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Abstract

Discrete diffusion models have emerged as powerful tools for high-quality data
generation. Despite their success in discrete spaces, such as text generation tasks,
the acceleration of discrete diffusion models remains under-explored. In this paper,
we propose discrete non-Markov diffusion models (DNDM), which naturally
induce the predetermined transition time set. This enables a training-free sampling
algorithm that significantly reduces the number of function evaluations (i.e., calls
to the neural network), making the sampling process much faster. Furthermore,
we study the transition from finite to infinite step sampling, offering new insights
into bridging the gap between discrete and continuous-time processes for discrete
diffusion models. Extensive experiments on natural language generation and
machine translation tasks demonstrate the superior performance of our method in
terms of both generation speed and sample quality compared to existing methods
for discrete diffusion models. Codes are available at https://github.com/
uclaml/DNDM.

1 Introduction

Diffusion-based generative models, as first introduced by Sohl-Dickstein et al. (2015), have shown
remarkable capabilities in generating high-quality samples across various domains, including im-
ages (Ho et al., 2020; Song and Ermon, 2020), audio (Chen et al., 2020; Kong et al., 2020), and
videos (Ho et al., 2022). The diffusion model utilizes an innovative approach comprising a forward
process that gradually transforms training data into pure noise and a reverse process that reconstructs
clean data from the noise. Throughout the training phase, the model optimizes a neural network by
minimizing an objective derived from maximum likelihood estimation. Once trained, the model can
generate samples using various decoding strategies, including implicit dynamics (Song et al., 2020a),
analytical processes (Bao et al., 2022), or differential equation solvers (Song et al., 2020b; Liu et al.,
2022; Lu et al., 2022). In particular, Song et al. (2020a) introduced the denoising diffusion implicit
model (DDIM), providing a non-Markov and de-randomized version of the Denoising Diffusion
Probabilistic Model (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020), which enables faster
generation of high-quality samples.

Although diffusion models were initially introduced for both discrete and continuous-state spaces
(Sohl-Dickstein et al., 2015), these studies have largely focused on Gaussian diffusion processes
in continuous-state spaces. Recently, Discrete Denoising Diffusion Probabilistic Models (D3PMs)
(Austin et al., 2021) working in discrete-state spaces have gained increasing interest due to their
applications in diverse areas such as text generation (Hoogeboom et al., 2021b), medical record
generation (Ceritli et al., 2023), and protein design (Gruver et al., 2024). These models, which are
distinct from their Gaussian counterparts, employ discrete noises, such as the multinomial distribution,
for diffusion processes. Very recently, Zheng et al. (2023) introduced a reparameterized diffusion
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model (RDM) that can improve sampling speed and sample quality in text generation tasks. However,
their proposed algorithm is a training-based approach. Compared with diffusion models using
Gaussian noise, discrete diffusion models remain under-studied, especially regarding training-free
sampling acceleration.

In this work, we introduce a training-free approach aiming at enhancing the sampling speed of discrete
diffusion models. This approach stems from a unique characteristic of discrete diffusion models:
unlike continuous diffusion models, which typically employ Gaussian noise for data corruption (Ho
et al., 2020; Song and Ermon, 2020; Song et al., 2020b,a), discrete diffusion models often use
categorical white noises (Hoogeboom et al., 2021b; Austin et al., 2021; Zheng et al., 2023).

Table 1: Cross Comparison of Diffusion Models.

Continuous Discrete

Markov DDPM D3PM
(Sohl-Dickstein et al., 2015) Austin et al. (2021)

Non-Markov DDIM DNDM
(Song et al., 2020a) (Ours)

By delving into this spe-
cial property, we develop a
discrete non-Markov diffu-
sion model, together with
a design of accelerated al-
gorithm. Notably, this new
sampling technique does
not require any modifica-
tions to the training objec-
tive of diffusion models and is, therefore, training-free. Our contributions are summarized as follows:

• We propose discrete non-Markov diffusion models (DNDM), which naturally induces a set of
latent variables T , termed as the transition time set. This key feature enables us to develop a
training-free sampling algorithm that can accelerate a large family of discrete diffusion models.
Importantly, DNDM preserves the essential properties of the original discrete diffusion model: for
any diffusion trajectory {xt} starting from real data x0, it provably maintains both the marginal
distribution q(xt) and the conditional distribution q(x0|xt). Our method can accelerate the two
most widely used discrete diffusion models: multinomial diffusion (Hoogeboom et al., 2021b)
and absorbing diffusions (Austin et al., 2021). Similar to how DDIM introduces a de-randomized,
faster sampling algorithm compared to DDPM in continuous space, DNDM achieves acceleration
through a predetermined transition time set in discrete space (See Table 1).

• Based on the predetermined transition time set T in DNDM, we design an accelerated sampling
algorithm that reduces the required number of neural network function evaluations. In a standard
T time-step discrete diffusion process, while D3PM, including Multinomial (Ho et al., 2020) and
absorbing state discrete sampling (Austin et al., 2021), requires evaluating the neural network
function T times, our approach only requires |T | function evaluations, where |T | is the cardinality
of the transition set T . Moreover, |T | is provably less than T and approaches O(1) as T goes
to infinity. We provide both theoretical analysis and empirical experiments showing that the
improvement in the number of function evaluations (NFE) is significant. Notably, our algorithm is
about 3× faster than baselines for T = 50 and about 30× faster for T = 1000 while preserving
the sample quality.

• To further illustrate the effectiveness of DNDM, we explore the limit as T → ∞ and introduce an
infinite-step sampling algorithm. With a pretrained neural network, we can generate an initial noise
xT and a transition time set T ⊆ [0, 1] with infinitesimal spacing, such that |T | = O(1). This
enables the generation of the real data distribution with only |T | neural network evaluations. This
study offers new insights into bridging the gap between discrete and continuous-time processes for
discrete diffusion models.

Notation. We use |T | to denote the cardinality of the set T (excluding repeated elements). We
use lowercase letters to denote scalars, boldface lowercase letters to denote vectors, and boldface
uppercase letters to denote matrices. The notation 1 : N indicates the sequence from 1 through N .
The symbol q designates the real distribution in a diffusion process, while p represents the distribution
during sampling. With its success probability inside the parentheses, the Bernoulli distribution is
denoted by Bernoulli(·). We further use Cat(x;p) to denote a categorical distribution over a one-hot
row vector x with probabilities given by the row vector p.

2 Background

In this section, we provide the background of discrete diffusion models. We begin by introducing the
discrete Markov diffusion model, designed for handling categorical random variables. Specifically,
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consider a diffusion model trying to generate distributions over a discrete random variable x ∈ RK

that is one-hot encoded with K categories, i.e., x can be chosen as one of K categories, and for any
k ∈ [K], x is categorized as k if x aligns with the standard basis vector ek. The sequence {xt}Tt=0
represents how this random variable changes over time 0 ≤ t ≤ T , starting from an x0 ∈ RK

drawn from the real distribution qdata. In this paper, we focus on the two most widely used D3PMs:
multinomial diffusion (Hoogeboom et al., 2021b) and absorbing diffusions (Austin et al., 2021).

Forward Process. During the forward process, the real distribution qdata is gradually transformed
into a noise distribution named qnoise. The transformation occurs through T steps, with T intermediate
latent variables x1, . . .xT and update rules given by:

xt = btxt−1 + (1− bt)wt, t = 1, . . . , T (1)

Here bt is randomly drawn from a Bernoulli distribution with parameter βt, denoted by bt ∼
Bernoulli(βt), and wt is randomly drawn from the noise distribution qnoise, while for different t
the samples are independent. In this work, we focus on cases where the noise qnoise can be either a
uniform distribution over the vocabulary {1, 2, . . . ,K} (Hoogeboom et al., 2021b), or a point mass
with all of the probability mass lying on an absorbing state (Austin et al., 2021). Following this
notation, the process in (1) defines a Markov process characterized by the transition kernel

q(xt|xt−1) = Cat
(
xt;p = βtxt−1 + (1− βt)qnoise

)
. (2)

Moreover, the Markov chain property allows us to get samples x0:t from x0 by multiplying the
transition probabilities at each step as p(x1:t|x0) =

∏t
i=1 q(xt|xt−1). It further leads to the following

marginal distribution.

q(xt|x0) = Cat
(
xt;p = αtx0 + (1− αt)qnoise

)
, (3)

where αt := Πt
s=1βs is determined by the sequence of βt of our choice and decreases from 1 to 0.

Reverse Process. Given the forward Markov process, the reverse process can be derived by Bayes’
rule (Hoogeboom et al., 2021b; Austin et al., 2021; Zheng et al., 2023). The conditional probabil-
ity q(xt−1|x0,xt) can be determined by q(xt−1|x0,xt) = q(xt|xt−1)q(xt−1|x0)/q(xt|x0). The
reverse process can be used for synthetic data generation by sampling from the noise distribution
qnoise and repeatedly applying a learned predictor (neural network) pθ(·|xt) parameterized by θ:

pθ(xT ) = qnoise(xT ), qθ(xt−1|xt) =

∫
x̂0

q(xt−1|xt, x̂0)pθ(x̂0|xt)dx̂0. (4)

We note that the reverse process q(xt−1|xt, x̂0) is stochastic and thus requires function evaluation at
every step.

Training the Neural Network. The neural network pθ(·|xt) that predicts x̂0 is trained by maximizing
the evidence lower bound (ELBO) (Sohl-Dickstein et al., 2015),

log pθ(x0) ≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T |x0)

]
dx1:T

= Eq(x1|x0)[log pθ(x0|x1)]−
T∑

t=2

Eq(xt|x0)[KL(q(xt−1|xt,x0)∥pθ(xt−1|xt))

− Eq(xT |x0)KL(q(xT |x0)∥pθ(xT )), (5)

Here KL denotes Kullback-Liebler divergence and the last term Eq(xT |x0)KL(q(xT |x0)∥qnoise(xT ))
equals zero. Building on this foundation, Austin et al. (2021) introduced an auxiliary denoising
objective, which refines the data predictions x0 at each time step. Since this paper primarily focuses
on reverse sampling, we leave detailed discussions of these losses to Appendix B.

3 Discrete Non-Markov Diffusion Models (DNDM)

3.1 Forward and Reverse Process

In this section, we introduce a non-Markov process such that the joint distribution of (x0,xt) remains
the same as the one defined with Markov process in Section 2. The new process aims to gradually
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transform input data qdata to the noise distribution qnoise through T intermediate latent variables
x1, . . .xT with the following process:

xt = btxt−1 + (1− bt)w, (6)

where bt is independently drawn from the Bernoulli distribution Bernoulli(βt) and w is drawn from
the noise distribution qnoise. The only difference between (6) and (1) is that we replace wt in (1) by
w, which is time-invariant during the diffusion. Therefore, the process in (6) becomes non-Markov
since q(xt|xt−1, . . . ,x0) doesn’t necessarily equals q(xt|xt−1). The following theorem shows that
the conditional distribution q(xt|x0) remains unchanged.

Theorem 3.1. For the non-Markov process in (6), we have

q(xt|x0) = Cat
(
xt;p = αtx0 + (1− αt)qnoise

)
,

where αt := Πs
i=1βs is specified to decrease from 1 to 0.

Using the Bayes’ rule, we have q(x0|xt) ∝ q(xt|x0)q(x0). Consequently, the condtional distribution
q(x0|xt) remains consistent with the one induced by the process process in (1). Therefore, neural
network pθ(·|xt) trained by the Markov process in (1), remains applicable to our non-Markov
process (6) (see Appendix B for detail).

