
Matching the Statistical Query Lower Bound for
k-Sparse Parity Problems with Sign Stochastic

Gradient Descent

Yiwen Kou∗

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095, USA
evankou@cs.ucla.edu

Zixiang Chen∗

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA 90095, USA
chenzx19@cs.ucla.edu

Quanquan Gu
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90095, USA

qgu@cs.ucla.edu

Sham M. Kakade
Kempner Institute at Harvard University

Harvard University
Cambridge, MA 02138, USA
sham@seas.harvard.edu

Abstract

The k-sparse parity problem is a classical problem in computational complexity and
algorithmic theory, serving as a key benchmark for understanding computational
classes. In this paper, we solve the k-sparse parity problem with sign stochastic
gradient descent, a variant of stochastic gradient descent (SGD) on two-layer fully-
connected neural networks. We demonstrate that this approach can efficiently solve
the k-sparse parity problem on a d-dimensional hypercube (k ≤ O(

√
d)) with

a sample complexity of Õ(dk−1) using 2Θ(k) neurons, matching the established
Ω(dk) lower bounds of Statistical Query (SQ) models2. Our theoretical analysis
begins by constructing a good neural network capable of correctly solving the
k-parity problem. We then demonstrate how a trained neural network with sign
SGD can effectively approximate this good network, solving the k-parity problem
with small statistical errors. To the best of our knowledge, this is the first result that
matches the SQ lower bound for solving k-sparse parity problem using gradient-
based methods.

1 Introduction

The k-parity problem, defined on a binary sequence of length d, is a fundamental problem in the
field of computational complexity and algorithmic theory. This problem involves finding a subset
of cardinality k by assessing if the occurrence of 1’s in this subset is even or odd. The complexity
of the problem escalates as the parameter k increases. Its significance, while evidently practical, is
rooted in its theoretical implications; it serves as a vital benchmark in the study of computational
complexity classes and has profound implications for our understanding of P versus NP (Vardy, 1997;
Downey et al., 1999; Dumer et al., 2003) and other cornerstone questions in computational theory
(Blum, 2005; Klivans et al., 2006). Furthermore, the k-parity problem’s complexity underpins many
theoretical models in error detection and information theory (Dutta et al., 2008), and is instrumental

∗Equal contribution
2The Õ(dk−1) sample complexity implies Õ(dk) query complexity, because each sample corresponds to d

scalar-valued queries.
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in delineating the limitations and power of algorithmic efficiency (Farhi et al., 1998). This paper
tackles the k-sparse parity problem (Daniely and Malach, 2020), where the focus is on the parity of a
subset with cardinality k ≪ d.

Recent progress in computational learning theory has focused on improving the sample complexity
guarantees for learning k-sparse parity functions using stochastic gradient descent (SGD). Under the
framework of the Statistical Query (SQ) model (Kearns, 1998), it has been established that learning
the k-sparse parity function requires a minimum of Ω(dk) queries (Barak et al., 2022), highlighting
the challenge in efficiently learning these functions. On the other hand, considerable effort has been
devoted to establishing sample complexity upper bounds for the special XOR case (k = 2), with
notable successes including O(d) sample complexity using infinite-width or exponential-width (i.e.,
O(2d)) two-layer neural networks trained via gradient flow (Wei et al., 2019; Chizat and Bach, 2020;
Telgarsky, 2022), and O(d2) sample complexity with polynomial-width networks via SGD (Ji and
Telgarsky, 2020; Telgarsky, 2022). A significant advancement in solving the 2-parity problem was
recently introduced by Glasgow (2023). They proved a sample complexity bound of Õ(d) using a
two-layer ReLU network with logarithmic width trained by SGD, thus matching the SQ lower bound
when k = 2.

In the general case of k ≥ 2, Barak et al. (2022) has made significant progress, achieving a sample
complexity of Õ(dk+1) with a network width requirement of 2Θ(k), which is independent of the
input dimension d. Additionally, Barak et al. (2022) demonstrated that the neural tangent kernel
(NTK)-based method (Jacot et al., 2018) requires a network of polynomial width dΩ(k) to solve
the k-parity problem. Recently, Suzuki et al. (2023) achieved a sample complexity of O(d) by the
mean-field Langevin dynamics (MFLD) (Mei et al., 2018; Hu et al., 2019), which requires neural
networks with an exponential width in d, i.e., O(ed), and an exponential number of iterations (i.e.,
O(ed) ) to converge. Thus, their method is not computationally efficient and does not match the SQ
lower bound. Notably, Abbe et al. (2023a) introduced the leap-k function for binary and Gaussian
sequences, which extends the scope of the k-parity problem. They also proved Correlational Statistical
Query (CSQ) (Kearns, 1998; Bshouty and Feldman, 2002) lower bounds for learning leap-k function
for both Gaussian and Boolean inputs. In detail, they proved CSQ lower bounds of Ω(dk−1) for
Boolean input and Ω(dk/2) for Gaussian input, which suggests that learning from Boolean input can
be substantially harder than learning from Gaussian input. They also proved that SGD can learn
low dimensional target functions with Gaussian isotropic data and 2-layer neural networks using
n ≳ dLeap−1 examples. However, their upper bound analysis is based on the assumption that the
input data x follows a Gaussian distribution and relies on Hermite polynomials, making it unclear
how to extend it to analyze Boolean input. Based on the above review of existing literature, it raises a
natural but unresolved question:

Is it possible to match the statistical query lower bound for k-sparse parity problems with stochastic
gradient descent?

In this paper, we give an affirmative answer to the above question. In particular, we consider the
standard k-sparse parity problem, where the input x is drawn from a uniform distribution over
d-dimensional hypercube Unif({−1, 1}d). Our approach involves training two-layer fully-connected
neural networks with m = 2Θ(k) width using sign SGD (Bernstein et al., 2018) with batch size
B = O(dk−1 polylog(d)). We prove that the neural network trained by SGD can achieve a constant-
order positive margin with high probability after T = O(log d) iterations. Therefore, the total number
of examples required in our approach is n = BT = Õ(dk−1). Thus, the total number of scalar-valued
queries required in our paper is m · d ·n = 2Θ(k) · d · (dk−1 · polylogd) = 2Θ(k)dk · polylogd, where
m is the number of neurons, d is the input dimension, and n is the total number of fresh examples
seen by the algorithm3. Abbe et al. (2023a) also proved a CSQ lower bound Ω(dk) for learning
d-dimensional k-parity problems, which implies the sample complexity lower bound n ≳ dk−1.
Thus, our sample complexity result also matches the CSQ lower bound in Abbe et al. (2023a).

1.1 Our Contributions

The Statistical Query (SQ) lower bound indicates that, regardless of architecture, SGD requires a
query complexity of Ω(dk) for learning k-sparse d-dimensional parities under a constant noise level.

3Note that m · d is the total number of scalar-valued queries used for one example.
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We push the sample complexity frontier of k-sparse parity problem to Õ(dk−1) via SGD, specifically
with online stochastic sign gradient descent. Our main result is stated in the following informal
theorem:

Theorem 1.1 (Informal). For a two-layer fully-connected neural networks of width 2Θ(k), online
sign SGD with batch size Õ(dk−1) can find a solution to the k-parity problem with a small test error
within O(k log d) iterations.

The above theorem improves the sample complexity in Barak et al. (2022) from Õ(dk+1) to Õ(dk−1).
Moreover, the total number of queries required is Õ(dk), which matches the SQ/CSQ lower bound up
to logarithmic factors. Additionally, under the standard basis setting, our result matches the sample
complexity in Glasgow (2023) for solving the XOR (i.e., 2-parity) problem with sign SGD. It is
worth noting that our result only requires two-layer fully connected neural networks with 2Θ(k) width
and sign SGD training with O(k log d) iterations, which gives a computationally efficient algorithm.
Finally, we empirically verify our theory in Appendix A, showcasing the efficiency and efficacy of
our approach.

Notation. We use [N ] to denote the index set {1, . . . , N}. We use lowercase letters, lowercase
boldface letters, and uppercase boldface letters to denote scalars, vectors, and matrices, respectively.
For a vector v = (v1, · · · , vd)⊤, we denote by ∥v∥2 := (

∑d
j=1 v

2
j )

1/2 its L2 norm. For a vector
v = (v1, · · · , vd)⊤, we denote by v[i1:i2] := (vi1 , · · · , vi2)⊤ its truncated vector ranging from the
i1-th coordinate to the i2-th coordinate. We denote by 0 a vector of all zeros. For two sequence {ak}
and {bk}, we denote ak = O(bk) if |ak| ≤ C|bk| for some absolute constant C, denote ak = Ω(bk)
if bk = O(ak), and denote ak = Θ(bk) if ak = O(bk) and ak = Ω(bk). We also denote ak = o(bk)

if lim |ak/bk| = 0. We use Õ(·) and Ω̃(·) to omit logarithmic terms in the notation. Finally, we
denote xn = poly(yn) if xn = O(yDn ) for some positive constant D, and xn = polylog(yn) if
xn = poly(log(yn)).

2 Related Work

XOR Problem. The performance of two-layer neural networks in the task of learning 2-parity has
been the subject of extensive research in recent years. Wei et al. (2019); Chizat and Bach (2020);
Telgarsky (2022) employed margin techniques to establish the convergence toward a global margin
maximization solution, utilizing gradient flow and sample complexity of O(d). Notably, Wei et al.
(2019) and Chizat and Bach (2020) employed infinite-width neural networks, while Telgarsky (2022)
employed a more relaxed width condition of O(dd). A significant breakthrough in this domain was
achieved by Glasgow (2023), who demonstrated a sample complexity of Õ(d) by employing SGD
in conjunction with a ReLU network of width polylog(d). Furthermore, several other studies have
shown that when input distribution follows Gaussian distribution, neural networks can be effectively
trained to learn the XOR cluster distribution (Frei et al., 2022; Meng et al., 2023; Xu et al., 2023). A
comparison between the results in this paper and those of related work solving the XOR problem can
be found in Table 1.

k-parity Problem. The challenge of training neural networks to learn parities has been explored
in previous research from diverse angles. Several papers studied learning the k-parity function by
using two-layer neural networks. Daniely and Malach (2020) studied learning k-parity function
by applying gradient descent on the population risk (infinite sample size). Notably, Barak et al.
(2022) presented both empirical and theoretical evidence that the k-parity function can be effectively
learned using SGD and a neural network of constant width, demonstrating a sample complexity
of O(dk+1) and query complexity of O(dk+2). Edelman et al. (2024) demonstrated that sparse
initialization and increased network width lead to improvements in sample efficiency. Specifically,
they showed that the sample complexity can be reduced at the cost of increasing the width. However,
the best statistical query complexity they can achieve is O(dk+2), which is the same as that in Barak
et al. (2022). Suzuki et al. (2023) reported achieving a sample complexity of O(d) by employing
mean-field Langevin dynamics (MFLD). Furthermore, Abbe et al. (2022) and Abbe et al. (2023a)
introduced a novel complexity measure termed “leap” and established that leap-k (with k-parity as a
special case) functions can be learned through SGD with a sample complexity of Õ(dmax(k−1,1)).
Additionally, Abbe et al. (2023b) demonstrated that a curriculum-based noisy-GD (or SGD) approach
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Activation Loss Algorithm Width (m) Sample (n) Iterations (t)
Function Function Requirement Requirement to Converge

Theorem 2.1
(Wei et al., 2019) ReLU logistic WF with Noise ∞ d/ϵ ∞

Theorem 8
(Chizat and Bach, 2020) 2-homogenous logistic/hinge WF ∞ d/ϵ ∞

Theorem 3.3
(Telgarsky, 2022)

ReLU logistic scalar GF dd d/ϵ d/ϵ

Theorem 3.2
(Ji and Telgarsky, 2020) ReLU logistic SGD d8 d2/ϵ d2/ϵ

Theorem 2.1
(Telgarsky, 2022)

ReLU logistic SGD d2 d2/ϵ d2/ϵ

Theorem 3.1
(Glasgow, 2023) ReLU logistic SGD polylog(d) d · polylog(d) polylog(d)

Ours x2 correlation Sign SGD O(1) d · polylog(d) log d

Table 1: Comparison of existing works on the XOR (2-parity) problem. We mainly focus on the
dependence on the input dimension d and test error ϵ and treat other arguments as constant. Here
WF denotes Wasserstein flow technique from the mean-field analysis, and GF denotes gradient flow.
The sample requirement and convergence iteration in both Glasgow (2023) and our method do not
explicitly depend on the test error ϵ. Instead, the dependence on ϵ is implicitly incorporated within the
condition for d. Specifically, our approach requires that d ≥ C log2(2m/ϵ) while Glasgow (2023)
requires d ≥ exp((1/ϵ)C) where C is a constant.

