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Abstract

The online k-taxi problem generalizes the k-server problem, requiring servers to move between source-sink
pairs in an n-point metric space, and the cost is the overhead incurred. In the deterministic setting, the
problem has a lower bound on the competitiveness of Ω(2k), showing that it is significantly harder than k-
server. Randomized algorithms are known with competitiveness O(2k log n) (by Coester and Koutsoupias),

O(2O(
√

log∆ log k) log∆ n) (by Buchbinder, Coester and Naor), where ∆ is the aspect ratio of the n-point metric
space), and O((n log k)2 log n) (by Bubeck, Buchbinder, Coester, and Sellke). The best lower bound known is
Ω(log2 k) which is inherited from the k-server problem, obtained in a recent breakthrough by Bubeck, Coester,
and Rabani, showing a large gap in our understanding of problems that go slightly beyond the metrical task
system framework.

An open question left by these works was whether there is a randomized algorithm for the the k-taxi
problem with a competitive ratio that is poly-logarithmic in all the parameters. We answer this question
in the affirmative in this paper. For our work, we give a covering relaxation for k-taxi on HSTs, which is
obtained from the (non-covering) min-cost flow formulation of the problem. The constraints of our LP have
compositionality properties that we use to develop a hierarchical primal-dual algorithm defined on the subtrees
of the HST.

1 Introduction

In the online k-Taxi problem, we are given an n-point metric space and an online sequence of requests (sq, tq),
each of which comprises a source sq and a sink tq in the metric space. There are k taxis available to the algorithm,
and to serve request (sq, tq), the algorithm must move a taxi to source sq and then transport it to sink tq before
the arrival of the next request. The objective of the algorithm is to minimize the total movement cost of the taxis.
The famous k-Server problem corresponds to instances of k-Taxi where sq = tq for every request (sq, tq). There
are two versions of k-Taxi depending on whether the movement cost of taxis while serving requests is included
in the objective. In the easy version of the problem, these costs are included, and there is a simple reduction
to k-Server with a constant factor loss in the competitive ratio. The more interesting case is the hard version of
the problem, which just minimizes the overhead involved in the process—i.e., the movements costs of taxis while
serving requests is not included. In fact, for deterministic algorithms this problem is exponentially harder than
k-Server: the competitive ratio for k-Taxi is at least 2k − 1 [CK19] whereas that for k-Server is between k and
2k − 1. In the rest of the paper, when we talk of k-Taxi, we mean the hard version of the problem.

The k-Taxi problem was proposed by Karloff and formalized by Fiat, Rabani, and Ravid [FRR90] as a
natural generalization of the k-Server problem. Coester and Koutsoupias [CK19] gave a randomized algorithm
for the k-Taxi problem with a competitive ratio of O(2k log n). Their main tool was a new (2k − 1)-competitive
randomized algorithm in hierarchically separated trees (HSTs). The result for general metric spaces then follows
using standard embedding techniques. They also showed that their competitiveness guarantee for HSTs was true
even against adaptive adversaries; this (non-constructively) implies a 4k-competitive deterministic algorithm for
HSTs. Bubeck, Buchbinder, Coester, and Sellke took a different approach of generalizing the k-Taxi problem
to a broader problem called metrical service systems under transformations (T-MSS), and gave an algorithm
for the latter problem [BBCS21]. As a corollary of their T-MSS result, they obtained a competitive ratio
of O((n log k)2 log n) for the k-Taxi problem. A third approach was proposed by Buchbinder, Coester, and
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Naor [BCN21]. Using ideas from the classical double coverage algorithm for k-Server, they obtained a k-Taxi

algorithm with a competitive ratio of 2O(
√
log∆ log k) log∆ n, where ∆ is the aspect ratio of the metric space. While

this improves the dependence on (n, k) to subpolynomial, it comes at the cost of a (subpolynomial) dependence
on the aspect ratio ∆. To summarize, the previous upper bounds are

O(2k log n), O((n log k)2 log n), and 2O(
√
log∆ log k) log∆ n.

These three results are complemented by a (randomized) lower bound Ω(log2 k), which follows from the recent
breakthrough result of Bubeck, Coester, and Rabani for the k-Server problem [BCR23]. This shows a large gap in
our understanding of randomized algorithms for k-Taxi and related problems, which do not fall into the standard
metrical task system framework, versus k-Server, which does.

These results raise the question: is there a randomized algorithm (against oblivious adversaries) for the k-Taxi

problem with poly-logarithmic competitive ratio, or is the optimal competitiveness qualitatively larger for k-Taxi

than for k-Server (as in the deterministic case)? We make substantial progress on this question and show:

Theorem 1.1. (Randomized Algorithm for k-Taxi) There is an O(log3 ∆·log2(nk∆))-competitive random-
ized algorithm for the k-Taxi problem on any n-point metric space with aspect ratio ∆.

We prove this via Theorem 1.2 below, which gives a fractional solution for k-Taxi on HSTs.

Theorem 1.2. (Fractional Algorithm for k-Taxi on λ-HSTs) There is an O(H2 log(nk∆))-competitive
fractional algorithm for the k-Taxi problem using ≤ k + 1/2 servers for any instance on a λ-HST with height H
and λ ≥ 10H.

Any n-point metric space with aspect ratio ∆ can be probabilistically embedded into λ-HSTs with height
H = O(logλ ∆) and expected stretch O(λ logλ n) [FRT04]; we set λ = O(log∆). Then we give a rounding
algorithm in Section 6 that is an adaptation of existing rounding algorithms for k-Server from [BBMN15] and
[BCL+18]; this shows how to obtain Theorem 1.1 from Theorem 1.2.

An interesting direction for research is to remove the dependence on log∆ in our bounds, thereby obtaining
the qualitatively best bounds known for k-Server. Nonetheless, we note that no poly-logarithmic guarantees were
previously known for k-Taxi in metric spaces with polynomially-bounded aspect ratios; even O(poly(k log n))
competitiveness was not known for such metrics, let alone for metrics with ∆ = exp(k), which is the case for some
lower-bound examples.

1.1 Our Techniques A central contribution of our work is the formulation of a new linear programming
relaxation (LP) for the k-Taxi problem. To the best of our knowledge, all previous algorithms for k-Taxi have
taken a combinatorial approach, such as variants of the double cover algorithm, or those based on the work
function algorithm. Unfortunately, even for the special case of k-Server, these combinatorial algorithms have not
succeeded in achieving a poly-logarithmic competitive ratio. We make a departure from this line of work and
design an LP for the k-Taxi problem, which we describe next.

Offline, the k-Taxi problem can be written as a special case of the min-cost flow problem on a time-expanded
metric space. Then, the standard LP for min-cost flow on this time-expanded graph gives a valid LP relaxation
for the k-Taxi problem. The difficulty, however, is in obtaining a competitive fractional solution to this LP using
an online algorithm because (a) the min-cost flow LP is not a covering LP (which is essentially the broadest class
of LP we can solve efficiently), and (b) there are up to O(nT ) variables in the constraints, and the competitive
ratio usually depends on the sparsity of the constraints. Therefore, the challenge in solving the k-Taxi problem, as
also special cases such as k-Server and (weighted) paging that were solved previously using LP relaxations, is to
obtain the “right” set of constraints in the LP that sufficiently constrain a feasible solution to be able to recover
a valid solution to the k-Taxi instance, while also being solvable online. Our LP (obtained by reinterpreting
the min-cost flow LP and selecting a subset of constraings from it) addresses the first main challenge. THese
constraints are still not sparse, so we need some more care to overcome the second issue—we discuss the ideas
behind both steps below.

This approach of using a covering LP relaxation was previously used for the k-Server problem in [GKP21],
who also gave a general hierarchical composition framework for solving such LP relaxations in HSTs. However, as
mentioned previously, k-Server and k-Taxi have structural differences, and this also manifests in the exponential
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gap in the deterministic competitive ratios of the two problems—hence we need to introduce new ideas to overcome
them. We now recall the main ideas behind the k-Server LP, and then discuss the differences and the the derivation
of the k-Taxi LP from first priciples.

LP relaxation for k-Server [GKP21]. This relaxation has variables of the form x(v, t), where v is a node
of the HST and t is a time, which denote the number of servers that traverse the edge joining v to its parent p(v)
at time t. Now consider a set A of (k + 1) leaves along with one request at each of these leaf nodes. At least
two of these requests must be served by the same server. Say the corresponding requests are at times q1, q2 at
leaves ℓ1, ℓ2 ∈ A, with q1 < q2. So the same server is present at ℓ1 at time q1 and at ℓ2 at time q2 (note that it
could visit some arbitrary subset of leaves in the intervening period). Let P denote the path in the tree from ℓ1
to the least common ancestor v of ℓ1 and ℓ2, with the edges (from bottom to top) being e1, . . . , er. Now, if we
partition the time interval (q1, q2] into r sub-intervals I1, . . . , Ir, then it must be the case that the server traverses
one of the edges ei during the corresponding interval Ii. This observation can be codified as a covering constraint
involving variables x(v, t), for v being a vertex in the minimal sub-tree containing A, and t being a suitable time
depending on the request arrival times at A.

Our LP relaxation for k-Taxi. Our approach for k-Taxi also involves writing a suitable LP relaxation.
However, unlike k-Server, where all server movements are paid for in the LP objective, there are two types of
server movement in k-Taxi: with or without passengers. Only movements of the second type form part of the LP
objective and thus the variables x(v, t) only correspond to this type of server movement. More precisely, using
the notation above, recall that in the case of k-Server, we know that the server would traverse each edge of path
P at some time during (q1, q2], and so we could write a suitable covering relaxation. Now, in k-Taxi, even though
the server will traverse this path, it might do so while carrying passengers from the source to the sink of a request
(we call this short-cutting). This type of movement is not captured by the x(v, t) variables, and hence, a covering
constraint written on these variables for this path would be invalid. Indeed, suppose there is a server serving two
requests q1, q2, where the first request has its sink at leaf ℓ1 and the second one has its source at ℓ2. Further
assume that there is another request q between q1, q2 such that the source of q is close to ℓ1 and the sink of q is
close to ℓ2. Then the server can go from ℓ1 to ℓ2 at a low cost by short-cutting through the request q.

Let us fix a vertex v and consider the subtree Tv under it in the HST, and fix any time t. Now, the requests
after time t can be partitioned into four groups depending on whether the source and sink location is in the
subtree or outside it. Of these, requests where both the source and sink vertex are in the subtree, or both are
outside, do not impose any constraints on server movement from v to its parent p(v) on the (v, p(v)) edge. We
ignore these requests in the rest of the discussion.

We are left with two types of requests: those with only the sink node in Tv and only the source node in Tv.
Let us call these requests of type A and type B respectively. If a single server serves two requests of the type A,
any feasible solution would need to move the server on the (v, p(v)) between serving these two requests. More
generally, if there are k servers and k + r requests of type A, a feasible solution would incur r movements on
the (v, p(v)) edge. But, if these requests of type A are punctuated by requests of type B, then the server gets a
“free ride” out of subtree Tv when it is transported to the sink of this request (outside the subtree) at zero cost.
Hence, in general, a valid constraint on the (v, p(v)) edge is given by the difference between requests of type A
and type B. To encode constraints of this form, we use a system of timestamps on the nodes of the HST. Based
on these timestamps and the difference in the number of requests of the two types described above in relation to
these timestamps, we derive a valid set of constraints on the server movements out of subtrees in the HST (i.e.,
on the edge from the root of the subtree to its parent) captured by the variables x(v, t).

A two-step process for serving requests. Next, we describe how we simulate the movement of one unit
of server mass from the source to the sink of a request. We do this in two steps. In the first step, we increase
the server mass at the sink node by one unit and correspondingly decrease the server mass as the source node
by one unit. This might lead to a negative server mass at the source node. In the second step, we restore the
non-negativity of server mass at the source node by moving server mass from other nodes to the source node.1

Server movements in the second step are captured by the x(v, t) variables and define the constraints and objective
of our LP. This two-step process creates an additional complication: we need to ensure that the additional server

1For technical reasons, we do not insist on strict non-negativity of server mass at a node, and allow the server mass to the slightly

negative, but this is not crucial for this high level description.
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mass situated at the sink at the end of the first step is not transferred back to the source in the second step
because this would not represent a valid servicing of the request. To this end, we create a dummy holding node
at the sink from which server is not allowed to move out in the second step. At the end of the second step, we
merge the holding node at the sink with the actual sink node since the server mass at the sink is now allowed to
move to any other location to service a future request.