Based on the discrete non-Markov diffusion model, we can give a simple characterization of the
reverse process by introducing the transition time.

Definition 3.2. Transition time τ is the time that the token xt transition from x0 to noise, i.e.,
τ := mint{t|bt = 0}.

Remark 3.3. The concept of transition time has also been introduced in Hoogeboom et al. (2021a).
However, Hoogeboom et al. (2021a) restricts the transition time to be the first time of entering the
absorbing state, which is only applicable to absorbing diffusion. Our definition is more general and
applicable to discrete diffusion with various noise including multinomial diffusion.

Given the transition time τ , the forward process reduces to:

xt = 1(τ > t)x0 + 1(τ ≤ t)w, (7)

which shows that the token will be a real token x0 before the time τ and will be the noise w after the
transition time. Since token only get changed at the transition time τ , we can derive a reverse process
based on (7),

xt−1 = 1(τ = t)x0 + 1(τ ̸= t)xt. (8)

Therefore, the process in (8) is de-randomized given transition time τ . Specifically, after indepen-
dently sampled transition times τ , xt−1 becomes deterministically known and fixed if we observe x0

and xt. It is also worth noting that given x0 and τ , the exact reverse process (8) is Markovian, since
xt−1 solely depends on x0, τ,xt. Plugging (8) into (4) gives the generation process. We can prove
the ELBO of the DNDM is equivalent to the ELBO of the original process (5) up to some constant,
which further supports the neural network pθ(·|xt) trained by the Markov process in (1), remains
applicable to DNDM. (See Appendix B.3 for details).
Remark 3.4. (7) and (8) suggest that even though there are T distinct time steps, not every time in
the range 1 : T is crucial for capturing the process. Therefore, our primary focus should be on the
most significant time step, i.e., the transition time τ , enabling faster reverse sampling. We further
note that although transition happens only at time τ , the transition time is random, differs across runs,
and covers the full range from 1 to T on average.
Remark 3.5. While Song et al. (2020a) proposed a non-Markov multinomial diffusion model in
Appendix A, DDIM and DNDM are fundamentally different models when specialized to multinomial
diffusion. DDIM’s discrete process remains stochastic at every step, even with deterministic noise
scheduling. In contrast, DNDM achieves full de-randomization by pre-determined transition time
τ (Equation 8 in our paper). By sampling these transition times upfront, DNDM establishes a
predetermined transition time set that guides the sampling process, enabling deterministic evolution
and faster sampling speed even under the same number of sampling steps, which is not reported under
DDIM framework. For detailed technical comparison, see Appendix B.1.
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3.2 Accelerated Reverse Sampling

In this section, we demonstrate that sampling from DNDM can lead to accelerated reverse sampling.
Although our algorithm is quite general, we focus on text generation in the presentation.

In Section 3.1, we only consider the case of a single token x ∈ RK being one hot encoding of K
categories. In real applications, we are interested in generating a sentence with multiple tokens. So,
we extend the terminology in Section 3.1, and we denote the sequence of tokens at t-th time step to
be xt,1:N = [xt,1, . . . ,xt,N ] where xt,n is the n-th token and N is the sequence length. The noise
will be added to each token in a sequence independently. Therefore, each token will have its own
transition time defined in Definition 3.2. We denote the transition time for each token xn to be τn and
further denote the transition time set T := {τn}Nn=1. Given the transition times τn ∈ T , our DNDM
can now be extended to the sequence with multiple tokens

xt−1,n = 1(τn = t)x0,n + 1(τn ̸= t)xt,n, ∀n ∈ [N ]. (9)

Learning the Reverse Process. We first generate the transition times τn for n ∈ [N ], then we follow
(9) to generate the learned reverse process. Since x0,n is unknown in the process, we use the neural
network evaluation pθ(·|xt) obtained in Section 3.1 to predict x0,n. In detail, the noisy sequence
xt,1:N is fed into pθ(·|xt,1:N ) and the prediction tokens x̂0,1:N ∼ pθ(·|xt,1:N ) are collected.

Transition time. Transition time, denoted by τ , is crucial in our reverse process. This is because
the reverse sampling becomes deterministic upon using (9). Each instance of transition time τ is a
random variable within the set {1, 2, . . . , T}. Let’s assume it follows the distribution Dτ . Given the
schedule {αt}Tt=0, we can derive the distribution for Dτ .
Theorem 3.6. Each specific transition time τn in Definition 3.2 is independent. Furthermore, they
collectively adhere to the distribution Dτ , which obeys the rule P(τn = t) = αt−1 − αt.

From Theorem 3.6, we discern that the nature of the diffusion model scheduler, αt, clarifies the
distribution of τ . Take the linear schedule as an example, as given by Austin et al. (2021), the
relationship is αt = 1− t/T . This translates to P(τn = t) = 1/T for every t in the range 1 to T . As
a result, transition time distributes uniformly across each moment in the set {1, . . . , T}. Generally,
if we express αt as g(t/T ), then we can simplify to P(τn = t) = g((t − 1)/T ) − g(t/T ), which
further refines to (1/T )|g′(t/T )|+ o(1/T ). This indicates that transitions are more likely where |g′|
is large.

Algorithm 1 Sampling From DNDM

Require: Trained prediction function pθ , qnoise, Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼ Dτ

4: end for
5: Collect transition time set T = {τn}Nn=1
6: for t = T . . . 1 do
7: if t ∈ T then
8: Generate x̃0,1:N from pθ(·|xt,1:N )
9: for n = 1 . . . N do

10: Update xt−1,n based on condition of τn
11: end for
12: else
13: Update xt−1,1:N = xt,1:N

14: end if
15: end for
16: Return x0,1:N

In practice, we observed that the shape
of the transition time does not need to
exactly match the theoretically predicted
schedule Dτ in Theorem 3.6. Algorithm 1
works even if Dτ is unknown. In particu-
lar, we can approximate the schedule with
a Beta distribution by first sampling a time
t ∈ [0, 1] from a Beta distribution, then ad-
justing these samples to fit by multiplying
by T and rounding the result to obtain an
integer.

Accelerated Sampling. According to (9),
a token xt−1,n is updated only if step t is
the transition time for the n-th token. If
step t is not the transition time for any to-
ken, the sentence from the previous step
can be directly copied: xt−1,1:N = xt,1:N .
As a result, there is no need to do a func-
tion evaluation for the current step. Our
attention, therefore, can be solely centered
on the transition set T , necessitating function evaluations only for t within T . For our method, when
N is fixed while T → ∞, the total NFE |T | will reach N . On the other hand, when T is fixed
and N → ∞, the NFE T will reach T (See Theorem D.1 for detail). It is worth noting that the
auto-regressive diffusion model (ARDM) (Hoogeboom et al., 2021a) can also achieve at most N
NFE when T = ∞. However, ARDM only focuses on infinite time steps, while our method here is
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able to accelerate sampling for finite time steps. More detailed discussion and theoretical analysis
can be found in Section D, where additional experiments also demonstrate that our DNDM achieves
an NFE that is less than half of the original Markov sampling method for discrete diffusion.

By incorporating the forward process with different noises, we can develop DNDM-Multi and DNDM-
Absorb, which accelerate the Multinomial and Absorbing sampling methods respectively. Recent
works have demonstrated that the quality of samples can be enhanced by utilizing supplementary
information derived from the neural network, (Ghazvininejad et al., 2019; Savinov et al., 2021; Chang
et al., 2022; He et al., 2022; Zheng et al., 2023). Our DNDM can also be improved using this idea.
We call it a discrete non-Markov Diffusion Model with Top-k Transition Time (DNDM-k). Due to
the limit of the pages, we leave the detailed Algorithm and discussion to Appendix E.

3.3 Continous-time (Infinite Step) Reverse Sampling

In the context of continuous state spaces, continuous-time processes have been proposed to accommo-
date algorithms that offer faster sampling speeds and enhanced sample quality (Jolicoeur-Martineau
et al., 2021; Zhang and Chen, 2022; Salimans and Ho, 2022; Chung et al., 2022; Song et al., 2020b;
Dockhorn et al., 2021). However, the application of continuous-time schemes to discrete-state spaces
remains largely unexplored. Campbell et al. (2022) first developed a continuous framework for
discrete-time diffusion for the Markovian process and randomized sampling, but not in our non-
Markovian setting. In this section, we investigate the transition from finite to infinite step sampling,
providing new insights into bridging the gap between discrete and continuous-time processes for
discrete diffusion models.

Continuous-time Forward and Backward process. Recall that the forward process described in (6)
can be sampled from x0,n through the following process:

xt,n = αtx0,n + (1− αt)qnoise, αt =
t∏

i=1

βi. (10)

Algorithm 2 Sampling from DNDM-C

Require: Trained prediction function pθ , qnoise, Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼ Dτ and order
them as τn1 < . . . < τnN

4: end for
5: for k = N . . . 1 do
6: Generate x̃0,1:N from pθ(·|xτnk

,1:N , τnk
)

7: for n = 1 . . . N do
8: Update xτnk−1

,n based on condition of τn
9: end for

10: end for
11: Return x0,1:N

In the previous section, we are constrained
to discrete time steps, where we must de-
fine a maximum step, denoted by T . The
values of xt are computed only for t =
1, . . . , T . As a result, during the training
process, it is only possible to predict x0

at these predetermined time steps. This
constraint confines the computation of our
reverse process exclusively to these fixed
time stamps. To derive the continuous limit
of (10), for each T we rescale (10) to a
diffusion process on [0, 1], e.g., xT,n =
x̂1,n,x0,n = x̂0,n, and xt,n = x̂t/T,n.
Therefore, when T → ∞, x̂t,n represents
the continuous process that has values at
arbitrary t ∈ [0, 1]. If the choice of αt for
each T is scale-invariant, we can define a continuous function α(t) as the continuous α schedule of
the discrete counterpart1. More specifically, we obtain

x̂t,n = α(t)x̂0,n + (1− α(t))qnoise, t ∈ [0, 1]. (11)

For the reverse-time process, we define the transition time set T := {τn}Nn=1 consistent with
Theorem 3.6 and sample it from P(τn = t) = −α′(t) (we always use decreasing α(t)). With T
defined, the updates to xt,n only occur at {τn}. Consequently, we arrange τn to obtain an ordered
sequence τnk

, where τn1
< τn2

< . . . < τnN
. When omitting the infinitely many time steps between

τnk
and τnk−1

, the resulting reverse process is then given by:

xτnk−1
,n = 1(τn = τnk−1

)x0,n + 1(τn ̸= τnk−1
)xτnk

,n, . (12)

for all n ∈ [N ]. The detailed algorithm named DNDM-C is shown in Algorithm 2.
1If we represent αt with maximum step T as αt(T ), the scale-invariant property states that αct(cT ) = αt(T ).

The simplest example of such an αt schedule is αt(T ) = 1− t/T , under which α(t) = 1− t.
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Remark 3.7. Autoregressive Diffusion Model (ARDM) (Hoogeboom et al., 2021a) is a discrete
diffusion model built upon the autoregressive nature of data. ARDM is shown to be equivalent to
a continuous-time absorbing diffusion model and thus provides a unique perspective for discrete
diffusion. For continuous-time (T = ∞) reverse sampling, both ARDM and our method achieve
N NFEs. Unlike ARDM which is limited to absorbing-state transitions, our method provides a
unified framework including both absorbing and multinomial diffusions, applicable to both finite
time and continuous time diffusions. For infinite timesteps, Hoogeboom et al. (2021a) also proposed
an advanced parallelizing technique that can reduce NFE according to the log-likelihood, which we
have not considered in DNDM-C.