.

Activation Loss Algorithm Width (m) Sample (n) Iterations (t)
Function Function Requirement Requirement to Converge

Theorem 4
(Barak et al., 2022) ReLU hinge SGD 2Θ(k) dk+1 · log(d/ϵ)/ϵ2 d/ϵ2

Theorem 4
(Edelman et al., 2024) ReLU hinge SGD (d/s)k (s/k)k−1d2 log(d)/ϵ2 1/ϵ2

Corollary 1
(Suzuki et al., 2023) Variant of Tanh logistic MFLD ed d/ϵ ed

Ours xk correlation Sign SGD 2Θ(k) dk−1 · polylog(d) log d

Table 2: Comparison of existing works for the general k-parity problem, focusing primarily on the
dimension d and error ϵ, treating other parameters as constants. s in Edelman et al. (2024) is the
sparsity of the initialization that satisfies s > k. The activation function by Suzuki et al. (2023) is
defined as hw(x) = R̄[tanh(x⊤w1 + w2) + 2 tanh(w3)]/3, where w = (w1, w2, w3)

⊤ ∈ Rd+2

and R̄ is a hyper-parameter determining the network’s scale. For the sample requirement and
convergence iteration, we focus on the dependency of d, ϵ and omit another terms. Our method’s
sample requirement and convergence iteration are independent of the test error ϵ, instead relying on a
condition for d that implicitly includes ϵ. Specifically, we require d ≥ C log2(2m/ϵ).

could attain a sample complexity of O(d), provided the data distribution comprises a mix of sparse
and dense inputs. The conditions outlined in this paper are compared to those from related work
involving uniform Boolean data distribution, as presented in Table 2.

3 Problem Setup

In this section, we introduce the k-sparse parity problem and the neural network we consider in this
paper.

Definition 3.1 (k-parity). Let each data point (x, y) with x ∈ Rd and y ∈ {−1, 1} be generated
from the following distribution DA, where A is a non-empty set satisfying A ⊆ [n]:

1. xj ∼ {−1, 1} as a uniform random bit for j ∈ [d].
2. The label y is generated as Πj∈Axj .
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Figure 1: The plot above illustrates the comparison between the modified sign function s̃ign(x)(ρ =

0.5) and the standard sign function sign(x). The s̃ign(x) function introduces a ‘dead zone’ between
−ρ and ρ where the function value is zero, which is not present in the standard sign function. This
modification effectively creates a threshold effect, only outputting non-zero values when the input x
exceeds the specified bounds of ρ in either direction.

The k-parity problem with dimension d is defined as the task of recovering A, where |A| = k, using
samples from DA.

Without loss of generality, we assume that A = {1, . . . , k} if |A| = k. Under this assumption, we
denote DA by D for simplicity. This k-parity problem in Definition 3.1 is a classical one, which has
been studied by Daniely and Malach (2020); Barak et al. (2022) using neural network learning. When
restricted to the 2-parity function, the problem is reduced to the XOR problem (Wei et al., 2019).

Two-layer Neural Networks. We consider a two-layer fully-connected neural network, which is
defined as follows:

f(W,x) =
m∑
r=1

arσ(⟨wr,x⟩), (3.1)

where m is the number of neurons. Here, we employ a polynomial activation function defined by
σ(z) = zk. The term wr ∈ Rd represents the weight vector for the r-th neuron, and W denotes the
aggregate of all first-layer model weights. The second-layer weights ar’s are sampled uniformly from
the set {−1, 1} and fixed during training.

Algorithm. We train the above neural network model by minimizing the correlation loss function:

LD(W) = E(x,y)∼Dℓ[y · f(W,x)],

where ℓ(z) = 1− z. We consider binary initialization with w
(0)
r ∼ Unif({±1}d), which is widely

used for neural networks solving parity problem (Barak et al., 2022; Abbe and Boix-Adsera, 2022).
We then employ the stochastic sign gradient descent with constant step size and weight decay (i.e., ℓ2
norm regularization on the first-layer weights) to minimize the correlation loss as follows:

W(t+1) = (1− λη)W(t) − η · s̃ign
(∂L(t)

∂W

)
,

where λ > 0 is the weight decay parameter, η > 0 is the step size, and s̃ign(x) is the modified sign
function defined as:

s̃ign(x) = sign(x) · 1{|x|≥ρ} =


1, for x ≥ ρ,

0, for − ρ < x < ρ,

−1, for x ≤ −ρ.
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Here, ρ > 0 is a threshold parameter. In this context, L(t) is computed using a randomly sampled
online batch St with batch size |St| = B:

L(t) =
1

B

∑
(x,y)∈St

ℓ[y · f(W(t),x)].

Consequently, the update rule for each wr is given by:

w(t+1)
r = (1− λη)w(t)

r + η · s̃ign
(

1

B

∑
(x,y)∈St

σ′(⟨w(t)
r ,x⟩) · aryx

)
, (3.2)

where s̃ign is applied on an element-wise basis.
Remark 3.2. Sign SGD has been previously studied in Riedmiller and Braun (1993); Bernstein et al.
(2018). Recently, it has become increasingly popular and has been utilized in adaptive optimizers for
training large models (Chen et al., 2024; Liu et al., 2023). Previous studies (Balles and Hennig, 2018;
Bernstein et al., 2018; Zou et al., 2021) have demonstrated that Sign SGD behaves similarly to Adam
when using sufficiently small step sizes or small moving average parameters, β1 and β2. In our work,
the choice of sign SGD over standard SGD stems primarily from our adoption of the polynomial
activation function σ(z) = zk. As later explained in Section 4, this specific activation function is
pivotal in constructing a neural network that accurately tackles the k-parity problem. However, it
introduces a trade-off: the gradient’s dependency on the weights becomes polynomial rather than
linear. Sign SGD addresses this issue by normalizing the gradient, ensuring that all neurons progress
uniformly towards identifying the parity. Moreover, incorporating a threshold within the sign function
plays a crucial role as it effectively nullifies the gradient of noisy coordinates. This, together with
weight decay, aids in reducing noise, thereby enhancing the overall performance of the network.

4 Main Results

In this section, we begin by demonstrating the capability of the two-layer fully connected neural
network (3.1) to classify all examples correctly. Specifically, we construct the following good
network:

f(W∗,x) =
2k∑
r=1

a∗rσ(⟨w∗
r ,x⟩), (4.1)

where
{
w∗

r,[1:k]

∣∣r ∈ [2k]
}
= {±1}k, a∗r =

∏k
j=1 sign(w

∗
r,j) and w∗

r,[k+1:d] = 0d−k for any r ∈ [2k].
Notably, leveraging the inherent symmetry within our neural network model, we can formally assert
the following proposition: yf(W∗,x) = y′f(W∗,x′) for any (y,x) and (y′,x′) generated from
DA. The subsequent proposition demonstrates the precise value of the margin.
Proposition 4.1. For any data point (x, y) generated from the distribution DA, it holds that

yf(W∗,x) = k! · 2k. (4.2)

Proof. Given a (y,x) ∈ DA, we have that y = Πk
i=1xi. We divide the neurons into (k + 1) groups

Ωi, i ∈ {0, . . . , k}. A neuron r ∈ Ωi if and only if
∑k

s=j 1(w
∗
r = xj) = i. Then we have that

yf(W∗,x) =
2k∑
r=1

(y · a∗r) · σ(⟨w∗
r ,x⟩)

=

k∑
i=0

∑
r∈Ωi

(y · a∗r) · σ(⟨w∗
r ,x⟩)

=
k∑

i=0

∑
r∈Ωi

( k∏
j=1

sign(xj) ·
k∏

j=1

sign(w∗
r,j)

)
· σ(⟨w∗

r ,x⟩)

=
k∑

i=0

(
k

i

)
(−1)iσ(k − 2i)
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= k! · 2k,

where the third equality is due to the fact that y =
∏k

j=1 sign(xj) and a∗r =
∏k

j=1 sign(w
∗
r,j), the

fourth equality is due to the definition of Ωi, the last equality holds because σ is k-th order polynomial
activation function and Lemma F.2.

Therefore, we can conclude that for any (x, y), we have yf(W∗,x) = k! · 2k > 0. We will demon-
strate in the next section that training using large batch size online SGD, as long as Condition 4.2
is met, will lead to the trained neural network f(W(T ),x) approximating (m/2k+1) · f(W∗,x)
effectively after T = O(k log(d)) iterations. Our main theorem is based on the following conditions
on the training strategy.
Condition 4.2. Suppose there exists a sufficiently large constant C, such that the following conditions
hold:

• Neural network width m satisfies m ≥ C · 5k log(1/δ).
• Dimension is sufficiently large: d ≥ C log2(2m/ϵ).
• Online SGD batch size B ≥ C2k((k − 1)!)−2dk−1 logk−1(16mdBT/δ) log2(8mdT/δ).
• Learning rate η satisfies η ≤ C−1.
• Regularization parameter λ is taken as λ = 1.
• The threshold ρ for the modified sign function satisfies ρ = 0.1k!.

In the k-parity problem, the label y is determined by a set of k bits. Consequently, the total count
of distinct features is 2k, reflecting all possible combinations of these bits. The condition of m
is established to guarantee a roughly equal number of neurons within the good neuron class, each
correctly aligned with distinct features. The condition of d ensures that the problem is in a sufficiently
high-dimensional setting. The condition of m, d implies that d ≥ Ω(log2 m) ≥ Ω(k2), which is
a mild requirement for the sparsity k. In comparison, Barak et al. (2022) requires d ≥ Ω(k4) for
neural networks solving k-parity problem. By Stirling’s approximation, the condition of B can be
simplified to B ≥ Ω̃

(
k(2e log(16mdBT/δ)d/k2)k−1

)
. Therefore, the conditional batch size B will

exponentially increase as parity k ≤ O(
√
d) goes up, which ensures that the stochastic gradient can

sufficiently approximate the population gradient. Finally, the conditions of η, λ ensure that gradient
descent with weight decay can effectively learn the relevant features while simultaneously denoising
the data. Finally, the threshold condition ρ increases as sparsity k increases to accommodate the
increase of the population gradient. Based on these conditions, we give our main result on solving
the parity problem in the following theorem.
Theorem 4.3. Under Condition 4.2, we run online SGD for iteration T = Θ

(
kη−1λ−1 log d

)
iterations. Then with probability at least 1− δ we can find W(T ) such that

P
(
yf(W(T ),x) ≥ γm

)
≥ 1− ϵ,

where γ = 0.25k! is a constant.

