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Set Covering with Our Eyes Wide Shut*

Anupam Guptal Gregory Kehne? Roie Levin$

Abstract

In the stochastic set cover problem (Grandoni et al., FOCS ’08), we are given a collection S of m sets over a
universe U of size N, and a distribution D over elements of /. The algorithm draws n elements one-by-one
from D and must buy a set to cover each element on arrival; the goal is to minimize the total cost of sets
bought during this process. A wuniversal algorithm a priori maps each element u € U to a set S(u) such that if
U C U is formed by drawing n times from distribution D, then the algorithm commits to outputting S(U).
Grandoni et al. gave an O(log mN)-competitive universal algorithm for this stochastic set cover problem.

We improve unilaterally upon this result by giving a simple, polynomial time O(logmn)-competitive
universal algorithm for the more general prophet version, in which U is formed by drawing from n different
distributions D1, ..., D,. Furthermore, we show that we do not need full foreknowledge of the distributions: in
fact, a single sample from each distribution suffices. We show similar results for the 2-stage prophet setting and
for the online-with-a-sample setting.

We obtain our results via a generic reduction from the single-sample prophet setting to the random-order
setting (for which Gupta et al., FOCS 2021 provides an algorithm); this reduction holds for a broad class
of minimization problems that includes all covering problems. We take advantage of this framework by
giving random-order algorithms for non-metric facility location and set multicover; using our framework, these
automatically translate to universal prophet algorithms.

1 Introduction

In the SETCOVER problem we are given a set system (U, S), where U is a ground set of size N and S is a collection
of subsets with |S| = m. We are also given a subset U C U of size n. The goal is to select a minimum-size
(or more generally, minimum-cost) subcollection &’ C & such that the union of the sets in &’ is U. Many
polynomial-time algorithms have been discovered for this problem that achieve an approximation ratio of Inn (see
e.g. [Chv79, Joh74, Lov75, WS11]), and this is best possible unless P = NP [Fei98, DS14].

One may interpret a solution S’ as a map & : U — S taking each element to a set that covers it (breaking ties
arbitrarily). In this case &(U) = J, ¢y {6 (u)} is the solution S’. In seminal work, Jia et al. defined the universal
variant of the set cover problem, in which the goal is to construct & a priori and obliviously without seeing the
actual value of U C U (hence it is constructed using only & and S) [JLNT05]. One wants a map & minimizing the
worst case ratio maxycy ¢(S(U))/c(OPT(U)) between the cost of G(U) and the cost of the optimal set cover for
U. A universal algorithm is said to be a-competitive, or to achieve competitive ratio «, if the value of this ratio is
no more than a. Jia et al. showed ©(y/n) bounds for this problem [JLN*05].

To overcome this polynomial barrier, Grandoni et al. [GGLT13] studied the stochastic variant of universal set
cover, in which one additionally assumes that the elements of U are drawn i.i.d. from a known distribution D.
The aim is now to minimize the expected ratio Ey[c(&(U))]/Eulc(OPT(U))]. With this assumption, they showed
that it is possible to get an exponentially better O(log(mN))-competitive algorithm, and that this is best possible
up to loglog factors.

In this work, we improve, generalize and simplify the results of [GGLT13]. First, we improve the competitive
ratio to O(log(mn)), which can be exponentially smaller when n <« N. This essentially is best possible for
polynomial-time algorithms, since there is an Q(logm/ loglogm) lower bound when n < m [GGL113], and there
is no polynomial-time algorithm with approximation o(logn) unless P = NP [Fei98, DS14]. We also generalize
to the prophet setting, in which U consists of draws from a sequence of non-identical distributions D',..., D™.
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In fact, we show that we do not need full knowledge of these distributions, and even a single sample from each
distribution suffices. We also show extensions to two other related models, the 2-stage prophet setting, and the
online-with-a-sample setting, as well as to several problems which generalize SETCOVER and covering. We now
present a more formal overview of these results.

1.1 Our Results Our main contribution is a reduction from the prophet setting to the random-order online
setting. In random-order SETCOVER, the elements U are adversarially chosen and revealed one at a time. The
algorithm must choose a set to cover the element, and decisions are irrevocable. Since the LEARNORCOVER
algorithm of [GKL21] is an O(log(mn))-competitive algorithm for random-order SETCOVER, we immediately
obtain:

THEOREM 1.1. There is a polynomial-time O(log(mn))-competitive universal algorithm for 1-sample prophet
SETCOVER.

Using similar techniques, we obtain theorems for the following two models as well. In the 2-stage prophet
model, the algorithm is allowed to purchase sets at a discount in a first stage before the game begins. In a second
stage, U is drawn at random as in the usual prophet setting, and any sets bought after seeing the realizations cost
full price.

THEOREM 1.2. There is a polynomial-time universal algorithm for 2-stage prophet SETCOVER that is O(log(mn))-
competitive with respect to the optimal online policy.