4 Experiments

In this section, we evaluate DNDM and demonstrate its superior performance on two types of tasks:
conditional sequence-to-sequence text generation (i.e., machine translation) and unconditional text
generation. For the fairness of comparison, all the experiments are conducted using a single NVIDIA
RTX A6000 GPU with 48 GB memory. Additional experiment details are provided in Appendix F.

4.1 Conditional Text Generation

We evaluate DNDM’s effectiveness on conditional text generation through machine translation tasks.
Following Zheng et al. (2023), we use Byte Pair Encoding (BPE) (Sennrich et al., 2016) to create a
shared vocabulary of words and subwords from both source and target languages. We implement our
experiments using FairSeq (Ott et al., 2019), which employs an encoder-decoder architecture. The
model uses bi-directional self-attention blocks without causal masking, allowing tokens to attend to
both past and future positions during training and inference. The encoder processes the source text,
while the decoder generates the target translation.

Datasets. We use the following three datasets to compare with the baselines for machine translation
tasks: (1) IWSLT14 DE-EN (Cettolo et al., 2014), a dataset with German as the source language and
English as the target language. It consists of 174272 examples (sentence pairs), and each of the
validation set and the testing set accounts for 7283 and 6750 of the dataset; (2) WMT14 EN-DE (Bojar
et al., 2014), which is an English-to-German translation dataset consisting of 3967182 examples.
Each of the validation set and the testing set accounts for 3000 and 3003 of the dataset; and (3)
WMT16 EN-RO (Bojar et al., 2016), which is an English-to-Russian translation dataset consisting of
612317 examples. Each of the validation sets and the testing set accounts for 1999 and 1999 of
the dataset. The train-validation-test split is fixed across all experiments for all machine translation
datasets to ensure fair comparison.

Performance Metrics. We use the BLEU score (Papineni et al., 2002) to evaluate the machine
translation quality, where the BLEU score is calculated based on the similarity between the actual
target sequence and the predicted target sequence. The sampling speed is measured by wall-clock
time (in second).

Baselines. The main baselines we are comparing with are RDM and RDM-k from Zheng et al.
(2023). Here, we use RDM-k and RDM to denote the sampling method proposed in their paper
with and without the usage of top-k selection for the token generation technique (see Appendix E
for more details), respectively. RDM and RDM-k are applied to two previously proposed state-of-
the-art discrete diffusion models: Multinomial Diffusion (Hoogeboom et al., 2021b) and Absorbing
Diffusion (Austin et al., 2021).

Results and Discussion. Tables 2 and 3 present the performance evaluations of our algorithms in
machine translation tasks. Table 2 presents results for multinomial diffusion, while Table 3 displays
results for absorbing diffusion. Our reported time and BLEU scores are averaged over 5 repeated
experiments, except for the baseline RDM experiment2.

From Tables 2 and 3, we observe that methods based on DNDM significantly accelerate the sampling
process compared to baseline diffusion models. This acceleration allows for greater flexibility in
increasing the number of steps (up to infinity) without imposing a significant computational burden.

2Due to computational intensity, we did not repeat the 1000-step sampling for the RDM baseline. However,
reproducing it was deemed unnecessary as the sampling time is largely stable across repeated experiments, and
the precise averaged timing is not critical for demonstrating the speed improvement of DNDM.
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In particular, more sampling steps lead to better generation quality (BLEU) at the expense of longer
sampling time, as indicated in each column of Tables 2 and 3. For RDM-based methods, generation
time increases linearly with the number of sampling steps. On the contrary, for our DNDM-based
method, generation time only increases marginally (See Figure 4 in Section G). As a result of the
difference in the growing speed of sampling time with respect to sampling steps, the more sampling
steps, the more speedup DNDM can obtain.

Continuous-time results, as the ultimate limit of increasing sampling steps, are presented in the last
row of each dataset with the tag ∞. Given that the results with 1000 steps consistently outperform
those with 50 steps, we compare ∞ with 1000 steps in Table 2 and 3. For IWSLT14 and WMT16, where
the generation BLEU score is relatively high, we observe a consistent performance improvement of
up to 0.3 in BLEU score when utilizing the DNDM-C algorithm, with the exception of a single case
in the absorbing diffusion setting for WMT16 without the use of top-k selection. The performance gain
of the continuous-time method on WMT14 is less significant, with both drops and gains. However,
WMT14 itself has not reached a high level of performance, with a BLEU score significantly lower than
other datasets. In general, training WMT14 poses challenges across all diffusion models, including
multinomial diffusion (Hoogeboom et al., 2021b), absorbing diffusion (Austin et al., 2021), and RDM
diffusion (Zheng et al., 2023), etc. We defer a more detailed discussion on WMT14 to Appendix F.1.
Finally, when compared with the results obtained with 50 steps, the performance of DNDM-C
demonstrates improvement consistently. Furthermore, we note that regardless of the dataset or the
method (i.e., RDM or DNDM) employed, top-k token generation consistently outperforms vanilla
methods. This approach enhances the BLEU score by approximately 1-2 points without introducing
significant increases in sampling time.

Table 2: BLEU score comparison of multinomial diffusion on machine translation benchmarks
IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. Below the dataset, we present the amount of data
used to run the evaluation (sentences). The blue background highlights our algorithms, and the bold
number indicates the best performance within each row and each setting (i.e., with or without top-k).

Dataset Steps RDM-Multi DNDM-Multi RDM-k-Multi DNDM-k-Multi

BLEU Time (s) BLEU Time (s) BLEU Time(s) BLEU Time (s)

IWSLT14

25 31.26 166.9 30.95 52.9 32.82 161.9 32.30 52.6

(6.75k)

50 31.50 328.6 31.45 83.9 32.82 321.2 32.80 93.2
1000 31.69 6308.9 31.82 191.3 32.64 6321.3 33.15 191.5
∞ - - 31.89 225.2 - - 33.44 228.1

WMT14

25 25.25 237.3 25.01 90.7 26.03 230.9 25.98 90.5

(3k)

50 25.75 466.1 25.33 138.4 26.14 500.2 26.37 138.3
1000 25.66 8996.7 25.71 265.4 25.82 8991.7 26.88 265.5
∞ - - 24.79 307.5 - - 26.39 307.3

WMT16

25 32.29 145.2 31.97 36.4 33.12 143.5 32.94 36.4

(2k)

50 32.53 286.1 32.50 63.2 33.41 312.4 33.26 62.7
1000 32.63 5588.9 32.86 171.4 33.67 5601.0 33.79 171.2
∞ - - 32.91 196.4 - - 33.86 196.3

Scaling Law in Sampling Speed. For illustrative purposes, we use the example of IWSLT14 to
visualize how the sample quality scales regarding sampling speed for different methods. In Figure 1,
we observe the trend of the BLEU score in relation to computational time. Each line in the legend
represents a different sampling algorithm, and a steeper slope indicates a larger marginal gain when
sampling for longer periods. Figure 1 demonstrates that our algorithm displays nearly linear growth
in BLEU score over the log of time, which is remarkable in contrast with the flat curve of the baseline.
Particularly, for multinomial diffusion, the BLEU score increases by 1 in less than 60 seconds of
additional sampling time. For absorbing diffusion, DNDM outperforms RDM before RDM samples
50 steps. In Tables 7 and 8 in Appendix D, we further use the average number of function evaluations
(NFE) to measure the improved speed within the specified number of sampling steps. Additionally, in
Figure 2, we visualize how the BLEU score and the generated text change throughout the sampling
process.
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Table 3: BLEU score comparison of absorbing diffusion on machine translation benchmarks
IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. Below the dataset, we present the amount of
data used to run the evaluation (sentences). The blue background highlights our algorithms, and the
bold number indicates the best performance within each row and each setting (i.e., with or without
top-k).

Dataset Steps RDM-Absorb DNDM-Absorb RDM-k-Absorb DNDM-k-Absorb
BLEU Time (s) BLEU Time (s) BLEU Time(s) BLEU Time (s)

IWSLT14

25 31.58 116.3 32.43 67.2 34.50 108.9 34.14 67.3

(6.75k)

50 31.80 227.2 32.63 95.9 34.58 213.9 34.34 96.2
1000 31.91 4197.4 32.93 161.1 34.60 4205.9 34.56 162.3
∞ - - 33.03 174.6 - - 34.65 180.7

WMT14

25 24.97 116.4 25.79 68.1 27.50 107.5 27.18 68.0

(3k)

50 24.95 231.1 26.10 102.0 27.73 255.2 27.66 102.5
1000 25.22 4169.4 26.43 178.3 27.75 4167.4 27.82 179.1
∞ - - 26.50 180.1 - - 27.50 181.2

WMT16

25 32.86 75.5 33.20 41.2 33.92 69.9 33.96 41.4

(2k)

50 32.93 148.4 33.30 62.5 34.10 166.1 34.20 62.7
1000 33.25 2951.7 33.60 121.3 34.44 2718.7 34.38 122.7
∞ - - 33.42 121.8 - - 34.41 121.9
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Figure 1: Generation quality to generation time comparison on IWSLT14. x-axis: computational time
in seconds; y-axis: BLEU score.

4.2 Unconditional Text Generation

For unconditional text generation, we evaluate our approach on language modeling tasks, where
the model learns to generate text that matches the statistical patterns of the training data. Unlike
conditional generation, this task involves directly learning q(x0|xt) without conditioning on any input
text. We conduct experiments on the text8 and enwik8 datasets using a decoder-only architecture
similar to GPT models. Since unconditional generation does not require encoding input sequences,
we employ a 12-layer Transformer decoder without an encoder component.

Datasets. The natural language generation task is evaluated on two language datasets following
Hoogeboom et al. (2021b): text8 and enwik8. Both datasets are from Wikipedia, but their contents
are highly distinct. In text8, the plain text consists of English words (all the letters are in lower case)
and spaces, and it is tokenized into 26 characters and one blank space, resulting in 27 categories. In
contrast to the cleanness of text8, enwik8 preserves the original XML dump contents, and there
exist various special symbols in its raw text, so its text is tokenized into 1 Byte, resulting in 256
categories. We utilize text8 dataset with sequence length 256 and enwik8 dataset with sequence
length 320. The train/val/test splits are 9e7/5e6/5e5 for both text8 and enwik8.

Performance Metrics. Our evaluation of text generation quality relies on the perplexity score. When
generating text8 data, we calculate perplexity scores using the GPT2 model, while for enwik8 data
generation, we employ the GPT2-large model. The sampling speed is measured in seconds.
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t = 100 [noise] [noise] [noise] [noise] · · ·
t = 75 [noise] · · · [noise] and we [noise] · · ·
[noise] govern[noise] [noise] year [noise]
t = 67 we [noise] [noise] fello [noise] [noise]
[noise] and we let them [noise] [noise] city
govern[noise] every year.
t = 39 we choose some fellows every
year and we let them work with city
governance every year.
t = 0 we choose some fellows every
year and we let them work with city
governance every year.

(b) Text in the Generation Process

Figure 2: We demonstrate the 100-step generation process of DNDM-k-Multi as an example, where
the left is the change of the BLEU score along the generation process, and the right is the text
at different time steps. As the time goes from 100 to 0, noise is gradually removed until the
corresponding English text emerges. Since the transition time follows a Beta distribution as described
in Section 3.2, the majority of transitions occur near the starting time.

Baselines. We compare our proposed DNDM on unconditional text genera-
tion task with the vanilla Multinomial Diffusion (Hoogeboom et al., 2021b).