Theorem 4.3 establishes that, under certain conditions, a neural network is capable of learning to solve
the k-parity problem within Θ(kη−1λ−1 log d) iterations, achieving a population error of at most ϵ.
According to Condition 4.2, the total number of examples utilized amounts to BT = Õ(dk−1) given
a polynomial logarithmic width requirement of m = O(1) with respect to d.
Remark 4.4. While Theorem 4.3 works for fixed second-layer training, we demonstrate that com-
parable results can be obtained when the second layer of the network is simultaneously trained
with a lower learning rate. Detailed results and further elaboration of this aspect are provided
in Appendix E. Our findings present a sample complexity of Õ(dk−1), aligning with Conjecture 2
posited by Abbe et al. (2023a), which suggests a sample complexity lower bound of Ω̃(dk−1). Besides,
our results for the uniform Boolean distribution match the complexity achieved by Abbe et al. (2023a)
under the isotropic Gaussian scenario. Despite these similarities in outcomes, our methodology
diverges significantly: we employ online sign SGD utilizing a large batch size of Õ(dk−1) and
conduct training over merely Õ(1) iterations. In contrast, Abbe et al. (2023a) implement projected
online SGD with a minimal batch size of 1, extending training over Õ(dk−1) iterations. Abbe et al.
(2023a) also requires a two-phase training process for the first and second layer weights, requiring
them to be trained separately.

7



5 Overview of Proof Technique

In this section, we discuss the main ideas used in the proof. Based on these main ideas, the proof
of our main Theorem 4.3 will follow naturally. The complete proofs of all the results are given in
the appendix. Section 5.1 serves as a warmup by examining population sign gradient descent. Here,
three pivotal ideas crucial to the proof of stochastic sign gradient descent are introduced:

1. The impact of the initialization’s positivity or negativity on the trajectory of neuron weights.
2. The divergence between feature coordinates and noise coordinates of different neurons.
3. How a trained neural network can effectively approximate the good neural network (4.1).

Moving on to Section 5.2, we delve into the analysis of sign SGD. Contrasting with population GD,
the addition in SGD analysis involves accounting for the approximation error between the population
gradient and the stochastic gradient. This consideration leads to the stipulation of the batch size B
outlined in Condition 4.2.

5.1 Warmup: Population Gradient Descent

For population gradient, we perform the following updates:

w(t+1)
r = (1− ηλ) ·w(t)

r − η · s̃ign
(
∇wrLD(W

(t))
)
,

where LD(W) = E(x,y)∼D[ℓ(y, f(W,x))] = 1 − E(x,y)∼D[yf(W,x)]. Then, the following
coordinate-wise population gradient update rules hold:

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j + η · s̃ign

(
k!ar

w
(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

)
, j ∈ [k], (5.1)

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , j /∈ [k]. (5.2)

In the preceding discussion of the update rule, we have identified that the noise coordinates (j /∈ [k])
exhibit exponential decay, characterized by a decay constant of 1 − ηλ. To further dissect the
dynamics of this system, we turn our attention to the behavior of feature coordinates. We categorize
neurons into two distinct types based on their initial alignment: a neuron is classified as a good
neuron if ar =

∏k
j=1 sign(w

(0)
r,j ), and conversely, as a bad neuron if ar = −

∏k
j=1 sign(w

(0)
r,j ). This

distinction is pivotal, as it divides the neuron population into two distinct classes: good and bad.
Neurons in the good class are integral to the functionality of the final trained neural network, playing a
significant role in its test accuracy. Conversely, neurons classified as bad tend to diminish in influence
over the course of training, ultimately contributing minimally to the network’s overall performance.
For good neurons, the update rules for feature coordinates can be reformulated to

sign(w
(0)
r,j )w

(t+1)
r,j = (1− ηλ) sign(w

(0)
r,j )w

(t)
r,j

+ η ·
sign(w

(0)
r,1w

(t)
r,1) sign(w

(0)
r,2w

(t)
r,2) · · · sign(w

(0)
r,kw

(t)
r,k)

sign(w
(0)
r,jw

(t)
r,j)

.
(5.3)

For neurons classified as bad, the update rules for feature coordinates can be rewritten as:

sign(w
(0)
r,j )w

(t+1)
r,j = (1− ηλ) sign(w

(0)
r,j )w

(t)
r,j

− η ·
sign(w

(0)
r,1w

(t)
r,1) sign(w

(0)
r,2w

(t)
r,2) · · · sign(w

(0)
r,kw

(t)
r,k)

sign(w
(0)
r,jw

(t)
r,j)

.
(5.4)

Comparing equations (5.3) and (5.4), it becomes apparent that the feature coordinates of good and
bad neurons exhibit divergent behaviors. Consequently, the feature coordinates of good neurons will
significantly outweigh those of bad neurons in the long term. With the regularization parameter λ
set as 1 in Condition 4.2, we derive the following lemma illustrating the divergent trajectories of
population gradient descent for both neuron types:

Lemma 5.1. Under Condition 4.2, for good neurons r ∈ Ωg := {r ∈ [m] : ar =
∏k

j=1 sign(w
(0)
r,j )},

the feature coordinates will remain the same as initialization throughout the training:

w
(t)
r,j = w

(0)
r,j , ∀j ∈ [k], t ≥ 0.
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For bad neurons r ∈ Ωb := {r ∈ [m] : ar = −
∏k

j=1 sign(w
(0)
r,j )}, the feature coordinates will

decay faster than noise coordiantes:

0 < sign(w
(0)
r,j )w

(t+1)
r,j ≤ (1− ηλ) sign(w

(0)
r,j )w

(t)
r,j , ∀j ∈ [k], t ≥ 0.

According to (5.2) and Lemma 5.1, after training T = Θ(kη−1λ−1 log(d)) iterations, bad neurons
and noise coordinates in good neurons diminish to a magnitude of Θ(1/poly(d)), as shown in
Lemma 5.2. In contrast, the feature coordinates of good neurons remain unchanged.
Lemma 5.2. Under Condition 4.2, for T ≥ (k + 1)η−1λ−1 log(d), it holds that

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωg, j ∈ [d] \ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωb, j ∈ [d].

This leads to the following approximation for the trained neural network:

f(W(T ),x) =
m∑
r=1

arσ(⟨w(T )
r ,x⟩) ≈

∑
r∈Ωg

arσ(⟨w(T )
r ,x⟩)

=
∑
r∈Ωg

( k∏
j=1

sign(w
(0)
r,j )

)
σ(⟨w(T )

r ,x⟩) ≈
∑
r∈Ωg

( k∏
j=1

sign(w
(0)
r,j )

)
σ(⟨w(T )

r,[1:k],x[1:k]⟩).

Under Condition 4.2, the condition on m ensures a balanced distribution of neurons across different
initializations, approximately m/2k+1, given 2k+1 kinds of possible initializations. This results in
the trained neural network f(W(T ),x) closely approximating (m/2k+1) · f(W∗,x).

5.2 Stochastic Sign Gradient Descent

Transitioning from the trajectory trained by population gradient descent, this section delves into the
dynamics under sign stochastic gradient descent (Sign SGD). We commence by presenting a lemma
that estimates the approximation error between the population gradient and the stochastic gradient.
Lemma 5.3. Under Condition 4.2, with probability at least 1 − δ with respect to the online data
generation, the stochastic gradient approximates the population gradient well:∣∣∣∣∂LD(W

(t))

∂wr,j
− ∂L(t)

∂wr,j

∣∣∣∣ ≤ ϵ1 · ∥w(t)
r ∥k−1

2 , ∀t ∈ [0, T ], r ∈ [m], j ∈ [d],

where L(t) is the loss of randomly sampled online batch St and

ϵ1 = Õ(B−1/2 + d(k−3)/2B−1).

The choice of batch size B = O(dk−1) in our algorithm is crucial for gradient concentration.
According to Lemma 5.3, the gap between stochastic gradient and population gradient is bounded by
ϵ1 · ∥wr∥k−1

2 . At initialization, the absolute value of the population gradient on the signal coordinate
is approximately Õ(d−(k−1)/2) · ∥wr∥k−1

2 . To ensure the stochastic sign gradient matches the
population sign gradient, the approximation error ϵ1 must be smaller than this value, which requires
ϵ1 = Õ(d−(k−1)/2). Solving B−1/2 + d(k−3)/2B−1 = d−(k−1)/2 yields our sufficient batch size.

Building upon this approximation guarantee from Lemma 5.3, and considering the established order
of ρ, ϵ1 and ∥w(t)

r ∥2, we arrive at an important corollary.
Corollary 5.4. Under Condition 4.2, given the same initialization, with probability at least 1− δ,
the stochastic sign gradient is the same as the population sign gradient:

s̃ign

(
∂LD(W

(t))

∂wr,j

)
= s̃ign

(
∂L(t)

∂wr,j

)
, ∀t ∈ [0, T ], r ∈ [m], j ∈ [d].

This corollary suggests that, under identical initialization, the trajectory of a model trained using
population gradient descent will, with high probability, align with the trajectory of a model trained
using stochastic gradient descent.
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6 Conclusion and Future Work

In our study, we have conducted a detailed analysis of the k-parity problem, investigating how sign
Stochastic Gradient Descent (sign SGD) can effectively learn intricate features from binary datasets.
Our findings reveal that sign SGD, when employed in two-layer fully-connected neural networks
solving k-sparse parity problem, is capable of achieving a sample complexity Õ(dk−1). Remarkably,
this result matches the theoretical expectations set by the Statistical Query (SQ) model, underscoring
the efficiency and adaptability of sign SGD.

Looking ahead, an intriguing direction for future research is to explore the possibility of learning
k-parity using SGD with even smaller queries that surpass the SQ lower bond, and understand whether
more standard neural network architectures allow such improvement. This potential advancement
could pave the way for developing more efficient algorithms capable of tackling complex problems
with weaker data requirements. Another promising direction is to extend our results to non-isotropic
data settings (Nitanda et al., 2024), where sign gradient descent with momentum could be effective in
handling the transformed feature space.
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Limitations

While our study provides valuable insights into the effectiveness of SGD in learning the k-parity
problem, there are some limitations:

• Our study focuses on sign gradient descent (Sign SGD). This approach normalizes the gradient,
ensures uniform neuron updates toward identifying parity, and effectively nullifies noisy coordinate
gradients. However, it’s worth noting that data may be presented in non-standard or unknown
coordinate systems, which could limit Sign SGD’s effectiveness. To address this limitation, future
work could explore alternatives such as normalized gradient descent with an adaptive learning rate
or incorporating momentum into Sign SGD.