Truncation and composition of constraints. One key feature of the algorithmic framework in [GKP21]
is the notion of local LPs: for each internal node v, we obtain a new local LP by truncating each constraint of the
actual (i.e., global) LP relaxation. We explain this concept informally here (see... for more technical details). The
covering LP relaxation in [GKP21] has a constraint for each subset A = (v1, . . . , vh) of leaves of the underlying
tree and each sequence (t1, . . . , th) of request times at these leaves. The covering constraint is of the form:

∑

v∈TA

∑

t∈S(v)

xv,t ≥ k − |A|+ 1.(1.1)

Here TA is the sub-tree induced by leaves A and the root, and S(v) is some set of timesteps associated with each
vertex v. (This subset S(v) just depends on the coordinates of the vectors (v1, . . . , vh), (t1, . . . , th) corresponding
to vertices of A below v). Now a truncated constraint at a vertex w is obtained by considering the variables on
the LHS that correspond to the sub-tree below w. More precisely, the truncated constraint at a vertex w is given
by:

∑

v∈TA(w)

∑

t∈S(v)

xw,t ≥ kw − |Aw|+ εw,

where TA(w) is the sub-tree of TA below w, kw is the number of servers below w at a certain time (which is the
maximum of all the ti below w), |Aw| is the set of vertices of A below w, and εw is a small parameter depending
on number of nodes below w. The key observation is that given the actual constraint (1.1), the corresponding
truncated constraint can be written down in this mechanical manner. Note that these are not valid constraints
(since they are defined based on the algorithm’s behavior), but they help us keep track of the server mass movement
in the tree.

This gives the following observation: given the truncated constraint at a node w, we can write down the
corresponding truncated constraint at any child u of w. Conversely, composition asks the following: given the
truncated constraints at each child of a node w, can we write the corresponding truncated constraint at w?
Suppose the children of w are u1, . . . , uh, then the truncated constraint at ui depends on the part of the vectors
(v1, . . . , vh), (t1, . . . , th) which corresponding to nodes in A below ui. So intuitively it may seem that given these
partial vectors, we can concatenate them to infer the truncated constraint at w. However, in order to carry out
this plan, some additional conditions are needed. [GKP21] achieved this by re-writing the constraints in a different
form. We show that a similar composition rule holds here; in fact, our composition simplifies and extends the
presentation of [GKP21]: each truncated constraint a node u is simply given by a sequence of times at each
node in the subtree below u. Given a subset X of children of v and a truncated constraint for each of them, the
composed constraint at v is obtained by just taking the concatenation of the corresponding time vectors at each
node in X (and using a default value for other nodes in the sub-tree below v). This composition illustrates the
main idea behind the local LPs: the movement within a subtree rooted at node v is charged to the local LP at
v. Moreover, in our analysis we relate the duals for each local LP to those of its children, thereby transferring
this account scheme up the tree, until it reaches the root. At the root, the local LP constraints are indeed valid,
and hence the relationship between the primal and dual movements that we maintain inductively up the tree
completes our analysis.

Although these truncated constraints (at a node v) are simple to state (and the composition is even simpler
than before), analysing them requires rephrasing them in terms of server movement across the sub-tree below v.
A major subtlety, which was not present in [GKP21], is that server mass can enter the subtree below v not only
through the parent edge of v, but also through the short-cutting process (where one unit of server mass directly
goes from a source request to the corresponding sink request). This requires additional care in the analysis of the
algorithm.

Controlling the size of the LP. In standard online algorithms for covering problems, the competitive ratio
depends on the maximum number of variables appearing in any constraint. For our LP relaxation, a constraint
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could have T variables, where T is the length of time horizon, and so the competitive ratio could potentially
depend on log T . [GKP21] get around this issue by showing that each constraint only needs to involve requests
which arrived in the recent past (polynomial in the size of the HST). This argument critically uses the fact that
servers can enter the subtree below a vertex v only through the edge joining v to its parent. This fact is no longer
true for k-Taxi because of short-cutting. Instead, we show that when a covering constraint has a lot of variables,
the optimal value must have also increased significantly. In such a scenario, we restart the online algorithm from
scratch (see §5.4 for details). This ensures that the size of each covering constraint in our LP remains polynomially
bounded in the size of the HST.

1.2 Roadmap In §2, we describe the covering LP relaxation for k-Taxi, and explain how it derives from a flow-
based LP formulation. In §3 we define the notion of “truncated” constraints used to define local LPs at the internal
nodes of the HST, and show how constraints for the children’s local LPs can be composed to get constraints for
the parent LP. We then give the algorithm and analysis for the k-Taxi problem in §4 and §5 respectively. The
rounding algorithm is given in §6.

1.3 Related Work The k-Taxi problem was originally proposed by Karloff, who gave a competitive algorithm
for k = 2 (see [FRR90]). Fiat, Rabani, and Ravid [FRR90] introduced the k-Taxi problem for general k; they
also formally distinguished between the easy and hard versions, giving a competitive algorithm for the easy
version by adapting their k-Server algorithm and stating the hard version as an open problem. Coester and
Koutsoupias [CK19] established the 2k − 1 deterministic lower bound for the hard version and also gave an
O(2k log n)-competitive randomized algorithm for the problem; all subsequent works are cited in the introduction.
A stochastic version of the easy k-Taxi problem was studied as the Uber problem in [DEH+17]. We note that
previous results for (hard) k-Taxi rely on combinatorial techniques such as double cover and work functions, based
on which a better-than-k competitive algorithm is not known even for the special case of k-Server. We take a
different approach in this paper by designing an LP relaxation for the k-Taxi problem; this change of approach
was crucial in breaking through the barrier of k for the k-Server problem as well.

Early work on the closely related k-Server problem focused on deterministic algorithms [FRR94, KP95], and
on combinatorial randomized algorithms [Gro91, BG00]. This problem was also studied for special metric spaces,
such as lines, (weighted) stars, trees: e.g., [CKPV91, CL91, FKL+91, MS91, ACN00, BBN12a, Sei01, CMP08,
CL06, BBN12b, BBN10]. Works obtaining a poly-logarithmic competitive ratio are more recent, starting with
[BBMN15], and more recently, by [BCL+18].These works, and indeed most randomized algorithms for k-Server,
start with algorithms for instances defined on HSTs, and then use metric embedding techniques to extend the
result to general (finite) metric spaces. A new and remarkable LP relaxation was introduced by [BCL+18], who
then use a mirror descent strategy with a multi-level entropy regularizer to obtain the online dynamics. [BGMN19]
gives an alternate projection-based perspective on [BCL+18]. Unfortunately, these LP relaxations do not appear
to have natural extensions to the k-Taxi problem.

Our work builds on the approach of [GKP21], who gave a novel covering LP relaxation for the k-Server problem
on HSTs and devised an online fractional set cover-style algorithm for both k-Server. The competitive ratio of
their fractional solution was O(log2(n∆)), where ∆ is the aspect ratio of the metric space. A major contribution
of this work is the development of a new covering LP relaxation, which allows us to extend the framework from
[GKP21] for k-Taxi; moreover, we need new ideas to go from log T to log∆k, over and above those from [GKP21].

2 A Covering LP Relaxation for k-Taxi

The k-Taxi problem can be formulated as a min-cost flow instance, so it is not surprising that we can write a LP
relaxation for it. However, we want our relaxation to be a covering LP, since covering LPs are essentially the most
general class we know how to solve online. Moreover, as we mentioned in the introduction, the k-Taxi problem
has an unusual cost structure (where some of the moves are free and others incur costs); this poses a challenge.
Our LP relaxation identifies a set of constraints implied by the min-cost flow formulation (but are not equivalent
to it), which nevertheless suffice to give us a good online algorithm.

2.1 Notation and Preliminaries We consider the k-Taxi problem on a hierarchically separated tree (HST)
T having height H, rooted at node r and having n leaves. Define the level of a node as its height, with the leaves
at level 0, and the root at level H. For a non-root node v, the length of the edge (v, p(v)) going to its parent
p(v) is λlevel(v), and is denoted by cv. This means that leaf edges have length 1, whereas edges from the root to
its children have length λH−1. We assume that λ ≥ 10H; we set λ,H = O(log∆). For a vertex v, let χv be its
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children, Tv be the subtree rooted at v, and Lv be the leaves in this subtree. Let nv := |Tv|.

Request Times and Timesteps. Let the request sequence be R := r1, r2, . . ., where each request rq ∈ R

is a source-sink tuple (sq, tq) for some leaves sq, tq and distinct request time q ∈ Z+. A solution must ensure that
a server/taxi visits sq at time q, and then this server gets transferred to tq at no additional cost. Between any
two request times q and q + 1, we define a collection of timesteps (each denoted by τ or t)—these timesteps take
on values {q+η · j} for some small value η ≥ 0 and j = 1, 2, . . .; each request arrival time q ∈ Z is also a timestep.
We use T to denote the set of all timesteps. Given a timestep τ , let ⌊τ⌋ refer to the request time q such that
τ ∈ [q, q + 1). The notion of fractional timesteps will not be crucial for the flow formulation, but will make the
description of our subsequent online algorithm cleaner. Indeed, our online algorithm will transfer fractional server
mass to sq in tiny amounts, and we can keep track of this process by designating a unique timestep with each
such transfer.

2.2 Min-cost Flow formulation for k-Taxi We start by describe this formulation of the off-line problem
using min-cost flows. Consider an instance of the k-Taxi problem consisting of a sequence of N request times.
Recall that request rq is given by a pair (sq, tq) of points in T, and a time t. The underlying graph in the flow
formulation is a time-indexed graph, where we have a copy of the vertex set V for each timestep T. (As mentioned
above, we could give the flow formulation just by having a copy Vq of the vertex set V for each request time q ∈ Z,
but the fractional timesteps in T will be useful subsequently.) We assume (w.l.o.g.) that for each request q, a
server arrives (or is already present) at sq at timestep q and is present at tq at timestep q + 1.

The vertex set V (G) of the time-expanded graph G has one copy of V for each timestep τ , plus special source
and sink vertices sG and tG respectively, i.e.,

V (G) := {(v, t) | v ∈ V (T), t ∈ T} ∪ {sG, tG}.

The directed edges E(G) in G are of three types (there are no edge-capacities):
(i) cost-0 edges {(sG, (v, 1)), ((v,N), tG) | v ∈ V (T)} connecting the source and sink to the first and last copies

of each node,
(ii) cost-0 edges {((v, t), (v, t+)) | v ∈ V (T), t ∈ T} between consecutive copies of the same vertex (here t+

denotes the timestep after t), and
(iii) edges {((v, t), (p(v), t)) | v ∈ V (T), t ∈ T} of cost cv between each node and its parent, and {((v, t), (u, t)) |

v ∈ V (T), u ∈ χv, t ∈ T} of cost zero between a node and its children. (This captures that moving servers
up the tree incurs cost, but moving down the tree can be done free of charge.)

For each vertex w ∈ V (G), we define its supply as follows. The source sG has k units of supply, and sink tG has
k units of demand (or equivalently, a supply of −k). For each request q, the node (sq, q) has one unit of demand
(and hence −1 supply), and node (tq, q + 1) has one unit of supply. All other vertices in V (G) have zero supply.

The integrality of the min-cost flow polytope implies that an optimal solution to this transportation problem
captures the optimal k-Taxi solution. Moreover, the max-flow min-cut theorem says that if {x(e)}e∈E(G) is a
solution to this transportation problem, then for all subsets S ⊆ V (G) we have

x(∂+(S)) ≥ supply(S).

Thus we can frame the k-Taxi problem as the following covering problem:

min
∑

v∈V (T)\{r}

∑

τ∈T

cv · x((v, τ), (p(v), τ))(LP:flow)

s.t. x(∂+(S)) ≥ supply(S) ∀S ⊆ V (G)(2.2)

x(e) ≥ 0 ∀e ∈ E(G).

Moreover, we can use techniques from online covering LP to maintain a fractional solution to the above
LP [BN09, GN14]. However, two issues arise:

(a) At some timestep τ the online LP solution may raise the variable x((v, τ ′), (p(v), τ ′)) corresponding to
some timestep τ ′ ≪ τ , and it is not clear how the online algorithm should process this movement of mass
“occurring in the past”.

(b) Moreover, the constraints in (2.3) may have many variables, as many as the length N of the input: this can
cause the competitive ratio of the online LP solvers to depend on logN , which could be much larger than
log(n∆): we want to avoid any dependence on the time horizon N .
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Our next contribution is to carefully select a subset of these covering constraints that avoids the problems above,
which are nonetheless rich enough to give an online fractional solution (and by rounding, an integral solution) to
the k-Taxi instance. We describe this covering LP relaxation now.

2.3 The Covering LP Relaxation The covering LP relaxation (M) we use for k-Taxi is obtained
from (LP:flow) by selecting a suitable subset of the constraints (2.2) using the notion of monotone vectors of
timesteps.

Definition 1. (Monotone Vector τττ) Let τττ ∈ T|V | be a vector of timesteps, with one coordinate τu for each
node u in the tree T. The vector τττ is monotone if τu ≤ τp(u) for all non-root nodes u.

Given such a monotone vector τττ , consider the following subset Sτττ of V (G): we add tG to Sτττ . For each
u ∈ V (G), we add vertices (u, τ), τ > τu, to Sτττ . Thus,

Sτττ := {tG} ∪
⋃

u∈V (G)

{(u, τ) : τ > τu}.