Table 4: Comparison of different sampling methods for
unconditional text generation (multinomial diffusion)
on text8 and enwik8 benchmarks. Sampling time is
computed by generating a single text sample of length
256 for text8 and length 320 for enwik8, averaged
over 10 runs. The blue background represents our algo-
rithms, and the bold number indicates the optimal value.

Vanilla DNDM

text8
Perplexity 1,465.75 600.02
Time (s) 135.9 31.1

enwik8
Perplexity 801.78 556.78
Time (s) 602.8 47.4

Results and Discussion. Table 4 displays
the performance of our algorithms in text
generation tasks. We run the multinomial
diffusion model on the text8 dataset for
1000 diffusion steps and on the enwik8
dataset for 4000 diffusion steps. Our
DNDM-based algorithms outperform the
vanilla sampling algorithm used in Hooge-
boom et al. (2021b) in terms of both sam-
pling time and perplexity score. Specif-
ically, for the text8 dataset, DNDM-
based algorithms are 5 times faster than
the vanilla algorithm. For the enwik8
dataset, DNDM-based algorithms are 14
times faster than the vanilla algorithm.

5 Conclusion and Future Work

This paper presents a novel discrete non-Markov diffusion model (DNDM) accompanied by an
accelerated sampling algorithm designed to boost sampling speed in a discrete-state space. Our
discrete diffusion model incorporates "transition time set" latent variables, establishing itself as
an efficacious diffusion and data generation method. Thanks to our acceleration technique, we
significantly decrease the number of neural network function evaluations without sacrificing sample
quality. We also introduce an infinite-step sampling algorithm, DNDM-C, which provides new
insights into bridging the gap between discrete and continuous-time processes for discrete diffusion
models. While this study focuses on text generation using non-autoregressive models, a promising
direction for future exploration is applying our method to other tasks, such as audio and image
generation.
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Broader Impact

This paper presents work that aims to advance the field of diffusion models. We believe this work
may enable future applications of synthetic data generation, which may lead to positive impacts.
Our experiments demonstrate that the proposed method achieves state-of-the-art performance in the
acceleration of the generative model. However, proper controls may be needed whenever applying our
method to tasks that involve sensitive data data. There may be other potential societal consequences
of our work, none of which we feel must be specifically highlighted here.

Limitations

• The scope of the empirical claims is limited to the text domain with non-auto regressive setting.
The applicability and performance of DNDM for other tasks like audio and image generation, as
well as with other architectures like auto-regressive GPT models, are not explored and left as future
work.

• While DNDM-C, the infinite-step sampling algorithm, offers new insights into bridging the gap
between discrete and continuous-time processes for discrete diffusion models, the sample quality is
not guaranteed to be superior to the accelerated algorithm with 1000 steps. Some intuitions here:
the assumption that the neural network can be optimally trained is an ideal case and is often not
realized in practice. There is an inherent estimation error associated with the training process. As
the number of steps increases, these estimation errors can accumulate, potentially leading to a
degradation in performance. This cumulative estimation error might explain why using an infinite
number of steps does not necessarily yield better results than a finite number of steps like 1000 in
the conditional generation experiments. How to further improve sample quality of infinite steps is
interesting but beyond the scope of this paper.

• This paper focuses on the comparison with discrete Markov diffusion models since it aims to
propose an accelerated algorithm for discrete diffusion with DNDM. Other text generation models,
such as continuous diffusion models or auto-regressive models, are not considered in this paper.

• This paper focuses on acceleration while maintaining good sample quality. The hyper parameter
regions with poor sample qualities are not explored in this paper.

By highlighting these limitations, this paper aims to clearly scope its contributions and spark future
work on addressing these important challenges with discrete diffusion models for generative modeling.

A Related Work

Continous Diffusion Models. Generative modeling via continuous-time stochastic process has been
investigated thoroughly in a series of work (Movellan, 2008; Lyu, 2012; Sohl-Dickstein et al., 2009;
Bengio et al., 2014; Alain et al., 2016; ALIAS PARTH GOYAL et al., 2017; Bordes et al., 2017).
The two lines of probabilistic modeling, denoising diffusion probabilistic model (Sohl-Dickstein
et al., 2015; Ho et al., 2020) and score matching with Langevin dynamics (Song and Ermon, 2019)
are unified by Song et al. (2020b) through introducing the SDE framework for SGM. Based on it,
subsequent works (Dockhorn et al., 2021; Nachmani et al., 2021; Vahdat et al., 2021) introduced a
more complex diffusion process to improve the generation speed and quality. On the other hand, the
score-based sampling process is time-consuming and has attracted much attention for improvements
in speed (San-Roman et al., 2021; Watson et al., 2021; Kong and Ping, 2021; Karras et al., 2022;
Song et al., 2023). “Gotta go fast” (GGF), an SDE solver with adaptive step size tailored to SGM, is
proposed in Jolicoeur-Martineau et al. (2021). Song et al. (2020a) introduced a non-Markov diffusion
process that corresponds to a deterministic sampling process, enabling the generation of high-quality
samples more rapidly. Dockhorn et al. (2022); Liu et al. (2022) proposed a high-order SDE/ODE
solver to achieve lower discretization error. Lu et al. (2022); Zhang and Chen (2022) leveraged the
semi-linear structure of reverse ODE to reduce the discretization error and achieve state-of-the-art
sampling speed.

Discrete Diffusion Models. Research on discrete diffusion models was initiated by Sohl-Dickstein
et al. (2015), who investigated diffusion processes over binary random variables. The methodology
was expanded upon by Ho et al. (2020), integrating categorical random variables through transition
matrices with uniform probabilities. Though Song et al. (2020a) suggested a similar extension in
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their supplementary content, they abstained from experimenting with this model type. Later on,
Austin et al. (2021) unveiled a more intricate framework for diffusion concerning categorical random
variables, enhancing the discrete diffusion models by merging them with Masked language models
(MLMs). Contemporary research has furthered this domain by introducing features like editing-
based operations (Jolicoeur-Martineau et al., 2021; Reid et al., 2022), auto-regressive diffusion
models (Hoogeboom et al., 2021a; Ye et al., 2023), the evolution of a continuous-time structure
(Campbell et al., 2022), and the exploration of neural network analogs for learning (Sun et al., 2022).
Additionally, Zheng et al. (2023) introduced a re-parameterized loss and an associated sampling
technique, attaining commendable outcomes in fewer iterations. Our contributions run parallel to
these aforementioned studies.

B Additional details of Discrete Diffusion

In our paper, we treat all the x,qnoise as a row vector and treat 1 as a column vector with all elements
equal 1.

B.1 Comparison between D3PM and DNDM

In Section 3.1, we introduced two different diffusion processes, the Markov process in (1) and the
non-Markov process in (6). In this section, we explain why they are different but result in the same
joint distribution of (x0,xt) for every time step t. Since q(x0) keeps the same, we only need to prove
that the conditional distribution q(xt|x0) is the same for the two processes.

Markov Process. 1 is a Markov process since wn is independent with xt−1, . . . ,x0, so xt is
independent of all the past states given the present state. This can also be inferred from the following
distribution, which does not depend on x0, . . . ,xt−2,

q(xt|xt−1) = Cat
(
xt;p = βtxt−1 + (1− βt)qnoise

)
. (13)

Denote Qt := βtI+ (1− βt)1qnoise, then we have that

xt−1Qt = βtxt−1 + (1− βt)xt−1 1qnoise = βtxt−1 + (1− βt)qnoise,

where the last equality holds due to the fact that xt−1 is a one hot vector and thus xt−1 1 = 1.
Therefore, we can rewrite (13) as q(xt|xt−1) = Cat

(
xt;p = xt−1Qt

)
. Then, it is a Markov process

with transition kernel Qt. So q(xt|x0) = Cat
(
xt;p = x0Q0 . . .Qt

)
(Austin et al., 2021). We can

then have that

Q0 . . .Qt = [β0I+ (1− β0)1qnoise] . . . [βtI+ (1− βt)1qnoise]

= Πt
s=0βsI+ (1−Πt

s=0βs)1qnoise,

where the last equality holds since identity matrix I multiplying any vector equals the vector itself
and 1qnoise 1qnoise = 1(qnoise 1)qnoise = 1qnoise. Therefore, we have that

q(xt|x0) = Cat
(
xt;p = Πt

s=0βsx0 + (1−Πt
s=0βs)qnoise

)
= Cat

(
xt;p = αtx0 + (1− αt)qnoise

)
,

where the last equality holds due to the definition αt = Πt
s=0βs. This gives rise to why the Markov

process (1) results in conditional distribution q(xt|x0) = Cat
(
xt;p = αtx0 + (1− αt)qnoise

)
.

Non-Markov Process. Recall that our DNDM is defined by

xt = btxt−1 + (1− bt)w,

where w is fixed for any time t. Therefore, w is no longer independent with x0, . . . ,xt−1. There-
fore, we can’t define the transition kernel and compute q(xt|x0) by using the property of Markov.
Therefore, we need to advance the technique to calculate the conditional distribution.

Proof of Theorem 3.1. By (6), we can derive the following explicit expression for a recursive se-
quence,

xt = b1 . . . btx0,n +
t∑

s=1

(1− bs)bs+1 . . . btw

= b1 . . . btx0 + (1− b1 . . . bt)w
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= atx0 + (1− at)w,

where second equality is by cancellation of terms, the last inequality holds by defining at = b1 . . . bt.
Since at either equals to 1 or 0. Besides, at equals 1 if and only if b1 = b2 = . . . = bt = 1, so we have
that at follows Bernoulli distribution Bernoulli(β1 . . . βt) = Bernoulli(αt) where αt = Πt

i=1βs.
Therefore, we can conclude that q(xt|x0) = Cat

(
xt;p = αtx0 + (1−αt)qnoise

)
, which completes

the proof.

Comparison between D3PM-Absorb and DNDM. Recall the forward processes of D3PM and
DNDM as follows:

D3PM : xt = btxt−1 + (1− bt)wt, ∀t = 1 . . . T,

DNDM : xt = btxt−1 + (1− bt)w, ∀t = 1 . . . T.

For absorbing diffusion where w = [Mask], DNDM’s forward process becomes equivalent to D3PM
since wt = w = [Mask] in this special case. However, for multinomial diffusion or other diffusion
processes where wt ̸= w, these two processes exhibit different behaviors. In addition, even for
absorbing diffusion, our proposed reverse sampling algorithm for DNDM is still different from that
for D3PM.

To elucidate the key differences between the sampling algorithm in DNDM and that in D3PM for
absorbing diffusion, let’s directly compare the algorithms:

• For the D3PM-Absorb algorithm: We begin with an all [Mask] sequence. At each time step
t, we sample x0 ∼ pθ(x0|xt). If xt = [Mask], xt−1 transitions to [Mask] with probability
(1− αt−1)/(1− αt) and to x0 with probability (αt−1 − αt)/(1− αt). If xt ̸= [Mask], it remains
unchanged.

• For the DNDM-Absorb algorithm: We also start with an all [Mask] sequence, but crucially, we first
determine the transition time set. During sampling, if xt = [Mask], the transition probabilities for
xt−1 are identical to D3PM. However, we only sample x0 ∼ pθ(x0|xt) when at least one token
needs to change, as determined by our pre-computed transition set. This selective sampling is the
key to our algorithm’s efficiency.