In the online-with-a-sample setting, an adversary selects an unknown element set U and reveals a uniformly
random a-fraction of it to the algorithm. After this point, the remaining elements are revealed one-by-one in
adversarial order. The algorithm must buy sets to cover incoming elements immediately on arrival, and decisions
are irrevocable.

THEOREM 1.3. For every O < a < 1, there is a polynomial-time O(log(mn)/a)-competitive universal algorithm
for online-with-a-sample SETCOVER.

In fact our reduction holds for a more general class of minimization problems which we call augmentable
integer programs (AIPs). These are problems for which augmenting any infeasible solution z to a feasible
solution gets cheaper as z grows'. Hence we reduce the task of designing prophet/2-stage prophet/online-with-a-
sample algorithms for AIPs to the task of designing random-order algorithms. To illustrate our reductions, we
additionally give O(log mn)-competitive algorithms for NONMETRICFACILITYLOCATION and SETMULTICOVER in
random order. This marks partial progress in answering an open question of [GKL21], which asked if there is an
O(log mn)-competitive algorithm for covering integer programs with box constraints in random order.

1.2 Techniques and Overview The proofs of Theorems 1.1, 1.2, and 1.3 share a common template. The main
idea is to reduce from setting X’ to random-order SETCOVER as follows:

1. Generate a mock instance I ~ X.
2. Simulate algorithm A for random-order SETCOVER on the mock input T by shuffling the order artificially.

3. Solve X on the real input Z ~ X by first buying the solution z bought by A, then covering any outstanding
uncovered element v® with the cheapest set containing v®.

The idea is to charge the “backup” sets bought to cover any elements missed by A to the actual decisions made
by A, which we can bound using the performance guarantees on 4. This perspective allows us to give us proofs
that are simple in hindsight; yet, prior to our work it was not known how to obtain such results (in fact incorrect
proofs of weaker statements were claimed and retracted, as we detail in the related work section and appendix).
We treat each model separately in Sections 3, 4, and 5.

TSuch problems were studied by [GGLS08] but were not given a name. These are intuitively related to covering problems; we

reserve the term covering for problems with upward closed feasible regions. See Section 2 for details.

Copyright © 2024 by STAM
Unauthorized reproduction of this article is prohibited

4531



Downloaded 11/22/24 to 165.123.239.243 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

In Sections 6 and 7 we give random-order algorithms for NONMETRICFACILITY LOCATION and SETMULTI-
CoVER. This demonstrates the generality of our reductions, and also illustrates the versatility of the “Learn or
Cover” framework of [GKL21] beyond pure covering problems. These are the most technically involved sections of
this work.

These results build upon the LEARNORCOVER framework of [GKL21] designed for set cover. With every
element that arrives uncovered, LEARNORCOVER (a) samples from a distribution over sets, and (b) learns from
the fact that a random element was uncovered to update the distribution. [GKL21] show the algorithm either
makes progress learning about the optimal distribution from which one should be sampling, or if it does not then
it makes progress sampling since the distribution is already sufficiently good. They used a two-part potential,
where the parts measure progress learning and covering respectively.

Non-metric facility location is often treated as an extension of set cover, since there are standard reductions
between the two ([Vyg05, Section 3.1] and [KT84]). However, these reductions do not hold in the random-order
model. The first reduction from NONMETRICFACILITYLOCATION to SETCOVER, which is folklore, requires an
exponential blowup in the number of sets. This is prohibitive since one must in general lose a Q(logm) factor for
random-order online set cover [GKL21]. The second reduction introduces a new set and a new element for every
facility-client pair; thus a client arriving in random order becomes a batch of new sets and elements. However,
online set cover in which elements arrive in randomly ordered batches is in general harder than true uniform
random order since [GKL21] show a log-squared lower bound for this problem. Therefore both reductions face
obstacles in the random-order setting, and a new approach is needed.

The primary challenge in random-order FACILITYLOCATION is to account for connection costs. This makes
the task of learning a distribution over facilities complex, since the cost of satisfying an arriving client changes
over time. Our approach may be viewed as running LEARNORCOVER on a set system that evolves dynamically
over time: each facility is a set, each client is an element, and a client’s element is contained in a facility’s set if
opening that facility significantly reduces that client’s connection cost. We reuse the high level learn/cover idea,
but we need to use a more intricate potential to measure progress learning.

Finally, our random-order SETMULTICOVER algorithm builds on the slightly more involved algorithm of
[GKL21] for random-order CIPs. This involves several technical challenges. For one, the two-part potential of
[GKL21] expects that if a variable’s probability in the maintained distribution is high, then it will contribute
towards covering unseen constraints in expectation. However multiplicity constraints prohibit the algorithm
from sampling any variable more than once, even in this case. We show that this difficulty can nevertheless be
circumvented by gradually “forgetting” coordinates that have already hit their caps; interestingly our multiplicative
weights update rule does not depend on the marginal augmentation cost of the incoming constraint, as it does in
[GKL21].