Our LP relaxation M is obtained by adding the constraint (2.2) corresponding to Sτττ for each monotone vector
τττ . In the rest of this section, we interpret the the terms on both sides of constraint (2.2) for such a set Sτττ . To do
this, define two subsets of requests based on any monotone vector τττ as follows:

• P (τττ) is the set of requests q for which ⌊τtq⌋ ≤ q, and
• N(τττ) is the set of requests q for which ⌊τsq⌋ < q.

Observe the differences in the two definitions: the latter is defined using τsq instead of τtq , and moreover it uses
a strict inequality. These differences will be crucial for our LP. To get some intuition for the strict inequality,
consider the special case of the k-Server problem where sq = tq for all q: here |P (τττ)| − |N(τττ)| equals the number
of locations u which receive a request exactly at time τu. If we choose τu at each leaf u to equal a request time
at that leaf, this makes |P (τττ)| − |N(τττ)| = n. Moreover, we need the asymmetry between sq and tq in the setting
in k-Taxi.

Given these definitions, let us reinterpret constraint (2.2): we first consider the RHS.

Claim 2.1. For a monotone vector τττ , we have supply(Sτττ ) = |P (τττ)| − |N(τττ)| − k.

Proof. The supply of tG is −k. Now consider a request q. The vertex (tq, q + 1) ∈ Sτττ iff ⌊τtq⌋ ≤ q, which is same
as the condition that q ∈ P (τττ). Similarly, the vertex (sq, q) ∈ Sτττ iff q ∈ N(τττ). Since each of the vertices (tq, q+1)
has +1 supply, and each of the vertices (sq, q) has −1 supply, the desired result follows.

Next we look at the LHS of constraint (2.2) for Sτττ . For brevity, we use x(v, τ) to denote x((v, τ), (p(v), τ));
given an interval I of timesteps, we use x(v, I) to denote

∑

τ∈I x(v, τ)).

Claim 2.2. Let τττ be a monotone vector. Then,

x(∂+(Sτττ )) =
∑

v∈V (T)\{r}

∑

τ∈(τv,τp(v)]

x(v, τ) =
∑

v∈V (T)\{r}
x(v, (τv, τp(v)]).

Proof. Suppose an edge e = ((v, τ), (v′, τ ′)) ∈ ∂+(Sτττ ). We know that τ ′ > τp(v) ≥ τv. Three cases arise:
• (v′, τ ′) = (v, τ+): Since τ+ > τ > τv, (v, τ

+) ∈ Sτττ as well. Therefore, e /∈ ∂+(Sτττ ). Thus, this case cannot
occur.

• v′ is a child of v: In this case, τ ′ = τ . But then, τ = τ ′ > τp(v) ≥ τv. But then, (v′, τ ′) ∈ Sτττ as well, a
contradiction.

• v′ = p(v), τ ′ = τ : For this to happen, (p(v), τ) should not lie in Sτττ , i.e., τ ≤ τp(v).
The above observations show that the edge e = ((v, τ), (v′, τ ′)) ∈ ∂+(Sτττ ) iff τ = τ ′ and τ ∈ (τv, τp(v)]. This proves
the desired result.

Using Claims 2.1 and 2.2 gives our new relaxation for k-Taxi, which we use in the rest of the paper.

min
∑

v∈V (T)\{r}

∑

τ∈T

cv · x(v, τ)(M)
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s.t.
∑

v∈V (T)\{r}
x(v, (τv, τp(v)]) ≥ |P (τττ)| − |N(τττ)| − k for all monotone vectors τττ(2.3)

x(v, τ) ≥ 0 ∀v ∈ V (T) \ {r}, τ ∈ T.

3 The Local LPs: Truncation and Composition

In addition to the main LP relaxation M, we can write a version of the LP for each subtree that is rooted at some
internal vertex v of T. (We call this the local LP Lv for vertex v; the local LP for the root r contains a subset of
constraints from the global LP M.) These local LPs look fairly similar to M, with some crucial differences: the
obvious one is that the monotone vectors are restricted to vertices in the subtree Tv.

A very important—and unusual—feature is that each non-root local LP is itself defined based on our
algorithm’s state, and not just the problem instance. Consequently, the constraints of these local LPs are not
necessarily valid for the original k-Taxi instance (with the exception of Lr, which contains constraints from M).
On the other hand, we get an all-important compositionality property : for each node, the constraints of the local
LPs for v’s children can be composed together to give constraints of the v’s local LP. Moreover, the dual solutions
for the children LPs can be combined to give valid duals for the parent’s LP. Hence if we relate (a) the movement
cost incurred within each subtree Tv to its local LP Lv, and (b) the cost of each local LP to its children LPs, we
can inductively relate the total movement cost to the cost of the root LP, and hence to the global LP M and the
optimal solution for the k-Taxi instance.

3.1 Some Terminology Before we define the local LPs, we introduce some notation and conventions. We
classify each leaf node as either a source or a sink node: a source leaf node can only act as sq for some request q,
and similarly a sink leaf node can only act as tq. Moreover, we imagine that each sink node tq creates another
copy t

′
q co-located with it; this copy is called the holding node. When we see a request (sq, tq) at some time q:

1. We first transfer one unit of mass from sq to the holding node t
′
q at zero cost. This typically results in

negative server mass at sq.

2. Next, we transfer server mass from sink nodes (except from the holding node t
′
q) to sq until sq has server

mass close to zero (albeit still negative). This clarifies the reason for the holding node: any server present
at tq prior to this request may be sent to sq as needed, but the unit of server mass we just sent to t

′
q from

sq should not be routed back to the source sq.

3. Finally, we move the unit server mass from the holding node t
′
q to the sink tq (again at zero cost, since they

are co-located), and imagine the holding node t
′
q as having disappeared.

The actual (fractional) movement of server mass to sq in step 2 will be done by our (fractional) algorithm A
by transferring a small amount of server mass in each timestep, as we explain in the rest of this section.

We choose two non-negative parameters, δ and γ. The parameter δ helps define bounds on the amount of
(fractional) servers at any leaf, whereas γ is used to define the granularity of moving server mass. We ensure
δ ≫ γ: specifically, we set δ = 1

10n3 and γ = 1
n4 .

Definition 2. (Active and Saturated Leaves) Given an algorithm A, a sink leaf ℓ is active if it is not a
holding node and has at least δ amount of server (and inactive otherwise). A source leaf is saturated if it has
server mass at least −4δn, and unsaturated otherwise.

We maintain the following invariant:

Invariant (I1). The server mass at each source leaf lies in the interval (−1 − 4δn,−2δn], whereas the
server mass at each sink leaf is at least δ/2. Moreover, after servicing a request, the server mass at a source
leaf lies in the range (−4δn,−2δn].
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3.2 Truncated Constraints and their Composition As a first step towards writing down the local LPs
Lv, we define constraints based on the state of our k-Taxi algorithm A and its actions. Let kv,t be the server mass
that A has in v’s subtree Tv at the end of timestep t (when v is a leaf, this just denotes the amount of server mass
at v at the end of timestep t). The constraints of Lv are defined using truncation of the constraints φτττ . Recall
that Tv is the sub-tree of T under node v.

Definition 3. (Truncated Constraints) Consider a node v and a monotone timestep vector τττ := (τu)u∈Tv
.

(I.e., it satisfies that τu ≤ τp(u) for all u ∈ Tv \ {v}.) Suppose there exists a source request sq below v with request
time ⌊τv⌋. Define Pv(τττ) as the multi-set of sink leaf nodes tq ∈ Tv with ⌊τtq⌋ ≤ q ≤ τv, and Nv(τττ) as the multi-set
of source leaf nodes sq ∈ Tv satisfying ⌊τsq⌋ < q ≤ τv. Note that we only consider requests that occur by timestep
τv. The truncated constraint φτττ,v is defined as:

∑

u∈V (Tv)\{v}
yv(u, (τu, τp(u)]) ≥ |Pv(τττ)| − |Nv(τττ)| − kv,τv − 2δ(n− nv);(3.4)

recall that kv,τv is the amount of server mass in Tv at the end of timestep τv. We say that the truncated constraint
φτττ,v ends at τv.

We emphasize: these constraints do not use the global variables x, but instead local variables yv that are
“private” to node v. Moreover, truncated constraints are not necessarily implied by the LP relaxation M even
when we replace yv by x, since they are defined based on A’s choices, and a generic algorithm is not constrained
to maintain kv,τv servers in subtree Tv after timestep τv. On the other hand, when v = r we have kr,τr

= k and
the last term is 0, and we get back the constraints from M.

Composing Constraints. The local constraints at the children of any node v can be composed to give
constraints that are implied by the constraints at v. Indeed, consider a non-empty subset X of v’s children. For
u ∈ X, let φτττ(u),u be a constraint in Lu ending at τu := τττ(u)u. Let X denote the children of v that are not in
X. Then we can define the vector τττ : Tv → T by extending the vectors τττ(u) to all nodes in ∪u∈XTu by setting
τv = maxu∈X τu and τw = τv for all w ∈ ∪u∈XTu. This yields the local constraint φτττ,v at Lv ending at τv. We
say that φτττ,v has been obtained by composition of the constraints φτττ(u),u, u ∈ X.

3.3 Timesteps, Constraint Sets, and the Local LPs A first attempt to define the local LP Lv would be
to minimize

∑

v∈V (Tv)\{v}
∑

τ∈T
cv · y

v(v, τ) subject to all constraints of the form φτττ,v for all monotone vectors τττ
defined over the subtree Tv. In fact, the local LPs contain a subset of these constraints. Indeed, for each vertex
v, the algorithm defines a subset R(v) ⊆ T of timesteps relevant to the vertex v, and adds in a non-empty set of
constraints Lv(τ) for each such timestep τ ∈ R(v). Each constraint in Lv(τ) is of the form φτττ,v for a monotone
vector τττ ending at τ . (Recall from Definition 3 that τv must correspond to the request time for some source
request sq at a leaf in Tv.) Now the local LP Lv contains all the constraints

⋃

τ∈R(v) L
v(τ), and minimizes

∑

u∈Tv\{v}

∑

τ ′

cu yv(u, τ ′).

The set of relevant timesteps, and the constraints added to the local LPs have further structure; to explain
this, we need the notion of a ⊥-constraint:

Definition 4. (⊥-constraints) A truncated constraint φτττ,v is called a ⊥-constraint if τu = τv for all u ∈ Tv.

It will turn out that for all relevant ⊥-constraints, the RHS is positive. Therefore, such ⊥-constraints can
never be satisfied, but will nevertheless be useful when forming new constraints by composition.

The timesteps in R(v) are partitioned into Rs(v) and Rns(v), the solitary and non-solitary timesteps for
v. For each timestep τ ∈ T, the algorithm may add τ to either Rs(v) or Rns(v) (and hence to R(v)), or it
may decide to not add τ to R(v) at all. For each timestep τ ∈ Rs(v), the algorithm creates a constraint set
Lv(τ) consisting of a single ⊥-constraint (recall Definition 4); for each timestep τ ∈ Rns(v) it creates a constraint
set Lv(τ) containing only non-⊥-constraints. Each of these constraints is formed by composing constraints from
Lw(τw) for some children w ∈ χv and timesteps τw ∈ R(w), where τw ≤ τ .

For each timestep τ , a constraint C ∈ Lv(τ) gives rise to a dual variable zC , which is raised only at timestep
τ . We ensure the following invariant; recall that γ is the tiny quantity 1

n4 .
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Invariant (I2). At the end of each timestep τ ∈ Rns(v), the objective function value of the dual variables
corresponding to constraints in Lv(τ) equals γ. I.e., if a generic constraint C is given by ⟨aC · yv⟩ ≥ bC ,
then

∑

C∈Lv(τ)

bC · zC = γ ∀τ ∈ Rns(v).(I2)

Furthermore, bC > 0 for all C ∈ Lv(τ) and τ ∈ R(v).

No dual variables zC are defined for ⊥-constraints, and the first statement of Invariant (I2) does not apply
to timesteps τ ∈ Rs(v). In the following sections, we show how to maintain a dual solution that is feasible for Dv

(the dual LP for Lv) when scaled down by some factor β = poly log(nλ).

Awake Timesteps. For a vertex v, we maintain a subset Awake(v) ⊆ R(v) of awake timesteps. The set
Awake(v) has the property that it contains the setRs(v) of all the solitary timesteps for v; i.e.,Rs(v) ⊆ Awake(v) ⊆
Rs ∪ Rns(v) = R(v). This set Awake(v) changes over time. When we add a timestep to R(v), we also add it to
Awake(v); subsequently, some non-solitary timesteps may be removed from it. A timestep τ is awake for vertex
v at some moment in the algorithm if it belongs to Awake(v) at that moment. For any vertex v, define

prev(v, τ) := max{τ ′ ∈ Awake(v) | τ ′ ≤ τ}(3.5)

Note that as the set Awake(v) evolves over time, so does the identity of prev(v, τ). We show in Claim 5.2 that
prev is well-defined for all relevant (v, τ) pairs.