Therefore, you can see that DNDM will skip many steps during the sampling process to avoid
function evaluation and save computational cost. Even though the forward process of DNDM is the
same as that of D3PM for absorbing diffusion, our DNDM approach introduces an algorithm design
in the sampling process by pre-computing the transition time set and selectively applying function
evaluations. This distinguishes DNDM from D3PM algorithm, offering a more computationally
efficient approach to inference in discrete diffusion.

Comparison between DDIM and DNDM for Multinomial Diffusion. While there are similarities
between DNDM and DDIM (Appendix A), they are fundamentally different models, and DNDM is
not a special case of DDIM. DNDM introduces a novel framework specifically designed for discrete
spaces, while DDIM was originally developed for continuous diffusion models. The key differences
for multinomial diffusion are as follows.

• DDIM: Following Song et al. (2020a) (eq. 19 in Appendix A), q(xt−1|xt,x0) = Cat(σtxt +

(αt−1 − σtαt)x0 + ((1− αt−1)− (1− αt)σt)1K). Even with σt =
1−αt−1

1−αt
, the process remains

stochastic: q(xt−1|xt,x0) = Cat(σtxt+(1−σt)x0). This means at every step, there’s a probability
of choosing x0, regardless of whether it has transitioned to x0 or not. Unlike Absorbing discrete
diffusion, no [Mask] exists in multinomial diffusion. Therefore, DDIM cannot distinguish whether
xt already equals x0 or not. In particular, although the sampling process becomes less stochastic in
the DDIM setting, it will still be predicted x0 with high probability 1− σt =

αt−1−αt

1−αt
.

• DNDM: Achieves full de-randomization using transition time τ , where:

xt−1 = 1(τ = t)x0 + 1(τ ̸= t)xt, with P (τ = t) = αt−1 − αt. (14)

This crucial difference allows DNDM to achieve full de-randomization once τ is sampled, leading
to a deterministic evolution that DDIM cannot achieve.

While DNDM and DDIM are both non-Markov models for multinomial diffusion, their fundamental
approaches to and achievements in de-randomization differ significantly in discrete spaces.
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B.2 Training Objective

Hoogeboom et al. (2021b) utilized Lt derived from the negative variational bound. In detail,

Lt = KL
(
Cat(x;p = θpost(xt,x0)

∣∣Cat(x;p = θpost(xt, x̂0)
)
, (15)

where x̂0 ∼ pθ(·|xt), θpost = (βtxt + (1 − βt)/K 1⊤) ⊙ (αt−1x0 + (1 − αt−1)/K 1⊤) and
θpost = (βtxt+(1−βt)/K 1⊤)⊙ (αt−1x̂0+(1−αt−1)/K 1⊤). This loss evolves KL divergence
between two categorical distributions.

Building on this foundation, Austin et al. (2021) introduced an auxiliary denoising objective to
strengthen the data predictions x0 at each time step. In detail, the auxiliary objective is as follows,

Eq(xt,x0)

[
− log pθ(x0|xt)

]
,

where the auxiliary loss term is minimized exactly when pθ(·|xt) has all its mass on the data point
x0.

Furthering the advancements, Zheng et al. (2023) put forth a reparametrized loss Lt that incorporates
a re-weighted parameter λt. The detailed loss is

Lt = λt−1Ext−1,xt∼q(·|x0)KL(q(xt−1|xt,x0)|p(t)θ (xt−1|xt)).

This loss can be related to the standard multi-class cross-entropy loss function, which is also simple
and powerful. That’s why we consider Zheng et al. (2023) as the baseline model.

In Section 3.3, we consider the continuous-time forward and backward process. Based on that, we
were motivated to analyze the infinite limit of the average loss limt→∞

1
T

∑T
t=1 Lt. We find that the

new loss can provide a better checkpoint than the loss averaged on the finite step on some tasks.

B.3 Calculation of the Evidence Lower Bound

B.3.1 Finite Time DNDM

In this section, we derive the evidence lower bound (ELBO) for our model. The derivatives
are inspired by the reasoning in DDIM (Song et al., 2020a). Specifically, We denote the gener-
ative process as pθ(x0:T |τ) = p

(T )
θ (xT |τ)

∏T
t=1 p

(t)
θ (xt−1|xt, τ). Here, p(T )

θ is the pure noise and
p
(t)
θ (xt−1|xt, τ) = q(xt−1|xt, x̂0, τ), where x̂0 is given by a neural network pθ , i.e., x̂0 = pθ(xt, t).

Notice that by Jensen’s inequality,

log pθ(x0) = logEτ∼Dτ [pθ(x0|τ)] ≥ Eτ∼Dτ [log pθ(x0|τ)]. (16)

The evidence lower bound inequality gives

log pθ(x0|τ) ≥ Ex1:T∼q(x1:T |x0,τ) log
pθ(x0:T |τ)

q(x1:T |x0, τ)
. (17)

Plugging (17) into (16) gives the following ELBO,

log pθ(x0) ≥ Eτ∼DτEx1:T∼q(x1:T |x0,τ) log
pθ(x0:T |τ)

q(x1:T |x0, τ)
:= ELBO.

We factorize the pθ and q by

pθ(x0:T |τ) = p
(T )
θ (xT |τ)

T∏
t=1

p
(t)
θ (xt−1|xt, τ),

q(x1:T |x0, τ) = q(xT |x0, τ)
T∏

t=2

q(xt−1|xt,x0, τ).

Here q admits such a decomposition due to our definition of the diffusion process in (6), which
introduce the following reverse process:

xt−1 = 1(τ = t)x0 + 1(τ ̸= t)xt.
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Therefore, x1:T is Markovian when conditioned on x0 and τ . Based on the factorization, we have

ELBO = Eτ∼Dτ
Ex1:T∼q(x1:T |x0,τ)

[
log p

(T )
θ (xT |τ) +

T∑
t=1

log p
(t)
θ (xt−1|xt, τ)

− log q(xT |x0, τ)−
T∑

t=2

log q(xt−1|xt,x0, τ)
]

= Eτ∼Dτ
Ex1:T∼q(x1:T |x0,τ)

[
log p

(1)
θ (x0|x1, τ) +

T∑
t=2

log
p
(t)
θ (xt−1|xt, τ)

q(xt−1|xt,x0, τ)

+ log
p
(T )
θ (xT |τ)

q(xT |x0, τ)

]
= Eτ∼DτEx1∼q(·|x0,τ) log p

(1)
θ (x0|x1, τ)

+
T∑

t=2

Ext−1,xt∼q(·|x0,τ) log
p
(t)
θ (xt−1|xt, τ)

q(xt−1|xt,x0, τ)
+ const

= Eτ∼Dτ
Ex1∼q(·|x0,τ) log p

(1)
θ (x0|x1, τ)︸ ︷︷ ︸

L1

−
T∑

t=2

Eτ∼Dτ
Ext−1,xt∼q(·|x0,τ)KL(q(xt−1|xt,x0, τ)|p(t)θ (xt−1|xt, τ))︸ ︷︷ ︸

Lt

+const.

By a slight abuse of notations we use q(xt−1|xt,x0), p
(t)
θ (x0|x1) to indicate the distribution of the

diffusion process defined in Zheng et al. (2023), that is, the standard Markov discrete diffusion
process. In particular, we have

L1 =

{
Ex1∼q(·|x0) log p

(1)
θ (x0|x1), τ = 1,

const, τ ̸= 1.

Lt =

{
Ext−1,xt∼q(·|x0)KL(q(xt−1|xt,x0)|p(t)θ (xt−1|xt)), τ = t,
0, τ ̸= t.

Thus, we can obtain that

ELBO =P(τ = 1) · Ex1∼q(·|x0) log p
(1)
θ (x0|x1)︸ ︷︷ ︸

L1

−
T∑

t=2

P(τ = t) · Ext−1,xt∼q(·|x0)KL(q(xt−1|xt,x0)|p(t)θ (xt−1|xt))︸ ︷︷ ︸
Lt

+const.

Here Lt matches the loss terms in Zheng et al. (2023). In the practical training process, Zheng et al.
(2023) samples t from Unif{1, · · · , T} in each iteration and optimizes λt ·Lt, where λt’s are weights.
Thus, when we sample τ and optimize Lτ , our ELBO indeed leads to the same training objective as
Zheng et al. (2023) up to reweighting. Since Zheng et al. (2023) is a parametrization of existing works
(Austin et al., 2021; Hoogeboom et al., 2021b), our training objective indeed aligns with previous
discrete diffusion models.

B.3.2 Continous Time DNDM

In Section B.3, we derived an ELBO for DNDM and its accelerated algorithm defined in Section 3.1
and 3.2. While for finite sampling steps, we can decompose the diffusion process via the sampling
steps 1, . . . , T in (17), it becomes intractable for continuous Time DNDM (Infinite steps T → ∞).
Therefore, we can formulate the ELBO of continuous time DNDM by decomposing the transition
times. The idea of decomposition of transition times follows Hoogeboom et al. (2021a), but their
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proof is only applicable to absorbing discrete diffusion, while ours can deal with discrete diffusion
with various noise qnoise including multinomial diffusion.

In Section B.3, we only consider the case of a single token x ∈ RK for simplicity as we decompose
with the sampling steps T . In this section, we decompose over the transition time τ . Therefore, we
need to consider a sentence with multiple tokens xt,1:N = [xt,1, . . . ,xt,N ] where xt,n is the n-th
token and N is the sequence length. Recall that we defined the transition time set T = {τn}Nn=1 in
Section 3.2. We arrange τn to obtain an ordered sequence τnk

, where 0 = τn0
< τn1

< τn2
< . . . <

τnN
= T . Then conditioning on the transition time set T = {τ1, . . . , τN}, we have that

pθ(x0:T,1:N |T ) = pθ(xτnN
,1:N |T )

∏
s=N,...,1

pθ(xτns−1
,1:N |xτns ,1:N , T ),

where we omit the time superscript of p for simplicity. Then, the evidence lower bound inequality
gives

log pθ(x0,1:N |T ) ≥ Exτn1
:T,1:N∼q(xτn1

:T,1:N |x0,1:N ,T ) log
pθ(x0:T,1:N |T )

q(xτn1 :T,1:N |x0,1:N , T )
. (18)

By Jensen’s inequality, we have
log pθ(x0,1:N ) = logEτ1,...,τn∼Dτ

[pθ(x0,1:N |T )] ≥ Eτ1,...,τn∼Dτ
[log pθ(x0|T )]. (19)

Plugging (18) into (19) gives the following ELBO,

log pθ(x0,1:N ) ≥ Eτ1,...,τn∼Dτ
Exτn1 :T∼q(xτn1 :T |x0,T ) log

pθ(x0:T |T )

q(xτn1
:T |x0, T )

:= ELBO.

We factorize the pθ and q by

pθ(x0:T,1:N |T ) = pθ(xT,1:N |T )
∏

s=N,...,1

pθ(xτns−1
,1:N |xτns ,1:N , T ),

q(xτn1
:T,1:N |x0,1:N , T ) = q(xT,1:N |x0, T )

∏
s=N,...,2

q(xτns−1
,1:N |xτns ,1:N ,x0,1:N , T ).