• Our analysis is primarily based on polynomial activation functions. While effective for the
standard k-parity problem, extending our approach to other activation functions like sigmoid or
ReLU presents challenges. This extension could potentially be achieved through polynomial
function approximation. However, the main challenge lies in identifying an appropriate functional
decomposition and accurately characterizing the approximation error during training.

By acknowledging these limitations, we aim to provide a transparent assessment of our work’s scope
and potential areas for future exploration.

A Experiments

In this section, we present a series of experiments designed to empirically validate the theoretical
results established in our main theorem. The primary objectives of these experiments are to (1)
assess the test accuracy of the trained neural network, thereby corroborating the theorem’s results,
and (2) verify the key lemmas concerning the behavior of good and bad neurons. Specifically, we
aim to demonstrate that for good neurons, the feature coordinates remain largely unchanged from
initialization while the noise coordinates decay exponentially. Conversely, for bad neurons, we expect
both feature and noise coordinates to exhibit exponential decay.

Model. We generated synthetic k-parity data based on Definition 3.1. Each data point (x, y) with
x ∈ Rd and y ∈ {±1} is produced from distribution DA, where A specifically is taken as [k]. We
utilized two-layer fully-connected neural networks with m number of neurons. The network employs
a polynomial activation function σ(z) = zk. The first layer weights for the r-th neuron, w(0)

r ∈ Rd,
were initialized following a binary scheme, where w

(0)
r ∼ Unif({±1}d). The second layer weights

for the r-th neuron, ar, is randomly initialized as 1 or −1 with equal probability.

Computation Resources The experiments are conducted on an A6000 server. As these are synthetic
experiments, the requirement for computational resources is minimal.

Training. Our model was trained to minimize the empirical correlation loss function, incorporating
L2 regularization with a regularization parameter set at λ = 1. The training process utilized online
stochastic sign gradient descent (Sign SGD) with a fixed step size η and a predetermined batch size B.
The principal metric for assessment was test accuracy. Our experiments were conducted considering
parity k ∈ {2, 3, 4}.

For k = 2, the model configuration included a data dimension of d = 8, a hidden layer width of
m = 12, a total of T = 25 epochs, a learning rate η = 0.1, an online batch size of B = 64, and a
threshold for s̃ign set at ρ = 0.3. In the case of k = 3, we employed a data dimension of d = 16,
increased the hidden layer width to m = 48, extended the training to T = 50 epochs, adjusted the
learning rate to η = 0.05, used an online batch size of B = 256, and set the threshold for s̃ign at
ρ = 1. For k = 4, the model was further scaled up with a data dimension of d = 20, a hidden layer
width of m = 128, a training epoch of T = 100, a smaller learning rate of η = 0.02, an online batch
size of B = 2048, and a threshold for s̃ign established at ρ = 3.

Experimental Results. The evaluation of test accuracy across various configurations is presented
in Table 3. Using neural networks with merely 2Θ(k) neurons, we observed high test accuracy for
k-parity problem with k ∈ {2, 3, 4}, confirming the results of our main theorem (Theorem 4.3).
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These empirical results validate the efficacy of our studied model architecture (3.1) and training
methodology in tackling the k-sparse parity problem.

To further validate our theoretical findings, we examined the change of feature and noise coordinates
for the first neuron w

(t)
1 over multiple iterations, focusing specifically on the setting k ∈ {2, 3, 4}.

Figures 2, 3, 4, 5, 6, and 7 visually represent these trajectories. Our empirical findings reveal a
consistent pattern: the feature coordinates (w(t)

1,1, . . . , w
(t)
1,k) of the neurons identified as good (with

initialization satisfying ar =
∏k

j=1 w
(0)
r,j ) exhibit relative stability, while their noise coordinates

(w(t)
1,k+1, . . .) show a decreasing trend over time. In contrast, the trajectories for neurons classified as

bad (with initialization satisfying ar = −
∏k

j=1 w
(0)
r,j ) indicate a general reduction in all coordinate

values.

These empirical observations support our theoretical analyses, as outlined in Lemma 5.1 and
Lemma 5.2, showcasing the consistency between the theoretical foundations of our model and
its practical performance. The disparities between good and bad neurons, as evidenced by their
feature and noise coordinate behaviors, underscore the nuanced dynamics inherent in the learning
process of k-parity problems.

k 2 3 4

Test Accuracy (%) 99.69%± 0.29% 97.75%± 1.37% 96.89%± 0.44%

Table 3: Test accuracy for solving k-sparse parity problem with k ∈ {2, 3, 4}, averaged over 10 runs.
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Figure 2: Illustration of a 2-parity good neuron
with initial weights w(0)

1,1 = 1, w(0)
1,2 = −1, and

a1 = −1.
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Figure 3: Illustration of a 2-parity bad neuron
with initial weights w(0)

1,1 = −1, w(0)
1,2 = 1, and

a1 = 1.
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Figure 4: Illustration of a 3-parity good neuron
with initial weights w(0)

1,1 = 1, w(0)
1,2 = 1, w(0)

1,3 =
1, and a1 = 1.
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Figure 5: Illustration of a 3-parity bad neuron
with initial weights w
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Figure 6: Illustration of a 4-parity good neuron
with initial weights w
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Figure 7: Illustration of a 4-parity bad neuron
with initial weights w
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B Preliminary Lemmas

During the initialization phase of a neural network, neurons can be categorized into 2k distinct groups.
This classification is based on whether each feature coordinate is positive or negative. We define
these groups as follows:

Ωb1b2···bk = {r ∈ [m] | sign(w(0)
r,j ) = bj , ∀j ∈ [k]},

where b1, b2, · · · , bk ∈ {±1}. To illustrate with specific examples, consider the following special
cases:

Ω11···1 = {r ∈ [m] |w(0)
r,j > 0, ∀j ∈ [k]},

Ω−1−1···−1 = {r ∈ [m] |w(0)
r,j < 0, ∀j ∈ [k]}.

In these cases, Ω11···1 represents the group of neurons where all initial weights are positive across the
k features, while Ω−1−1···−1 consists of neurons with all initial weights being negative. Within each
group of neurons, we can further subdivide them into two subgroups based on the value of ar. Let’s
denote

Ωg =

{
r ∈ [m]

∣∣∣∣ ar =

k∏
j=1

sign(w
(0)
r,j )

}
,Ωb =

{
r ∈ [m]

∣∣∣∣ ar = −
k∏

j=1

sign(w
(0)
r,j )

}
,

where Ωg denotes the good neuron set and Ωb denotes the bad neuron set. We will later demonstrate
in the proof and experiments that neurons in Ωg and neurons in Ωb exhibit distinct behaviors during
the training process. Specifically, for neurons in Ωg, the feature coordinates will remain largely
unchanged from their initial values throughout training, while the noise coordinates will decrease to a
lower order compared to the feature coordinates. On the other hand, for neurons in Ωb, both feature
coordinates and noise coordinates will decrease to a lower order compared to their initial values.

In order to establish the test error result, it is essential to impose a condition on the initialization.
Specifically, the number of neurons for each type of initialization should be approximately equal.

Lemma B.1. With probability at least 1− δ for the randomness in the neural network’s initialization,
the sizes of the sets Ωg and Ωb are bounded as follows:

|Ωg|, |Ωb| ∈ [(1− α)m/2, (1 + α)m/2].

Besides, the intersections of Ωb1b2···bk with both Ωg and Ωb are also bounded within a specified
range:

|Ωb1b2···bk ∩ Ωg|, |Ωb1b2···bk ∩ Ωb| ∈ [(1− α)m/2k+1, (1 + α)m/2k+1],

where

α =

√
3 · 2k+1 log(2k+2/δ)

m
.
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Proof. Let Xr = 1
[
w

(0)
r,1 > 0, · · · , w(0)

r,k > 0, ar = 1
]
. Then, by Chernoff bound, we have

P

(∣∣∣∣ m∑
r=1

Xr −
m

2k+1

∣∣∣∣ ≥ α · m

2k+1

)
≤ 2 exp

(
− α2m

3 · 2k+1

)
.

Then, with probability at least 1− δ, we have

(1− α) · m

2k+1
≤ |Ω11···1 ∩ Ωg| ≤ (1 + α) · m

2k+1
,

where

α =

√
3 · 2k+1 log(2/δ)

m
.

By applying union bound to all 2k+1 kinds of initialization, with probability at least 1− δ it holds
that for any Ωb1b2···bk ∩ Ωg and Ωb1b2···bk ∩ Ωb

(
(b1, · · · , bk) ∈ {±1}k

)
(1− α) · m

2k+1
≤ |Ωb1b2···bk ∩ Ωg| ≤ (1 + α) · m

2k+1
,

(1− α) · m

2k+1
≤ |Ωb1b2···bk ∩ Ωb| ≤ (1 + α) · m

2k+1
,

where

α =

√
3 · 2k+1 log(2k+2/δ)

m
.

C Warmup: Population Sign GD

In this section, we train a neural network with gradient descent on the distribution D. Here we
use correlation loss function ℓ(y, ŷ) = 1 − yŷ. Then, the loss on this attribution is LD(W) =
E(x,y)∼D[ℓ(y, f(W,x))], and we perform the following updates:

w(t+1)
r = (1− ηλ)w(t)

r − η · s̃ign
(
∇wrLD(W

(t))
)
.

We assume the network is initialized with a symmetric initialization: for every r ∈ [m], initialize
w

(0)
r ∼ Unif({−1, 1}d) and initialize ar ∼ Unif({−1, 1}).

Lemma C.1. The following coordinate-wise population sign gradient update rules hold:

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j + η · s̃ign

(
k!ar ·

w
(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

)
, j ∈ [k],

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , j /∈ [k].

Proof. For population gradient descent, we have

w(t+1)
r = (1− ηλ) ·w(t)

r − η · s̃ign
(
∇wr

LD(W)
)

= (1− ηλ) ·w(t)
r − η · s̃ign

(
ar · E(x,y)∼D[∇wr

σ(⟨w(t)
r ,x⟩)]

)
= (1− ηλ) ·w(t)

r − η · s̃ign
(
kar · E(x,y)∼D[yx(⟨w(t)

r ,x⟩)k−1]
)
.

Notice that for j /∈ [k], we have

E(x,y)∼D[yxj(⟨w(t)
r ,x⟩)k−1] = E(x,y)∼D

[
x1x2 · · ·xkxj

( ∑
j1,··· ,jk−1

w
(t)
r,j1

· · ·w(t)
r,jk−1

xj1 · · ·xjk−1

)]
=

∑
j1,··· ,jk−1

w
(t)
r,j1

· · ·w(t)
r,jk−1

· E(x,y)∼D
[
x1x2 · · ·xkxjxj1 · · ·xjk−1

]
= 0,
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where the last equality is because {j1, · · · , jk−1} ⊊ {1, · · · , k, j}. This implies that

w
(t+1)
r,j = (1− ηλ) · w(t)

r,j .

