7.5507

Table 11: The results of LoRA fine-tuning vs. full fine-tuning.
Method HPS Aesthetic ImageReward PickScore Average

SFT (full) 0.2749 5.9451 1.1051 21.4542 7.1948

SFT (LoRA) 0.2745 5.8573 1.1393 21.4121 7.1708

A.4 Training Dynamics of SFT and DPO

We first study the training dynamic of SPIN-Diffusion in comparison with SFT and Diffusion-DPO,
and we plot the results in Figure 7. We observe that after training with about 50k data, the performance
of SFT stop improving and maintains at about 20.8 in PickScore, 0.270 in HPS, 5.6 in Aesthetic
and 8.9 in average score. These results is significantly inferior to those achieved by SPIN-Diffusion,
which achieves 21.2 in PickScore, 0.272 in HPS, 5.9 in Aesthetic and 9.1 in average score. Compared
to Diffusion-DPO, SPIN-Diffusion achieves a superior performance without the loser image. These
results demonstrate that self-play fine-tuning plays a key role in SPIN-Diffusion’s performance.
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SD-1.5 SFT Diffusion-DPO (ours) SPIN-Diffusion-Iter1 SPIN-Diffusion-Iter2 SPIN-Diffusion-Iter3Figure 6: We show the images generated by different models based on prompts from PartiPrompts.
The prompts are “a photo of san francisco’s golden gate bridge”, “an aerial view of the Great
Wall” and “Face of an orange frog in cartoon style”. The models are: SD-1.5, SFT, Diffusion-DPO,
Diffusion-DPO (reproduced), SPIN-Diffusion-Iter2 from left to right. SPIN-Diffusion demonstrates
a notable improvement in image quality

B Additional Qualitative Results
In this section, we provide extensive qualitative results to further support our findings. We first
demonstrate the impact of different random seeds on model comparisons and include a wider range
of visual examples to support the qualitative results. We also provide a image gallary in Figure 12.

Effect of different random seeds Random seeds sometimes influence the results produced by image
generation models. Figures 8 and 9 demonstrate this effect, showcasing outputs of multiple models
for the same prompt across four different random seeds. SPIN-Diffusion consistently generates
higher-quality images across these variations.

More examples on Partiprompts To further showcase SPIN-Diffusion’s capabilities to handle a
wide range of styles and subjects, we present results on 10 additional prompts from the PartiPrompts
dataset (totaling 1630 prompts). These examples highlight the model’s ability to handle a wide range
of styles and subjects. Figure 10 showcases results for 5 of these prompts, while Figure 11 highlights
SPIN-Diffusion’s ability in generating cartoon-style images with 5 additional prompts specifically
containing the word ’cartoon’.

C Additional Details for SPIN-Diffusion
C.1 Additional Details of DDIM.

Given a prompt c, image x0, sequence {αt}Tt=1 ⊆ (0, 1] and {σt}Tt=1 ⊆ [0,+∞), the forward
diffusion process defined in (3.1) is

q(x1:T |x0) := q(xT |x0)
T∏

t=2

q(xt−1|xt,x0),

where q(xT |x0) = N (
√
αTx0, (1− αT )I) and q(xt−1|xt,x0) admits the following distribution,

N
(
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
, σ2

t I

)
. (C.1)

Here {αt}Tt=1 is a decreasing sequence with α0 = 1 and αT approximately zero. By
Bayesian rule, we can show that this diffusion process ensures that q(xt|x0) = N (

√
αtx0, (1 −
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Figure 7: The evaluation results on the Pick-a-Pic validation set of SFT, Diffusion-DPO and SPIN-
Diffusion. The x-axis is the number of training data. SFT reaches its limit quickly, while Diffusion-
DPO and SPIN-Diffusion continue to improve after training with over 800k data.

αt)I) for all t and reduces to DDPM (Ho et al., 2020) with a special choice of σt =√
(1− αt−1)/(1− αt)

√
(1− αt/αt−1).

Given noise schedule αt and σt, examples from the generative model follows

pθ(x0:T |c) =
T∏

t=1

pθ(xt−1|xt, c) · pθ(xT |c),

pθ(xt−1|xt, c) = N
(
µθ(xt, c, t), σ

2
t I
)
.

