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Abstract

As renewable energy sources become more prevalent, accurately modeling power grid dynamics is becoming increasingly more
complex. Concurrently, data acquisition and realtime system state monitoring are becoming more available for control centers.
This motivates shifting from model- and Lyapunov-based feedback controller designs toward model-free ones. Reinforcement
learning (RL) has emerged as a key tool for designing model-free controllers. Various studies have been carried out to study
voltage/frequency control strategies via RL. However, usually a simplified system model is used neglecting detailed dynamics of
solar, wind, and composite loads—and damping system-wide oscillations and modeling power flows are all usually ignored. To
that end, we pose an optimal feedback control problem for a detailed renewables-heavy power system, defined by a set of nonlinear
differential algebraic equations (NDAE). The control problem is solved using a completely model-free design via RL as well as
using a model-based approach built upon the Lyapunov stability theory with guarantees. The paper in its essence seeks to explore
whether data-driven feedback control should be used in power grids over its model-driven counterpart. Theoretical developments
and thorough case studies are presented with an eye on this exploration. Finally, a detailed analysis is provided to delineate the

strengths and weaknesses of both approaches for renewables-heavy grids.
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1. Introduction and motivation

With the increased penetration of wind and solar-based en-
ergy resources, the overall transient stability of power systems
is deteriorating. In particular, there is a significant increase in
low and ultra-low frequency oscillations (LFOs and ULFOs)
in the future power grids with high penetration of renewables.
These LFOs and ULFOs if not properly damped can cause
system-wide instabilities and blackouts [1]. State/output feed-
back controllers can play a crucial role in mitigating such os-
cillations and improving system transient stability after large
disturbances. Based on realtime measurements, these feedback
controllers can provide additional control signals to the power
plants thus improving system robustness toward disturbances
[2].

Traditionally, in the literature, model-based approaches are
utilized to design feedback controllers. These models, based on
advanced differential-algebraic equations (DAEs) provide pre-
cise, physics-based descriptions of system dynamics, allowing
for the design of sophisticated feedback controllers that can ef-
fectively regulate frequency, improve LFOs/ULFOs, and other
grid parameters [3—6]. However, the performance of model-
based control heavily relies on the accuracy of these mod-
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els, which are inherently limited by assumptions and simpli-
fications. Also, as power networks become more dynamic
and uncertain due to the integration of renewables and other
distributed resources, accurately modeling their dynamics be-
comes an increasingly daunting task. Moreover, even if the
accurate model is computed, re-adjusting it in realtime and
re-designing the feedback control law (every time the model
changes) becomes highly inefficient and impractical. Thus,
there is a growing motivation to transition toward completely
model-free feedback control strategies.

Reinforcement learning (RL) is a key tool in the development
of model-free feedback controllers due to its self-learning capa-
bilities. RL allows the controller to autonomously learn the op-
timal control policy through continuous interaction with the en-
vironment while achieving predefined objectives. As a result, a
variety of RL-based control algorithms have been proposed for
power systems in recent years. For example, [7, 8] introduces a
frequency control algorithm aimed at minimizing both the fre-
quency nadir and the required control inputs. In [9], a voltage
control strategy is developed using deep RL, where the RL al-
gorithm minimizes voltage deviations across buses by actively
adjusting generator bus voltages. Additionally, various RL-
based automatic generation control (AGC) schemes have been
proposed to regulate system frequency during transients. These
include approaches such as Q-learning, actor-critic-based inte-
gral RL, and policy gradient (PG) techniques, as seen in [10],
[11], and [12]. Similarly, reactive power control methodolo-
gies designed to improve system voltages using different RL
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approaches are discussed in [13] and [14]. For a comprehen-
sive review of RL applications in power system control, recent
surveys such as [15] and [16] provide in-depth insights.

However, it’s important to note that much of the current lit-
erature simplifies power system models by (1) neglecting al-
gebraic constraints (power flow and balance equations), (2)
using lower-order models for synchronous machine dynam-
ics, and (3) overlooking the complexities of power electronics-
based models for solar and wind generation. Moreover, many
studies focus exclusively on minimizing frequency and volt-
age deviations, without addressing the critical issue of damp-
ing system-wide low-frequency and ultra-low-frequency oscil-
lations (LFOs/ULFOs). This omission stems from not solving
the complete optimal feedback control problem, such as the
traditional linear-quadratic regulator (LQR)-type control de-
sign. As previously mentioned, addressing LFOs and ULFOs
is essential for maintaining grid stability and optimizing power
transfer capabilities [1].

Some recent efforts have been made to design various de-
centralized and centralized damping feedback controllers us-
ing RL. For example, in [17] using a reduced power system
model a wide-area damping controller (WADC) has been pro-
posed to improve system oscillations after disturbance. Simi-
larly, in [18] authors have developed a WADC using a policy it-
eration algorithm, while the study [19] has introduced a decen-
tralized feedback controller design via an off-policy iteration-
based RL technique. However, these studies also rely on sim-
plified power system models, considering lower-order genera-
tor dynamics and neglecting algebraic constraints, dynamics of
loads, wind, and solar power plants. Using a simplified power
system model during training can cause serious stability issues
as the learned policy might be unstable when applied to the ac-
tual power system model with detailed dynamics.

Furthermore, it is clear that designing feedback controllers
using a model-free approach via RL has a key advantage as it
does not require the knowledge of system parameters, dynam-
ics, or topology. However, some basic questions arise while
solving an optimal state feedback control problem for renew-
ables heavy power systems: How computationally efficient is
model-free control as compared to model-based design? Does
the model-free approach yield a better control law as compared
to the model-based approach? To that end, this paper addresses
the aforementioned literature gaps and research questions by
designing model-free and model-based WADCs for renewables
heavy power grids with detailed wind, solar, and composite
load dynamics (given in Sec. 2). The problem formulation is
given in Sec. 3. The proposed model-free WADC is based on
reinforcement learning (Sec. 4) while the model-based con-
troller is designed via Lyapunov control theory (Sec. 5), and
Sec. 6 presents thorough case studies and some conclusions.