1.3 Related Work The term prophet inequality is usually used in the context of online max finding: a gambler
draws numbers one-by-one from a sequence of known distributions, and their task is to stop at the highest number.
Prophet inequality refers to the bound on the performance of such a player in terms of that of a clairvoyant
“prophet” who can see the future. [KS78] showed a strategy for this game with expected reward at least 1/2 that of
the prophet (see [HK92| for a further survey). The secretary problem [F89] is a related max-finding game in
which the gambler sees arbitrary numbers in random order, and once again aims to stop at the highest number.
[AKW14] gave a l/e-competitive strategy for the prophet problem (and extensions) via a reduction to (a subclass
of algorithms for) the secretary problem, and this bound was later improved to 1/2 by [RWW20]. Our main result
may be viewed as a minimization counterpart of the prophet-to-secretary reductions of [AKW14] for maximization
problems.

Free-order prophet inequalities, in which the gambler can adaptively choose the order in which to open boxes,
were studied by [LLPT21, PT22, BC22]. Our main result implies that for covering problems, the constrained-order
prophet problem is—up to a factor of two—mno harder than its free-order counterpart.

Previous work of [DEH'18a] claimed a reduction from the prophet set cover problem to universal algorithms
for the stochastic (in other words i.i.d.) set cover problem. However the proof (which appears in Section 9.5 of
[EB17]) has an issue which we detail in Appendix C, and the claim has since been withdrawn [Sed].

Motivated by settings where an algorithm has access to historical data, [KNR22, KNR20] recently introduced
the online-with-a~-sample model in the context of max-finding (i.e. the secretary problem), and matching. [AFGS22]
study Steiner tree, facility location and load balancing in this model.
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There is considerable work on 2-stage (and more generally multi-stage) stochastic optimization from the
perspective of approximations (e.g., [SS06a, CCP05, GPRS04, GPRS05, GRS07]), see [SS06b, BL11] for surveys.
Our 2-stage prophet model is a hybrid stochastic-online model in which the second stage is a fully online game; as
far as we know, this model has not been previously studied.

Finally, using our reduction framework and the 3-competitive random-order algorithm of [KNR23], we
automatically get 6-competitive universal algorithm for the prophet metric facility location problem with a single
sample per distribution. A similar result for the special case where all the distributions are identical is implied by
previous work of [GGLS08].

2 Preliminaries

All logarithms in this paper are taken to be base e. In the following definitions, let z,y € R’ be vectors.
The standard dot product between x and y is denoted (z,y) = > ., z;y;. We use max(z,y) to denote the
coordinate-wise maximum. We use a weighted generalization of KL divergence. Given a weight function ¢, define

KL, (z || y) : Zc [:rﬂog( .)—xi—l—yl}.
Yi

i=1

Augmentable Integer Programs. A covering integer program (CIP) is usually defined as an integer
program (IP) for which the set of feasible solutions is upwards closed. We define the following more general class
of problems which we call augmentable integer programs (AIPs). These were studied in [GGLS08], but not given
an explicit name.

Let V be a set of requests. For any subset of requests V' C V', let SoLs(V') C Z™ be the subset of solutions
that are feasible to V’. Next, for any subset of requests V', any solution z € SoLs(V”), and any request set W,
define the augmentation cost

Avc (W | 2, V') = min{c(w) | max(w, z) € SoLs(V' UW)},
or oo if no such w exists. Let BACKUP(W | z, V') be a minimizer when it exists.

DEFINITION 2.1. (AIP) An augmentable integer linear program (AIP) is one in which augmentation costs are
monotone, i.e. for any V' C V" CV, and any 2z’ < 2" such that z' € SoLs(V') and 2" € SorLs(V"), we have
Avc(W | 2", V" < Auc (W | 2/, V') for any request set W C V.

For a set of requests V', let OPT(V) be a minimum-cost solution in SOLS(V'), and ¢(OPT(V)) its associated
cost.

OBSERVATION 2.1. (AIPS ARE SUBADDITIVE) For any A,B C V', we have that c(OPT(AU B)) < ¢(OPT(A)) +
c¢(OPT(B)).

Proof. We have that
¢(OPT(AU B)) < ¢(OpPT(A)) + Auc (B | OPT(A), A) < ¢(OPT(A)) + ¢(OPT(B)).

The first inequality follows since building a solution feasible to A and then augmenting it to satisfy B is only more
expensive than OPT(A U B). The second inequality follows from the monotonicity of augmentation costs property
of AIPs, with 2/ =0, 2 = OPT(A), V' =0, V' = A, and W = B. |

Note that the standard IP formulation of NONMETRICFACILITYLOCATION with indicator variables for {z s}y
for facilities, and {yy.}, for facility-client connections is an AIP, but not a CIP. Likewise, SETMULTICOVER is
an AIP but not a CIP.

Online Models. We briefly catalogue the various models that we treat in this paper.

1. An online AIP is an AIP in which some constraints are given upfront, and some are revealed sequentially
over time. The algorithm must maintain a monotonically increasing solution that satisfies all the constraints
revealed so far.
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. A prophet AIP instance is an online AIP instance in which the constraints v!,...,v" are drawn from known
distributions D!, ..., D™.