Here θ belongs to the parameter space Θ and µθ(xt, c, t) is the mean of the Gaussian that can be
parameterized (Ho et al., 2020; Song et al., 2020a) as

µθ(xt, c, t) =
√
αt−1

(
xt −

√
1− αtϵθ(xt, c, t)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(xt, c, t), (C.2)

where {ϵθ(xt, c, t)}Tt=1 are score functions that approximate noise. Compare (C.2) and (C.1), we can
see that

(xt−
√
1−αtϵθ(xt,c,t)√

αt

)
approximates x0, and ϵθ approximates the noise ϵt :=

xt−
√
αtx0√

1−αt
∼

N (0, I).

C.2 Decoupling Technique

In Section 4, we demonstrate that the objective function defined in (4.8) can be simplified to the form
in (4.9). This reformulation only requires considering two consecutive sampling steps, t− 1 and t,
rather than involving all intermediate steps. Now, we provide a detailed derivation.

Proof of Lemma 4.1.
LSPIN(θ,θk)
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Figure 8: We show the figures generated by different models based on a prompt from Pick-A-Pic
test set. The prompt used is “a picture of the sea on which a boat sails in a storm and sways in
the sea”. The models are SD-1.5, SFT, Diffusion-DPO (reproduced), SPIN-Diffusion-Iter1, SPIN-
Diffusion-Iter2, and SPIN-Diffusion-Iter3, displayed from left to right. Each row shows the results
for a different random seed. SPIN-Diffusion demonstrates a notable improvement in image quality

= Ec∼q(·),x0:T ∼pdata(·|c),x′
0:T

∼pθk
(·|c)

[
ℓ

(
−

T∑
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βt
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= Lapprox

SPIN (θ,θk),

where the first inequality is by Jensen’s inequality and the convexity of the function ℓ, the second
equality is by integrating the average 1

T

∑T
t=1 into the expectation via t ∼ Uniform{1, . . . , T}, and

the third inequality holds because the argument inside the expectation is only depend of sampling
step t− 1 and t.
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Figure 9: We show the figures generated by different models based on a prompt from Pick-A-Pic
test set. The prompt used is “A cute hedgehog holding flowers”. The models are SD-1.5, SFT,
Diffusion-DPO (reproduced), SPIN-Diffusion-Iter1, SPIN-Diffusion-Iter2, and SPIN-Diffusion-Iter3,
displayed from left to right. Each row shows the results for a different random seed. SPIN-Diffusion
demonstrates a notable improvement in image quality

C.3 Objective Function of SPIN-Diffusion

We look deep into the term
∥∥xt−1 − µθ(xt, c, t)

∥∥2
2

and
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2
2

of (4.8) and (4.9) in
this section.
When x0:T Follows Forward Process. We have that x0:T ∼ pdata(·|c) and by (C.1) and (C.2) we
have that

xt−1 =
√
αt−1x0 +

√
1− αt−1 − σ2

t ·
xt −

√
αtx0√

1− αt
+ σtϵ̂t

µθ(xt, c, t) =
√
αt−1

(
xt −

√
1− αtϵθ(xt, c, t)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(xt, c, t),

where ϵ̂t ∼ N (0, I). Therefore,
∥∥xt−1 − µθ(xt, c, t)

∥∥2
2

can be simplified to

h2
t

∥∥∥∥xt −
√
αtx0√

1− αt
− ϵθ(xt, c, t) + (σt/ht) · ϵ̂t

∥∥∥∥2
2

, (C.3)

where ht =
[√

1− αt−1 − σ2
t −

√
αt−1/αt

√
1− αt−1

]
and xt−

√
αtx0√

1−αt
∼ N (0, I) following a

Gaussian distribution. When σt → 0, (C.3) becomes h2
t

∥∥ϵt−ϵθ(xt, c, t)
∥∥2
2

with ht =
[√

1− αt−1−√
αt−1/αt

√
1− αt−1

]
and ϵt :=

xt−
√
αtx0√

1−αt
∼ N (0, I).