3.4 The Starting configuration We assume that each leaf node has two copies: one acts as a source node
and the other as a sink node. We also add an additional root-to-leaf path to T, where the leaf node (denoted
ℓfake) is at the same level as the other leaf nodes in the tree. We prepend the actual request sequence with n+ 1
additional requests. The first request, called a fake request, is (ℓfake, ℓfake) and appears at time 0. The next n
requests corresponds to the n distinct leaves v in T and are of the form (v, ℓfake). The node ℓfake does not get any
other request in the rest of the request sequence (i.e., it is not part of the actual request sequence). The utility
of these additional requests is that it creates the right set of ⊥ constraints in T for the inductive definition of
the algorithm. The algorithm does not explicitly serve the fake request; rather, we assume that the configuration
of the servers at time 0 is to have −4δn servers at each source node and the balance servers at the sink node
corresponding to ℓfake. The subsequent n requests are served by the algorithm as if they were real requests. These
transformations increase the optimal solution by at most O(n∆), where ∆ is the diameter of the HST, while the
cost to produce the initial configuration(from any other configuration of servers) is at most O(k∆).

4 The Algorithm for k-Taxi

We can now describe our algorithm A for k-Taxi. At request time q, the request (sq, tq) arrives. As explained in
§3.1,

(i) we first transfer one unit of server mass from sq to the holding node t
′
q,

(ii) then move mass from other nodes to sq (if needed), and
(iii) finally move mass from the holding node t

′
q to the co-located destination node tq.

The interesting part—and the only part that incurs any cost—is (ii), which is done over a sequence of steps:
the main procedure (given in Algorithm 1) calls local update procedures for each ancestor of sq. Each such local
update moves fractional server mass to sq (if possible), and also adds constraints to the local LPs and raises the
primal/dual values to account for this movement. We now explain this in detail.

4.1 The Main Procedure In the main procedure of Algorithm 1, let the backbone be the leaf-root path
sq = v0, v1, . . . , vH = r. We move servers from other leaves to sq until it is saturated: this server movement
happens in small discrete increments over several timesteps. Each iteration of the while loop in line (1.5)
corresponds to a distinct timestep τ . Let activesib(v, τ) be the siblings v′ of v with active leaves in their sub-trees
Tv′ (at timestep τ). Let i0 be the smallest index with non-empty activesib(vi0 , τ). The procedure SimpleUpdate
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adds a ⊥-constraint to each of the sets Lvi(τ) for i = 0, . . . , i0. For i > i0, the procedure FullUpdate adds
(non-⊥) constraints to Lvi(τ). If activesib(vi, τ) is non-empty, the procedure also transfers some servers to sq from
the sub-trees below activesib(vi, τ).

Algorithm 1: Main Procedure

1.1 foreach q = 1, 2, . . . do
1.2 get request rq = (sq, tq); let the path from sq to the root be sq = v0, v1, . . . , vH = r.
1.3 Create a holding copy t

′
q of tq and transfer 1 unit of server mass from sq to t

′
q.

1.4 τ ← q + η, the first timestep after q.
1.5 while kv0,τ ≤ −4δn do
1.6 let i0 ← smallest index such that activesib(vi0 , τ) ̸= ∅.
1.7 for i = 0, . . . , i0 do call SimpleUpdate(vi, τ).
1.8 for i = i0 + 1, . . . , H do call FullUpdate(vi, τ).
1.9 τ ← τ + η. // move to the next timestep

1.10 Merge t
′
q with tq.

4.2 The Simple Update Procedure Recall that the SimpleUpdate process is called only for those ancestors
of the request node sq which do not have active siblings, and hence which do not transfer any server mass to sq.
(Hence they are “solitary” at this time.) This procedure adds timestep τ to the set Rs(v) of solitary timesteps
(and also to Awake(v)), and creates a ⊥-constraint in the LP Lv. This constraint can be thought of merely as a
book-keeping device.

Algorithm 2: SimpleUpdate(v, τ)

2.1 add timestep τ to the event set Rs(v) and to Awake(v). // “solitary” timestep for v

2.2 Lv(τ)← the ⊥-constraint φτ,v, where τw = τ for nodes w ∈ Tv.

4.3 The Full Update Procedure The FullUpdate(v, τ) procedure is called for backbone nodes v that are
above vi0 (using the notation of Algorithm 1). It has two objectives. Firstly, it transfers servers to the requested
source leaf node v0 from the subtrees of the off-backbone children of v, incurring a cost of at most γ. Secondly,
it accounts for this movement using the local LPs. Specifically, it defines a set of constraints Lv(τ) and runs
a primal-dual update on these constraints until the total dual value raised is exactly γ, i.e., at least the server
transfer cost.

We now explain the steps of Algorithm 3 in words. (The notions of slack and depleted constraints will be
given in Definition 5. We use ReqLoc(τ) to denote the location of the source request at time ⌊τ⌋, i.e., s⌊τ⌋. )

Consider a call to FullUpdate(v, τ) with u0 being the child of v on the path to the source request v0.
Each iteration of the repeat loop adds a constraint C to Lv(τ) and raises the dual variable zC corresponding
to it. For each node u in U := {u0} ∪ activesib(u0, τ), define τu := prev(u, τ) to be the most recent timestep
before τ that is currently in Awake(u). This timestep τu may move backwards over the iterations as nodes are
removed from Awake(u) in line (3.17). One exception is the node u0, for which τu0

stays equal to τ for the
entire run of FullUpdate. Indeed, we would have added τ to Awake(u0) (during SimpleUpdate(u0, τ) or
FullUpdate(u0, τ)) before calling FullUpdate(v, τ), and Claim 5.5 shows that τ stays awake in R(u0) during
FullUpdate(v, τ).

1. We add constraint C(v, σ, τ) to Lv(τ) by taking one constraint Cu ∈ Lu(τu) for each u ∈ U and setting
σ := (Cu0

, . . . , Cuℓ
). (The choice of constraint from Lu(τu) is given in item 3 below.) Each Cu has the form

φτττ(u),u for some tuple (τττ(u)) ending at τu := τττ(u)u. The new constraint C(v, σ, τ) is its composition φτττ,v

(see §3.2). For a child u of v, let Iu denote the interval (τττu, τv]. Observe that the LHS of the constraint
C(v, σ, τ) contains variables of the form yv(u, t), t ∈ Iu for all children u of v.

2. Having added this constraint C(v, σ, τ), we raise the new dual variable zC(v,σ,τ) at a constant rate in line (3.13),
and the primal variables yv(u, τ ′) for each u ∈ U and any τ ′ in an index set Su using an exponential update
rule in line (3.15). The index set Su consists of all timesteps in Iu ∩ R

ns(u) and the first timestep of Iu
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Algorithm 3: FullUpdate(v, τ)

3.1 let h← level(v)− 1 and u0 ∈ χv be child containing the current source request v0 := ReqLoc(τ).
3.2 let U ← {u0} ∪ activesib(u0, τ); say U = {u0, u1, . . . , uℓ}, LU ← active leaves below U \ {u0}.
3.3 add timestep τ to the event set Rns(v) and to Awake(v). // “non-solitary” timestep for v

3.4 set timer s← 0.
3.5 repeat
3.6 for u ∈ U do
3.7 let τu ← prev(u, τ) and Iu = (τu, τ ].
3.8 let Cu be a slack constraint in Lu(τu). // slack constraint exists since prev(u, τ) is awake

3.9 let σ ← (Cu0 , Cu1 , . . . , Cuℓ
) be the resulting tuple of constraints.

3.10 add new constraint C(v, σ, τ) to the constraint set Lv(τ).
3.11 while all constraints Cuj

in σ are slack and dual objective for Lv(τ) less than γ do
3.12 increase timer s at uniform rate.
3.13 increase zC(v,σ,τ) at the same rate as s.
3.14 for all u ∈ U , define Su := Iu ∩ (Rns(u) ∪ {τu + η}) .

3.15 increase yv(u, t) for u ∈ U, t ∈ Su according to dyv(u,t)
ds = yv(u,t)

λh + γ
Mn·λh .

3.16 transfer server mass from Tu into v0 at rate dyv(u,Iu)
ds + bCu

λh using the leaves in LU ∩ Tu, for each
u ∈ U \ {u0}

3.17 foreach constraint Cuj
that is depleted do

3.18 if all the constraints in Luj (τuj
) are depleted then remove τuj

from Awake(uj).

3.19 until the dual objective corresponding to constraints in Lv(τ) becomes γ.

(which is τu + η if Iu is non-empty2). This index set ensures that Su is not too large, yet it captures all
the “necessary” variables that should be raised (see Figure 1) Moreover, we transfer servers from active leaves
in Tu into ReqLoc(q) in line (3.16). This transfer is done arbitrarily, i.e., we move servers out of any of the
leaf nodes that were active at the beginning of this procedure. Our definition of activesib(u0, τ) means that
Tu has at least one active leaf and hence at least δ servers to begin with. Since we move at most γ ≪ δ
amounts of server, we maintain Invariant (I1) as shown in Claim 5.8. Since τu0

= τ , the interval Iu0
is empty

so no variables yv(u0, t) are raised. Somewhat unusually for an online primal-dual algorithm, the LP variables
are only used to account for our algorithm’s cost, and not for actual algorithmic decisions (i.e., the server
movements). This allows us to increase variables from the past since even though the corresponding server
movements are always executed at the current time.

To describe the stopping condition for this process, we first explain the relationship between these local LPs,
and the notion of slack and depleted constraints. We use the fact that for any u ∈ U , we have an almost-feasible
dual solution {zC}C∈Lu(τu). This in turn corresponds to an increase in primal values for variables yu(u′, τ ′) in
Lu. It will suffice for our proof to ensure that when we raise zC(v,σ,τ), we constrain it as follows:

Invariant (I1). For every u ∈ χv, t ∈ R
ns(u), and every constraint C ∈ Lu(t) (which by definition of

Rns(u) is not a ⊥-constraint):

(

1 +
1

H

)

zC ≥
∑

τ ′≥t

∑

σ:C∈σ

zC(v,σ,τ ′).(I3)

Definition 5. (Slack and Depleted Local Constraints) A non-⊥ constraint C ∈ Lu is slack if (I3) is
satisfied with a strict inequality, else it is depleted. By convention, ⊥-constraints are always slack.

2Observe that this timestep may not belong to R(u), but all other timesteps in Su lie in R(u) (also see Figure 1).
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5 Analysis Details

Now that we have chosen the “right” LP relaxation, i.e., the “right” set of constraints to consider, we can lean on
the analytic machinery from [GKP21]. Indeed, the proofs of this section closely mirror those from [GKP21]; we
give the entire proof here for completeness. Among the crucial new ingredients is our approach to control the size
of the linear program, which we present in §5.4.

The proof relies on two lemmas: the first (proved in §5.2) bounds the movement cost in terms of the increase
in dual value, and the second (proved in §5.3) shows near-feasibility of the dual solutions.

Lemma 5.1. (Server Movement) The total movement cost during an execution of the procedure FullUpdate
is at most 2γ, and the objective value of the dual Dv increases by exactly γ.

Lemma 5.2. (Dual Feasibility) For each vertex v, the dual solution to Lv is β-feasible, where β =
O(log nMk

γ ) = O(H log(nkλT )).

The last equation follows from substituting the value of M = 5HλH(T+k)
4γ + 1 (from Corollary 5.3) and γ = 1/n4

(defined before Definition 2). We also use the fact that H < λ (see the first paragraph in Section 2.1). Later, in
Section 5.4, we improve our bound by removing the dependence on T in the competitive ratio.

Theorem 5.1. (Competitiveness for k-Taxi) Given any instance of the k-Taxi problem on a λ-HST with
height at most λ/10, Algorithm 1 ensures that each request location sq is saturated at some timestep in [q, q + 1).
The total cost of (fractional) server movement is O(βH) = O(H2 log(nλT )) times the cost of the optimal solution.

Proof. All the server movement happens within calls to FullUpdate. By Lemma 5.1, each iteration of the while
loop of line (1.5) in Algorithm 1 incurs a total movement cost of O(Hγ) over at most H invocations. Moreover, the
call FullUpdate(r, τ) increases the value of the dual solution to the LP Lr by γ. This means the total movement
cost is at most O(H) times the dual solution value. Since all constraints of Lr are implied by the relaxation M,
any feasible dual solution gives a lower bound on the optimal solution to M. By Lemma 5.2, our dual solution
is feasible if it is scaled down by β, and so we get that our (fractional) algorithm is O(βH) = O(H2 log(nλT ))-
competitive.

The competitive ratio in Theorem 5.1 depends on the length T of the time horizon. We remove this dependence
on T by dividing the the input in phases and running Algorithm 1 independently in each phase. The details of
this algorithm are given in §5.4.