The technical contributions of this paper are as follows:

e We propose WADC for renewables heavy power systems
(with majority of power being generated by wind and
solar-based power plants). The considered power sys-
tems comprise of conventional power plant modeled via
a detailed nonlinear 9"-order dynamical model (model-

ing synchronous machine, exciter, and turbine dynamics),
comprehensive power electronics based wind/solar power
plants models, and composite load dynamics (constant
power, constant impedance, and motor loads). The pro-
posed WADC:s act as a secondary control layer and are di-
rectly actuated via the primary controller layer (by sending
additional control signals) of the power network.

e Two different approaches have been utilized to solve the
same WADC problem for the considered power system.
One is based on a completely model-free approach via
reinforcement learning while the other methodology uti-
lizes a model-based design. In particular, for the model-
free approach, we leverage deep deterministic policy gra-
dient (DDPG)-based algorithm to learn optimal control
law by continuously interacting with the power system
model. While for the model-based design, we use linear-
matrix inequalities (LMIs)-based H, stability notion along
with Lyapunov control theory. Also, to improve com-
putational efficiency in the model-free approach, we use
control-theoretic techniques to properly design and initial-
ize the corresponding actor and critic neural networks as
explained in Sec. 4.

Thorough numerical simulations and discussions have
been provided on modified IEEE 9-bus and 39-bus systems
showcasing the different pros and cons of model-based and
model-free WADC designs. Furthermore, to showcase the
advantages of the proposed WADCs a comparative anal-
ysis has also been carried out by studying the transient
response of the system with only primary controllers and
with WADCs acting on top of them.

Notations: Matrices and vectors are written in bold, while sets
are represented using calligraphic fonts, such as G or ‘W. The
notation R? refers to the set of real-valued column vectors with
‘D> elements, and R denotes the set of real-valued matrices
with ‘c’ rows and ‘d’ columns. The zero matrix is denoted by
O, and the identity matrix of appropriate size by I. The union
of two sets is represented by U, and the Kronecker product is
indicated by ®. Additionally, S refers to the set of positive
definite matrices of size ‘c’ by ‘d’. The asterisk * in a symmet-
ric matrix indicates that the entries are symmetric with respect
to the main diagonal. All quantities are given in per unit (p.u.)
unless otherwise noted. For simplicity, the time dependence of
vectors is sometimes omitted in equations, e.g., x4(¢) is written
as x4.

2. Renewables heavy power system with solar farms, wind
farms, and composite loads

We consider a power system model consisting of G tra-
ditional power plants (both steam and hydro-based), S solar
power plants, W wind power plants, and various loads: L
motor-based loads, L, constant impedance loads, and L, con-
stant power loads. The electrical grid is represented as a graph,
where £ denotes the set of transmission lines and N = {1, ..., N}
represents the set of buses. These buses are categorized into
different types: G = {l, ..., G} corresponds to buses connected



to traditional power plants, S = {1,...,S} to buses with solar
farms, and W = {l1,..., W} to buses connected to wind-based
power plants. The set £ represents buses connected to motor-
based, constant impedance, and constant power loads, while U
includes non-unit buses that are not connected to any generation
or load elements.

With this setup, the power system is described by a
set of nonlinear differential-algebraic equations (NDAEs) as
follows[20]:

x(t) :f(Xd,xa,W,u) (13)
0= h(xy,x,,w,u). (1b)

In the above equations, differential equations (la) describe
the models of traditional power plants, solar farms, wind
power plants, and dynamics of composite loads while the al-
gebraic equations (1b) model the algebraic constraints (the
power/current balance equations) in the network. The notation
x,(t) € R" represents algebraic variables, x,(¢) € R™ denotes
dynamic variables, u(f) € R™ contains the control inputs, and
w(t) € R™ denotes system disturbances. The detailed expla-
nations of these vectors are given in Appendix A. For brevity,
the complete dynamical equations (set of ordinary differential
equations) describing the models of generators, solar, and wind
power plants are not included in this paper and can be found in
[20-23].

That being said, we can also express the power system model
(1) in the following state-space format:

Ex=Ax+Bu+ f(x,w,u)+ B,w )
where x(t) = [x; xZ]T € R” represents the overall state vec-
tor and E € R™" is a singular matrix that encodes algebraic
constraints, characterized by rows of zeros. The constant ma-
trices A € R™", B, € R™" B, € R™™ map the state vector,
control inputs, and the disturbance vector w in the system dy-
namics. These matrices are determined by capturing the linear
components of the model (1) while the function f (x,w,u) ac-
counts for any linearization errors present in the power system
model.

3. Preliminaries and problem formulation

In this section, we address the state feedback control problem
for the renewables-heavy interconnected power system model
(3). We first define the overall state feedback control problem
and then propose two distinct solutions: one using a model-
free approach via reinforcement learning, and the other using a
model-based approach based on system matrix information and
approximations of the nonlinear function f (x, w, u), employing
Lyapunov stability theory.

In the designed system (3), the dynamic states x;—which
represent conventional generators, renewable energy sources,
and motor-based loads—are treated as dynamic components,
while loads, non-unit buses, and other interconnections are con-
sidered static. For the purpose of designing a feedback con-
troller, the algebraic state vector x,, which includes voltage and
current phasors, can be regarded as redundant and thus elimi-
nated [24]. Given that power system models are typically index-
1 DAE:s, these algebraic variables can be removed, allowing the

conversion of the DAE into an equivalent ODE as follows: Let
us consider
i [Add Ada] =

A= Aﬂd Aaa ’ Bu - [B':’rd B;‘r’l] T’ BW = [BvTvd

T
B],]

and assume that A, is invertible (a common assumption in the
literature of power systems). Then, we can extract the equation
for x, and substitute it in the dynamic states equation to get the
following ODE system:

Xy = Axg+ Bu+ fy(xg,w,u) + B,w 3)

where f,;(.) represents the corresponding nonlinearity and the
rest of the matrices are given as:

A=Ay~ AwAyAw, By =By~ AuAg By,
Bu = Bud - AdaA;;Buw

That being said, to set up the state feedback control problem
in the control literature, one first needs to design the perturbed
closed-loop system dynamics. For this purpose, for a dispatch
time period kT < t < (k + 1)T, let us consider a control policy
given as:

Control policy: u/(f) = uf - K (xa(r) - x4) )

where x(’; is the state equilibrium value before the occurrence
of disturbances, u’é is the set-point of the input # which is de-
termined for every k”-dispatch time-period by running power
flow (PF), and K € R™*" is a gain matrix (a design parame-
ter). Then, the corresponding closed-loop system can be written
as:

Xg=Axy+ B+ fy (xq,uc,w) + B,w (5)

Now, let us assume there is an unknown disturbance in the
power system. This disturbance will push the system to a new
equilibrium state, let us denote that by x;. Then, the closed-
loop system at this new equilibrium can be written as:

0=Ax,+Bu,+ f; (x:,, u),, w’) +B,w'. ©)

Then, the perturbed closed-loop dynamics can be expressed as
follows (which is essentially computed by subtracting (6) from

(5)):
Ax‘d = (A - BuK)Axd + Afd(Axd, Aud, AW) + BWAW (7)

with Axg = x4 — x), Aw = w —w', Afy(Axq, Au, Aw) =
Ja(xa,uq, w)— fa(x),, ul,,w"). For simplicity, from now onward,
with little abuse of notation, we drop the A notation from Ax,,
Afy, and Aw and simply use f,;, x4, and w instead, respectively.
Thus the perturbed closed-loop system (7) is rewritten as fol-
lows:

X =(A-B,K)x,+ fo(xq,uqs,w) + B,w. (®

That being said, in state feedback control literature the pri-
mary goal is to design a control law (or control gain matrix K)



with two main objectives. Firstly, the control law should con-
verge the perturbed closed-loop system asymptotically to zero.
This implies that the control policy (4) endeavors to restore the
power system (3) to its steady-state equilibrium following a sig-
nificant disturbance. Secondly, the designed control law should
achieve this objective with the minimum effort required. This
ensures that the control strategy minimizes the resources and
inputs required to achieve the desired stabilization. We want to
emphasize here that, in the end, the control policy u.; needs to
be applied to the complete power system model (3), then, it can
simply be mapped back by computing K = [K 0] e Ruxn
and redesigning the control policy as: &, = u’é -K (x(t) - xk).
Now, since the dimensions are same, we can use @ ; as a control
policy for the complete power system NDAE.

Before introducing the state feedback control problem, we
outline a key assumption used throughout the paper:

Assumption 1. The pair (A, B) is impulse controllable and fi-
nite dynamics stabilizable.

Assumption 1 is standard in control theory literature [25, 26],
and several power system models have been shown to satisfy
controllability and stabilizability, as demonstrated in [24, 27].

The overall infinite-horizon optimal state feedback control
problem can then be formulated as:

min f(de + DKx;)" (Cx; + DKx,)dt
KeRmong
0

©))

subject to Dynamics (8)

where C € R"™" and D € R"*" are fixed penalty matrices,
analogous to the weight matrices Q and R in traditional LQR
control. The selection of C and D is driven by the grid opera-
tor’s preferences, which determine the specific states or control
inputs that should be penalized during the design of the con-
troller gain matrix K.

To solve the above feedback control problem for the test sys-
tem considered, we employ two distinct approaches. The first
approach is a fully data-driven, RL-based technique, while the
second is a model-based framework that leverages Lyapunov
stability theory. Both approaches are discussed in detail in the
following sections.

4. Model-free optimal state feedback controller design

Here, we propose a model-free approach to solve the op-
timal state feedback control problem given in Eq. (9). The
presented approach is based on deep reinforcement learning in
which the agent learns optimal control policy (which essen-
tially means learning the feedback controller gain matrix K)
such that it maximizes cumulative rewards over time (the neg-
ative of quadratic cost function given in Eq. (9)) by interact-
ing with the environment (the complete NDAE power system
model). That being said, since (9) is a continuous action space
infinite horizon problem, then deep-deterministic policy gradi-
ent based RL algorithms are well suited for such optimization
problem [28]. An overview of DDPG-based RL is given below

followed by the proposed methodology which properly shapes
(using knowledge of state feedback control theory) the DDPG-
based technique to efficiently solve the formulated state feed-
back control problem in (9).

4.1. DDPG for state feedback control in power systems

DDPG employs an actor-critic architecture, where the actor
learns a policy for selecting actions, and the critic evaluates
the value of those actions. Both the actor and critic functions
are approximated using neural networks, let us denote them by
me(xg) : R — R™ and Qg(x4,u,) : R" x R™ — R, re-
spectively, where u, is the output of the actor-network. The
actor neural network is parameterized by € and it takes states
as inputs and returns action as output while for the critic net-
work weights/parameters are denoted by ¢ and it takes the pair
states-actions as input and returns the Q-value (the cumulative
long term reward for the state-action pair) as output.

That being said, generally speaking, the main idea in DDPG
is to run gradient descent on the actor-network parameter 6 as:
60 — 0 — €VyJ(6), where € represents the step size and VyJ(0)
denote the policy gradient which in DDPG is approximated as
follows [28]:

1
Vol O~ 1 > V040 Voma(xqli]) (10)

i€B

xa[il7wg(x4li])

where x4[i],uli] with i € B are set of samples extracted
from the replay buffer which stores the history of observations
(xg4,u,r,x7), here, r is the reward and x/; is the new state after
taking action u. In (10) the critic network Q4(x4,u) is learned
via temporal difference learning given as [28]:

m¢in L(¢) = E[Q¢(xa, ) = (r + yQy,(x}j, 79, (x)))’] Y

where [ denotes the expectation notation. In (11) g, Qy, rep-
resent the target actor and critic networks whose weights 6;, ¢,
are computed using 6, ¢ via Polyak averaging as follows:

¢ — pd, + (1 —p)o
6, — pb, + (1 —p)o

(12a)
(12b)

where p is a positive constant usually selected close to 1. The
target networks are essentially copies of the original networks
which trail behind the original networks and are updated slowly
using the original network parameters (in DDPG this is usually
done to improve the training stability). Further detailed expla-
nations about DDPG can be seen in [28].