When x′
0:T Follows the Backward Process. We have that x′

0:T ∼ pθk
(·|c) and

x′
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)
+

√
1− αt−1 − σ2

t · ϵθk
(x′

t, c, t) + σtϵ̂
′
t
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Figure 10: We show the figures generated by different models based on prompts from PartiPrompts.
The prompts are “a old-time car with a large front grille”, “a full moon rising above a mountain at
night”, “a young badger delicately sniffing a yellow rose, richly textured oil painting”, “a cartoon of
a man standing under a tree” and “a prop plane flying low over the Great Wall”. The models are:
SD-1.5, SFT, Diffusion-DPO, Diffusion-DPO (reproduced), SPIN-Diffusion-Iter2 from left to right,
all utilizing the same random seed for fair comparison

µθ(x
′
t, c, t) =

√
αt−1

(
x′
t −

√
1− αtϵθ(x

′
t, c, t)√

αt

)
+

√
1− αt−1 − σ2

t · ϵθ(x′
t, c, t),

where ϵ′t ∼ N (0, I). Therefore,
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2
2

can be simplified to

h2
t

∥∥ϵθk
(x′

t, c, t)− ϵθ(xt, c, t) + (σt/ht) · ϵ̂′t
∥∥2
2
, (C.4)

where ht =
[√

1− αt−1 − σ2
t −

√
αt−1/αt

√
1− αt−1

]
. When σt → 0, (C.4) becomes

h2
t

∥∥ϵθk
(x′

t, c, t)− ϵθ(xt, c, t)
∥∥2
2

with ht =
[√

1− αt−1 −
√
αt−1/αt

√
1− αt−1

]
.

Simple Decoupled SPIN-Diffusion Objective Function. Substituting (C.3) and (C.4) into (4.9)
and applying σt → 0 yields,

Lapprox
SPIN (θ,θk) = E

[
ℓ

(
− βth

2
t

[∥∥ϵt − ϵθ(xt, c, t)
∥∥2
2
−
∥∥ϵt − ϵθk

(xt, c, t)
∥∥2
2
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Figure 11: We show the figures generated by different models based on prompts from PartiPrompts.
The prompts are “A cartoon house with red roof ”, “a cartoon of an angry shark”, “a cartoon of a bear
birthday party”, “a cartoon of a house on a mountain” and “a cartoon of a boy playing with a tiger”.
The models are: SD-1.5, SFT, Diffusion-DPO, Diffusion-DPO (reproduced), SPIN-Diffusion-Iter2
from left to right, all utilizing the same random seed for fair comparison

−
∥∥ϵθk

(x′
t, c, t)− ϵθ(x

′
t, c, t)

∥∥2
2

])]
, (C.5)

where ht =
√
1− αt−1 −

√
αt−1/αt

√
1− αt−1, xt = αtx0 + (1 − αt)ϵt, and the expectation

is computed over the distribution,c ∼ q(c),x0 ∼ pdata(x0|c),x′
t ∼ pθk

(x′
t|c), ϵt ∼ N (0, I) and

t ∼ Uniform{1, . . . , T}. (C.5) still need the intermediate steps x′
t, as discussed below (4.9) in

Section 4, we can approximate the backward process with the forward process and obtain

Lapprox
SPIN (θ,θk) = E

[
ℓ

(
− βth

2
t

[∥∥ϵt − ϵθ(xt, c, t)
∥∥2
2
−
∥∥ϵt − ϵθk

(xt, c, t)
∥∥2
2
−
∥∥ϵ′t − ϵθ(x

′
t, c, t)

∥∥2
2

+
∥∥ϵ′t − ϵθk

(x′
t, c, t)

∥∥2
2

])]
,

where ht =
√
1− αt−1−

√
αt−1/αt

√
1− αt−1, xt = αtx0+(1−αt)ϵt, x′

t = αtx
′
0+(1−αt)ϵ

′
t,

and the expectation is computed over the distribution,c ∼ q(c),x0 ∼ pdata(x0|c),x′
0 ∼ pθk

(x′
0|c),

ϵt ∼ N (0, I), ϵ′t ∼ N (0, I) and t ∼ Uniform{1, . . . , T}.
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Figure 12: Image galary generated by SPIN-Diffusion, a self-play fine-tuning algorithm for diffusion
models. The results are fine-tuned from Stable Diffusion v1.5 on the winner images of the Pick-a-Pic
dataset. The prompts used for generating the above images are chosen from the Pick-a-Pic test set.
The generated images demonstrate superior performance in terms of overall visual attractiveness and
coherence with the prompts. SPIN-Diffusion is featured by its independence from paired human
preference data, offering a useful tool for fine-tuning on custom datasets with only single image per
text prompt provided.