Using a standard metric embedding technique to embed λ-HSTs with λ = O(log∆) allows us to extend this
result to general metrics with a further loss of O(λ logλ(n∆)) = O(log∆ log(n∆)).

5.1 Rewriting Local Constraints in Terms of Local Changes In this section, we rewrite the local
constraints (3.4). Recall that if X is a subset of children of a node v, and we given local constraints Cu ending
at a timestep τu for each u ∈ X, then we can compose these constraints to get a local constraint at v (ending
at a suitably defined time τv). We now express this local constraint at v in terms of the server movement that
happens between v and each child u ∈ X during (τu, τv]. We begin by defining this notion of server movement.

Definition 6. (g, r,D) For a vertex v and timestep t, let “give” g(v, t) and “receive” r(v, t) denote the total
(fractional) server movement out of and into the subtree Tv on the edge (v, p(v)) at timestep t. For an interval
I, let g(v, I) :=

∑

t∈I g(v, t) and define r(v, I) similarly, and let “difference” D(v, I) := g(v, I)− r(v, I).

We now show how the difference term D can be used to account for change of server mass in a subtree.

Claim 5.1. Consider a node u in T and let v be the parent of u. Let τττ be a monotone vector at v and let τττ(u0
be the restriction of this vector to the subtree Tu. Assume that ⌊sτv⌋ /∈ Tu. Then,

ku,τ2 − ku,τ1 = −D(u, (τ1, τ2]) + |Pv(τττ) ∩ Tu| − |Pu(τττ(u))| − |Nv(τττ)|+ |Nu(τττ(u))|.

Proof. Let I denote the interval (τ1, τ2]. Let v be the parent of u. The server mass entering Tu during I using
the edge (u, v) is equal to −D(u, I). Now, for each request q ∈ I one unit of server mass enters Tu if tq ∈ Tu. The
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total such server mass entering Tu during I is equal to |Pv(τττ)∩T(u)|− |Pu(τ(u))|. Indeed, consider such a request
q with tq ∈ Tu. Then τu < τtq ≤ τv, and so, tq ∈ Pv(τττ) \ Pu(τττ(u)). Conversely, if tq ∈ Pv(τττ) ∩ Tu \ Pu(τττ(u)),
then the request q arrives during I. Finally, for each request q ∈ I, one unit of server mass leaves Tu if sq ∈ Tu.
Using a similar argument as above, this latter server mass movement is captured by |Nv(τττ)| − |Nu(τττ(u))|, except
the case when q = ⌊τ2⌋ (this is because of the definition of Nv(τττ) which does not count the request at time ⌊τ⌋).
However, we know that s⌊τ2⌋ /∈ Tu, and so we need not consider this case. This proves the desired result.

These difference terms D allow us to write down a suitable local constraint (5.6) implied by φτττ,v.

Lemma 5.3. Suppose we are given a vertex v, a timestep τ and a subset X of children of v such that at timestep
τ all active leaves in Tv are descendants of one of the nodes in X. For each u ∈ X, we are also given a truncated
constraint Cu := φτττ(u),u specified by some linear inequality ⟨aCu , yu⟩ ≥ bCu . Define τv := maxu∈X τu, and let
φτττ,v be the local constraint (ending at τv) in Lv obtained by composition of the Cu, u ∈ X. Assume that τ = τv
and X is non-empty. Then the constraint φτττ,v implies the inequality

∑

u∈X

(

yv(u, (τu, τv]) + ⟨a
Cu , yv⟩

)

≥
∑

u∈X

(

D(u, (τu, τv]) + bCu

)

+
(
nv −

∑

u∈X

nu

)
δ,(5.6)

This implied constraint (5.6) should be read as follows: during any time interval, either the constraints
⟨aCu , yu⟩ ≥ bCu at the children are satisfied (and hence have generated dual), or else the algorithm’s movement
of servers between subtrees (which shows up in the D(·, ·) on the RHS) is reflected in the yv variables on the
edges from v to its children (and hence also generate dual). The proof of Lemma 5.3 is just careful algebraic
manipulation, and can be skipped at the first reading.

Proof. The LHS of φτττ,v is the same as that of (5.6). It remains to show that the RHS of φτττ,v is at least that
of (5.6). In other words, we need to show that

|Pv(τττ)| − |Nv(τττ)| − kv,τv − 2δ(n− nv) ≥
∑

u∈X

(

D(u, (τu, τv]) + bCu

)

+
(
nv −

∑

u∈X

nu

)
δ

=
∑

u∈X

(

D(u, (τu, τv]) + |Pu(τττ(u))| − |Nu(τττ(u))| − ku,τu − 2δ(n− nu)

)

+
(
nv −

∑

u∈X

nu

)
δ

Since |X| ≥ 1, the above inequality is implied by the following:

|Pv(τττ)| − |Nv(τττ)| − kv,τv ≥
∑

u∈X

(

D(u, (τu, τv]) + |Pu(τττ(u))| − |Nu(τττ(u))| − ku,τu

)

−
(
nv −

∑

u∈X

nu

)
δ

Rearranging terms, the above is same as

kv,τv −
∑

u∈X

ku,τu ≤ −
∑

u∈X

D(u, (τu, τv]) +

(

|Pv(τττ)| −
∑

u∈X

|Pu(τττ(u))|

)

−

(

|Nv(τττ)| −
∑

u∈X

|Nu(τττ(u))|

)

+
(
nv −

∑

u∈X

nu

)
δ(5.7)

Note that in the last equality above, the term for u = u0 is 0. In rest of the proof, we show (5.7). Since
τv = maxu∈X τu, let u0 ∈ X be such that τv = τu0

. By definition of monotone timestep vector, we know that
the request sq, q = ⌊τv⌋, is a leaf in Tu0

. Thus we can apply Claim 5.1 to any node u ∈ X \ {u0} for the interval
(τu, τv]. We get:

kv,τv −
∑

u∈X

ku,τu =
∑

u∈X\{u0}
(ku,τv − ku,τu) +

∑

u∈X

ku,τv

=
∑

u∈X

(

−D(u, (τu, τv]) + |Pv(τττ) ∩ Tu| − |Pu(τττ(u))| − |Nv(τττ) ∩ Tu)|+ |Nu(τττ(u))|

)

+
∑

u∈X

ku,τv .(5.8)
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Let q denote ⌊τv⌋. Now observe that Pv(τττ) is same as ∪u∈X(Pv(τττ) ∩ Tu), except perhaps the requested
location tq (this is because τw = τv for all nodes in Tu′ , u′ ∈ χ(v) \X). Since sq does not get counted in Nv(τττ)
(or Nu(τττ(u)) for any child u of v), Nv(τττ) is equal to ∪u∈X(Nv(τττ) ∩ Tu).

Thus, there are three possible cases based on the location of the sink request tq. The first case is when tq lies
below one of the nodes in X. Then the above expression equals:

−
∑

u∈X

D(u, (τu, τv]) +

(

|Pv(τττ)| −
∑

u∈X

|Pu(τττ(u))|

)

−

(

|Nv(τττ)| −
∑

u∈X

|Nu(τττ(u))|

)

+
∑

u∈X

ku,τv

This implies (5.7) because for a node u ∈ X, ku,τv ≤ nuδ and so

∑

u∈(X)

ku,τv ≤

(

nv −
∑

u∈X

nu

)

δ.

The second case happens when the sink request at time ⌊τv⌋ lies below a node u′ ∈ X. In this case, as argued
above, (5.8) simplifies to

−
∑

u∈X

D(u, (τu, τv]) +

(

|Pv(τττ)| −
∑

u∈X

|Pu(τττ(u))| − 1

)

−

(

|Nv(τττ)| −
∑

u∈X

|Nu(τττ(u))|

)

+
∑

u∈X

ku,τv .

Not counting the holding node for request q, we know that for all u ∈ X, ku,τu ≤ nuδ. Thus,

∑

u∈X

ku,τv ≤ δ(nv −
∑

u∈X

nu) + 1.

This shows that (5.7) holds in this case as well.
The final case is that the sink of the request at time ⌊τv⌋ is outside the subtree Tv. This case is identical to

the first case described above.

A direct consequence of Equation (5.6) is the following (we use the notation used in Algorithm 3):

Corollary 5.1. Consider the constraint C(v, σ, τ) added to Lv(τ) line 3.10 in Algorithm 3. Then C(v, σ, τ),
given by aC(v,σ,τ) · yv ≥ bC(v,σ,τ), implies the constraint:

∑

u∈U

(
yv(u, Iu) + aCu · yv

)

︸ ︷︷ ︸

=aC(v,σ,τ)·yv

≥
∑

u∈U

(
D(u, Iu) + bCu

)
+ (nv −

∑

u∈U

nu)δ

︸ ︷︷ ︸

≤bC(v,σ,τ)

.(5.9)

Equipped with these constraints rewritten in terms of the differences, we can return to proving Lemmas 5.1
and 5.2.

5.2 Bounds on Server Transfer and Dual Increase To prove Lemma 5.1, first note that the dual increase
of γ in each call to FullUpdate follows from Invariant (I2) (which still needs to be shown). To prove the upper
bound on the server movement, we state another invariant below. Then in §5.2 we show both invariants are
indeed maintained throughout the algorithm.

We first define the notion of the “lost” dual increase. Consider a call to FullUpdate(v, τ). Let u0 be v’s
child such that request location v0 lies in Tu0

. We say that u0 is v’s principal child at timestep τ . We prove
(in Claim 5.5) that τ ∈ R(u0) remains in the awake set and hence τu0 = τ throughout this procedure call. The
dual update raises zC(v,σ,τ) in line (3.13) and transfers servers from subtrees Tu′ for u′ ∈ activesib(u0, τ) into
subtree Tu0

in line (3.16). This transfer has two components, which we consider separately. The first is the local

component dyv(u′,t)
ds , and the second is the inherited component bCu′

λh . In a sense, the inherited component matches
the dual increase corresponding to the term

∑

u′∈activesib(u,τ) b
Cu′ on the RHS of (5.9). The only term without a

corresponding server transfer is bCu0 itself, where Cu0
is the constraint in σ corresponding to Lu0(τ). Motivated

by this, we give the following definition.
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Definition 7. (Loss) For vertex u0 with parent v, consider a timestep τ ∈ Rns(v) such that τ ∈ R(u0) as well.
If τ ∈ Rs(u0), define loss(u0, τ) := 0. Else τ ∈ Rns(u0), and then

loss(u0, τ) :=
∑

C∈Lu0 (τ)

∑

C(v,σ,τ):C∈σ

bC zC(v,σ,τ) .(5.10)

Invariant (I1). For node v and timestep τ ∈ Rns(v), let u0 be v’s principal child at timestep τ . The server
mass entering subtree Tu0 (via the edge (p(u0), u0))) during the procedure FullUpdate(v, τ) is at most

γ − loss(u0, τ)

λlevel(u0)
(I4)

Moreover, timestep τ ∈ R(u0) stays awake during FullUpdate(v, τ).

Multiplying the amount of transfer by the cost of this transfer, we get that the total movement cost is at
most O(γ). Invariants (I2) and (I1) prove Lemma 5.1. We now show these invariants hold over the course of the
algorithm.

5.2.1 Proving Invariants (I2) and (I1) To prove these invariants, we define a total order on pairs (v, τ)
with τ ∈ R(v) as follows:

define: (v1, τ1) ≺ (v2, τ2) if τ1 < τ2 or if τ1 = τ2 and v1 is a descendant of v2.

Since calls to FullUpdate are made in this order, we also prove the invariants by induction on this ordering:
Assuming both of them hold for all pairs (v, τ) ≺ (v⋆, τ⋆), we prove them for the pair (v⋆, τ⋆). For the base
case, we only have to consider the ⊥-constraints at the leaf nodes at time 0. The only non-trivial statement
among Invariants (I2) and (I1) for these nodes is to check that bC > 0 for any such ⊥-constraint C at a source
leaf v. Note that bC = 1 − kv,0 − 2δ(n − 1) > 0, since |Nv(0)| = 0, |Pv(0) = 1|, kv,0 = −4δn + 4δn+k

n ≤ 1/2. We
first show that the notion of prev timestep in the FullUpdate procedure is well-defined.

Claim 5.2. Let u be any non-root vertex. Then the first timestep in R(u) corresponds to a ⊥-constraint.
Therefore, for any timestep τ such that Tu has an active leaf at timestep τ , prev(u, τ) is well defined.