For j ∈ [k], we have

E(x,y)∼D[yxj(⟨w(t)
r ,x⟩)k−1] = E(x,y)∼D

[
x1x2 · · ·xkxj

( ∑
j1,··· ,jk−1

w
(t)
r,j1

· · ·w(t)
r,jk−1

xj1 · · ·xjk−1

)]
=

∑
j1,··· ,jk−1

w
(t)
r,j1

· · ·w(t)
r,jk−1

· E(x,y)∼D[x1x2 · · ·xkxjxj1 · · ·xjk−1
]

= (k − 1)! ·
w

(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

,

where the last inequality is because E(x,y)∼D[x1x2 · · ·xkxjxj1 · · ·xjk−1
] ̸= 0 if and only if

{j, j1, · · · , jk−1} = {1, 2, · · · , k}. It follows that

w
(t+1)
r,j = (1− ηλ) · w(t)

r,j + η · s̃ign

(
k!ar ·

w
(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

)
.

Given the update rules in Lemma C.1, we observe distinct behaviors for good neurons (Ωg) and bad
neurons (Ωb). The following corollary illustrates these differences:
Corollary C.2. For any neuron r ∈ Ωb1···bk ∩ Ωg, the update rule for feature coordinates (j ∈ [k])
is given by:

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j

+ η ·
sign(b1w

(t)
r,1) sign(b2w

(t)
r,2) · · · sign(bkw

(t)
r,k)

sign(bjw
(t)
r,j)

· 1

[
|w(t)

r,1w
(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

≥ ρ

k!

]
.

For any neuron r ∈ Ωb1···bk ∩ Ωb, the update rule for feature coordinates (j ∈ [k]) is given by:

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j

− η ·
sign(b1w

(t)
r,1) sign(b2w

(t)
r,2) · · · sign(bkw

(t)
r,k)

sign(bjw
(t)
r,j)

· 1

[
|w(t)

r,1w
(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

≥ ρ

k!

]
.

By setting the regularization parameter λ to 1, we observe a noteworthy property of the weight of
feature coordinates in good neurons. This is formalized in the following lemma:
Lemma C.3. Assume λ = 1 and ρ < k!. For a neuron r ∈ Ωb1···bk ∩ Ωg, the weight associated with
any feature coordinate remains constant across all time steps t ≥ 0. Specifically, it holds that:

bjw
(t)
r,j = 1, ∀j ∈ [k], t ≥ 0.

Proof. We prove this by using induction. The result is obvious at t = 0. Suppose the result holds
when t = t̃. Then, according to Corollary C.2, we have

bjw
(t̃+1)
r,j = (1− ηλ)bjw

(t̃)
r,j

+ η ·
sign(b1w

(t̃)
r,1) sign(b2w

(t̃)
r,2) · · · sign(bkw

(t̃)
r,k)

sign(bjw
(t̃)
r,j)

· 1

[
|w(t̃)

r,1w
(t̃)
r,2 · · ·w

(t̃)
r,k|

|w(t)
r,j |

≥ ρ

k!

]
= (1− ηλ) + η · 1[k! ≥ ρ]

= 1.
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The following lemma demonstrates that for bad neurons, the weights of feature coordinates tend to
shrink over time. The dynamics of this shrinking are characterized as follows:

Lemma C.4. Assume λ = 1 and η/(1− ηλ) < (ρ/k!)
1

k−1 . For a neuron r ∈ Ωb1b2···bk ∩ Ωb, the
weights of any two feature coordinates j and j′ (where j, j′ ∈ [k]) are equal at any time step, that is,
bjw

(t)
r,j = bj′w

(t)
r,j′ . Furthermore, the weight of any feature coordinate j ∈ [k] evolves according to

the following inequality for any t ≥ 0:

0 < bjw
(t+1)
r,j ≤ (1− ηλ)bjw

(t)
r,j .

Proof. We prove this by using induction. We prove the following three hypotheses:

bjw
(t)
r,j = bj′w

(t)
r,j′ , ∀j, j′ ∈ [k]. (H1)

bjw
(t)
r,j > 0, ∀j ∈ [k]. (H2)

bjw
(t+1)
r,j ≤ (1− ηλ)bjw

(t)
r,j , ∀j ∈ [k]. (H3)

We will show that H1(0) and H2(0) are true and that for any t ≥ 0 we have

• H2(t) =⇒H3(t),
• H1(t), H2(t) =⇒H1(t+ 1),
• H1(t), H2(t) =⇒H2(t+ 1).

H1(0) and H2(0) are obviously true since bjw
(0)
r,j = 1 for any j ∈ [k]. Next, we prove that

H2(t) =⇒H3(t) and H1(t), H2(t) =⇒H1(t+ 1). According to Corollary C.2, we have

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j

− η ·
sign(b1w

(t)
r,1) sign(b2w

(t)
r,2) · · · sign(bkw

(t)
r,k)

sign(bjw
(t)
r,j)

· 1

[
|w(t)

r,1w
(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

≥ ρ

k!

]

= (1− ηλ)bjw
(t)
r,j − η · 1

[
|w(t)

r,1w
(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

≥ ρ

k!

]
(C.1)

≤ (1− ηλ)bjw
(t)
r,j ,

where the second equality is by H2(t). This verifies H3(t). Besides, given H1(t), we have

|w(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

=
|w(t)

r,1w
(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j′ |

, ∀j, j′ ∈ [k].

Plugging this into (C.1), we can get

bjw
(t+1)
r,j = bj′w

(t+1)
r,j′ , ∀j, j′ ∈ [k],

which verifies H1(t+ 1). Finally, we prove that H1(t), H2(t) =⇒ H2(t+ 1). By (C.1) and H1(t),
we have

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j − η · 1

[
|w(t)

r,j |
k−1 ≥ ρ

k!

]
.

If |w(t)
r,j | < (ρ/k!)

1
k−1 , we can get

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j > 0.

If |w(t)
r,j | ≥ (ρ/k!)

1
k−1 , given that

η

1− ηλ
< (ρ/k!)

1
k−1 ,

we can get

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
r,j − η > 0.
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Given Lemma C.3 and Lemma C.4, we can directly get the change of neurons of all kinds of
initialization.
Corollary C.5. Assume λ = 1, ρ < k! and η/(1−ηλ) < (ρ/k!)

1
k−1 . For any fixed (b1, b2, · · · , bk) ∈

{±1}k, considering r ∈ Ωb1b2···bk , we have the following statements hold.

• For any neuron r ∈ Ωb1b2···bk ∩ Ωg, the weights of feature coordinates remain the same as
initialization: w(t)

r,j = bj for any t ≥ 0 and j ∈ [k].

• For any neuron r ∈ Ωb1b2···bk ∩ Ωb, the weights of feature coordinates will shrink simultaneously
over time: bjw

(t)
r,j = bj′w

(t)
r,j′ for any t ≥ 0 and j, j′ ∈ [k] and

0 < bjw
(t+1)
r,j ≤ (1− ηλ) · bjw(t)

r,j ,

for any t ≥ 0 and j ∈ [k].

Building on Corollary C.5, we can now characterize the trajectory of all neurons over time. Specifi-
cally, after a time period T = Θ(kη−1λ−1 log(d)), the following observations about neuron weights
hold:
Lemma C.6. Assume λ = 1, ρ < k! and η/(1− ηλ) < (ρ/k!)

1
k−1 . For T ≥ (k + 1)η−1λ−1 log d,

it holds that

w
(T )
r,j = bj , ∀r ∈ Ωb1b1···bk ∩ Ωg, j ∈ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωg, j ∈ [d] \ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωb, j ∈ [d].

Proof. The first equality is obvious according to Corollary C.5. We only need to prove the inequalities.
According to Lemma C.1, we have for any r ∈ [m] and j ∈ [d] \ [k] that

|w(T )
r,j | = (1− ηλ)T |w(0)

r,j | =
(
(1− ηλ)(ηλ)

−1)Tηλ ≤ exp(−Tηλ) ≤ d−(k+1),

where the last inequality is by T ≥ kη−1λ−1 log(d). According to Corollary C.5, for any r ∈ Ωb

and j ∈ [k], we have that

|w(T )
r,j | ≤ (1− ηλ)T |w(0)

r,j | =
(
(1− ηλ)(ηλ)

−1)Tηλ ≤ exp(−Tηλ) ≤ d−(k+1).

Lemma C.7. Under Condition 4.2, with a probability of at least 1− δ with respect to the randomness
in the neural network’s initialization, trained neural network f(W(T ),x) approximates accurate
classifier (m/2k+1) · f(W∗,x) well:

Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
∈ [0.5, 1.5]

)
≥ 1− ϵ.

Proof. First, we can rewrite (4.1) as follows:

f(W∗,x) =
∑

(b1,··· ,bk)∈{±1}k

(b1 · · · bk) · σ(⟨w∗
b1···bk ,x⟩),

where w∗
b1···bk = [b1, b2, · · · , bk, 0, · · · , 0]⊤. To prove this lemma, we need to estimate the noise

part of the inner product ⟨w(T )
r ,x⟩. By Hoeffding’s inequality, we have the following upper bound

for the noise part
∑d

j=k+1 w
(T )
r,j xj :

Px

(∣∣∣∣∣
d∑

j=k+1

w
(T )
r,j xj − E

[
d∑

j=k+1

w
(T )
r,j xj

]∣∣∣∣∣ ≥ x

)
= Px

(∣∣∣∣∣
d∑

j=k+1

w
(t)
r,jxj

∣∣∣∣∣ ≥ x

)

≤ 2 exp

(
− x2

2
∑d

j=k+1[w
(t)
r,j ]

2

)
.
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Then with probability at least 1− ϵ/m we have that for fixed r ∈ [m]∣∣∣∣∣
d∑

j=k+1

w
(T )
r,j xj

∣∣∣∣∣ ≤ √
2 log(2m/ϵ)

√√√√ d∑
j=k+1

[w
(T )
r,j ]

2

=
√
2 log(2m/ϵ)∥w(T )

r,[k+1:d]∥2

≤
√
2 log(2m/ϵ)d−(k+1)(d− k)1/2

≤ d−k,

where the last inequality is by Condition 4.2. By applying union bound to all m neurons, with
probability at least 1− ϵ we have that for any r ∈ [m]∣∣∣∣ d∑

j=k+1

w
(T )
r,j xj

∣∣∣∣ ≤ d−k. (C.2)

By Lemma C.6, we have∣∣∣f(W(T ),x)− m

2k+1
· f(W∗,x)

∣∣∣
≤

∣∣∣∣∣ ∑
r∈Ωg

arσ(⟨w(T )
r ,x⟩)− m

2k+1
·

2k∑
r=1

a∗rσ(⟨w∗
r ,x⟩)

∣∣∣∣∣+
∣∣∣∣∣ ∑
r∈Ωb

arσ(⟨w(T )
r ,x⟩)

∣∣∣∣∣
≤

∑
(b1,··· ,bk)∈{±1}k

∣∣∣∣∣ ∑
Ωb1···bk∩Ωg

σ(⟨w(T )
r ,x⟩)− m

2k+1
· σ(⟨w∗

b1···bk ,x⟩)

∣∣∣∣∣+
∣∣∣∣∣ ∑
r∈Ωb

arσ(⟨w(T )
r ,x⟩)

∣∣∣∣∣
≤

∑
(b1,··· ,bk)∈{±1}k

(( αm

2k+1

)∣∣∣∣ k∑
j=1

bjxj

∣∣∣∣k +
∑

Ωb1···bk∩Ωg

∣∣σ(⟨w(T )
r ,x⟩)− σ(⟨w∗

b1···bk ,x⟩)
∣∣)

+

∣∣∣∣∣ ∑
r∈Ωb

arσ(⟨w(T )
r ,x⟩)