With that in mind, to efficiently solve the state feedback con-
trol problem (9) using the DDPG-based RL technique, we pro-
pose to do the following: Firstly, notice that, the actor neu-
ral network tries to approximate the feedback controller gain
matrix K. For the perturbed closed-loop system, the control
law implemented by the actor is essentially linear mapping
u, = Kxq = ky x4, + koxg, + ... where ky, k + ... are the weights
of the actor neural network. Then, a shallow neural network
for the actor has been designed with an input layer and a fully
connected layer to provide a linear mapping between states to



actions. Notice that to reduce the number of learnable param-
eters (and thus increasing the convergence rate) no relu layer
is added as no nonlinear mapping is needed to train the actor.
Also, it is well known from the control theory that the closed-
loop system is stable if these gains are negative, therefore, ini-
tializing them to take negative values can speed up the conver-
gence. Moreover, since the learned control law approximated
by the actor neural network does not have any extra biasing
(constant coefficients such as u, = Kx,; + b), then while train-
ing, the actor neural network weights are only updated and the
biasing learn rate is set to be zero.

Now, as discussed earlier, the critic learns the Q-value func-
tion. The critic accepts an observation-action pair as inputs and
returns a scalar (the discounted long-term reward) as output. To
that end, from feedback control theory, we know that the long-
term reward function (or the value function) for (8) is known
to be quadratic (the Lyapunov function xjPx,; with P > 0,
which tells us the optimal cost-to-go). Thus, the critic network
is designed to have a quadratic layer (which returns a vector
of quadratic monomials) followed by a fully connected layer
(providing a linear mapping of its inputs). Furthermore, in the
context of our setting, we can essentially express the structure
of the Q-value function as follows:

Q(xg,uz) = 115 + bXg Xay + X -+ Ly, Xa g + -+ (13)

where [}, [, - - - are the weights of the critic neural network, or
alternatively Eq. (13) in matrix form can be written as:

Xd,
L, Lk k.
2 ? Xd,
[ N
I B
Q(xd,un)=[xdl xdz"‘ul"'] I
2 2 " (14)
=] uf|L[x] uf]
Since u, = Kx,, then, one can rewrite (14) as:
Qx4 Kxg) = x} [1 KT] L [1 KT]T x4 =X Px, (15)

Now, in our case, since we are maximizing the negative of the
quadratic cost function, both P and L should be negative defi-
nite. Thus, initializing the critic network to be a negative def-
inite matrix can overall stabilize the learning and speed up the
convergence.

Moving on, in DDPG for every episode, the actor generates a
random action, applies it to the environment, and tries to maxi-
mize the cumulative long-term reward. However, for the power
system model, any random unbounded action cannot be cho-
sen as it will destabilize the system and the episode might not
even start. Thus, for each episode, the random actions are se-
lected in a bounded region with u,,,, and u,,;, as upper and
lower bounds, respectively. For the considered test system the
control actions are voltage and power/valve position set points
as discussed in Sec. 2. Then, voltage setpoints are constrained
between +5% while the power/valve position setpoints are se-
lected to be between +10%. This is reasonable as in normal op-
eration the voltage should be between 0.95—1.05pu and also the

power output from each power generator usually changes pro-
portionally in response to large disturbances [24]. Furthermore,
since the output of the actor-network is bounded between u,,,,
and u,,;,, then during training to avoid the actor output being
saturated frequently a tanh (which scales the output between
—1 and 1) and scaling layer (which scales back the output to
their desired range) have been added. That being said, the over-
all proposed model-free approach to solving the state feedback
control problem is given in Algorithm 1.

Algorithm 1: Model-free state feedback controller

1 Design actor mry and critic Q4 networks and initialize
them as discussed in Sec 4.

2 Initialize p and target actor g, and critic Qy, networks.

3 Initialize C, D matrices and control input bounds u,,,,,
Upin.

4 Initialize replay buffer R.

5 for episode = 1 to M do

6 Initialize power system model with a random initial
condition x( having 5% maximum deviation from
steady-state values.

7 for iteration = 1 to J do

8 Select input u, from the actor network.

9 Execute u, on system (8) using x, and observe

quadratic cost r and next state x.

10 Store observation in (xg4, uy, r, x) in R.

11 Sample mini-batch B of observation from R.

12 for observation b € B do

13 L Compute: y; = r(xg,u) + yQg, (x5, wo,(x1)).

14 Update the critic network by minimizing the loss
as given in (11).

15 Update the actor network via gradient descent
and with policy gradient V J(6) computed using
Eq. (10).

16 Update target actor and crtic network through
polyak averaging using Eq. (12).

17 Return trained actor my and critic Q4 networks.

18 Extract controller gain K from 7.

19 Design K, plug it in the control policy 7, and apply it
to the complete NDAE power system (3) with x* and
u’é being updated every OPF/PF dispatch time period
kT <t<(k+1DT.

5. Model-based optimal state feedback controller design

To solve the formulated optimal state feedback control prob-
lem (9), here, we develop a completely model-based approach
(without relying on any data or interaction with the power sys-
tem environment). The proposed technique in this section is
based on the Lyapunov stability theory and it consider infor-
mation of the constant system matrices (A, B,, B,,) along with
approximation on nonlinear function f; (x,,u,w) to compute
the controller gain matrix K.

That being said, to solve the optimal feedback control prob-
lem (9), we present the following results:



Proposition 1. Suppose Assumption 1 hold. Then, there ex-
ists a solution to problem (9) (meaning the perturbed closed-
loop dynamics asymptotically converges to zero with minimum
control effort required), if there exist matrices Z € S}&",
W e R apnd F € R™ " that are solution to the follow-

ing semi-definite program (SDP)

(SDP) min  Tr(W)
F.Z,W

. VA *
subjectto LMI (16), Z > O [l}; W >0
where LMI (16) is as follows:
Z'TAT+AZ-F"B] -B,F % =
BT 0 +|<0 (16)

CZ + DF o0 -1

Upon solving the above SDP the controller policy can be com-
puted as K = FZ7".

Proof. Before presenting the proof, to formulate a tractable
convex LMI-based formulation for the model-based controller
design, we assume that the perturbation in the nonlinearity
in Eq. (8) is Ly-norm bounded and can be expressed as
Afi(xg,uc,w) = Bpgwpq with By = B,,. We want to empha-
size here that, the above assumption on Afy(xy, u, w) is only
carried out to design tractable convex SDP formulation for the
controller design. At the end, the final designed feedback con-
troller is applied to the complete NDAE power network without
any simplifications. Now, we define:

W= [WT W}—d]T s EW = [Bw de] . (17

With these definitions in place, to begin the proof of Proposition
1, we consider a candidate Lyapunov function for the perturbed
system (8) as V(x;) = xZde where V : R% — R, and P €
R">"a Then, the derivative of V(x,) with respect to x,; along
the trajectories of (8) can be expressed as

V(xg) = (Pxq)" X4 + %47 (Px,).