Therefore, we have

ELBO = Eτ1,...,τn∼Dτ
Exτn1

:T,1:N∼q(xτn1
:T,1:N |x0,1;N ,T )

[
log pθ(xT,1:N |T )

+
N∑
s=1

log pθ(xτns−1
,1:N |xτns ,1:N , T )− log q(xT,1:N |x0,1:N , T )

−
N∑
s=2

log q(xτns−1
,1:N |xτns ,1:N ,x0,1:N , T )

]
= Eτ1,...,τn∼DτExτn1

:T,1:N∼q(xτn1
:T,1:N |x0,1:N ,T )

[
log pθ(x0,1:N |x1,1:N , T )

+

N∑
s=2

log
pθ(xτns−1

,1:N |xτns ,1:N , T )

q(xτns−1
,1:N |xτns ,1:N ,x0,1:N , T )

+ log
pθ(xT,1:N |T )

q(xT,1:N |x0,1:N , T )

]
= Eτ1,...,τn∼Dτ

Ex1,1:N∼q(·|x0,1:N ,T ) log pθ(x0,1:N |x1,1:N , T )

+

N∑
s=2

Exτns−1
,1:N ,xτns ,1:N∼q(·|x0,1:N ,T ) log

pθ(xτns−1
,1:N |xτns ,1:N , T )

q(xτns−1
,1:N |xτns ,1:N ,x0,1:N , T )

+ const

= Eτ1,...,τn∼Dτ
Ex1,1:N∼q(·|x0,1:N ,T ) log pθ(x0,1:N |x1,1:N , T )

−
N∑
s=2

Eτ1,...,τn∼DτExτns−1
,1:N ,xτns ,1:N∼q(·|x0,1:N ,T )

KL(q(xτns−1
,1:N |xτns ,1:N ,x0,1:N , T )|pθ(xτns−1

,1:N |xτns ,1:N , T )) + const. (20)

Remark B.1. (20) represents the ELBO utilized by the DNDM-C architecture. As our transition
times τn are independently and identically drawn from the distribution Dτ , we are unable to further
decompose (20) into a loss function related to the position information 1 : N , as was accomplished
by Hoogeboom et al. (2021a).
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C Choice of the Transition Time

Transition time τ in Definition 3.2 plays an important role in DNDM. In this section, we provide a
deeper discussion of the transition time. We first give a proof of the Theorem 3.6.

Proof of Theorem 3.6. By the definition of τ , we know that τn = t is equivalent to b0,n =
1, . . . , bt−1,n = 1 and bt,n = 0. Since {bt,n}Tt=0 is independent for different n by definition,
each τn is also independent. Therefore, we drop the subscript n for simplicity. On the other hand if
b0 = 1, . . . , bt−1 = 1 and bt = 0 we can also conclude that τ = t. Therefore, we have that

P(τ = t) = P(b0 = 1, . . . , bt−1 = 1, bt = 0)

=
[
Πt−1

s=1βs

]
· (1− βt)

= Πt−1
s=1βs −Πt

s=1βs

= αt−1 − αt,

where the second equality is due to bs, s = 1, 2, . . . , t are independent random variable following
Bernoulli(βs) distribution and the last equality is by the definition of αt = Πt

s=1βs.

Notice that αt is a decreasing sequence in the 0 to 1 range. Therefore, P(τ = t) ∈ [0, 1] for any
t ∈ {1, . . . , T}. Besides

∑
P(τ = t) =

∑T
t=1

(
αt−1 − αt

)
= α0 − αT = 1. Therefore, the derived

distribution is valid as long as the αt is decreasing from 1 to 0.
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(d) Beta Distribution with Different Parameter

Figure 3: Different distribution of transition time for T = 50. a), b), c) The transition time sampled
1K times under the different αt schedule. d) The approximated transition time for t = 1, . . . , T using
different hypter-parameters.

From Theorem 3.6, we discern that the nature of the diffusion model scheduler, αt, clarifies the
distribution of τ .

Linear α schedule. This is a schedule studied in Austin et al. (2021), where αt = 1 − t/T . This
will result in P(τn = t) = 1/T for every t in the range 1 to T . As a result, transition time distributes
uniformly across each moment in the set {1, . . . , T}. This can be verified in a) of Figure 3.

Cosine α schedule. This is a schedule studied in Hoogeboom et al. (2021b), where αt = cos(π ∗
t/2T ). For numerical consideration of the noise, a small offset s is added, i.e., αt = f(t)/f(0)
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where f(t) = cos((s + t/T )/(1 + s) ∗ π/2). As shown in b) of Figure 3, the transition time will
concentrate more on the large T .

Cosine square α schedule. This is a schedule studied in Zheng et al. (2023), where αt = cos2(π ∗
t/2T ), which motivated by Nichol and Dhariwal (2021). Again, for numerical consideration of the
noise, a small offset s is added, i.e., αt = f(t)/f(0) where f(t) = cos((s+ t/T )/(1 + s) ∗ π/2).
As shown in c) of Figure 3, the transition time will concentrate more on the middle of the range.

Generally, if we express αt as g(t/T ), then we can simplify to P(τ = t) = g((t− 1)/T )− g(t/T ),
which further refines to (1/T )|g′(t/T )| + o(1/T ). This indicates that transitions are more likely
where |g′| is large. Such a mathematical finding can match our observation in Figure 3.

In practice, we find that the shape of the transition time doesn’t need to match the theoretical
prediction schedule exactly. As we can see from d) in Figure 3. A reshaped Beta distribution can
approximate all the transition time distributions in a fixed range. We first extract a time t ∈ [0, 1]
from a Beta distribution, then adjust these samples to fit by multiplying T and round them to acquire
the integer. Our experiment finds that a properly chosen Beta distribution (tuned on the validation
set) makes DNDM perform better on the translation tasks. Specifically, the chosen Beta distributions
and the searching method are reported in Appendix F. The performance of the four transition time
schedules mentioned above, including the reported Beta distributions for comparison, are listed in
Table 5, where we find the other three schedules affect the performance, and most of their scores
are lower than the scores of Beta distribution, but their scores are at least still close to the reported
Beta distributions, especially for DNDM-k-absorb and DNDM-absorb. The efficiencies (measured by
NFE) are also similar to one another.

Additionally, the ablation study on a reasonable range of different Beta distributions with 50 and
1000 sampling steps are shown in Tables 10 and 9, where the BLEU scores and NFE values on the
test set of one of the three machine translation datasets, WMT16, are shown for demonstration. The
range of Beta distributions covers our chosen Beta schedules based on validation sets and a variety of
basic Beta distribution shapes. These results show that the different Beta distributions influence the
performance, but most of these choices of parameters still achieve results close to the optimal. Since
the Beta distributions of the reported results in Tables 2 and 3 are selected using the validation set,
they do not always have the highest scores on the test set, but their scores still at least belong to the
top tiers according to these tables.

Another view of the transition time. In Algorithm 1, we only need to call the neural network when
t ∈ T , which can significantly speed up the sampling since we reduce the function call. Notice that
after we get the x0 prediction, we only update the xt for those tokens at the transition time. However,
(7) implies that xt = x0 as long as τ > t. Therefore, instead of only updating the xt for those tokens
at the transition time, i.e., τ = t, we can also update those tokens with transition time τ >= t. This
motivates us to consider a variation presented as Algorithm 3, which keeps almost the same sampling
time but will update the tokens several times rather than just once. Since the tokens now get the
chance to be corrected over time. The new Algorithm 3 will be more robust than Algorithm 1.

Table 5: The BLEU scores and average number of function evaluations (NFE) values of different
distributions of transition time for 1000 sampling steps with batch size 100. The parameters of the
Beta distributions in this table are the same as in Tables 2 and 3 and are reported in Appendix F.

Datasets Schedules DNDM-multi DNDM-absorb DNDM-k-multi DNDM-k-absorb

BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

Cosine 31.72 31.71 32.71 31.21 32.91 31.71 34.50 31.21
Cosine2 31.78 31.74 32.93 31.21 32.78 31.74 34.53 31.21
Linear α 31.77 31.82 32.65 31.33 32.83 31.82 34.53 31.33
Beta (reported) 31.82 30.33 32.93 31.08 33.15 30.33 34.56 31.08

WMT14

Cosine 25.80 39.61 26.54 39.18 26.63 39.61 27.81 39.18
Cosine2 25.52 39.48 26.53 39.18 25.01 39.48 27.95 39.18
Linear α 25.58 39.97 26.33 39.82 25.47 39.97 27.63 39.82
Beta (reported) 25.71 38.94 26.43 38.76 26.88 38.94 27.82 38.76

WMT16

Cosine 32.71 40.50 33.56 40.45 33.46 40.50 34.37 40.45
Cosine2 32.73 40.50 33.51 40.45 33.44 40.50 34.24 40.45
Linear α 32.85 40.36 33.46 40.36 33.47 40.36 33.88 40.36
Beta (reported) 32.86 38.46 33.60 38.27 33.79 38.45 34.38 38.27
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Table 6: Comparison of left-to-right and right-to-left transition approaches across different datasets
and step counts.

Steps Direction IWSLT14 WMT14 WMT16

25 Left-to-right 31.08 24.41 31.67
Right-to-left 30.54 23.33 31.33

50 Left-to-right 32.87 26.46 33.37
Right-to-left 32.47 25.18 32.78

1000 Left-to-right 34.45 27.93 34.43
Right-to-left 34.04 27.02 34.15

Impact of Transition Order. We further evaluate the impact of transition order. Building upon the
results in Table 3, we investigate how the model performance will change if the transition time is
influenced by the position of the tokens: from left to right and from right to left. In the left-to-right
approach, tokens positioned on the left are transitioned to x0 earlier, and vice versa for the right-to-
left approach. Our experiments show that the left-to-right approach consistently outperforms the
right-to-left approach across all datasets and step counts, as demonstrated in Table 6.

This result suggests that the order of token transitions significantly influences the model’s performance,
with earlier transitions of left-side tokens leading to better generation quality.

D Discussion on the Number of Function Evaluations (NFE).

In this section, we discuss the number of function evaluations (NFE) in DNDM. According to (9),
the update of a token xt−1,n occurs solely at its designated transition time. Meanwhile, if step t does
not coincide with a transition time for any token, we maintain the sentence from the preceding step
unchanged: xt,1:N = xt−1,1:N . Therefore, our algorithm removes the need of function evaluation
for steps outside the set of transition times. Given this structure, our analytical emphasis is on
the transition set T since function evaluations are required only at times t that are members of T .
Consequently, the NFE is precisely the cardinality of the transition set, denoted by |T |. In our main
paper, we propose a naive upper bound for |T | as min{N,T}, which effectively demonstrates the
speed of our method when T > N . Next, we demonstrate that DNDM also reduces the NFE when
T < N , by providing a precise estimation of |T |.
Theorem D.1. Suppose transition time follows distribution Dτ , and consider a sequence of length
N . Then, the cardinality of the transition set T := {τ1, . . . , τN} satisfies:

• 1 ≤ |T | ≤ min{N,T},
• E[|T |] = [1− CT,N,Dτ

] · T , where CT,N,Dτ
is a constant in the range (0, 1). Furthermore,

CT,N,Dτ
=

( T∑
i=1

(1− pi)
N
)
/T ≥ (1− 1/T )N ,

where pi = P(τ = i) for τ ∼ Dτ , and the equality holds if and only if Dτ is a uniform distribution.

Proof. The first statement is straightforward. For completeness, the proof is provided. Since there
are only N transition times (possibly repeated): τ1, . . . , τN , the distinct transition times must satisfy
|T | ≤ N . Additionally, since T ⊆ {1, . . . , T}, we also have |T | ≤ T .