∣∣∣∣∣
≤

∑
(b1,··· ,bk)∈{±1}k

(( αm

2k+1

)∣∣∣∣ k∑
j=1

bjxj

∣∣∣∣k +
∑

Ωb1···bk∩Ωg

kd−k
(
k + d−k

)k−1

)
+ |Ωb|(2d−k

)k
≤
( αm

2k+1

)
2kk(1 + e−2)k + |Ωg|kd−k

(
k + d−k

)k−1
+ |Ωb|

(
2d−k

)k
≤
(
αkk2−k(1 + e−2)k + 0.5(1 + α)kd−k

(
k + d−k

)k−1
+ 0.5(1 + α)

(
2d−k

)k) ·m,

where the first three inequalities are by triangle inequality and Lemma B.1; the fourth inequality is
due to ∣∣σ(⟨w(T )

r ,x⟩)− σ(⟨w∗
b1···bk ,x⟩)

∣∣
≤
∣∣(⟨w(T )

r ,x⟩)k − (⟨w∗
b1···bk ,x⟩)

k
∣∣

≤ |⟨w(T )
r ,x⟩ − ⟨w∗

b1···bk ,x⟩| · k(max{|⟨w(T )
r ,x⟩|, |⟨w∗

b1···bk ,x⟩|})
k−1

=

∣∣∣∣∣
d∑

j=k+1

w
(T )
r,j xj

∣∣∣∣∣ · k
(
max

{∣∣∣∣∣
k∑

j=1

bjxj +
d∑

j=k+1

w
(T )
r,j xj

∣∣∣∣∣,
∣∣∣∣∣

k∑
j=1

bjxj

∣∣∣∣∣
})k−1

≤ k

∣∣∣∣∣
d∑

j=k+1

w
(T )
r,j xj

∣∣∣∣∣ ·
(∣∣∣∣∣

k∑
j=1

bjxj

∣∣∣∣∣+
∣∣∣∣∣

d∑
j=k+1

w
(T )
r,j xj

∣∣∣∣∣
)k−1

≤ kd−k
(
k + d−k

)k−1

by (C.2), mean value theorem and Lemma C.6 and for r ∈ Ωb

|σ(⟨w(T )
r ,x⟩)| ≤ |⟨w(T )

r ,x⟩|k ≤
(
kd−(k+1) + d−k

)k ≤
(
2d−k

)k
. (C.3)
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Since (m/2k+1) · |f(W∗,x)| = 0.5k! ·m, then as long as

α ≤
√
2πk

8
·
(e+ e−1

2

)−k

, and α ≤ 1,

we have

|f(W(T ),x)− (m/2k+1) · f(W∗,x)|
(m/2k+1) · |f(W∗,x)|

≤
αkk2−k(1 + e−2)k + 0.5(1 + α)kd−k

(
k + d−k

)k−1
+ 0.5(1 + α)

(
2d−k

)k
0.5k!

≤
2αkk2−k(1 + e−2)k + (1 + α)kd−k

(
k + d−k

)k−1
+ (1 + α)

(
2d−k

)k
√
2πk(k/e)k

=

√
2

πk
α
(e+ e−1

2

)k
+

√
2

πk
·
(
1 +

d−k

k

)k−1

·
( e
d

)k
+

√
2

πk
·
( 2e

kdk

)k
≤ 0.5,

where the second inequality is by Stirling’s approximation. Then it follows that

f(W(T ),x)

(m/2k+1) · f(W∗,x)
∈ [0.5, 1.5].

D Stochastic Sign GD

In this section, we consider stochastic sign gradient descent for learning k-parity function. The
primary aim of this section is to demonstrate that the trajectory produced by SGD closely resembles
that of population GD. To begin, let’s recall the update rule of SGD:

w(t+1)
r = (1− λη)w(t)

r + η · s̃ign
(

1

|St|
∑

(x,y)∈St

σ′(⟨w(t)
r ,x⟩) · aryx

)
,

where |St| = B. Our initial step involves estimating the approximation error between the stochastic
gradient and the population gradient, detailed within the lemma that follows.
Lemma D.1. With probability at least 1− δ with respect to the randomness of online data selection,
for all t ≤ T , the following bound holds true for each neuron r ∈ [m] and for each coordinate
j ∈ [d]:∣∣∣∣∣ 1

|St|
∑

(x,y)∈St

σ′(⟨w(t)
r ,x⟩) · aryx− E(x,y)

[
σ′(⟨w(t)

r ,x⟩) · aryxj

]∣∣∣∣∣ ≤ ϵ1 · ∥w(t)
r ∥k−1

2 , (D.1)

where ϵ1 is defined as

ϵ1 =
2k/2k(log(16mdBT/δ))(k−1)/2 log(8mdT/δ)√

B
+

kd(k−3)/2δ

8mBT
.

Proof. To prove (D.1), let us introduce the following notations:

gr,j(x, y) = σ′(⟨w(t)
r ,x⟩) · aryxj = k(⟨w(t)

r ,x⟩)k−1 · aryxj ,

hr,j(x, y) = gr,j(x, y) · 1
[
|⟨w(t)

r ,x⟩| ≤ γ
]
,

where gr,j(x, y) represents the gradient at the point (x, y), and hr,j(x, y) denotes the truncated
version of gr,j(x, y), which is employed for the convenience of applying the Hoeffding’s inequality.
Firstly, utilizing Hoeffding’s inequality, we can assert the following:

P

(∣∣∣∣∣ 1B ∑
(x,y)∈St

hr,j(x, y)− E(x,y)∼Dhr,j(x, y)

∣∣∣∣∣ ≥ x

)
≤ 2 exp

(
− Bx2

2(kγk−1)2

)
. (D.2)
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Furthermore, we can establish an upper bound for the difference between the expectations of hr,j(x, y)
and gr,j(x, y):∣∣∣E(x,y)∼Dhr,j(x, y)− E(x,y)∼Dgr,j(x, y)

∣∣∣ = ∣∣∣E(x,y)∼Dgr,j(x, y) · 1
[
|⟨w(t)

r ,x⟩| > γ
]∣∣∣

≤ kd(k−1)/2∥w(t)
r ∥k−1

2 · P
(
|⟨w(t)

r ,x⟩| > γ
)

≤ kd(k−1)/2∥w(t)
r ∥k−1

2 · 2 exp
(
− γ2

2∥w(t)
r ∥22

)
,

(D.3)
where the first inequality is by Cauchy inequality and the second inequality is by Hoeffding’s
inequality. Additionally, with high probability, the gradient and the truncated gradient are identical:

P

(∣∣∣∣∣ 1B ∑
(x,y)∈St

hr,j(x, y)−
1

B

∑
(x,y)∈St

gr,j(x, y)

∣∣∣∣∣ = 0

)

= P

(∣∣∣∣∣ 1B ∑
(x,y)∈St

gr,j(x, y)1
[
|⟨w(t)

r ,x⟩| > γ
]∣∣∣∣∣ = 0

)

≥ P
(
|⟨w(t)

r ,x⟩| ≤ γ, ∀(x, y) ∈ St

)
≥

(
1− 2 exp

(
− γ2

2∥w(t)
r ∥22

))B

≥ 1− 2B exp

(
− γ2

2∥w(t)
r ∥22

)
,

(D.4)

where the second inequality applies Hoeffding’s inequality. Combining inequalities (D.2), (D.3), and
(D.4), we can assert with probability at least

1− 2 exp

(
− Bx2

2(kγk−1)2

)
− 2B exp

(
− γ2

2∥w(t)
r ∥22

)
(D.5)

that the following inequality holds:∣∣∣∣∣ 1B ∑
(x,y)∈St

gr,j(x, y)− E(x,y)∼Dgr,j(x, y)

∣∣∣∣∣ ≤ x+ kd(k−1)/2∥w(t)
r ∥k−1

2 · 2 exp
(
− γ2

2∥w(t)
r ∥22

)
.

(D.6)
By setting γ =

√
2 log(16B/δ)∥w(t)

r ∥2 and x =
√
2kγk−1 log(8/δ)/

√
B, we establish that with

probability at least 1− δ, the following bound is true:∣∣∣∣∣ 1B ∑
(x,y)∈St

gr,j(x, y)− E(x,y)∼Dgr,j(x, y)

∣∣∣∣∣
≤

√
2kγk−1 log(8/δ)√

B
+

kd(k−1)/2∥w(t)
r ∥k−1

2 δ

8B

=
2k/2k(log(16B/δ))(k−1)/2 log(8/δ)∥w(t)

r ∥k−1
2√

B
+

kd(k−1)/2∥w(t)
r ∥k−1

2 δ

8B
.

Applying a union bound over all indices r ∈ [m], j ∈ [d], and iterations t ∈ [0, T − 1], we conclude
with probability at least 1− δ that∣∣∣∣∣ 1B ∑

(x,y)∈St

gr,j(x, y)− E(x,y)∼Dgr,j(x, y)

∣∣∣∣∣
=

2k/2k(log(16mdBT/δ))(k−1)/2 log(8mdT/δ)∥w(t)
r ∥k−1

2√
B

+
kd(k−1)/2∥w(t)

r ∥k−1
2 δ

8mdBT
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=

(
2k/2k(log(16mdBT/δ))(k−1)/2 log(8mdT/δ)√

B
+

kd(k−3)/2δ

8mBT

)
· ∥w(t)

r ∥k−1
2 .

Based on Lemma D.1, we can get the following lemma showing that with high probability, the
stochastic sign gradient follows the same update rule as the population sign gradient.
Lemma D.2. Under Condition 4.2, with probability at least 1− δ with respect to the randomness of
online data selection, the following sign SGD update rule holds:

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j + η · s̃ign

(
k!ar ·

w
(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

)
, j ∈ [k],

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , j /∈ [k].

Proof. We prove this by using induction. We prove the following hypotheses:

∥w(t+1)
r ∥2 ≤ ∥w(t)

r ∥2, ∀r ∈ [m]. (H1)

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j + η · s̃ign

(
k!ar ·

w
(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k

w
(t)
r,j

)
, ∀r ∈ [m], j ∈ [k]. (H2)

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , ∀r ∈ [m], j /∈ [k]. (H3)

bjw
(t)
r,j = 1, ∀r ∈ Ωb1···bk ∩ Ωg, ∀j ∈ [k].

(H4)

bjw
(t)
r,j = bj′w

(t)
r,j′ , ∀r ∈ Ωb1b2···bk ∩ Ωg, ∀j, j′ ∈ [k].

(H5)

0 < bjw
(t+1)
r,j ≤ (1− ηλ)bjw

(t)
r,j , ∀r ∈ Ωb1b2···bk ∩ Ωb, ∀j ∈ [k].

(H6)

We will show that H2(0), H3(0), H4(0) and H5(0) are true and for any t ≥ 0 we have

• H2(t), H4(t) =⇒ H4(t+ 1). (This can be established by adapting the proof of Lemma C.3; hence,
we omit the proof details here.)

• H2(t), H5(t) =⇒ H5(t+ 1), H6(t). (This can be shown by following the proof of Lemma C.4, so
the proof details are omitted here.)

• H3(t), H4(t), H4(t+ 1), H6(t) =⇒H1(t).

• {H1(s)}ts=0 =⇒ H2(t+ 1), H3(t+ 1).