. A k-sample prophet AIP instance is an online AIP in which the constraints v!,...,v™ are drawn from
unknown distributions D', ..., D™, except the algorithm is given k samples from each of the distributions
before the online sequence begins.

. A free-order (resp. k-sample) prophet AIP instance is a (resp. k-sample) prophet AIP instance in which
the algorithm is allowed to adaptively decide the order in which it samples the known (resp. unknown but
sampled k times) distributions D!,... D™.

. A 2-stage prophet AIP instance is a prophet AIP instance and a positive number A. The algorithm is
allowed to purchase an initial solution z; before the online sequence begins, and any purchases zo made
during the online sequence are marked up by a factor of A.

. An online-with-a-sample ATP instance is an online AIP instance in which, after the adversary fixes the input,
the algorithm is given a uniformly random « fraction of the sequence upfront before the online game begins.

3 Universal Prophet Algorithms

In this section we prove Theorem 1.1 via a reduction to random-order set cover. Recall that [AKW14] gave such a
reduction for maximization problems. Our work offers complimentary results for minimization problems.

In fact, our reduction is more powerful in two ways:

o It holds for AIPs generally, beyond set cover. Hence to construct a prophet algorithm for an AIP, it suffices

to construct a random-order algorithm.

¢ We require a weaker property even than random order. In fact, we can reduce the prophet setting to the

free-order prophet setting, where the algorithm is granted the freedom to choose the order in which it samples
the distributions Dy, ..., D,. Random-order algorithms are a special class of free-order algorithms.

THEOREM 3.1. Let Z be an instance class of prophet AIP. If algorithm A is a free-order prophet AIP algorithm
that achieves competitive ratio A on class T using k samples, then there is a fized-order prophet AIP algorithm A’
for class T achieving competitive ratio 2A using k + 1 samples.

In particular, random-order algorithms are 0O-sample free-order prophet algorithms, and furthermore

LEARNORCOVER of [GKL21] is a random-order set cover algorithm. Hence we get Theorem 1.1 as a corollary.

Proof of Theorem 3.1. Let A be a k-sample algorithm for prophet AIP using custom/adaptive order 7 and with
expected competitive ratio A. Define A’ to be Algorithm 1.

Algorithm 1 (k4 1)-SAMPLE PROPHET TO k-SAMPLE FREE ORDER PROPHET

— =
= O

—_
[\

© X NP TR

Train algorithm A on k samples each of D', ..., D™,
Let MocKRUN = {?!,...,2"} be one sample each from D!, ... D"
for r=1,2,...,ndo
77 + the 7" sample in (possibly adaptive) order 7 specified by A.
Feed 77 to A.
Let Z be the output of A.
Initialize z < Z.
fort=1,2,...,ndo
Draw vt ~ Dt.
if v! not satisfied by z then
| Update z + max(z, BACKUP(v! | z, MOCKRUN U {v!, ..., v!=1})).
: return z.

Clearly A’ uses k + 1 samples, since that is enough samples to simulate A: algorithm A requires k samples

upfront, and A’ uses one more to simulate the real draw from each distribution. We turn to bounding the cost of

A.
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The two sets of samples vy,...,v, and 7',...,0" are identically distributed, so
Elc (OPT (v1,...,v,))] = Ele (OPT (517 . ,5"))}.

Thus the expected cost of the solution Z bought by A is at most A - E[c (OPT (v1,...,v,))], by the guarantee on
A. Tt remains to bound the cost of the backup purchases in Line 11. To this end, consider each pair of requests
v, 0t ~ D! where v? is drawn on Line 9, and ?¢ is part of the mock run specified on Line 4. We will refer to these
pairs of requests as mates.

We will argue that the expected augmentation cost of a request v* is no more than the expected augmentation
cost of its mate v during the simulation of A. Towards this, let z(v) be the state of z at the beginning of the
round in which request v arrives. Let Z(¥) be the state of the solution of algorithm A at the beginning of round in
which ¥ arrives in the simulation of A (that is, in the order m chosen by A). Finally, let MOCKRUN 3 be the set
of requests of MOCKRUN that arrive before ¥ according to order m. Now:

E[Auc (v' | z(v"), MOCKRUN U {v',...,v''})] < E[Auc (v' | 2(2"), MOCKRUN 5t ) |
| 2

=E[Avuc (v ), MOCKRUN <5+ )]

The inequality holds by the monotonicity of augmentation property of AIPs in Definition 2.1, since z(vt) > Z(??).
The equality holds because v and o are identically distributed. Summing over ¢, and noting that A must pay at
least Auc (07 | Z(v7), MOCKRUN_3-) in round 7 in the event that 97 is unsatisfied on arrival, we get that the
total backup cost is bounded as

ZE [AvG (v" | z(v"), MockRUN U {v',...,v" ' })] < Y "E[{Auc (3" | 2(3"), MOCKRUN 3 ) ]
< E[e(2)];

which we can bound by A - E[c (OPT (v1, ..., v,))] by assumption of A. Thus, in total, Algorithm 1 pays at most
2-A-E[c(OpT)]. 0
We note that this proof only requires the monotone augmentation cost property for individual requests.