Proof. Let u be a node as above. If u happens to be the holding node, then the above condition holds by
construction. So assume u is not a holding node. The first request q below u has the source leaf sq located below
u. This is because by Section 3.4, we ensure that the first request at each node v in T is of the form (v, ℓfake) where
ℓfake is the fake node defined in Section 3.4. Let τf be the first timestep after the arrival of this request. In the first
iteration of the while loop in Algorithm 1 (corresponding to timestep τf ), we would call SimpleUpdate(u, τf )
because there are no active leaves below u at this timestep. Hence we would add a ⊥-constraint at timestep τf ,
proving the first part of the claim. To show the second part, let τ be a timestep such that Tu has an active leaf
below it at timestep τ . This means that τ ≥ τf . Since Lu(τf ) is a ⊥-constraint, τf is awake, and so prev(u, τ) is
well-defined.

We start off with some supporting claims before proving the inductive step Invariants (I2) and (I1).

Definition 8. (fill) Given a node u and its parent v, timestep τ ∈ Rns(u), and constraint C ∈ Lu(τ), define
fill(C) to be the timesteps τ ′ (note that all these timesteps are after τ , i.e., τ ′ ≥ τ) such that some constraint
C ′ ∈ Lv(τ ′) appears on the RHS of inequality (I3) corresponding to C. Extending this, let

fill(u, τ) :=
⋃

C∈Lu(τ)

fill(C).(5.11)

In other words, fill(u, τ) is the set of timesteps τ ′ ∈ Rns(v) such that when we called FullUpdate(v, τ ′), node u
was either v’s principal child at timestep τ ′ or else belonged to the active sibling set, and moreover prev(u, τ ′) = τ .
These are the set of timesteps that load constraints in Lu(τ): the following lemma shows part of their structure.
(We use (v⋆, τ⋆) to denote the current pair in the inductive step for proving Invariants (I2) and (I1).)
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Claim 5.3. (Structure of fill times) Fix a node u with parent v, and a timestep τ ∈ Rns(u) such that
(v, τ) ≺ (v⋆, τ⋆). Then for any τ ′ < τ∗ such that τ ′ ∈ fill(u, τ) , either (a) τ ′ = τ , in which case u is the
principal child of v at timestep τ ′, or else (b) τ ′ > τ , and u is not v’s principal child at timestep τ ′.

Proof. Suppose τ = τ ′. Since we call FullUpdate only for ancestors of the requested node v0, and τ ∈ Rns(u), so
v0 belongs to Tu (and hence u is the principal child of v at timestep τ). Else suppose τ ′ > τ , and suppose u is indeed
v’s principal child at this timestep. Then during the call FullUpdate(v, τ ′), we have prev(u, τ ′) = τ ′ throughout
the execution of FullUpdate(v, τ ′) (by the second statement in Invariant (I1)), and hence τ ′ /∈ fill(u, τ), giving
a contradiction.

We now give an upper bound on the server mass entering a subtree at any timestep τ < τ⋆.

Claim 5.4. Let τ ∈ R(u), τ < τ⋆. The server mass entering Tu (via the edge (p(u), u)) at timestep τ is at most
(

1 +
1

λ− 1

)
γ

λlevel(u)
−

loss(u, τ)

λlevel(u)
.

Proof. Since τ < τ⋆, we can apply the induction hypothesis to all pairs (v, τ) where v is an ancestor of u. Servers
enter u at timestep τ because of FullUpdate(w, τ) for some ancestor w of u. When w is the parent of u,

Invariant (I1) shows this quantity is at most γ−loss(u,τ)
λh , where h = level(u). For any other ancestor w of v, we

can use a weaker upper bound (again using Invariant (I1)) of γ
λh+r , where level(w) = h + r + 1. Simplifying the

resulting geometric sum γ−loss(u,τ)
λh +

∑

h′≥h+1
γ

λh′ completes the proof.

Next, we give a lower bound on the amount of server moving out of some subtree Tw via the edge (w, p(w)).
Recall that all this transfer takes place in line (3.16) with w being either the node u on this line, or a descendant,
and that the amount of server movement out of Tw via the edge (w, p(w)) at timestep τ is denoted g(w, τ), which
is non-zero only for those timesteps τ when w is not on the corresponding backbone. We split this transfer amount
into two:

(i) gloc(w, τ): the local component of the transfer, i.e., due to the increase in yv variables.
(ii) ginh(w, τ): the inherited component of the transfer, i.e., due to the bCu term.

Lemma 5.4. Let u be a non-principal child of v⋆ at timestep τ⋆, and I := (τ1, τ
⋆] for some timestep τ1 < τ⋆. Let

S be the timesteps in Rns(u)∩(τ1, τ
⋆] that have been removed from Awake(u) by the time that FullUpdate(v⋆, τ⋆)

is called. Then

ginh(u, (τ1, τ
⋆]) ≥

(

1 +
1

H

)

|S|
γ

λlevel(u)
−
∑

τ∈S

loss(u, τ)

λlevel(u)
.

Proof. Consider timesteps τ ∈ S and τ ′ ≥ τ such that τ ′ ∈ fill(u, τ). Consider the “phase” during
FullUpdate(v⋆, τ ′) when τ ′u := prev(u, τ ′) equals τ : since τ ′ ∈ fill(u, τ), we know that there will be such a
phase. (We use the term phase here informally, to denote a range of values of the timer s.) Whenever we raise
the timer s by a small ϵ amount during this phase, we raise some dual variable zC(v⋆,σ,τ ′) by the same amount,
where σ contains a constraint C from Lu(τ). Thus we contribute ϵ to the LHS of (I3) for constraint C. For such
a constraint C, let [s1(τ

′, C), s2(τ
′, C)] be the range of the timer s during which we raise a dual variable of the

form zC(v⋆,σ,τ ′) such that C ∈ σ.
If τ has been removed from Awake(u) (in line (3.17)), it means that (I3) is tight for all constraints C ∈ Lu(τ),

so:
(

1 +
1

H

)
∑

C∈Lu(τ)

bCzC =
∑

C∈Lu(τ)

bC
∑

C(v⋆,σ,τ ′):C∈σ

zC(v⋆,σ,τ ′)

(Note that the above sum is being taken across different τ ′.) Now the definition of loss(u, τ) allow us to split the
expression on the RHS as follows:

(

1 +
1

H

)
∑

C∈Lu(τ)

bCzC = loss(u, τ) +
∑

C∈Lu(τ)

bC
∑

C(v⋆,σ,τ ′):C∈σ,τ ′>τ

zC(v⋆,σ,τ ′)
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= loss(u, τ) +
∑

τ ′∈fill(u,τ),τ ′>τ

∑

C∈Lu(τ)

bC
(

s2(τ
′, C)− s1(τ

′, C)
)

.(5.12)

We now bound the second expression on the RHS in another way. For a timestep τ ′ ∈ fill(u, τ) with τ ′ > τ ,
consider the phase when timer s lies in the range [s1(τ

′, C), s2(τ
′, C)] for a constraint C ∈ Lu(τ). Since τ ′ > τ ,

Claim 5.3 implies that u is not the principal child of v⋆ at timestep τ ′, so raising s by ϵ units during this phase

means that line (3.16) moves at least ϵ · b
C

λh servers out of Tu, where h := level(u). Hence the increase in ginh(u, I)
due to transfers corresponding to timestep τ ∈ S is at least

∑

τ ′∈fill(u,τ),τ ′>τ

∑

C∈Lu(τ)

bC(s2(τ
′, C)− s1(τ

′, C))

λh

by (5.12)
=

(

1 +
1

H

)
∑

C∈Lu(τ)

bCzC
λh

−
loss(u, τ)

λh

=

(

1 +
1

H

)
γ

λh
−

loss(u, τ)

λh
.

Since τ was removed from Awake(u) by the time that FullUpdate(v⋆, τ⋆) is called, the former tuple (u, τ) must
strictly precede the latter. Hence, we can use the induction hypothesis (Invariant (I2)) for timestep τ in Rns(u)
to get the second equality above. Finally, summing over all timesteps in S completes the proof.

Corollary 5.2. Let u be a non-principal child of v⋆ at timestep τ⋆, and I := (τ1, τ
⋆] for any τ1 < τ⋆. Suppose

none of the timesteps in I∩R(u) belong to Awake(u) when FullUpdate(v⋆, τ⋆) is called. Then at this moment,
(i) ginh(u, I) ≥ r(u, I),
(ii) 0 ≤ gloc(u, I) ≤ D(u, I), and
(iii) gloc(u, I) ≥ yv

⋆

(u, I).
Finally, bC > 0 for any constraint C of the form ⟨aC · yv⟩ ≥ bC in Lv⋆

(τ⋆).

Proof. Since timesteps in Rs(u) always stay awake, I ∩ R(u) = I ∩ Rns(u); call this set S. Since u is a non-
principal child at timestep τ⋆, we have τ⋆ ̸∈ Rns(u). This means τ < τ⋆ for any τ ∈ S, and so Claim 5.4 gives
an upper bound on the server movement into u at timestep τ , and Lemma 5.4 gives a lower bound on the server
movement out of u. Combining the two,

ginh(u, I)− r(u, I) ≥

(
1

H
−

1

λ− 1

)
γ|S|

λh
≥

4

5H
·
γ|S|

λh
≥ 0,(5.13)

since λ ≥ 10H and H ≥ 2, which proves (i). To prove (ii),

gloc(u, I) = (g − ginh)(u, I)
by (i)

≤ (g − r)(u, I)
by defn.

= D(u, I).

To prove (iii), whenever we raised yv
⋆

(u, τ ′) for some timestep τ ′, we transferred servers out of u (and therefore
raised g(u, τ ′′) for some τ ′′ ≥ τ ′) with at least as large a rate (since the former only accounts for the local component
of the transfer). Both τ ′, τ ′′ appeared before τ⋆, because we are at the time that we call FullUpdate(v⋆, τ⋆).
Since interval I ends at τ⋆, it must contain either only τ ′′ or both τ ′, τ ′′, giving us that gloc(u, I) ≥ yv

⋆

(u, I).
We now prove the final statement. We assume that ⌊τ⋆⌋ > 0, since the base case has been considered already.

If we add a ⊥- constraint C to Lv⋆

(τ⋆), then we would have called SimpleUpdate(v⋆, τ⋆), where v0 is the
requested source node at time ⌊τ⋆⌋. The ⊥ constraint C at v⋆ is given by φv⋆,τττ , where τττ assigns timestep τ⋆ to
each node in Tv⋆ . Let v′0 be the holding sink node corresponding to this request. Two cases arise depending on
whether v′0 lies in Tv⋆ . First assume that v′0 /∈ Tv⋆ . Then Pv⋆(τττ) = Nv⋆(τττ) = ∅, kv0,τ⋆ ≤ −4δn and every sink
node in Tv⋆ has at most δ server mass. Therefore bC = −kv⋆,τ⋆ − 2δ(n− nv⋆) ≥ 4δn− δn− 2δn > 0. The other
case when v′0 ∈ Tv⋆ is similar – the only change is that kv′

0,τ
⋆ is 1, but then |Pv⋆(τττ)| is also 1.

Finally consider the case when C is of the form C(v⋆, σ, τ⋆) as in (5.9). By the induction hypothesis
(Invariant (I2)), bCu > 0 and D(u, Iu) ≥ 0 by (ii) above. Since nv⋆ >

∑

u∈U nu, it follows that bC > 0.

Having proved all the supporting claims, we start off with proving that the second statement in Invariant (I2)
holds at (v⋆, τ⋆).
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Claim 5.5. (Principal Node Awake) Suppose we call FullUpdate(v⋆, τ⋆). If u is the principal child of v⋆

at timestep τ⋆, this call does not remove the timestep τ⋆ from Awake(u).

Proof. At the beginning of the call to FullUpdate(v⋆, τ⋆), the timestep τ⋆ has just been added to R(u) (and
to Awake(u)) in the call to FullUpdate(u, τ⋆) or to SimpleUpdate(u, τ⋆), and cannot yet be removed from
Awake(u). So we start with τu = τ⋆. For a contradiction, if we remove τ⋆ from Awake(u) in line (3.17), then all
the constraints in Lu(τ⋆) must have become depleted. For each such constraint C ∈ Lu(τ⋆), the contributions to
the RHS in (I3) during this procedure come only from the newly-added constraints C(v⋆, σ, τ⋆) ∈ Lv⋆

(τ⋆). So if
all constraints in Lu(τ⋆) become depleted, the total dual objective raised during this procedure is at least

∑

C∈Lu(τ⋆)

∑

C(v⋆,σ,τ⋆)∈Lv⋆ (τ⋆):C∈σ

bC(v⋆,σ,τ⋆) zC(v⋆,σ,τ⋆) ≥ (1 + 1/H)
∑

C∈Lu(τ⋆)

bC zC ,

where we use that bC(v⋆,σ,τ⋆) ≥ bC (because in (5.9), bCu ≥ 0 by the induction hypothesis (Invariant (I2)) and
D(u, Iu) ≥ 0 by Corollary 5.2), and that each constraint in Lu(τ⋆) satisfies (I3) at equality. The induction
hypothesis Invariant (I2) applied to (u, τ⋆) implies that

∑

C∈Lu(τ⋆) b
C zC = γ, so the RHS above is (1 + 1/H)γ.