To prove the second statement, we decompose T and use the property of expectation. Note that
|T | =

∑T
i=1 1{i ∈ T }. Thus,

E[|T |] = E
[ T∑

i=1

1{i ∈ T }
]
=

T∑
i=1

P(i ∈ T ). (21)

Assuming PDτ
(τ = i) = pi, and that τn are i.i.d. draws from Dτ , we have

P(i ∈ T ) = 1− P(i /∈ T ) = 1− (1− pi)
N . (22)
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Substituting (22) into (21) yields

E[|T |] =
T∑

i=1

[
1− (1− pi)

N
]
=

[
1−

∑T
i=1(1− pi)

N

T

]
· T = [1− CT,N,Dτ ] · T,

where CT,N,Dτ =
(∑T

i=1(1− pi)
N
)
/T . An upper bound for CT,N,Dτ is given as

CT,N,Dτ
=

[
1−

∑T
i=1(1− pi)

N

T

]
· T ≤

[
1−

(
1− 1

T

)N]
· T,

where the inequality holds if and only if pi = 1/T for all i ∈ [T ], i.e., Dτ is a uniform distribution.

Remark D.2. Theorem D.1 suggests that even when T ≤ N , our method still provides a significant
improvement. Specifically, for T = N ≥ 4, we have CT,N,Dτ

= (1− 1/N)N ≥ 0.3. This implies
that our model requires at most 0.7T even in the worst case. Moreover, if we consider a special
scenario where the number of pi satisfying pi < ϵ is more than M , then we have CT,N,Dτ

>
M(1 − ϵ)N/T , indicating that with M sufficiently large and ϵ sufficiently small, CT,N,Dτ can be
pretty close to 1.
Remark D.3. In practical applications of our model, we employ a beta distribution for Dτ , which
typically exhibits a right-heavy tail. Therefore CT,N,Dτ tends to be larger than that in the worst-case
scenario. In Tables 7 and 8, we list the average NFE for each experiment we run in §4. These results
demonstrate a significant reduction in NFE compared to the original counts: for T = 25, the NFE is
only about half of the original count; for T = 50, it is approximately one-third; and for T = 1000, it
reduces to less than one-twentieth of the original count.
Remark D.4. By Bernoulli’s inequality, (1 − p)N > 1 − N · p for 1 > p > 0. Therefore,
CT,N,Dτ

> 1 − N/T , implying that E[|T |] < N . As T → ∞, assuming the transition time does
not concentrate at a single point, the probability that two transitions occur simultaneously is zero.
Consequently, the generation process will sequentially go through each token. Thus, the expected
number of function evaluations (NFE), E[|T |], will be N . In contrast, when T is finite, there is a
non-zero probability that multiple transitions happen at the same time. Hence, in this case, the NFE,
|T |, is strictly less than N

Table 7: BLEU score and the average number of function evaluations (NFE) comparison of multino-
mial diffusion on machine translation benchmarks IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO.
The blue background highlights our algorithms. The average NFE values are calculated by dividing
the number of times calling the denoising function (neural network) during generation by the number
of batches, where the batch sizes of all experiments are 100.

Dataset Steps RDM-Multi DNDM-Multi RDM-k-Multi DNDM-k-Multi
BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

25 31.26 25 30.95 9.03 32.82 25 32.30 9.03
50 31.50 50 31.45 14.07 32.82 50 32.80 14.07

1000 31.69 1000 31.82 30.33 32.64 1000 33.15 30.33
∞ - - 31.89 32.73 - - 33.44 32.73

WMT14

25 25.25 25 25.01 13.52 26.03 25 25.98 13.52
50 25.75 50 25.33 20.58 26.14 50 26.37 20.58

1000 25.66 1000 25.71 38.94 25.82 1000 26.88 38.94
∞ - - 24.79 40.67 - - 26.39 40.67

WMT16

25 32.29 25 31.97 8.5 33.12 25 32.94 8.5
50 32.53 50 32.50 14.73 33.41 50 33.26 14.73

1000 32.63 1000 32.86 38.45 33.67 1000 33.79 38.45
∞ - - 32.91 41.64 - - 33.86 41.64

E Discrete Non-Markov Diffusion Model with Top-k Transition Time
(DNDM-K).
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Table 8: BLEU score and the average number of function evaluations (NFE) comparison of absorbing
diffusion on machine translation benchmarks IWSLT14 DE-EN, WMT14 EN-DE, and WMT16 EN-RO. The
blue background highlights our algorithms. The average NFE values are calculated by dividing the
number of times calling the denoising function (neural network) during generation by the number of
batches, where the batch sizes of all experiments are 100.

Dataset Steps RDM-Absorb DNDM-Absorb RDM-k-Absorb DNDM-k-Absorb
BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE BLEU Avg NFE

IWSLT14

25 31.58 25 32.43 13.81 34.50 25 34.14 13.81
50 31.80 50 32.63 19.24 34.58 50 34.34 19.24

1000 31.91 1000 32.93 31.08 34.60 1000 34.56 31.08
∞ - - 33.03 32.07 - - 34.65 32.07

WMT14

25 24.97 25 25.79 15.09 27.50 25 27.18 15.09
50 24.95 50 26.10 22.45 27.73 50 27.66 22.45

1000 25.22 1000 26.43 38.76 27.75 1000 27.82 38.76
∞ - - 26.50 40.39 - - 27.50 40.39

WMT16

25 32.86 25 33.20 13.91 33.92 25 33.96 13.91
50 32.93 50 33.30 20.95 34.10 50 34.20 20.95

1000 33.25 1000 33.60 38.27 34.44 1000 34.38 38.27
∞ - - 33.42 41.59 - - 34.41 41.59

Algorithm 3 Sampling From DNDM (Version 2)

Require: Trained prediction function pθ , qnoise,
Dτ

1: for n = 1 . . . N do
2: Initiate each token xT,n ∼ qnoise

3: Initiate the transition time τn ∼ Dτ

4: end for
5: Collect transition time set T = {τn}Nn=1
6: for t = T . . . 1 do
7: if t ∈ T then
8: Generate x̃0,1:N from pθ(·|xt,1:N )
9: for n = 1 . . . N do

10: Update xt−1,n if τn ≥ t
11: end for
12: else
13: Update xt−1,1:N = xt,1:N

14: end if
15: end for
16: Return x0,1:N

Algorithm 4 Sampling From DNDM-K

Input: Trained prediction function pθ, qnoise

and Dτ

for n = 1 . . . N do
Initiate each token xT,n ∼ qnoise

Initiate the top K number {Kt}
Initiate an empty set U = {}, which includes
the index of the tokens that have been up-
dated.

end for
for t = T . . . 1 do

if Kt−1 > Kt then
Calculate the P = argtopKt

{st,n}Nn=1;
Generate x̃0,1:N from pθ(·|xt,1:N )
Update xt−1,n = x̃0,n for all n in the set
P but not in the set U (top score but not
updated yet)
Update the set U by appending the index
of the updated tokens

else
Update xt−1,1:N = xt,1:N ;

end if
end for
Return x0,1:N .

Recent works have demonstrated that the quality of samples can be enhanced by utilizing supplemen-
tary information derived from the neural network (Ghazvininejad et al., 2019; Savinov et al., 2021;
Chang et al., 2022; He et al., 2022). Very recently, Zheng et al. (2023) applied this idea in their RDM
framework and can achieve significant performance improvement. Specifically, after decoding x̂0,1:N

from transformer pθ(·|xt,1:N ), the score corresponding to this decoded token from the transformer’s
last layer, is also recorded and denote as st,n. Tokens with high scores are more likely to be selected
for updates.
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Inspired by Zheng et al. (2023), we introduce the discrete non-Markov discrete diffusion Model with
top-K transition time (DNDM-K). Instead of directly determining which token gets updated at step t
by first drawing transition time τ ∼ Dτ , we employ a two-step process.

1. We first compute Kt =
∑N

n=1 1(τn ≥ t). kt represents how many tokens should be decoded at
the current step.

2. Compare Kt−1 and Kt, if Kt−1 = Kt. There is no transition time at time t, we just update
xt−1,1:N = xt,1:N . If Kt−1 > Kt, Then there exist transition time at time t, we calculate and
select the indexes with top-Kt−1 scores. Then we update those tokens if it hasn’t been updated
yet.

Subsequently, we will only update those tokens with the highest Kt score that hasn’t been changed
yet. Since the function evaluation occurs only when Kt changes, DNDM-K can give an accelerated
sampling algorithm. The details are presented in Algorithm 4.

F Experiment details

F.1 Conditional Text Generation

Parameter choices. In all experiments, the batch size is chosen to be 100. For RDM and RDM-k,
our hyperparameter settings follow the original paper (Zheng et al., 2023) except for the batch size.
Before the sampling, we used the saved checkpoint of trained models provided by the authors for
discrete sampling experiments, and we trained the corresponding models for continuous sampling
experiments.

For finite-step DNDM, the transition times are determined by the schedule, and we approximate the
schedule with a Beta distribution Beta(α, β) (please refer to Section 3.2 for detailed explanation).
The α and β values are selected by applying grid search on the validation sets. Based on the BLEU
scores on the validation sets, we have selected Beta(15, 7) for Multinormial Diffusion on IWSLT14,
Beta(3, 3) for Absorbing Diffusion on both IWSLT14 and WMT14, Beta(5, 3) for Multinormial Diffu-
sion on WMT14 and Absorbing Diffusion on WMT16, and Beta(20, 7) for Multinormial Diffusion on
WMT16.

For infinite-steps (continuous-step) diffusion (DNDM-C), the transition timestamps are sampled
from Beta(α, β), where the choice of (α, β) are chosen from (100.0, 4.0) or (17.0, 4.0), based on
the performance comparison on the validation set. In the end we choose Beta(17, 4) for IWSLT14
and Beta(100, 4) for WMT14 and WMT16.

We conduct a performance comparison based on varying configurations of the Beta and Alpha
distributions. The results of these comparisons are presented in Tables 10 and 9. Furthermore, to
evaluate the efficacy of discrete versus continuous step schemes, we also conduct an ablation study
under the same set of parameters (100, 4) in Table 11.

Table 9: BLEU scores on dataset WMT16 from the ablation study of other different Beta(α, β)
distributions of the transition time with 1000 sampling steps.

Model Alpha Beta

3 5 7 9 11 13 15 17 19 21

DNDM-k-Multi
3 33.47 33.67 33.62 33.77 33.87 33.64 33.73 33.60 33.68 33.56
5 33.18 33.47 33.68 33.53 33.71 33.69 33.73 33.72 33.74 33.82
7 32.99 33.20 33.49 33.56 33.58 33.61 33.67 33.72 33.78 33.83

DNDM-Multi
3 32.73 32.66 32.74 32.82 32.77 32.92 32.80 32.81 32.76 32.86
5 32.32 32.62 32.70 32.80 32.83 32.83 32.90 32.95 32.91 32.87
7 32.35 32.35 32.53 32.67 32.75 32.78 32.86 32.80 32.86 32.88

DNDM-k-Absorb
3 34.19 34.38 34.34 34.22 34.21 34.24 34.07 34.31 34.42 34.36
5 32.15 33.99 34.29 34.30 34.29 34.40 34.40 34.24 34.30 34.22
7 27.67 32.87 33.94 34.28 34.27 34.38 34.31 34.29 34.38 34.40

DNDM-Absorb
3 33.53 33.60 33.67 33.71 33.71 33.70 33.58 33.63 33.53 33.54
5 32.70 33.33 33.52 33.60 33.66 33.73 33.70 33.74 33.72 33.74
7 30.56 32.65 33.28 33.37 33.51 33.52 33.61 33.67 33.63 33.67
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Table 10: BLEU scores on dataset WMT16 from the ablation study of other different Beta(α, β)
distributions of the transition time with 50 sampling steps.