4 Two-Stage Prophet Algorithms

Recall the 2-stage prophet setting. At the outset we have sample access to distributions Dy, ..., Dy, as well as
some A\ > 0.

e Stage 1: The algorithm may buy a partial solution zg and incur cost ¢(zp).

e Stage 2: Requests vy ~ D, arrive one-at-a-time and the algorithm must augment its solution to satisfy
them immediately. If z; is the portion of the solution bought in this second phase, the algorithm incurs an
additional cost of A - ¢(z1).

Note that for 0 < A < 1 the algorithm should always wait to buy sets online, and this reduces to the prophet
setting above. For A > 1 we may assume without loss of generality that A is an integer (at the expense of a small
constant factor).

Our aim is to compete with OPToyins, the solution bought by the optimal online algorithm for this two-stage
problem. We write OPToxune = max(z], z7) where the solution bought in advance z§ is deterministic, and the
solution bought during the online sequence z; depends on the realizations of the draws from the distributions.

Our main result in this section is that the 2-stage setting is no harder than the random-order setting.

THEOREM 4.1. Let T be an instance class of prophet AIP. If algorithm A is a random-order AIP algorithm that
achieves competitive ratio A on class I, then there is a 2-stage prophet AIP algorithm A’ for class T achieving
competitive ratio 2A with respect to the optimal online policy using A samples.

Proof. Let A be the random-order algorithm for instance class Z with expected competitive ratio A. Define A’ to
be Algorithm 2.
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Algorithm 2 2-STAGE PROPHET TO RANDOM ORDER

First Stage:
fori=1,...,Ado
‘ Let MOCKRUN; < {0},...,97} be one sample each from D*,... D"
Let MOCKRUN = | J; MOCKRUN;.
fort=1,2,...,A-ndo
77 < the 7" request of MOCKRUN in random order .
Feed 77 to A.
Let zg be the output of A. Buy zy.

Second Stage:
8: Initialize z; + 0.
9: fort=1,2,...,ndo

10: Draw v* ~ D?.

11: Let z + max(zo, 21).

12: if v* not satisfied by z then

13: Let w < BACKUP(v! | max(zo, 21), MOCKRUN U {v!, ... v?71}).
14: Update z; < max(z1, w).

15: return max(zo, z1).

The proof proceeds in two steps. Let Z := E[e(2§) + X - ¢(z7)] be the expected cost of OPTonuwe. First we
bound the expected cost of zg computed by A in terms of Z, and then we bound the total cost of backups, i.e. 21,
in terms of the cost of zg.

For the first bound on zg, we follow the “boosted sampling” argument of [GPRS04]. Suppose that z§ is the
optimal first-stage solution, and z7,..., z} are the second-stage solutions bought by the optimal online strategy
when fed each of the sequences MOCKRUN;. By the subadditivity property of AIPs from Observation 2.1,

A
¢(OPT (MOCKRUN)) < ¢(z5) + > e(2]) = elz5) + Em X e(z))],
i=1 i
where i ~ [A] denotes that ¢ is drawn uniformly from [A]. Taking the expectation over the drawing of
MockRUN, we get that E[c(OpT (MoCkRUN))] < Z. Since algorithm A is A-competitive, we immediately
get that E[c(z9)] < A - Z.

It remains to bound the cost of z;. This second half of the proof resembles that of Theorem 3.1. Let zo(v)
denote the state of the solution held by A before the arrival of request v.

Fix an index ¢ € [n]. Without loss of generality, reorder the corresponding MOCKRUN samples 7%, ..., 7% to
agree with their relative order in 7. Define MOCKRUN,, to be the set of clients of MOCKRUN that arrive before
v according to order m. By Definition 2.1, since 29(0%) < ... < 29(v?) for every realization of the random variables,
we have that for each request v,

Auc (v Zo(i)\i),MOCKRUN<5i> > ... > Avc (v Zo(ﬁf\),MOCKRUN<5K)
> Avc (v | zo(v"), MOCKRUN U {v', ... 0" }).
Then, taking the expectation over both the random sequences of 2o(@}),. .., zg(v") and the identically distributed
draws of v1,...,0%,v" ~ D,
]E[AUG (ﬁi 20(01), MOCKRUN<@{)} > > ]E{AUG (6; zo(ﬁg\),MOCKRUN<;);)}
> E[Avc (v* | 20(v"), MocKRUN U {v', ..., 0" })].
Summing yields
A
A-E[Auc (v* | 20(9"), MocKRUN U {v',..., 0" '})] < ZE[AUG (ﬁf 20(00), MOCKRUN<5£>]
i=1
4536 Copyright © 2024 by STAM
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Finally, summing again over ¢t € [n], we get that the second-stage costs of Algorithm 2 are bounded by