H4(0) and H5(0) are obviously true since w(0)
r,j = bj for any r ∈ Ωb1b2···bk and j ∈ [k]. To prove that

H2(0) and H3(0) are true, we only need to verify that

s̃ign

(
1

|S0|
∑

(x,y)∈S0

σ′(⟨w(0)
r ,x⟩) · aryxj

)
= s̃ign

(
k!ar ·

w
(0)
r,1w

(0)
r,2 · · ·w

(0)
r,k

w
(0)
r,j

)
, ∀j ∈ [k], (D.7)

s̃ign

(
1

|S0|
∑

(x,y)∈S0

σ′(⟨w(0)
r ,x⟩) · aryxj

)
= 0, ∀j /∈ [k]. (D.8)

By Lemma D.1, we have for j /∈ [k]∣∣∣∣∣ 1

|S0|
∑

(x,y)∈St

σ′(⟨w(0)
r ,x⟩) · aryxj

∣∣∣∣∣ ≤ ϵ1 · ∥w(0)
r ∥k−1

2 = ϵ1 · d
k−1
2 < ρ,

23



leading to (D.8). For j ∈ [k], we have∣∣∣∣∣ 1

|S0|
∑

(x,y)∈S0

σ′(⟨w(0)
r ,x⟩) · aryxj − k!ar ·

w
(0)
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(0)
r,2 · · ·w

(0)
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w
(0)
r,j

∣∣∣∣∣ ≤ ϵ1 · ∥w(0)
r ∥k−1

2 = ϵ1 · d
k−1
2 ,

Since k!− ϵ1 · d
k−1
2 ≥ ρ, we can get

s̃ign

(
1

|S0|
∑

(x,y)∈S0

σ′(⟨w(0)
r ,x⟩) · aryxj

)
= s̃ign

(
k!ar ·

w
(0)
r,1w

(0)
r,2 · · ·w

(0)
r,k

w
(0)
r,j

)
,

which verifies (D.7). Next, we verify that H3(t), H4(t), H4(t + 1), H6(t) =⇒H1(t). For r ∈ Ωg,
given H3(t), H4(t) and H4(t+ 1), we can get

∥w(t+1)
r ∥2 =

(
d∑

j=1

(
w

(t+1)
r,j

)2) 1
2

=

(
k∑

j=1

(
w

(t)
r,j

)2
+

d∑
j=k+1

(
(1− ηλ)w

(t)
r,j

)2) 1
2

≤ ∥w(t)
r ∥2.

For r ∈ Ωb, given H3(t) and H6(t), we can get

∥w(t+1)
r ∥2 =

(
d∑

j=1

(
w

(t+1)
r,j

)2) 1
2

≤

(
d∑

j=1

(
(1− ηλ)w

(t)
r,j

)2) 1
2

≤ ∥w(t)
r ∥2.

Finally, we verify that {H1(s)}ts=0 =⇒ H2(t + 1), H3(t + 1). Notice that ∥w(t+1)
r ∥2 ≤ ∥w(0)

r ∥2
given {H1(s)}ts=0, we can prove H3(t+ 1) and H2(t+ 1) by following the prove of (D.7) and (D.8)
given Lemma D.1.

Based on Lemma D.2 and the proof of Lemma C.6, Lemma C.7, we can get the following lemmas
and theorems aligning with the result of population sign GD.
Lemma D.3. Under Condition 4.2, for T = Θ(kη−1λ−1 log(d)),with a probability of at least 1− δ
with respect to the randomness of the online data selection, it holds that

w
(T )
r,j = bj , ∀r ∈ Ωb1b1···bk ∩ Ωg, j ∈ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωg, j ∈ [d] \ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωb, j ∈ [d].

Lemma D.4. Under Condition 4.2, with a probability of at least 1−2δ with respect to the randomness
in the neural network’s initialization and the online data selection, trained neural network f(W(T ),x)
approximates accurate classifier (m/2k+1) · f(W∗,x) well:

Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
∈ [0.5, 1.5]

)
≥ 1− ϵ.

Based on Lemma D.4, we are now ready to prove our main theorem.
Theorem D.5. Under Condition 4.2, we run mini-batch SGD for T = Θ(kη−1λ−1 log(d)) iterations.
Then with probability at least 1− 2δ with respect to the randomness of neural network initialization
and the online data selection, it holds that

P(x,y)∼D(yf(W
(T ),x) ≥ γm) ≥ 1− ϵ.

where γ = 0.25k! is a constant.

Proof. Given Lemma D.4, we have

Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
≥ 0.5

)
≥ Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
∈ [0.5, 1.5]

)
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≥ 1− ϵ.

According to Proposition 4.1, we can get

Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
≥ 0.5

)
= Px∼Dx

(
yf(W(T ),x)

(m/2k+1) · k! · 2k
≥ 0.5

)
= Px∼Dx

(
yf(W(T ),x) ≥ 0.25k! ·m

)
,

which completes the proof.

E Trainable Second Layer

In this section, we consider sign SGD for training the first and second layers together. In this scenario,
we have the following sign SGD update rule:

w(t+1)
r = (1− λη)w(t)

r + η · s̃ign
(

1

|St|
∑

(x,y)∈St

σ′(⟨w(t)
r ,x⟩) · a(t)r yx

)
, (E.1)

a(t+1)
r = a(t)r + η2 · s̃ign

(
1

|St|
∑

(x,y)∈St

σ(⟨w(t)
r ,x⟩)

)
, (E.2)

where |St| = B. For training the neural network over T = Θ(k(ηλ)−1 log(d)) iterations, we adopt a
small learning rate for the second layer, adhering to the condition:

η2 ≤ 1

4T

√
πk

8

(e+ e−1

2

)−k

.

The network is initialized symmetrically: for every r ∈ [m], initialize w
(0)
r ∼ Unif({−1, 1}d) and

initialize a
(0)
r ∼ Unif({−1, 1}). Under this setting, denote

Ωg =

{
r ∈ [m]

∣∣∣∣ ar =

k∏
j=1

sign(w
(0)
r,j )

}
,Ωb =

{
r ∈ [m]

∣∣∣∣ ar = −
k∏

j=1

sign(w
(0)
r,j )

}
.

Similar to the fix-second-layer case, our initial step involves estimating the approximation error
between the SGD gradient and the population gradient, detailed within the lemma that follows.
Lemma E.1. With probability at least 1− δ with respect to the randomness of online data selection,
for all t ≤ T , we have for any r ∈ [m] and j ∈ [d] that∣∣∣∣∣ 1

|St|
∑

(x,y)∈St

σ′(⟨w(t)
r ,x⟩) · a(t)r yxj − E

[
σ′(⟨w(t)

r ,x⟩) · a(t)r yxj

]∣∣∣∣∣ ≤ ϵ1 · |a(t)r |∥w(t)
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2 , (E.3)

where

ϵ1 =
2k/2k(log(16mdBT/δ))(k−1)/2 log(8mdT/δ)√

B
+

kd(k−3)/2δ

8mBT
.

Proof. To prove (E.3), we denote

gr,j(x, y) = σ′(⟨w(t)
r ,x⟩) · a(t)r yxj = k(⟨w(t)

r ,x⟩)k−1 · a(t)r yxj ,

hr,j(x, y) = gr,j(x, y) · 1
[
|⟨w(t)

r ,x⟩| ≤ γ
]
.

Initially, by invoking Hoeffding’s inequality, we have the following probability bound:

P

(∣∣∣∣∣ 1B ∑
(x,y)∈St

hr,j(x, y)− E(x,y)∼Dhr,j(x, y)

∣∣∣∣∣ ≥ x
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− Bx2

2(kγk−1a
(t)
r )2

)
. (E.4)
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Next, we establish an upper bound for the difference between the expected values of hr,j(x, y) and
gr,j(x, y):∣∣∣E(x,y)∼Dhr,j(x, y)− E(x,y)∼Dgr,j(x, y)

∣∣∣ = ∣∣∣E(x,y)∼Dgr,j(x, y) · 1
[
|⟨w(t)

r ,x⟩| > γ
]∣∣∣

≤ kd(k−1)/2∥w(t)
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2 |a(t)r | · P
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)
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r ∥k−1

2 |a(t)r | · 2 exp
(
− γ2

2∥w(t)
r ∥22

)
,

(E.5)
where the first inequality follows from the Cauchy-Schwarz inequality and the second from Hoeffd-
ing’s inequality. With high probability, the gradient and the truncated gradient coincide:
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1
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(
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(E.6)

Combing (E.4), (E.5) and (E.6), it holds with probability at least

1− 2 exp
(
− Bx2

2(kγk−1a
(t)
r )2

)
− 2B exp

(
− γ2

2∥w(t)
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)
that∣∣∣∣∣ 1B ∑
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.

By taking γ =
√
2 log(16B/δ)∥w(t)

r ∥2 and x =
√
2kγk−1|a(t)r | log(8/δ)/

√
B, then with probabil-

ity at least 1− δ it holds that∣∣∣∣∣ 1B ∑
(x,y)∈St

gr,j(x, y)− E(x,y)∼Dgr,j(x, y)
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.

Then, by applying a union bound to all r ∈ [m], j ∈ [d] and iterations t ∈ [0, T − 1], it holds with
probability at least 1− δ that∣∣∣∣∣ 1B ∑

(x,y)∈St

gr,j(x, y)− E(x,y)∼Dgr,j(x, y)
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Lemma E.2 (Stability of Second Layer Weights). For t ≤ T = Θ(k(ηλ)−1 log(d)), the magnitude
of change in the second layer weights from their initial values is bounded as follows:

|a(t)r − a(0)r | ≤ c,

where

c =
1

4

√
πk

8

(e+ e−1

2

)−k

.

Consequently, the sign of each weight remains consistent over time:

sign(a(t)r ) = sign(a(0)r ).

Proof. Notice that by (E.2) and s̃ign(·) ∈ {−1, 0, 1}, we can get for any t ≥ 0 that

a(t)r − η2 ≤ a(t+1)
r ≤ a(t)r + η2,

which implies that

|a(t)r − a(0)r | ≤ η2t ≤ η2T ≤ c,

where the second inequality is by t ≤ T , and the last inequality is by the condition η2 ≤
1
4T

√
πk
8

(
e+e−1

2

)−k

.

Lemma E.3. With probability at least 1− δ with respect to the randomness of online data selection,
the following sign SGD update rule holds:

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j + η · s̃ign

(
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r,j

)
, j ∈ [k],

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , j /∈ [k].

Proof. We prove this by using induction. We prove the following hypotheses:

∥w(t+1)
r ∥2 ≤ ∥w(t)

r ∥2, ∀r ∈ [m]. (H1)

w
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)
, ∀r ∈ [m], j ∈ [k]. (H2)

w
(t+1)
r,j = (1− ηλ)w

(t)
r,j , ∀r ∈ [m], j /∈ [k]. (H3)

bjw
(t)
r,j = 1, ∀r ∈ Ωb1···bk ∩ Ωg, ∀j ∈ [k].

(H4)

bjw
(t)
r,j = bj′w

(t)
r,j′ , ∀r ∈ Ωb1b2···bk ∩ Ωg, ∀j, j′ ∈ [k].

(H5)

0 < bjw
(t+1)
r,j ≤ (1− ηλ)bjw

(t)
r,j , ∀r ∈ Ωb1b2···bk ∩ Ωb, ∀j ∈ [k].