Now, for the overall system stability including the objective
function (as given in (9)), we need V(x,) + x;T'"T'x; < 0 where
I' = C — DK, which can expanded as:

(Pxg)"(Acxy + B,W) + x T Tx; + (Acxy + B,Ww) Px, <0

where A¢c = A — B, K. We can rewrite the above equation also
as YTEY < 0 with:

(18)

P BTP o

W HT - [AgP +PTAC+IT PTBW]
wl T~

Notice, WTEY < 0 holds if and only if Z < 0.

Now, let us define Z := P~! and pre-multiply and post-
multiply (18) with diag ([ZT I]) and diag ([Z I]) respec-
tively, to get the following equivalent representation of (18):

ZTAL+AcZ+Z'T'TZ B, -0
BT o

Then, applying the Schur complement lemma [29], the above
LMI can equivalently be represented as:

ZTAL+AcZ B, Z'TT
BT 0 0 |<0 (19)
rz o -I

Now, defining F := KZ, then we get the convex LMI (16)
which represents the necessary and sufficient stability condi-
tions for the existence of the controller policy. Finally, to mini-
mize the impact of w on the system dynamics according to H,
notion, we need to minimize Tr(l?;Z lAiw) where T'r denotes the
Trace notation. Now, let us upperbound BT ZB,, it by matrix
variable W as fZVTVZl}W < W. Then, by minimizing 7r(W) and
taking Schur compliment of E;Zl}w < W we get the second
LMI along with the objective function in the formulated SDP.
This completes the proof. |

Proposition 1 presents a completely model-based approach
to solve the formulated optimal state feedback control problem
(9). The computed gain matrix K guarantees the asymptotic
stability of the perturbed system (8). In other words, it ensures
that after a large disturbance, the NDAE system model (5) con-
verges back to its steady values (while adding damping to the
system oscillation) with minimum control effort required.

We want to emphasize here that, in the end, both proposed
approaches provide us the feedback gain matrix K via solving
exactly the same state feedback control problem given in (9). In
the model-free approach, the controller tries to learn K by con-
tinuously interacting with the power system model and observ-
ing the quadratic cost/reward given in (9) while in the model-
base design, it requires an accurate system model to compute
K. As renewable energy integration and the widespread adop-
tion of distributed energy resources continue to evolve, the ac-
curate modeling of power systems becomes increasingly chal-
lenging. Thus, the model-free approach has a major advantage
over model-based design as it does not require any system in-
formation and modeling.

In the following section, we implement both presented ap-
proaches and do a thorough comparison on a renewables
heavy power system model with detailed synchronous genera-
tor, wind, solar, and composite loads (constant power, constant
impedance, and motor-based loads) dynamics as discussed in
Sec. 2.

6. Case studies

Both the proposed model-based and model-free controllers
have been tested on IEEE 9-bus and 39-bus systems. Both these
power systems have been modified to include composite loads,
and high penetration of wind, solar-based renewable resources.
The 9-bus system includes one steam-based traditional power
plant at Bus 1, one wind-based power generator at Bus 3, a
solar farm at Bus 2, and a motor-based load at Bus 8. Simi-
larly, the 39-bus system is comprised of four traditional power
plants, four solar power plants, two wind-based power plants,
and a motor-based load at Bus 14. The one-line diagrams of
both power systems are presented in Appendix A, Figs. A.7,



A.8. Further details about modeling and parameters of tradi-
tional power plants, wind/solar farms, and loads of the systems
used in this work are given in [21, 23, 30, 31].

All the case studies are performed on a computer with Intel
i7 processor and 64GB RAM. The power systems have been
modeled in MATLAB 2021a and are simulated using ode15s
MATLAB DAE solver. The initial conditions for the power sys-
tems are computed using power flow studies via MATPOWER
[32] runpf function. The baseline for the frequency and volt-
ampere of the power network is set to be w;, = 120xrad/s,
S, = 100MVA, respectively. Also, it’s worth mentioning that
in both the 9-bus and 39-bus systems the total shares of power
production from renewables are around 63% and 67%, respec-
tively.

To design the actor and critic networks and to implement the
proposed DDPG-based model-free feedback controller, MAT-
LAB RL-toolbox is utilized. During learning for the 9-bus sys-
tem the agent interacts with the power system model for a sam-
ple time of Ty = 0.1s and a total of 200 samples are taken in
each episode while the total number of episodes is set to be
4000. The rest of the hyper-parameters for both 9-bus and 39-
bus systems used during the learning process are given in Tab.
1. These hyper-parameters are essential and need to be properly
tuned to have stable training and to get optimal control policy.
Although there is no systematic way to tune these parameters,
they can be determined based on human operator’s knowledge
or trials and errors. One can play with these parameters to get
better performance. In Tab. 1, we set the critic learning rate to
be larger as compared to the actor learning rate. This seems to
work well in our case, the intuitive reasoning behind this can
be that since the critic takes the action and observation and tells
how good the taken action is, thus pushing the critic to learn
quickly as compared to the actor seems to stabilize the overall
learning.

In every episode, the initial conditions for the system are ran-
domly chosen with 5% maximum deviation from steady-state
values. Notice that, while learning in every episode, if for any
particular state-action pair the ode 15s solver does not converge
to a solution (meaning the power system is not simulated) then
no learning is performed and the episode is terminated. Regard-
ing training, the overall learning times for both test systems are
given in Tab. 2 while the cumulative long-term rewards (the
negative of the quadratic cost function) for both test networks
are presented in Fig. 1. We can see that for the 9-bus test sys-
tem the algorithm converges to optimal policy in around 4000
episodes while for the 39-bus test system, it took almost 5000
episodes to converge and learn the optimal control policy.

On the other hand, the model-based controller is imple-
mented in YALMIP [33] with MOSEK [34] as an optimization
solver to solve the proposed SDP given in Proposition 1. Notice
that, in both types of designs, the proposed controller acts in re-
altime as a secondary control loop and is directly actuated via
the primary controllers (using their voltage and power/valve-
position set points).

Reward
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Figure 1: Average and episodic rewards for 9-bus (left) and 39-bus (right) test
systems.