A-Ele(21)] =

NE

- E[AUG (Ut ’ Zo(vt)’ MocKRuUN U {'Ul, o 7,01571})}

o~
Il
-

NE
NE

E [AUG (ﬁf

20(0}), MOCKRUN _ ¢ )]

H
Il
-

%

(20

IN
=
o

B

t

where the last inequality holds since A pays at least AuG (ﬁf 20(0%), MOCKRUN<@t) in rounds where ! is

unsatisfied on arrival.
We conclude that the total expenditure of the algorithm is E[e(zo) + A - ¢(21)] < 2E[c(z0)] < 2A - Z. 0

5 Online-With-a-Sample

In this section we show a general reduction from online-with-a-sample AIPs to the random-order version. Recall
that in this model, « is the proportion of the input sequence which is uniformly randomly chosen to be revealed to
the algorithm up front.

THEOREM 5.1. Let T be an instance class of AIPs. If algorithm A is a random-order AIP algorithm with

competitive ratio A on class I, then there is an online-with-a-sample algorithm A’ for class T with competitive
ratio O(A/a).

Proof. Let A be the random-order algorithm for instance class Z with expected competitive ratio A. Define A’ to
be Algorithm 3.

Algorithm 3 ONLINE-WITH-A-SAMPLE TO RANDOM ORDER

Let SAMPLES = {0',...,9%"} be the samples given upfront.
fort=1,2,...,a-n do
77 < the 7" sample in random order.
Feed 77 to A.
Let Z be the output of A.
Initialize z < Z.
fort=1,2,...,ndo
Draw v' ~ D¢,
if v! not satisfied by z then
| Update z + max(z, BACKUP(v! | z, SAMPLES U {v?, ..., v!=1})).

=
=

11: return z.

Assume without loss of generality that n is a multiple of 1/a. Further assume that 1/a € N; this can be done
by taking a < 1/[1/a] and paying at most a factor of two.

We imagine generating SAMPLES according to the following procedure. First, perform a random partition
of v1,...,v™ into a - n groups of size 1/a. Pick a uniformly random representative request from each subset to
include in SAMPLES. For each request v, let 7(v) be the representative request of the group containing v, and let

SAMPLES,, be the set of samples that arrive before v according to random order 7. Now:

E[Auc (v* | z(v"), SampLES U {v', ..., 0" '})] < E[Avc (v* | Z(r(v")), SAMPLESQ(M)}
) |

=E[Auc (r(v") | Z(r(v")), SAMPLES <(,1)) |
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The inequality holds by the monotonicity of augmentation condition of Definition 2.1, since z(v*) > Z(r(v')). The
equality holds because v* and r(v?) are identically distributed at the beginning of the run. Summing over ¢, and
noting that A must pay at least Auc (07 | Z(v™)) in round 7 when 97 is unsatisfied on arrival, we get that the
total backup cost is bounded as

zn:E[AUG (v* | z(v*),SamMPLES U {v', ... 0" '})] < iE[AUG (r(v") | 2(r(v")), SAMPLES < (yt)) |
t=1 t=1

Q
3

1 -E[Auc (07 | 2(V7), SAMPLES <5+ )]
(0%

I
g

[

< ~E[e(3).

1lr

The equality above comes from the fact that each representative that makes up SAMPLES appears 1/« times in
the first sum. We can bound the expression above by &/« - E[c (OPT (vy,...,v,))] by the assumption on A, and so
in total, Algorithm 1 pays at most &/« - E[c (OPT)]. 0

We conclude by remarking that a similar argument proves Theorem 5.1 in the slightly different ‘online-with-a-
sample’ setting in which each of the requests in the online sequence is sampled independently with probability c.
More generally, for o < 1 it is possible to get an analogous tradeoff between « in the number of samples and 1/a in
the approximation ratio for Theorem 3.1 and Theorem 4.1 as well.

6 Online Facility Location

In this section we apply our framework to online facility location problems.

6.1 Facility Location In FACILITYLOCATION, the input is a set of n clients and m facilities. Each facility f
has an opening cost ¢y, and each client-facility pair (v, f) has a connection cost c¢y,. The goal is to open a number
of facilities and connect each client to exactly one open facility such that the total cost is minimized. A standard
integer programming formulation for offline (unit-demand) FACILITYLOCATION is as follows [CCZ14]:

(6.1) mianfnjf—i—Zcfv-yfv
f

fv
nyv Z 1 Yv
J

Yfo < Zyf Vf,’l}
Ty, Yo € 10,1}

In the random-order online version, the m facilities are known ahead of time, and n unknown clients arrive
online in random order; on the arrival of each client, the algorithm must choose which (if any) new facilities to
open, and then connect the client to an open facility. Decisions are irrevocable, in the sense that a client may not
change which facility it has connected to after arrival.

We observe that FACILITYLOCATION is amenable to our framework:

OBSERVATION 6.1. FACILITYLOCATION is an AIP.