So the total dual increase during FullUpdate(v⋆, τ⋆), which is at least the LHS above, is strictly more than γ,
contradicting the stopping condition of FullUpdate(v⋆, τ⋆).

Next, we prove the remainder of the inductive step, namely that Invariants (I2) and (I1) are satisfied with
respect to (v⋆, τ⋆) as well.

Claim 5.6. (Inductive Step: Active Siblings Exist) Consider the call FullUpdate(v⋆, τ⋆), and let u0

be the principal child of v⋆ at this timestep. Suppose activesib(u0, τ
⋆) ̸= ∅. Then the dual objective value

corresponding to the constraints in Lv⋆

(τ⋆) equals γ; i.e.,
∑

C∈Lv⋆ (τ⋆)

zC bC = γ.

Moreover, the server mass entering Tu0 going to the requested source node in this call is at most

γ − loss(u0, τ
⋆)

λlevel(u)
.

Proof. Let U ′ := activesib(u0, τ
⋆) be the non-principal children of v⋆ at timestep τ⋆; let U := {u0} ∪ U ′ as in

FullUpdate. The identity of the timesteps τu and intervals Iu change over the course of the call, so we need
notation to track them carefully. Let Iu(s

′) be the set Iu when the timer value is s′; similarly, let Ds(u, Iu(s
′))

be the value of D(u, Iu(s
′)) when the timer value is s, and yv

⋆

s (u, Iu(s
′)) is defined similarly.

For u ∈ U ′, Corollary 5.2(ii,iii) implies that for any interval Iu(s),

D0(u, Iu(s)) ≥ yv
⋆

0 (u, Iu(s)).(5.14)

Since the timestep τ⋆ stays awake for the principal child u0 (due to Claim 5.5), the interval Iu0
(s) equals (τ⋆, τ⋆],

which is empty, for all values of the timer s.
The dual increase is at most γ due to the stopping criterion for FullUpdate, so we need to show this quantity

reaches γ. Indeed, suppose we raise the timer from s to s+ ds when considering some constraint Cs(v, σ, τ)—the
subscript indicates the constraint considered at that value of timer s. The dual objective increases by bCs(v,σ,τ) ds.
We now use the definition of bCs(v,σ,τ) from (5.9), substitute (nv −

∑

u∈U nu) ≥ 1, and use that all bCu terms
in the summation are non-negative (by Invariant (I2)) to drop these terms. This gives the first inequality below
(recall that Iu0(s) stays empty):

bCs(v,σ,τ) ≥
∑

u∈U ′

Ds(u, Iu(s)) + δ ≥
∑

u∈U ′

D0(u, Iu(s)) + δ ≥
∑

u∈U ′

yv
⋆

0 (u, Iu(s)) + δ.(5.15)

The second inequality above uses that Ds ≥ D0 for non-principal children, and the third uses (5.14). Let

Y (s) :=
∑

τ ′

∑

u∈U ′

(

yv
⋆

s (u, τ ′)− yv
⋆

0 (u, τ ′)
)
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to be the total increase in the yv
⋆

variables during FullUpdate(v⋆, τ⋆) until the timer reaches s. This is also
the total amount of server transferred to the requested node due to the local component of transfer in line (3.16)
until this moment.

Subclaim 5.1. Y (s) < γ.

Proof. Suppose not, and let s⋆ be the smallest value of the timer such that Y (s⋆) = γ. Note that Y (s) is
a continuous non-decreasing function of s. For any s ∈ [0, s⋆), we get Y (s) < Y (0) + γ, where Y (0) = 0
by definition. Since the intervals Iu(s

′) ⊆ Iu(s) for s′ ≤ s, all the increases in the yv
⋆

variables during [0, s]
correspond to timesteps in Iu(s). Thus for any s < s⋆,

Y (0) + γ > Y (s) =⇒
∑

u∈U ′

yv
⋆

0 (u, Iu(s)) + γ >
∑

u∈U ′

yv
⋆

s (u, Iu(s)).(5.16)

The dual increase during [s, s+ ds] is

bCs(v,σ,τ) ds
by (5.15,5.16)

>
( ∑

u∈U ′

yv
⋆

s (u, Iu(s)) + δ − γ
)

ds

=
(

λh dY (s)−
γ

Mn

∑

u∈U ′

|Su| ds
)

+ (δ − γ) ds > λh dY (s) ≥ dY (s).

The second line uses (a) the update rule in line (3.15) with dY (s) denoting Y (s+ ds)− Y (s), (b) that M ≥ |Su|
and |U ′| ≤ n, so the second expression is bounded by γ, and (c) that δ > 2γ. Integrating over [0, s⋆], the total
dual increase is strictly more than Y (s⋆) = γ, which contradicts the stopping condition of FullUpdate.

Combining Subclaim 5.1 (and specifically its implication (5.16)) with (5.14) implies that for all values s of the
timer:

∑

u∈U ′

yv
⋆

s (u, Iu(s)) <
∑

u∈U ′

D0(u, Iu(s)) + γ.(5.17)

Therefore, the increase in dual objective during [s, s+ ds] is at least

bCs(v,σ,τ) ds
(5.9)

≥

(
∑

u∈U ′

(

D0(u, Iu(s)) + bCu,s

)

+ δ + bCu0

)

ds

(5.17)
>

(
∑

u∈U ′

(

yv
⋆

s (u, Iu(s)) + bCu,s

)

+ (δ − γ) + bCu0

)

ds

≥
∑

u∈U ′

(

λh dyv
⋆

s (u, Iu(s))−
γ

Mn
|Su| ds+ bCu,s ds

)

+ γ ds+ bCu0 ds

≥
∑

u∈U ′

(

λh dyv
⋆

s (u, Iu(s)) + bCu,s

)

ds+ bCu0 ds

= λh[amount of server transferred in [s, s+ ds]] + bCu0 ds

Here Cu,s is the constraint corresponding to u ∈ U ′ when the timer equals s. The third inequality above
follows from the update rule in line (3.15), and that δ ≥ 2γ. The last equality follows from line (3.16).
Integrating over the entire range of the timer s, we see that the total dual objective increase is at least
λh[total server transfer] + loss(u0, τ

⋆). Since the total dual increase is at most γ, the total server transfer is

at most γ−loss(u0,τ
⋆)

λh . This proves the second part of Claim 5.6.
We now prove that the FullUpdate process does not stop until the dual increase is γ. For each u ∈ U ′,

the subtree Tu contains at least one active leaf and hence at least δ servers when FullUpdate is called. Since
the total server transfer is at most γ ≪ δ, we do not run out of servers. It follows that until the dual objective
reaches γ, we keep raising yv

⋆

s (u, Iu(s)) for some non-empty interval Iu(s) for each u ∈ U ′, and this also raises
the dual objective as above.
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It remains to consider the general case when activesib(u0, τ
⋆) may be empty.

Claim 5.7. (Inductive Step: General Case) At the end of any call FullUpdate(v⋆, τ⋆), the total dual
objective raised during the call equals γ.

Proof. If activesib(u0, τ
⋆) is non-empty, this follows from Claim 5.6. So assume that activesib(u0, τ

⋆) is empty. In
this case, there are no yv(u, t) variables to raise because the interval Iu0

is empty. As we raise s, we also raise
zC(v⋆,σ,τ⋆) in line (3.13). Since we do not make all the constraints in Lu0(τ⋆) depleted (Claim 5.7), the total dual

increase must reach γ, because bC(v⋆,σ,τ⋆) > 0 by Corollary 5.2.

This completes the proof of the induction hypothesis for the pair (v⋆, τ⋆).
We now give a simple upper bound on the parameter M .

Corollary 5.3. (Bound on M) For node u and timestep τ , let τu := prev(u, τ). There are at most 5HλH(T+k)
4γ

timesteps in (τu, τ ] ∩R
ns(u). So we can set M to 5HλH(T+k)

4γ + 1.

Proof. Let I := (τu, τ ]. By the choice of τu, none of the timesteps in S := I ∩ Rns(u) belongs to Awake(u). The

proof of Corollary 5.2, and specifically (5.13), shows that ginh(u, I)− r(u, I) ≥ 4|S|γ
5Hλh . This difference denotes the

net server mass leaving the subtree Tu during I using the edge (u, p(u)). We claim that quantity cannot be more
than T + k. Indeed, at the beginning of I, there are at most k servers in the sub-tree Tu and at each request
time, at most one unit of server mass can enter this sub-tree through direct transfer of server mass from a source

to the corresponding destination of a request. So |S| ≤ 5HλH(T+k)
4γ . Since the set |Su| defined in line 3.14 in

FullUpdate is at most |S|+ 1 (because of the first timestep of Iu), the desired result follows.

5.3 Approximate Dual Feasibility For β ≥ 1, a dual solution z is β-feasible if z/β satisfies the dual
constraints. We now show that the dual variables raised during the calls to FullUpdate(v, τ) for various
timesteps τ remain β-feasible for β = O(log nMk

γ ). First we show Invariant (I1), and also give bounds on variables

yv(u, t).

Claim 5.8. (Proof of Invariant (I1)) For any timestep τ and the requested source leaf v = s⌊τ⌋, the server
mass kv,τ lies in the interval (−1 − 4δn,−2δn]. For any other source leaf node v′, kv′,τ lies in the range
(−4δn,−2δn]. Further, the server mass at each sink leaf is at least δ/2.

Proof. The proof is by induction on timestep τ . Let q denote ⌊τ⌋ and suppose the invariant holds for all timesteps
before q. Before the request q arrives, the source node sq has at least −4δn servers (by induction hypothesis).
Since we immediately move 1 unit of server mass out of this leaf node, it has at least −1 − 4δn servers at time
⌊τ⌋. During [q, q + 1), we shall only move server mass into sq. Therefore, the server mass at sq remains at least
−1 − 4δn. We can show the upper bound similarly. Just before time q, the server mass is at most −2δn, and
so it becomes at most −1 − 2δn < −4δn after the movement of 1 unit of server mass out of sq. Now we keep
transferring server mass in units of at most 2γ ≤ 2δn till it exceeds −4δn. Therefore the final server mass at sq

will be at most −2δn (and at least −4δn). This proves the desired result about source nodes.
The statement about sink nodes follows easily from the fact that we move server mass out of a sink node only

when it has at least δ amount of server mass. Further at most 2γ ≤ δ/2 server mass moves out of it during one
call to FullUpdate. Therefore, the server mass at a sink leaf remains at least δ/2.

Claim 5.9. (Bound on yv Values) For any vertex v, any child u of v, and timestep τ , the variable yv(u, τ) ≤
T .

Proof. In each step, any variable yv(u, τ) can increase by at most one, because any increase in this variable is
accompanied by a corresponding transfer of server mass to the source node. This follows from that fact that

server mass is being transferred at rate at least dyv(u,τ)
dt and the total server mass transferred does not exceed

one.

Claim 5.10. Let t be any timestep in R(u), and v be the parent of u. Define t1 to be the last timestep in
R(u) ∩ [0, t], and t2 to be the next timestep, i.e., t1 + η. Let C be a constraint in Lv containing the variable
yv(u, t) on the LHS. Then C contains at least one of yv(u, t1) and yv(u, t2). Moreover, whenever we raise z(C)
in line (3.13) of the FullUpdate procedure, we also raise either yv(u, t1) or yv(u, t2) according to line (3.15).
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Proof. Suppose yv(u, t) appears in a constraint Lv(τ). Define Iu = (τu, τ ] as in line (3.7). It follows that t ∈ Iu,
and so τu < t. Therefore, τu ∈ R(u) ∩ [0, t], so either t1 > τu and hence belongs to Iu, or else t1 = τu in which
case t2 ∈ Iu. It follows that the index set Su contains either t1 or t2. This implies the second statement in the
claim.

We now show the approximate dual feasibility. Recall that the constraints added to Lv(τ) are of the form C(v, σ, τ)
given in (5.9), and we raise the corresponding dual variable zC(v,σ,τ) only during the procedure FullUpdate(v, τ)
and never again.

Lemma 5.5. (Approximate Dual Feasibility) For a node v at height h + 1, the dual variables zC are βh-

feasible for the dual program Dv, where βh = (1 + 1/H)
h
O(lnn+ lnM + ln(k/γ)).

Proof. We prove the claim by induction on the height of v. For a leaf node, this follows vacuously, since the
primal/dual programs are empty. Suppose the claim is true for all nodes of height at most h. For a node v at
height h+ 1 > 0 with children χv, the variables in Lv are of two types: (i) yv(u, t) for some timestep t and child
u ∈ χv, and (ii) yv(u′, t) for some timestep t and non-child descendant u′ ∈ Tv \ χv. We consider these cases
separately:

I. Suppose the dual constraint corresponds to variable yv(u, t) for some child u ∈ χv. Let L′ be the set of
constraints in Lv containing yv(u, t) on the LHS. The dual constraint is:

∑

C∈L′

zC ≤ cu = λh.(5.18)

Let t1, t2 be as in the statement of Claim 5.10. When we raise zC for a constraint C ∈ L′ in line (3.13) at
unit rate, we raise either yv(u, τ1) or yv(u, t2) at the rate given by line (3.15). Therefore, if we raise the
LHS of the dual constraint (5.18) for a total of Γ units of the timer, we would have raised one of the two
variables, say yv(u, τ1), for at least Γ/2 units of the timer. Therefore, the value of yv(u, τ1) variable due to
this exponential update is at least

γ

Mn
(eΓ/2λ

h

− 1).