1.008

1.006

sy (pu)

nN
/(
7
wy (P
g 3
n S

p&

0

| |
1 2 3

0 1 2 3 4 4
%107 a0 1
el .008
1
1 0 ___1.006
/:? e -1 a
\% 0 0 0.1 0.2 0.3 0.4 O.SV 1.004
& e}
’ 1.002
2 | | | | 1 | | | |
0 1 2 3 4 0 1 2 3 4
t (sec) t (sec)
Figure 2: Comparative analysis under A; = —0.5 for 9-bus system: relative
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synchronous machine (below).
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plants (below).
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Figure 4: Comparative analysis under Ay, = 0.003 for 39-bus test system: rela-
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Figure 5: Comparative analysis under A7 = —0.001 and A;, = 0.1 for 39-bus
test system: rotor angle and real power output of Generator at Bus 38 (above),
relative speed of all wind power plants and relative angle of wind plant con-
nected at Bus 34 (below).

Table 1: Parameters used in model-free state feedback controller design.

l Parameter \Value, 9-bus| Value, 39-bus
Sample time, T'; 0.1s 0.3s
Replay buffer length, R 10° 10?
Mini batch size, B 10! 102
actor learning rate 10~ 10~
critic learning rate 107! 107!
Max episodes, M 4000 5000
Max steps per episode 200 300

6.1. Comparative analysis under uncertainty in load demand

In this section, we do a thorough comparative analysis of
the proposed model-based and model-free state feedback con-
trollers under abrupt disturbances in load demand. To that
end, we carried out the numerical simulations as follows: Ini-
tially, the power network operates under steady-state condi-
tions, meaning the power generation is equal to the overall load
demand and thus the system rests at an equilibrium. Then, right
at the start of simulation, at # > 0, an abrupt change in over-

all load demand occurs as follows: P; = (1 + AL)P°, where
A denotes the severity of the load disturbance and P(z repre-
sents the initial load demand before the disturbance, which, for
the considered test systems are; 0.77pu for the 9-bus test sys-
tem and 19.8pu for 39-bus test network. With that in mind,
two different simulation studies are conducted for both test sys-
tems. In the first study, we assume A to be positive—meaning
the overall load demand has suddenly been increased, which in
other words can roughly be interpreted as a generator-trip event.
That being said, for the 9-bus test system, we select Ay = 0.7
while for 39-bus network we select it to be A; = 0.003. For the
second simulation, we assume Ay to be negative, meaning the
overall load demand of the power network has suddenly been
decreased, thus it can be seen as a load-trip event. With that in
mind, for this simulation, we set A; for the 9-bus and 39-bus
test systems to be —0.5 and —0.001, respectively.

The above disturbance is going to push the power system to
a new equilibrium from its initial steady-state or it might poten-
tially destabilize the whole system. The objective of the pro-
posed WADC:s is to hedge against this disturbance and enhance
system transient stability by damping LFOs/ULFOs, improve
frequency nadir, and bring the system back to its nominal op-
erating conditions. The results are presented in Figs. 2, 3, and
4. To demonstrate the effectiveness of the proposed WADCs,
a comparison of the system transient response with only pri-
mary control layer and with developed WADCs acting on top
of them has also been presented. Note that, by primary con-
trol layer, we refer to the conventional control mechanism of
the power system, which in the considered test system for syn-
chronous machines are; power system stabilizers (PSSs), gover-
nor, automatic voltage regulators (AVRs), and machine inertial
response. Similarly, wind and solar power plants are acting in
grid-forming mode with droop controllers and PI-type current
and voltage regulators acting as their control mechanisms. Pro-
viding detailed descriptions and mathematical equations of syn-
chronous machine, solar/wind models and their primary con-
trollers is out of the scope of this study and readers are referred
to [23, 35] for synchronous machines and [21, 31, 36] for wind
and solar power plants.

To that end, for the 9-bus test system, we can see that with
both the proposed damping controllers there are significant im-
provements in LFOs/ULFOs, this can be verified by looking at
the plots of the synchronous machine and solar/wind slips given
in Figs. 2 and 3. We can see that with only the primary con-
trol layer right after the load disturbance during transient period
(the initial 2-3 seconds of the simulations) there are significant
oscillations, while with the additional proposed secondary con-
trol layer, the oscillations have been damped out. Similar results
have been achieved for the 39-bus test system as given in Fig.
4. Thus, with the proposed WADCs the overall power system
transient stability has been improved.

6.2. Comparative analysis under renewable uncertainty

Here we thoroughly study the transient behavior of the con-
sidered test system with and without the proposed damping
controllers under uncertainty in the renewables. To that end,
the simulations here are carried out as follows: At the begin-



ning, the solar irradiance on all solar power plants is set to be
1000 W/m? (which is the standard solar irradiance), then, at
t > 0 we decrease the irradiance of PV plant connected at Bus
1 for 9-bus system and PV plants at Buses 30, 37 for 39-bus
test system as follows: I" = (1 — A;)I?, where I° is the solar
irradiance before the disturbance and I} represent its new value,
while A;, represent the severity of disturbance and is set to be
0.1 (meaning the irradiance is decreased by 10%).

To further add transients, the load disturbance from the pre-
vious section has also been kept intact and to further mimic re-
alistic load uncertainty, we add some Gaussian noise to it also
as: P} = (1+ AL)P(z + wr (1), where wy(f) denotes Gaussian
noise with zero mean and standard deviation of 0.2A;. Under
these transient conditions, the system is initially stabilized with
only the primary control layer and then the proposed damping
controllers are also added on top of them.