This enables us to convert algorithms for random-order FACILITYLOCATION into algorithms for the prophet,
two-stage, and with-a-sample settings.

6.2 Metric Facility Location Random-order FACILITYLOCATION is well studied when the connection costs cy,
satisfy the triangle inequality. In pioneering work, Meyerson gave an 8-approximation for this problem [Mey01],
which has recently been improved to a 3-approximation [KNR23]. Appealing to Lemma 6.1 and plugging this
algorithm as a black box into Theorems 3.1, 4.1, and 5.1, we get:

COROLLARY 6.1. For the METRICFACILITYLOCATION problem, there exists a 6-competitive algorithm in the
single-sample prophet setting, a 6-competitive algorithm in the 2-stage prophet setting, and a O(1/a)-competitive
algorithm in the online-with-a-sample setting.
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In the next section, we study the more general problem without the metric assumption.

6.3 Non-Metric Facility Location When connection costs do not satisfy the triangle inequality, this
problem is more complex. In particular, NONMETRICFACILITYLOCATION recovers SETCOVER as the special
case in which all service costs are ¢y, € {0,00}. In this section, we give an algorithm for random-order
NONMETRICFACILITYLOCATION that is best possible, even in the special case of set cover. We show:

THEOREM 6.1. There exists an O(logmn)-competitive algorithm for random-order NONMETRICFACILITYLOCA-
TION.

From Lemma 6.1 and Theorems 3.1, 4.1, and 5.1 we then directly obtain:

COROLLARY 6.2. For random-order NONMETRICFACILITYLOCATION, there exists an O(logmn)-competitive
algorithm in the single-sample prophet setting, a O(log mn)-competitive algorithm in the 2-stage prophet setting,
and a O(log mn/a)-competitive algorithm in the online-with-a-sample setting.

We demonstrate the versatility of the the LEARNORCOVER algorithm of [GKL21] for random-order set cover
by adapting it to random-order FACILITYLOCATION, which is not a pure covering problem. The challenge is to
decide which facilities to open in any given round; once this is decided, one can assume the incoming client in that
round always connects to the cheapest open facility.

Let C! be the facilities purchased by the end of round ¢. For every client v, define

ftv) € arg;nin(]l{f ZCc'y- cf+Cfy)
ry = min(L{f ¢ C'} - ey + cpo)

to be the facility which can connect the client in the cheapest way possible (including opening said facility if
necessary), and the corresponding marginal cost of doing so. This is the cost at the end of round ¢. Note that k!,
corresponds to Auc (v' | €, {v?,...,v*"'}) in our more general notation. Also define

I'(v) == {f : cpo < 1y/2}

to be the set of set of facilities that, if opened, would reduce the marginal cost of connecting v by at least a factor
of 2. Then we will say a facility f covers a client v at time ¢ if f € T'(v).

We will show that Algorithm 4 is in expectation an O(logmn)-approximation for random-order NONMETRIC-
FACILITYLOCATION. Our approach may be viewed as running LEARNORCOVER algorithm for set cover, but on a
dynamically changing set system. The facilities are the sets, the clients are the elements, and a client’s element is
contained in a facility’s set at time ¢ if f € T'(v).

By a guess-and-double approach, we may assume the algorithm has access to a bound [ such that
LPopr < 8 <2-LPgpr; here LPgpy is the cost of the optimal solution for the linear programming relaxation of
(6.1) for the given NONMETRICFACILITYLOCATION instance. We will denote by Z! the event that the arriving
client v! satisfies the condition on Line 5 that nf;l > B/t and the bulk of Algorithm 4 is executed. We will say
that v! is preemptively connected if this condition is not met; this is the event —Z¢.

Through Line 10 we maintain:

INVARIANT 6.1. For all time steps t, it holds that {c,z') = /3.

We start by defining notation. Let OPT = (z*,y*) be an optimal fractional solution. Let U? = {o®*1 ... o7}
be the clients remaining uncovered at the end of round ¢t (where U’ = U is the entire client set). Let
Xt(v) == Efert,l(v) xjfl be the fractional weight of facilities f which cover v at time ¢ — 1. We define p* := >~ &%,
and consider the following potential:

L
O(t) :=C1 - | KL, (x* [l xt) +2- Z Zcfv-yj*cv +Cs - B -log (%—f— ),
veUt f n
Dc(t)

@L(t)
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Algorithm 4 LEARNORCOVERNMFL

1: Let 7/« {f: 8/m < ¢y < B} and let m’ « |F'|.

2: Initialize 2 Cfm, S1{f e F'}.

3. fort=1,2...,ndo

4: vt < t*" client in the random order, and let Rt < 0.

5. | ifk!;' > B/t then

6: for each facility f, add R* «~ R* U {f} with probability min(x!," - x;_l/ﬂ, 1).
7: Update Ct + Ct*—1 UR!.