(H6)

We will show that H2(0), H3(0), H4(0) and H5(0) are true and for any t ≥ 0 we have

• H2(t), H4(t) =⇒ H4(t+ 1).

• H2(t), H5(t) =⇒ H5(t+ 1), H6(t).

• H3(t), H4(t), H4(t+ 1), H6(t) =⇒H1(t).

• {H1(s)}ts=0 =⇒ H2(t+ 1), H3(t+ 1).
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H4(0) and H5(0) are obviously true since w
(0)
r,j = bj for any r ∈ Ωb1b2···bk and j ∈ [k]. To prove

that H2(0) and H3(0) are true, we can follow the proof of Lemma D.2 by noticing that |a(0)r | = 1.
Now, we verify that H2(t), H4(t) =⇒ H4(t+ 1). By H2(t) and sign(a

(t)
r ) = sign(a

(0)
r ) according

to Lemma E.2, we have for any neuron r ∈ Ωb1b2···bk ∩ Ωg that

bjw
(t+1)
r,j = (1− ηλ)bjw

(t)
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+ η ·
sign(b1w
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r,1) sign(b2w
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r,2) · · · sign(bkw
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sign(bjw
(t)
r,j)

· 1

[
|a(0)r w

(t)
r,1w

(t)
r,2 · · ·w

(t)
r,k|

|w(t)
r,j |

≥ ρ

k!

]
= (1− ηλ) + η · 1[k! ≥ ρ]

= 1,

where the last equality is by ρ ≤ k!(1 − c) ≤ k! · |a(t)r |. H2(t), H5(t) =⇒ H5(t + 1), H6(t) can
be verified in the same way as Lemma C.4 by noticing that ρ ≤ k!(1 − c) ≤ k! · |a(t)r |. H3(t),
H4(t), H4(t+ 1), H6(t) =⇒H1(t) can be proved by following exactly the same proof as Lemma C.4.
{H1(s)}ts=0 =⇒ H2(t+ 1), H3(t+ 1) be verified in the same way as Lemma C.4 by noticing that
ϵ1 · (1 + c) · d k−1

2 < ρ and k!− ϵ1 · (1 + c) · d k−1
2 > ρ.

Based on Lemma E.2 and Lemma E.3, we can get the following lemmas and theorems aligning with
the result of the fixed second-layer case.
Lemma E.4. For T = Θ(kη−1λ−1 log(d)),with a probability of at least 1− δ with respect to the
randomness of the online data selection, it holds that

w
(T )
r,j = bj , ∀r ∈ Ωb1b1···bk ∩ Ωg, j ∈ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωg, j ∈ [d] \ [k],

|w(T )
r,j | ≤ d−(k+1), ∀r ∈ Ωb, j ∈ [d].

Lemma E.5. With a probability of at least 1− 2δ with respect to the randomness in the neural net-
work’s initialization and the online data selection, trained neural network f(W(T ),x) approximates
accurate classifier (m/2k+1) · f(W∗,x) well:

Px∼Dx

(
f(W(T ),x)

(m/2k+1) · f(W∗,x)
∈ [0.25, 1.75]

)
≥ 1− ϵ.

Proof. Let

f̃(W(T ),x) =
m∑
r=1

a(0)r · σ(⟨w(T )
r ,x⟩).

By the proof of Lemma C.7, we can get

|f̃(W(T ),x)− (m/2k+1) · f(W∗,x)|
(m/2k+1) · |f(W∗,x)|

≤ 0.5.

To prove the result, we need to estimate the difference between f̃(W(T ),x) and f(W(T ),x):∣∣f(W(T ),x)− f̃(W(T ),x)
∣∣ = ∣∣∣∣∣

m∑
r=1

(a(T )
r − a(0)r ) · σ(⟨w(T )

r ,x⟩)

∣∣∣∣∣
≤

m∑
r=1

|a(T )
r − a(0)r | · |⟨w(T )

r ,x⟩|k

≤ c
m∑
r=1

|⟨w(T )
r ,x⟩|k

= c
∑
r∈Ωg

|⟨w(T )
r ,x⟩|k

︸ ︷︷ ︸
I1

+c
∑
r∈Ωb

|⟨w(T )
r ,x⟩|k︸ ︷︷ ︸

I2

(E.7)
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where the first inequality is by triangle inequality; the second inequality is by Lemma E.2. Then, we
provide upper bounds for terms I1 and I2 respectively. For I1, we have the following upper bound:

I1 =
∑
r∈Ωg

|⟨w(T )
r,[1:k],x[1:k]⟩+ ⟨w(T )

r,[k+1:d],x[k+1:d]⟩|k

≤
∑
r∈Ωg

|⟨w(T )
r,[1:k],x[1:k]⟩|k +

∑
r∈Ωg

|⟨w(T )
r,[k+1:d],x[k+1:d]⟩| · k

(
|⟨w(T )

r,[1:k],x[1:k]⟩|+ |⟨w(T )
r,[k+1:d],x[k+1:d]⟩|

)k
≤

∑
(b1,··· ,bk)∈{±1}k

∑
r∈Ωb1b2···bk∩Ωg

∣∣∣∣ k∑
j=1

bjxj

∣∣∣∣k +
∑
r∈Ωg

d−k · k
(
k + d−k

)k
≤

∑
(b1,··· ,bk)∈{±1}k

(1 + α

2k+1

)
m ·

∣∣∣∣ k∑
j=1

bjxj

∣∣∣∣k +
(1 + α

2

)
m · d−k · k

(
k + d−k

)k
≤
(1 + α

2k+1

)
m · 2kk(1 + e−2)k +

(1 + α

2

)
m · d−k · k

(
k + d−k

)k
, (E.8)

where the first inequality is by mean value theorem; the second inequality is by (C.2) and Lemma E.4;
the third inequality is by Lemma B.1; the last inequality is by Lemma F.3. For I2, we have the
following upper bound

I2 ≤ |Ωb| · (2d−k)k ≤
(1 + α

2

)
m · (2d−k)k. (E.9)

By plugging (E.8) and (E.9) into (E.7), we can get:∣∣f(W(T ),x)− f̃(W(T ),x)
∣∣

≤ c
(
(1 + α)2−km · kk(1 + e−2)k + 0.5(1 + α)m · d−k · k

(
k + d−k

)k
+ 0.5(1 + α)m · (2d−k)k

)
.

Therefore, we have∣∣f(W(T ),x)− f̃(W(T ),x)
∣∣

(m/2k+1) · |f(W∗,x)|

≤ c ·
(1 + α)2−km · kk(1 + e−2)k + 0.5(1 + α)m · d−k · k

(
k + d−k

)k
+ 0.5(1 + α)m · (2d−k)k

0.5k! ·m

≤ c ·
2(1 + α)2−k · kk(1 + e−2)k + (1 + α) · d−k · k

(
k + d−k

)k
+ (1 + α) · (2d−k)k

√
2πk(k/e)k

= c ·

(√
2

πk
(1 + α)

(e+ e−1

2

)k
+

√
2

πk
·
(
1 +

d−k

k

)k−1

·
( e
d

)k
+

√
2

πk
·
( 2e

kdk

)k)

≤ c ·
√

8

πk

(e+ e−1

2

)k
=

1

4
,

where the second inequality is by Stirling’s approximation, and the last equality is due to c =
1
4

√
πk
8

(
e+e−1

2

)−k
.

F Auxiliary Lemmas

We first introduce a finite difference operator with step h and order n as follows,

∆n
h[f ](x) =

n∑
i=0

(
k

i

)
(−1)n−if(x+ ih).

The following Lemma calculates the value finite difference operating on the polynomial function.
Lemma F.1. (Milne-Thomson, 2000) For f(x) = xn, we have that ∆n

h[f ](x) = hnn!.
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Based on Lemma F.1, we have the following Lemma, which calculates the margin of good NNs
defined in (3.1).
Lemma F.2. For any integer k, we have

k∑
i=0

(
k

i

)
(−1)i(k − 2i)k = 2kk!. (F.1)

Proof. Applying Lemma F.1 with f(x) = xk, n = k in Lemma F.1 gives,

k∑
i=0

(
k

i

)
(−1)i(k − 2i)k = (−1)k∆k

−2[f ](k) = (−1)k(−2)kk! = 2kk!,

where the first equality is due to the definition of finite difference operator and the last equality is due
to Lemma F.1.

Lemma F.3. For any positive integer k, it holds that

k∑
i=0

(
k

i

)
|k − 2i|k ≤ 2kk(1 + e−2)k.

Proof. We can establish the following inequality:

k∑
i=0

(
k

i

)
|k − 2i|k ≤ 2

⌊ k−1
2 ⌋∑

i=0

(
k

i

)
|k − 2i|k

= 2kk
⌊ k−1

2 ⌋∑
i=0

(
k

i

)(
1− 2i

k

)k

≤ 2kk
⌊ k−1

2 ⌋∑
i=0

(
k

i

)
exp(−2i)

≤ 2kk
k∑

i=0

(
k

i

)
exp(−2i)

= 2kk(1 + e−2)k,

where the first inequality is by
(
k
i

)
=
(

k
k−i

)
, the second inequality is by 1− t ≤ exp(−t), ∀t ∈ R,

the last inequality is by
(
k
i

)
exp(−2i) > 0.

30



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in abstract and Section 1 are supported by results in Section 4
and also the additional expeiremnts in the Appendix.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation section is presented in page 12.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Yes, the full set of assumptions are provided in Section 3 and the complete
(and correct) proof are provided in the Appendix A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides detailed experiment settings in Section A, which should
be sufficient for reproducing the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The experiments in this paper are based on synthetic data generated to support
the theoretical findings. As such, there is no real-world dataset or code to be made openly
accessible. The question of open access to data and code is not applicable in this case, as the
main contributions are purely theoretical and do not rely on empirical results from specific
datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper provides detailed experiment settings in Section A, which should
be sufficient for reproducing the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: : This paper provides detailed experiment settings in Section A, which include
important details such as the error bars reported in Table 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The requirement of Compute Resources are stated in Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As a theoretical paper, the research presented in this paper has been conducted
with the highest ethical standards and is fully compliant with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work provides the theoretical understanding of generic optimization
algorithm (SGD). Although there might be some potential social impacts on applications,
according to the guidelines, we believe our result does not have a direct connection with
these issues.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: As a theoretical paper, this work does not involve the development or release
of any models or datasets, particularly those that might be considered high-risk for misuse,
such as pretrained language models, image generators, or scraped datasets. Therefore, the
question of safeguards for responsible release does not apply.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper is a theoretical work that does not utilize or rely on any existing
assets such as code, data, or models from other sources. Therefore, the question of crediting
creators or detailing licenses and terms of use for such assets does not apply.

Guidelines:

• The answer NA means that the paper does not use existing assets.

35



• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: As this is a theoretical paper, it does not introduce or release any new assets
such as datasets, code, or models. Thus, there is no need for documentation related to new
assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This theoretical paper does not conduct any experiments involving crowd-
sourcing or research with human subjects, thus there are no participants, instructions, or
compensation details to report.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

36



Answer: [NA]
Justification: As this paper is purely theoretical and does not involve any research with
human subjects, there are no study participants, thus no associated risks or requirements for
Institutional Review Board (IRB) approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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