Model Alpha Beta

3 5 7 9 11 13 15 17 19 21

DNDM-k-Multi
3 33.31 33.47 33.39 33.48 33.29 33.23 33.25 33.27 33.11 33.17
5 32.93 33.28 33.29 33.58 33.45 33.21 33.40 33.49 33.16 33.19
7 32.61 32.98 33.31 33.20 33.27 33.41 33.39 33.53 33.35 33.08

DNDM-Multi
3 32.63 32.46 32.44 32.56 32.59 32.55 32.37 32.33 32.22 32.23
5 32.31 32.43 32.66 32.64 32.68 32.55 32.55 32.44 32.35 32.30
7 31.95 32.11 32.22 32.26 32.54 32.52 32.50 32.58 32.48 32.41

DNDM-k-Absorb
3 34.05 34.2 34.31 34.37 34.15 34.05 34.06 33.77 33.81 33.84
5 32.30 34.08 34.30 34.38 34.26 34.23 34.09 34.06 34.02 34.13
7 27.39 32.64 33.71 34.18 34.02 34.33 34.31 34.17 34.12 34.19

DNDM-Absorb
3 33.26 33.30 33.29 33.24 33.23 32.97 33.06 32.85 32.89 32.63
5 32.47 33.08 33.31 33.22 33.41 33.25 33.15 33.27 33.04 32.98
7 30.34 32.27 33.27 33.03 33.16 33.14 33.27 33.11 33.11 33.07

Table 11: The BLEU scores on dataset WMT16 with Beta(100,4) as the transition time schedule for
discrete sampling or the distribution to sample transition timestamps for continuous sampling.

Steps DNDM-k-multi DNDM-k-absorb DNDM-multi DNDM-absorb
50 31.60 31.74 30.39 29.69

1000 33.59 34.37 32.87 33.52
∞ 33.86 34.41 32.91 33.42

Continuous time vs discrete time diffusions. To test our hypothesis that the continuous-time
sampler will produce more accurate results in reverse sampling if our x0 estimator consistently
approximates the true x0 over time, we conduct various sampling experiments using a shared pre-
trained neural network. For discrete-time sampling, we consider three cases: T = 25, 50, 1000.
In each case, we rescale the interval [0, T ] to [0, 50] and divide it into T fractions. In contrast, for
continuous-time sampling, we directly sample from a continuous distribution over the interval [0, 50]
without any partitioning.

Training approach. In machine translation tasks, the neural network is designed to learn q(x0|xt, z),
where z represents the embedding of the source text obtained using transformer encoder layers.
For a fair comparison, we employ the same neural network structure as our baseline, with detailed
architecture specifications available in Section E.2 of Zheng et al. (2023). Furthermore, given that the
primary focus of this paper is the speed and effectiveness of our sampling algorithm, we omit the
training procedure and instead use a state-of-the-art diffusion-based pretrained checkpoint from Zheng
et al. (2023). In the Appendix, we present additional results of continuous sampling based on a
continuously trained checkpoint. In this setting, we rescale our network input to the interval [0, 1] and
uniformly sample from this interval. The rest of the architecture follows that of Zheng et al. (2023).

Performance on WMT14. Our work primarily focuses on the sampling process, and for the training,
we utilized a pretrained checkpoint trained on 50 steps. In our sampling experiments we noticed
that our method does not work ideally on WMT14, this could be possibly attributed to the fact that
the training performance on WMT14 was not ideal. Specifically, when we performed sampling using
1000 steps, the network was trained with exposure to only 50 time steps, specifically at intervals of
20 (0, 20, 40, ..., 980, 1000). As a result, when we apply our model to generation using 1000 steps,
the checkpoint NN has only been explicitly trained on these intervals. While we generally assume
that the network can still provide a good estimate for the untrained steps, this might not hold under
some hard scenarios. Considering the longer training time and poorer performance of WMT14, it is
likely that the training performance is insufficient for us to rely on those unseen steps. In a word, the
model’s trained checkpoint may not be robust enough to effectively handle unseen steps, especially
for timesteps 1000 or infinite timesteps.
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F.2 Unconditional Text Generation

Parameter choices. We recover the checkpoints of the multinomial diffusion model employing the
provided code by Hoogeboom et al. (2021b). We train 12-layer Transformers for both text8 and
enwik8 datasets for 500 epochs with the cosine schedule. For the text8 dataset, we utilize a training
batch size of 256, while for the enwik8 dataset, we use a batch size of 128. During training, we
employ a learning rate of 0.0001, a weight decay parameter of 0.99, and the Adam optimizer.

G Additional Experiments

In this section, we present additional experimental results. We begin by plotting the relationship
between computational time and the number of sampling steps, using the absorbing diffusion in
IWSLT14 as an example. Figure 4 displays the growth of computational time for absorbing diffusion
(yellow and orange lines), RDM-absorbing diffusion, and our model DNDM-Absorb and DNDM-T-
Absorb (green and blue lines). We see from Figure 4 that previous algorithms, including absorbing
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Figure 4: The growth of computational time with the increase of the sampling steps

diffusion and RDM-absorbing diffusion all suffer from linear growth of computational time.

G.1 Continuous Training

In Section 4.1, we introduce the DNDM-C algorithm, designed for continuous-time, over discrete-
time algorithms. However, this algorithm assumes that we have learned a sufficiently accurate
neural network at any timestamp t ∈ [0, 1]. Using the checkpoint trained with 50 discrete time
partitions might not suffice for the purpose of continuous sampling. In this section, we investigate the
performance of continuous sampling when training is also done continuously.

Table 12: Continuous Training + Continuous Sampling

Dataset Step scheme C-DNDM-Multi C-DNDM-Absorb

Default Top-k Default Top-k

IWSLT14 Continuous 32.07 33.57 32.80 34.52

WMT16 Continuous 33.48 33.71 33.50 34.36
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In Table 12, we summarize the performance of DNDM-C based on a neural network estimated
continuously during training time. This involves sampling time uniformly from [0, 1] during training,
and the forward process follows (11) in Section 3.3. The training objective remains the same as
in discrete-time training. In Table 12 we list the result of IWSLT14 and WMT16 with continuous
training followed by continuous sampling. In addition, we compare the value with the corresponding
value during discrete training and continuous sampling in Section 4.1 and mark every item that
improves in bold. As demonstrated in Table 12, there is room for enhancement in the overall sampling
scores by training the neural network in a complete space of timestamps.

G.2 Comparison with more generative models

In our study, a key aspect of evaluating our fast discrete generative model involves comparisons
with prior work known for speed in sampling with minimal steps. Specifically, we draw a direct
comparison with the Mask-Predict (Ghazvininejad et al., 2019), which is notable for its ability
to generate high-quality results within just 10 iterations. The results are shown in Table 13. All
experiments were conducted on the same GPU and within the same machine setup.

Table 13: The performance comparison on WMT16 of DNDM with Mask-Predict (Ghazvininejad
et al., 2019). We align the number of sampling steps used in Mask-Predict with a similar number of
function evaluations (NFE) in our DNDM algorithm. We see that our Algorithm runs faster, with
better BLEU score.

Mask-Predict DNDM-Absorb DNDM-k-Absorb
Steps BLEU Time Steps BLEU Time NFE Steps BLEU Time NFE

10 33.08 49.25 25 33.20 41.2 13.91 25 33.96 41.4 13.91
15 33.06 67.94 50 33.30 62.5 20.95 50 34.20 62.7 20.95
25 33.16 111.89 1000 33.60 121.3 38.27 1000 34.38 122.7 38.27
40 33.10 169.95 ∞ 33.42 121.8 41.59 ∞ 34.41 121.9 41.59

G.3 Samples from the multinomial text models

Conditional Generation. For DNDM-Multi trained on IWSLT14, we provide a full generation
process with 100 steps in Figure 5. A token ending with @@ indicates it is an incomplete word; it will
be concatenated with the following token to form a complete word. For example, “fel@@ lo@@ ws′′
means “fellows′′. We can see that after t = 39, the generate sentence converges.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions are summarized as three points at the end of the introduction.
The scope is fast sampling via discrete non-Markov diffusion models, provided in the
abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We add a limitation section in front of the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theorems 3.1, 3.5, and D.1 are clearly stated, well-organized with consistent
numbering, and supported by rigorous proofs that establish their validity.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed information on the experimental setup, model
architecture, and training procedures. The authors have submitted their training code along
with the main paper, which enables reproducibility of the main results. The code and detailed
instructions allow other researchers to replicate the key findings of the paper.
Guidelines: In addition to experiment and implementation details on appendix, we submit
our training and evaluation codes when submtting our main paper.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the datasets are public and can be open accessed. Our codebase will be
available in public upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details on Appendix (D, E, F).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Confidence intervals are provided in the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided detailed information about the computation resources in Section
4: a single NVIDIA258 RTX A6000 GPU with 48 GB memory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have checked NeurIPS Code of Ethics. Our submission satisfies all the
requirement.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide Broader Impacts Section in the beginning of Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no related risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used code, data and models in this project are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

34

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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t = 100
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] [noise] [noise] [noise]
t = 79
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 78
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] we [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 77
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] and we [noise] [noise] [noise] [noise] [noise]
[noise] [noise] [noise] year [noise]
t = 75
[noise] [noise] [noise] [noise] [noise] [noise] [noise] [noise] and we [noise] [noise] [noise] [noise] govern@@
[noise] [noise] year [noise]
t = 74
we [noise] [noise] [noise] lo@@ [noise] [noise] [noise] and we [noise] [noise] [noise] [noise] govern@@
[noise] [noise] year [noise]
t = 73
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let [noise] [noise] [noise] [noise] govern@@
[noise] [noise] year [noise]
t = 71
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let [noise] [noise] [noise] [noise] govern@@
[noise] every year [noise]
t = 67
we [noise] [noise] fel@@ lo@@ [noise] [noise] [noise] and we let them [noise] [noise] city govern@@
[noise] every year .
t = 66
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work [noise] city govern@@ [noise]
every year .
t = 64
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work [noise] city govern@@ ance
every year .
t = 61
we [noise] [noise] fel@@ lo@@ ws [noise] [noise] and we let them work with city govern@@ ance
every year .
t = 60
we [noise] [noise] fel@@ lo@@ ws [noise] year and we let them work with city govern@@ ance
every year .
t = 58
we [noise] [noise] fel@@ lo@@ ws every year and we let them work with city govern@@ ance
every year .
t = 52
we [noise] some fel@@ lo@@ ws every year and we let them work with city govern@@ ance
every year .
t = 39
we choose some fel@@ lo@@ ws every year and we let them work with city governance
every year.
t = 0
we choose some fel@@ lo@@ ws every year and we let them work with city governance
every year.

Figure 5: Text in the Generation Process

36


	Introduction
	Background
	Discrete Non-Markov Diffusion Models (DNDM)
	Forward and Reverse Process
	Accelerated Reverse Sampling
	Continous-time (Infinite Step) Reverse Sampling

	Experiments
	Conditional Text Generation
	Unconditional Text Generation

	Conclusion and Future Work
	Related Work
	Additional details of Discrete Diffusion
	Comparison between D3PM and DNDM
	Training Objective
	Calculation of the Evidence Lower Bound
	Finite Time DNDM
	Continous Time DNDM


	Choice of the Transition Time
	Discussion on the Number of Function Evaluations (NFE).
	Discrete Non-Markov Diffusion Model with Top-k Transition Time (DNDM-K).
	Experiment details
	Conditional Text Generation
	Unconditional Text Generation

	Additional Experiments
	Continuous Training
	Comparison with more generative models
	Samples from the multinomial text models