D Proof of Theorems in Section 5
Proof of Theorem 5.2. Plugging (C.3) and (C.4) into (4.9) yields the following loss parameterized
with ϵθ ,

Lapprox
SPIN (θ,θk) = E

[
ℓ

(
− βth

2
t

[∥∥ϵ− ϵθ(xt, c, t) + (σt/ht) · ϵt
∥∥2
2
−

∥∥ϵ− ϵθk
(xt, c, t) + (σt/ht) · ϵt

∥∥2
2

+
∥∥(σt/ht) · ϵ′t

∥∥2
2
−

∥∥ϵθk
(x′

t, c, t)− ϵθ(x
′
t, c, t) + (σt/ht) · ϵ′t

∥∥2
2

])]
, (D.1)

where ϵt, ϵ
′
t ∼ N (0, I). When σt → 0, (D.1) can be simplified to (C.5). In this proof, we will stick

to the formula (D.1) to provide the proof for all σt ≥ 0.
Since θk is not the global optimum of LDM by condition, there exists θ∗ such that LDM(θ∗) ≤
LDM(θk), which gives that

E
[
γt
∥∥ϵθ∗(xt, t, c)− ϵ

∥∥2
2

]
≤ E

[
γt
∥∥ϵθk

(xt, t, c)− ϵ
∥∥2
2

]
, (D.2)

where the expectation is computed over the distribution c ∼ q(·),x0 ∼ qdata(·|c), ϵ ∼ N (0, I),
t ∼ Uniform{1, . . . , T}. Define g(s) = Lapprox

SPIN (θ∗,θk) with βt = sγt/h
2
t as follows,

g(s) = E
[
ℓ

(
− βth

2
t

[∥∥ϵ− ϵθ∗(xt, c, t) + (σt/ht) · ϵt
∥∥2
2
−
∥∥ϵ− ϵθk

(xt, c, t) + (σt/ht) · ϵt
∥∥2
2

+
∥∥(σt/ht) · ϵ′t

∥∥2
2
−
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t) + (σt/ht) · ϵ′t
∥∥2
2

])]
= E

[
ℓ

(
− sγt

[∥∥ϵ− ϵθ∗(xt, c, t) + (σt/ht) · ϵt
∥∥2
2
−

∥∥ϵ− ϵθk
(xt, c, t) + (σt/ht) · ϵt

∥∥2
2

+
∥∥(σt/ht) · ϵ′t

∥∥2
2
−
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t) + (σt/ht) · ϵ′t
∥∥2
2

])]
.
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Then we have that g(0) = 0 and

dg

ds
(0) = E

[
− ℓ′(0)γt

(∥∥ϵ− ϵθ∗(xt, c, t) + (σt/ht) · ϵt
∥∥2
2
−

∥∥ϵ− ϵθk
(xt, c, t) + (σt/ht) · ϵt

∥∥2
2

+
∥∥(σt/ht) · ϵ′t

∥∥2
2
−
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t) + (σt/ht) · ϵ′t
∥∥2
2

)]
= −ℓ′(0)

(
Eγt

∥∥ϵ− ϵθ∗(xt, c, t) + (σt/ht) · ϵt
∥∥2
2
− Eγt

∥∥ϵ− ϵθk
(xt, c, t) + (σt/ht) · ϵt

∥∥2
2

+ Eγt
∥∥(σt/ht) · ϵ′t

∥∥2
2
− Eγt

∥∥ϵθk
(x′

t, c, t)− ϵθ∗(x′
t, c, t) + (σt/ht) · ϵ′t

∥∥2
2

)
, (D.3)

where xt =
√
αtx0+

√
1− αtϵ and the expectation is computed over the distribution c ∼ q(·),x0 ∼

qdata(·|c), ϵ ∼ N (0, I), t ∼ Uniform{1, . . . , T} and ϵt, ϵ
′
t ∼ N (0, I). Since ϵt, ϵ′t follows standard

Multivariate normal distribution and independent with xt,x
′
t, ϵ,x0, we can simplify the the terms in

(D.3) as follows,

Eγt
∥∥ϵ− ϵθ∗(xt, c, t) + (σt/ht) · ϵt

∥∥2
2

= Eγt
∥∥ϵ− ϵθ∗(xt, c, t)

∥∥2
2
+ Eγt

∥∥(σt/ht) · ϵt
∥∥2
2

(D.4)