The results are presented in Figs. 5 and 6. We can see that
with both the proposed WADC:s there is an improvement in sys-
tem oscillations. This can be verified from the plots of the slips
of all the power plants. Similarly, from Fig. 5 the oscillations
in the power output of synchronous machines have also been
damped out during transient periods. Note that, in Figs. 5 and
6, we compute the slip s, inverters relative angular speed w, and
DC-link voltages V. from the state vector using the following
equations [21]:

w()=1=kqy(P()=P"), Vae()=VEu (D), s()=(w—w(D)/w,

where k, is the droop constant of the power plant, P is real
power output of the power plant, while w. is the overall
weighted-average system frequency and is defined as [21, 22]:

_ Z,i1 wg(i)Hg(i)+Z§:1 a)x(j)Hs(j)"'ZlVZ] wyw(DH, (D)
SLH ) + 35 H() + XY, Hu(D)

We

with H,, H,, and H,, representing the inertial constants of syn-
chronous machines, solar, and wind power plant, respectively.
That being said, we can also notice that for both test systems,
there is a noticeable improvement in frequency nadir (the over-
all frequency dip or increase during the transient period). For
39-bus system, from Fig. 6 with only primary control layer after
disturbance the synchronous machines frequency rises upto al-
most 1.006pu while with proposed WADC:s it is limited only to
around 1.0019pu thus improving the overall system frequency
nadir. Similar results are achieved for the inverter-based re-
sources, we can see that there is a significant improvement
in the relative frequency nadir for both solar and wind power
plants. These results are also corroborated from Tab. 3 where
the overall weighted-average frequency deviation of the power
system is presented, we can see that for both test systems there
are significant improvements under all types of disturbances.

6.3. Discussion on model-based vs model-free feedback control
for the future power grid
Notice that in both proposed approaches the main differ-
ence lies in the fact that in the case of model-free design, the
controller only requires realtime information of state vector
x, which these days can be obtained accurately as there exist
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Figure 6: Comparative analysis under A; = —0.003 and A;; = 0.1 for 39-bus
test system: all synchronous generators slip and rotor frequency (above), slip
and relative speed of all solar power plants (below).

highly robust state estimation algorithms. These estimation al-
gorithms based on measurements received from a few PMUs
can accurately estimate all the states including the states of
solar/wind, composite loads, and synchronous machines [37].
While for the model-based approach, we not only need the in-
formation of state vector x but also accurate information about
the system (matrices A, B,,, and so on) in realtime, which can be
highly problematic for a larger power system and with high pen-
etration of uncertain renewables. On the other hand, although
the model-free approach seems reasonable for the future power
grid as knowledge of the system is not required, however, the
long training time, tuning of hyper-parameters, and no solid
theoretical stability certificate/guarantee of the learned policy
(since it merely solves an optimization problem and maximizes
the long term reward) can be problematic. In the case of model-
based approach, if there is a solution to Proposition 1, then,
there is a solid theoretical guarantee (based on the Lyapunov
stability notion) that obtained control policy will asymptotically
stabilize the perturbed system (or in other, words push the orig-
inal power system model back to its original steady state equi-
librium).

Furthermore, notice that, according to the control theory lit-
erature, the model-based feedback control approaches can eas-
ily be extended to other more robust feedback control designs
without adding significant complexities to the controller archi-
tecture, such as H,, or Le-type feedback controller design
which has shown to have superior performance [38, 39]. While
in the case of RL-based model-free designs, one can only maxi-
mize the long-term reward (since no information about the sys-
tem is available) then it might be even much more harder to
solve robust feedback controller (H., L and so on) design as
compared to their model-based counterparts.

Moreover, in the case of model-based designs, if the LMI-
based formulations (which are used in this paper) become nu-
merically unstable (or ill-conditioned, which they sometimes
become depending on the input system matrices)—see [40],
then, they can also be formulated as continuous-time alge-



Table 2: Comparison of Computational time between the proposed two ap-
proaches.

Time required to compute the
optimal control policy

model-based WADC |model-free WADC
2.2 seconds 6.28 hrs
53.2 seconds 8.32 hrs

Network

9-bus test system
39-bus test system

Table 3: Comparative analysis of the deviation of overall weighted-average
system frequency for the whole power system under various disturbances in
load and renewable generations.

Network| Disturbance (@~ wo)

Primary [model-based| model-free

AL =07 0.015 0.004 0.0036

9-bus AL =-0.5 -0.013 | -0.0037 | —-0.0038

A1=0.6, A;,=0.1 | 0.019 0.0027 0.0029

Ap=0.003 [2.6x1073| 1.3x107 | 1.9x107°

39-bus | A;=-0.001 |-1x107*| -2x107 | —2x107°

A;=0.04, A;=0.1|7.9x1073| 1.9x10™* | 2.1x107*

braic Riccati equations (CAREs) formats which can be solved
highly efficiently and there exist well-built off-the-shelf soft-
ware’s/tools available to solve these types of feedback control
problems easily [24, 41, 42]. In short, these are interesting
future research avenues about how to efficiently and tractably
solve (similar to the model-based approach) the optimal feed-
back (and robust optimal feedback) control problems via RL-
based model-free approach for larger detailed renewables heavy
power system models.

7. Concluding Remarks

In this paper, we solve the optimal feedback control problem
for renewables heavy power systems with detailed solar, wind,
composite load dynamics. Two distinct approaches are used:
one is based on completely model-free design using DDPG-
based reinforcement learning while the second methodology
is based on model-based approach via Lyapunov and control
theory. The designed WADCs are tested on 9-bus and 39-bus
IEEE system, the results show that by adding additional feed-
back control loop the overall system transient stability after dis-
turbance can significantly be improved. Moreover, thorough
comparative analysis and discussion have also been carried out
showcasing various pros and cons of using model-based vs
model-free WADCs for future renewables heavy power grid.

The limitations of the presented work are as follows: Firstly,
for the both proposed WADCs, the designed control policy is
dense (requires all the power plant to take part in the control
action) and not sparse. Secondly, both approaches does not take
into account delays and/ or cyber-attacks in the communication
network. Lastly, for the proposed model-free WADCs, the long
training time and no solid theoretical stability guarantee (sim-
ilar to its model-based counterpart which guarantees stability
using Lyapunov criterion) are the drawbacks. Future work will

10

be about addressing the aforementioned limitations and design-
ing stability-aware tractable model-free WADC.
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Appendix A. Details of considered power system model

In the NDAE (1), x,(f) € R™ is given as:

,
0=V, Vg I, Iy | (A.1)

where Vim = {Vim,Jieny represent the imaginary part of voltages
and Vre={Vre,}ien are the real parts of voltage phasors. Sim-
ilarly, Itm = {Iim,}ien> IRe = {IRre, }iens are the imaginary and real
parts of current phasors. The input vector u(f) € R"™ lumps the
control inputs for all the power plants and is given as:

.

u(t) = [uf uj uy (A.2)
T

where ug(t) = [PT,T V;T] € R?C represents the control in-

puts of synchronous generators with V; denoting voltage set

points of AVRs of the generators and P representing turbine

valve positi -poi imi = [p7 v
position set-points. Similarly, ug(f) = [Ps vV ] €

R2S and uy(f) = [P:‘VT vir " € R2V are the control inputs for
solar and wind power plants with P§, P, and V7, V; denoting
active power and voltage set-points for solar and wind-based
power plants, respectively.