By Claim 5.9, this is at most T , so we get

Γ = λh ·O (lnn+ lnM + ln(k/γ)) = β0cu,

hence showing that (5.18) is satisfied up to β0 factor (right now, M and T are same).

II. Suppose the dual constraint corresponds to some variable yv(u′, τ) with u′ ∈ Tu, and u ∈ χv. Suppose u′

is a node at height h′ < h. Now let L′ be the constraints in Lu (the LP for the child u) which contain
yu(u′, τ). By the induction hypothesis:

∑

C∈L′

zC ≤ βh−1 cu′ .(5.19)

Let L′′ denote the set of constraints in Lv (the LP for the parent v) which contain yv(u′, τ). Each constraint
C(v, σ, τ) in this set L′′ has the coordinate σu corresponding to the child u being a constraint in L′, which
implies:

∑

C(v,σ,τ)∈L′′

zC(v,σ,τ) =
∑

C∈L′

∑

C(v,σ,τ)∈L′′:σu=C

zC(v,σ,τ) ≤ (1 + 1/H)
∑

C∈L′

zC ,(5.20)

where the last inequality uses Invariant (I1). Now the induction hypothesis (5.19) and the fact that
βh = (1 + 1/H)βh−1 completes the proof.

Lemma 5.5 means that the dual solution for Lr is βH -feasible, where βH = O(ln nMk
γ ). This proves Lemma 5.2

and completes the proof of our fractional k-server algorithm.
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5.4 Removing dependence of the competitive ratio on T In this section, we show how to improve the
competitive ratio bound by removing dependence on the length of the time horizon, namely T . For a vertex v,
let INT (v) be the set of requests (sq, tq) among the first T requests for which sq /∈ Tv, tq ∈ Tv. Similarly, let
OUTT (v) denote the set of requests among the first T requests for which sq ∈ Tv but tq /∈ Tv. Finally, define
NETT (v) := |INT (v)| − |OUTT (v)|, and let NETT denote maxv NETT (v).

Claim 5.11. The cost of the optimal solution for the first T requests is at least NETT

k − 1.

Proof. Consider the optimal solution. Let INi,T (v) be the subset of requests in INT (v) that are handled by server
i. Define OUTi,T (v) and NETi,T (v) analogously. Let v be the vertex for which NETT = NETT (v). There must
be a server i for which NETi,T (v) ≥ NETT (v)/k. Consider the sequence σi,v of requests (ordered by arrival time) in
INi,T (v) ∪OUTi,T (v). Consider two consecutive requests q1, q2 in this ordering and suppose both of these belong
to the set INi,T (v). After reaching tq1 (inside Tv), the server can reach sq2 only by traversing the edge (v, p(v)).
Indeed there is no request in (q1, q2) that belongs to OUTi,T (v). Since the sequence σi,v has at least NETi,T (v)−1
pairs of consecutive requests from INi,T (v), server i must traverse the edge (v, p(v)) at least NETi,T (v)− 1 times.
Since the length of this edge is at least 1, the desired result follows.

The following is a more precise restatement of Corollary 5.3. The proof of this result follows along the same
lines as that of Corollary 5.3 (by observing that the parameter T can be replaced by NETT (u)).

Claim 5.12. (Bound on M) For node u and timestep τ , let τu := prev(u, τ). There are at most 5HλH(NETT (u)+k)
4γ

timesteps in (τu, τ ] ∩R
ns(u). So we can set M to 5HλH(NETT (v)+k)

4γ + 1.

The online algorithm. Motivated by the above observations, our revised online algorithm is as follows. We
divide the input sequence into phases. Whenever a new phase begins, we restart Algorithm 1 on the subsequent
input, i.e., we ignore the solution maintained so far, bring all the servers to the starting configuration (as explained
in Section 3.4) and run Algorithm 1. A phase ends when NETT equals ck(n + k)∆, where c is a large enough
constant and T is the number of requests served in the current phase (i.e., NETT is calculated with respect to the
current phase only). This completes the description of the online algorithm.

Analysis. We now analyze the competitive ratio of this algorithm. Suppose we run the algorithm for P
phases. Let I denote the overall sequence of requests and Ip denote the requests arriving in phase p. Suppose
phase p handles Tp requests. For a phase p, let NET

p
Tp

denote the value of NETTp
while considering the input Ip

only. For a phase p < P , we know that NET
p
Tp

= ck(n + k)∆. Let optp denote the offline optimum for Ip along
with the n+ 1 additional requests given in Section 3.4 when the starting configuration is the one in Section 3.4.
Let opt denote the offline optimum for the overall input I.

Claim 5.13.
∑P

p=1 optp ≤ opt +O((n+ k) · P∆) ≤ 2 opt +O((n+ k) ·∆).

Proof. Consider the offline optimal algorithm O for I of cost opt. Let σp be the configuration of servers in O when
the input Ip begins. From O, we can obtain an algorithm Op for Ip as follows: we first serve the additional n+1
requests given in Section 3.4, then modify the server configuration to σp, and finally run O for the entire sequence
Ip. The cost of serving the n+1 additional requests is at most O(n∆) and that of modifying the configuration to
σp is O(k∆). Therefore, optp is at most O((n+ k)∆) plus the cost incurred by O during Ip. The first inequality
in the claim follows from this observation.

It remains to show the second inequality. If P = 1, then there is nothing to show. So assume P > 1. For
a phase p < P , we know that NET

p
Tp

= ck(n + k)∆. Claim 5.11 now implies that optp ≥ c(n + k)∆ − 1. Thus,
∑P

p=1 optp ≥ (c(n+k)/2) · P∆. The desired inequality now follows from this fact and the first inequality in the
claim.

Claim 5.14. For a phase p < P , the cost incurred by the online algorithm is O(H log nMk
γ )optp. For the last

phase P , the cost incurred by the online algorithm is O(H log nMk
γ )optP +O(k∆).

Proof. We know from the proof of Theorem 5.1 that the cost incurred by the online algorithm in a particular
phase p is at most O(βH)optp +O(k∆), where β = O(log nMk

γ ). The additive term comes because of the cost of

setting up the starting configuration. As argued in the proof of Claim 5.13, optp = Ω((n + k)∆) if p < P . The
desired result now follows from this observation.
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Using Claim 5.14, we get the following bound on the cost of the algorithm:

O

(

H log
nMk

γ

) P∑

p=1

optp +O(k∆) ≤(Claim 5.13) O

(

H log
nMk

γ

)

opt +O

(

H log
nMk

γ

)

· (n+ k)∆ +O(k∆).

For each phase, Claim 5.12 (along with the fact that γ is O(1/n4)) implies that the parameter M is at most
O(HλHk∆n5) = O(λHk∆2n6) since H ≤ n∆. Using this value of M in the above bound on the cost of the
algorithm, we get the following theorem:

Theorem 5.2. (Competitiveness for k-Taxi) Given any instance of the k-Taxi problem on a λ-HST with
height at most λ/10, the online algorithm ensures that each request location sq is saturated at some timestep in
[q, q+1). The total cost of (fractional) server movement is O(H2 log(nk∆)) times the cost of the optimal solution

(plus a fixed additive term O
(

H2 log nk∆
γ

)

· (n+ k)∆).

6 The Rounding Algorithm

We now give the rounding algorithm for k-Taxi: while we cannot directly use the rounding algorithm of [BBMN15]
and [BCL+18] because of the free movement of the server from sq to tq, we show how to use the main ingredients
from those rounding algorithms can still be used in a nearly black-box fashion.

6.1 Abstracting the Fractional Algorithm Define fq : Lr → R to be fractional server assignments
maintained by the above algorithm at the last timestep q + 1 − η that corresponds to request q, it satisfies
the following properties:

i. fq(tq) ≥ 1,
ii. fq(v) ≥ −4δn for all source nodes, and
iii.

∑

v fq(v) = k.
Moreover, we can abstract the process above as follows:

1. At time q, we start with the previous server locations fq−1, and receive the source-sink pair sq-tq.

2. We move to an intermediate assignment fq−1/2 defined by fq−1/2(sq) = fq(sq) + 1, fq−1/2(tq) = fq(tq) − 1,
and fq−1/2(v) = fq(v) for all other nodes v.

3. Finally, we move to the assignment fq that fractionally satisfies request rq by moving one unit of server
mass from sq to tq at zero cost.

Given the HST T , define the earth-mover distance between f and f ′ to be

EMD(f, f ′) =
∑

v∈V

cv|f(v)− f ′(v)|.

The cost incurred by the fractional algorithm is exactly
∑

q EMD(fq, fq+1/2), since the movement of the server
from fq+1/2 to fq+1 is free.

6.2 Reducing to the Rounding for k-Server For the rounding algorithm, we use two subroutines in an
almost black-box fashion. The first is a result of Bubeck et al. [BCL+18, Lemma 3.4], which we paraphrase here:

Lemma 6.1. (Correcting Server Mass) For every 0 ≤ ζ < 1, there exists a map σ that takes any fractional
server assignment f using k+ζ servers and outputs a new fractional server assignment σ(f) using only k servers,
such that σ(f)(v) ∈ [⌊f(v)⌋, f(v)]. Moreover, for any f, f ′,

EMD(σ(f), σ(f ′)) ≤ 1/(1−ζ) · EMD(f, f ′).

The second rounding result is by Bansal et al. [BBMN15, Proof of Theorem 5.2]. Define a randomized k-
server state S (i.e., a distribution over integer k-server solutions) to be consistent for a fractional assignment f if
PrS [ℓ ∈ S] = f(ℓ) for any leaf ℓ ∈ Lr, i.e., the marginals are correct at the leaves. Define it to be balanced for f
if for each node v, and each of the deterministic configurations C in the support of S, the number of servers in
configuration C that belong to the subtree Tv is either ⌊

∑

ℓ∈Lv
f(ℓ)⌋ or ⌈

∑

ℓ∈Lv
f(ℓ)⌉.
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Lemma 6.2. (One-Step Rounding) Consider a λ-HST with λ > 5. Given any fractional k-server assignments
f, f ′ and any randomized k-server state S that is consistent and balanced for f , there exists a randomized k-server
state S that is consistent and balanced for f ′ such that the expected movement cost from S to S′ is at most a
constant times EMD(f, f ′).

Our rounding procedure does the following:

1. Define ζ := 4δn2; our choice of δ ensures that ζ ≪ 1/2. For each q, apply Lemma 6.1 to the fractional
assignments fq−1 +4δn and fq−1/2 +4δn, each of which has k+ ζ fractional servers, to get new assignments

f̂q−1, f̂q−1/2 such that

EMD(f̂q−1, f̂q−1/2) ≤ O(1) · EMD(fq−1, fq−1/2).

Since fq−1/2(sq) + 4δn ≥ 1, Lemma 6.1 ensures that f̂q−1/2(sq) ≥ 1 as well.

2. Given a consistent and balanced randomized k-server state Sq−1 for f̂q−1, use Lemma 6.2 to obtain

the (consistent and balanced) randomized state Sq−1/2 for f̂q−1/2. The balancedness ensures that each
configuration C in the support of Sq−1/2 contains a server at sq. Now construct Sq by moving one server

from sq to tq in each of these configurations in Sq−1/2. By construction Sq is consistent and balanced for f̂q.
We now proceed by induction.

Since ζ ≪ 1 and λ > 5 in our constructions, we get the main result of this section:

Theorem 6.1. (Rounding) Consider a λ-HST with λ > 5. The fractional server assignments produced by the
algorithms in the previous section can be rounded online to get a randomized k-taxi algorithm, whose expected cost
is at most a constant factor of the fractional cost.

7 Concluding Remarks

In this work, we give a covering LP formulation for the k-Taxi problem for HSTs (and thence for general graphs),
and use it to obtain an O(polylog(nk∆))-competitive randomized algorithm; this is the first such algorithm for
the problem. The main conceptual contribution is the isolation of a subset of covering constraints implied by
the natural min-cost flow relaxation for k-Taxi, which are rich enough to effectively bound the optimal cost,
yet malleable enough to allow us to account for the movement within each subtree using local LPs, using the
framework of [GKP21].

Several open questions remain: (i) can we remove the dependence on ∆? (ii) can we extend the framework
of [GKP21] to broader classes of metrical task/service systems, and its extension here to other metrical service
systems with transformations? (iii) can we extend our results to k-Taxi with time windows?
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