Eγt
∥∥ϵ− ϵθk

(xt, c, t) + (σt/ht) · ϵt
∥∥2
2

= Eγt
∥∥ϵ− ϵθk

(xt, c, t)
∥∥2
2
+ Eγt

∥∥(σt/ht) · ϵt
∥∥2
2

(D.5)

Eγt
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t) + (σt/ht) · ϵ′t
∥∥2
2

= Eγt
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t)
∥∥2
2
+ Eγt

∥∥(σt/ht) · ϵ′t
∥∥2
2

(D.6)

where we apply the property of standard normal distribution that E[ϵt] = E[ϵ′t] = 0. Plugging (D.4),
(D.5), (D.6) into (D.3) gives that

dg

ds
(0) = −ℓ′(0)

(
Eγt

∥∥ϵ− ϵθ∗(xt, c, t)
∥∥2
2
− Eγt

∥∥ϵ− ϵθk
(xt, c, t)

∥∥2
2

− Eγt
∥∥ϵθk

(x′
t, c, t)− ϵθ∗(x′

t, c, t)
∥∥2
2

)
< 0,

where the last inequality is by (D.2). Here xt =
√
αtx0+

√
1− αtϵ and the expectation is computed

over the distribution c ∼ q(·),x0 ∼ qdata(·|c), ϵ ∼ N (0, I), t ∼ Uniform{1, . . . , T}.
Therefore, there exist a λ0 such that for all 0 < λ < λ0, we have g(λ) < ℓ(0). So for those
βt = sγt/h

2
t with 0 < λ < λ0, we have that

Lapprox
SPIN (θ∗,θk) = g(λ) < g(0) = LSPIN(θk,θk),

where the inequality holds due to the choice of λ. Therefore, we conclude that θk is not the global
optimum of (4.9).

Proof of Theorem 5.3. By (4.9) we have that,

Lapprox
SPIN (θ,θk) = E

[
ℓ

(
− βt

[∥∥xt−1 − µθ(xt, c, t)
∥∥2
2
−

∥∥xt−1 − µθk
(xt, c, t)

∥∥2
2

−
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2
2
+
∥∥x′

t−1 − µθk
(x′

t, c, t)
∥∥2
2

])]
,

where the expectationis computed over the distribution c ∼ q(c), (xt−1,xt) ∼∫
pdata(x0|c)q(xt−1,xt|x0)dx0, (x′

t−1,x
′
t) ∼

∫
pθk

(x′
0|c)q(x′

t−1,x
′
t|x′

0)dx
′
0, t ∼

Uniform{1, . . . , T}. Since pdata(·|c) = pθt(·|c), we can conclude that (xt−1,xt) and (x′
t−1,x

′
t)

are independent and identically distributed random variable. Therefore, by symmetry property of
(xt−1,xt) and (x′

t−1,x
′
t), we have for any θ ∈ Θ that
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Lapprox
SPIN (θ,θk) =

1

2
E
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ℓ
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− βt
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2
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2
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2
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2
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2

])]
≥ E

[
ℓ

(
− βt

2
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∥∥2
2
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(xt, c, t)
∥∥2
2

−
∥∥x′

t−1 − µθ(x
′
t, c, t)

∥∥2
2
+
∥∥x′

t−1 − µθk
(x′

t, c, t)
∥∥2
2

]
− βt

2

[∥∥x′
t−1 − µθ(x

′
t, c, t)

∥∥2
2
−

∥∥x′
t−1 − µθk

(x′
t, c, t)

∥∥2
2

−
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∥∥2
2
+
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∥∥2
2

])]
= ℓ(0),

where the inequality is due to Jensen’s inequality (recalling that ℓ is convex in As-
sumption 5.1), and the expectation is computed over the distribution c ∼ q(c),
(xt−1,xt) ∼

∫
pdata(x0|c)q(xt−1,xt|x0)dx0, (x′

t−1,x
′
t) ∼

∫
pθk

(x′
0|c)q(x′

t−1,x
′
t|x′

0)dx
′
0, t ∼

Uniform{1, . . . , T}. Therefore, we have that

Lapprox
SPIN (θ,θk) ≥ ℓ(0) = Lapprox

SPIN (θk,θk),

which means that θk is the global optimum of (4.9). As a consequence, θk+1 = θk.
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We place our broader impact section at the start of the Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper proposes fine-tuning methodology that is generally applicable to
any pretrained language model and preference model, and poses no particular such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original papers that produced the dataset and base models.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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