Also, in the system dynamics (1) the disturbance vector
w(t) € R™ is modeled as w(r) = [IT P]|" in which I, is
the solar irradiance (W/m?) and P; represent the system active
power load demand.

Moreover, the vector x,(f) € R™ in (1) lumps the dynamic
states of traditional power plant, solar, wind-based plant, and
loads which is expressed as:
xq(0) = [xg X, Xy xL]T (A.3)
where x¢(7) represents the dynamic states of the conventional
power plant, xg(#) lumps dynamic states of solar power plant,
xw(t) contains wind power plant states, and x,,(¢) denotes the
dynamic states of the motor-based loads.

That being said, we model the conventional/traditional power
plant via a comprehensive 9”-order dynamical model repre-
senting generators swing equations, excitation system, gover-

nor, and turbine dynamical models. Then, x(¢) € R% is repre-
sented as follows [21, 23]:

x6(t) = |67 @] By E] E] Ty, Pl rivl|’

where 8, denotes the rotor angle of the generator, w, is the gen-
erator rotor speed, Egq is the field voltage of the generator, Eg,



E, are the transient voltages of the generator along g-axis and
d-axis, respectively, Ty represents torque of the prime mover
of the turbine, P, denotes turbine valve position, while r; and
v, are the stabilizer output and amplifier voltages, respectively.
For further detailed explanations about the generator dynamics
used in this study readers are referred to [23].

In (A.3), we model the solar plant dynamics via 12"-order
dynamical system representing solar plants working in grid-
forming mode as detailed in [20, 21, 31]. The complete dy-
namical equations modeling solar farms represents, DC side
dynamics modeling PV arrays, DC link, current/voltage reg-
ulators dynamic equation, and AC side dynamics representing
LCL filter equations, and AC/DC converter dynamics. That be-
ing said, the state vector for the solar plants xs(f) € R'?S can be
written as follows:

.
_[pT PTPOT STT ;T T T T T T T
xs (1) = [Edc Py Qg 6 iy igeVae Vo Zar Zgr Zdo ZqO]

where Eq4. denotes the energy stored in the DC side capacitor,
P; is the real power while Q. represents the reactive power in-
jected by solar plants to the power grid, d; is the solar plant rel-
ative angle, igr, igr, var, Vqr are the dg-axis current and voltages
from the solar power plants at their terminal bus, respectively,
while z4f,24f,24d0,2d0 are the dynamic states of voltage and cur-
rent regulators along dq-axis, respectively. Interested readers
are referred to [21, 31] for further in-depth explanations of the
solar power plant model considered in this study.

Similarly, the dynamics of wind power plants have been
modeled via 13”-order dynamical system as detailed in [22,
36]. The overall model describes double-fed induction gener-
ator (DFIG)-based wind turbine acting in a grid forming-mode
and thus the state vector for the wind plants xy () € R'*Y can
be expressed as follows:

xw(f) = [6; E] il vl P] (A.4)

T T T
dew “w

;E z;irc zwf Zwo
where d,, represents the inverter relative angle of the wind plant,
E ., is the energy stored in the DC link capacitor of the wind
plant, iys = [i;Wf igwf T denotes the inverter output current at
the terminal bus along dg-axis, similarly vy, = [vgwc vgwc]T
represents the dqg-axis AC capacitor voltages, P,,, Q,, respec-
tively denote the real and reactive power output from the wind
power plant to the power grid, while zqc, Zwr = [2g,, Zqw]">
Zwo= [ngO chWO T, are the states of the current and voltage regu-
lators of the wind power plant along dq-axis, respectively. Fur-
ther details explanations about the wind power plants used in
this work can be found in [22, 36].

Furthermore, in (A.3) x(¢) € R denotes the speed W, (2)
of the motor-based load and is given as [43]:
(Te, = Tmy)

o, (1) = (A5)

2Hy,

i

where i € L, T,, represent electromagnetic torque of motor, Ty,
is mechanical torque while Hy, is the inertia constant of the
motor-based load [43]. The constant impedance/power-based
loads satisfy the following equations [44]:

LZ+V,=0 (A.6a)

12

(Pp, + Q) +conj(I,)V,, =0 (A.6b)

where i € L, Z; represent the impedance of the load, P, Q,,
are the real and reactive power of constant power loads, the
term conj denotes the complex conjugate operator while 7, V,,
1,,, Vp, are the current and voltage phasors of buses connected
to constant impedance and constant power loads, respectively.
This completes the modeling of differential equations (1a) of
the power system NDAE model (1).

The algebraic constraints (1b) model the current balance
equation between all the power plants and loads and thus can
be written as [23]:

Ic(0)] [Yoc Yos Yor Yow|[Ve()
Is()| _|Ysg Yss Ysi Ysw||Vs)|_, (A7)
I (0 Yic Yis Yo Yw || V(0 '
Iy (1) Ywe Yws Ywr Yww [[Vw(®)
S~—— S——
10) Y V)

where V(¢), I(t) are the net voltages and currents and Y rep-
resents the system admittance matrix. In (A.7) the terms I=
{Ire,Yicg + JUim Yiecg VG = {Vre;}ieg + J{Vim }ieg. denote real and
imaginary parts of synchronous generators terminal buses cur-
rent and voltage phasors, respectively. Similarly, I, Iy, Iy
and Vg, Vy, V. denote current and voltage phasors of all solar,
wind-based power plants, and loads, respectively.

Figure A.7: Diagram of the 39-bus test system with PV plants at Buses 30, 31,
36, 37, wind-based plants at Buses 32, 34, conventional power plants at Buses
33, 35, 38, 39, and a motor-based load at Bus 14.
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Figure A.8: Diagram of the 9-bus system with a PV-based plant at Bus 2, a
wind plant at Bus 3, steam-based plant at Bus 1, and a motor-based load at Bus
8.
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