8: if Zferf—l(vf) xﬁc_l < 1 then

9: For every facility f, update 2’ < 33’} Uexp {1{f e T (v)} ki fes )
10: Let Zt = (¢, 2')/B and normalize ¢ + zt/Z*.

11: else

12: |zt L

13: else

14: ‘ xt 2t

15: | Ct« CtU{ft=1(v")} and connect v’ to fi=1(v?).

16: return C.

where the constants C; and Cy will be determined later. We will refer to ®, as the “learning” portion of the
potential and ®¢ as the “covering” portion of the potential.

Our potential ®(t) resembles the one used to analyze LEARNORCOVER for set cover [GKL21] which can also
be decomposed into “learning” and “covering” portions. Their learning portion also involves a KL-divergence term,
but ours is more intricate since we additionally charge to the connection cost paid by fractional OPT.

LEMMA 6.1. (BOUNDS ON ®) The initial potential is bounded as ®(0) = O(S -logmn), and ®(t) > —f -logn for
all t.

We now show the potential decreases sufficiently in every round. We bound the decrease of each term in the
potential separately.

LEMMA 6.2. (CHANGE IN ®1) For rounds when the event =t holds, the expected change in ®y, is

E, (@L(t) —@r(t—1) 2" U E

2
1
(6.2) < E |S= . gt

S !~ min (X'(v), 1) — &7

v

When the arriving vt is preemptively connected and Z¢ does not hold,
(6.3) Op(t)—PL(t—1)<0.

Note that the expected change in the statement above depends only on the randomness of the arriving
uncovered client v, not on the randomly chosen facilities Rf. On the other hand we can bound the change in ®¢
as follows.

LEMMA 6.3. (CHANGE IN ®¢) For all rounds t for which = holds, the expected change in ®¢ is

_ -1
(6.4) E, [@c(t) — Po(t—1) |21 U E] < 1 46 : g{il[nfjl -min (X*(v), 1)].
For rounds in which = does not hold,
(65) (I)C(t) — (I)C(t — 1) <0.
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We defer the proof of Lemmas 6.1, 6.2, and 6.3 to Appendix A, and we now show how to combine them to
prove the theorem.

Proof of Theorem 6.1. Let ¢(ALG(t)) be the cost paid by Algorithm 4 up to and including time ¢, and furthermore
let cpre(ALG(t)) denote the cost paid by Algorithm 4 for clients which are preemptively connected on Line 15 up
to and including round ¢, and cpoc(ALG(t)) denote the cost paid by Algorithm 4 on Lines 6 and 15 up to and
including round ¢ during rounds in which v* is not preemptively connected and Z* holds. (PRE is for preemptive,
LoC is for LEARNORCOVER).

We can provide a simple bound on the cheap facility-client connections which the algorithm buys on Line 15
in the event that v' is preemptively connected (that is, in the event that =' does not hold). These connections
collectively cost at most

Core(ALG(N)) = cpre(ALG(N)) — cpre(ALG(0))
= (conn(ALG(t)) — conp(ALG(E — 1))

(6.6) < Z g = O(B - logn).

ten]

We now consider the per-round costs incurred by the bulk of the algorithm, during the rounds in which =* holds. In
every round ¢, the expected cost of the sampled facilities R? in Line 6 is &, ' - (¢, #*71) /8 = k!;" (by Invariant 6.1).
The algorithm pays at most an additional /4:';?1 in Line 15, and hence the total expected cost per round is at most
2. /15;1.
By combining Lemmas 6.2 and 6.3, and setting the constants C1 = 2 and Cy = 4e(e + 1), we have

(@) —@(t—1) |0, ..., 0" R, RTHE
vt RE
_E Cr-(Pr(t) —PL(t—1))

virt| G2 (e(t) — ¢olt — 1))

t—1 1,1 t—1 1 t—1 —t
<- E [24%,, ‘v,...,v ,R...,R ,:],
vt R

1 t—1 pl t—1 =t
v, 0T Ry, RTHE

which cancels the expected change in cpoc in each round. We therefore have the inequality

(6.7) E [®(t) — ®(t — 1) + cLoc(ALG(t)) — cLoc(ALa(t — 1)) [ o', ... LR LR <0,
vt R

where we used that the change in ®;, and ®¢ is at most 0 for rounds in which =t does not hold.
By repeatedly applying (6.7) for all 1 < ¢ < n, we obtain

UI%[(I)(n) — ®(0) + cLoc(ALG(n)) — cLoc(ALG(0))] <0

B lenoc(ALG(n))] < €(0) + croc(ALG(0) — E [@(n)]

v,

(6.8) < O(B-logmn)+0— (=3 -logn),

where (6.8) follows from the fact that cLoc(ALG(0)) = 0, together with the bounds on @ established in Lemma 6.1.
To conclude, by (6.6) and (6.8) we have

E [e(ALG(0)] = E [ems(ALG(0)] + E [e1oc(ALG(n))]

v, R v,

(6.9) < B+ 0(B-logn) + O(B - logmn),

as desired. |

This concludes our discussion of random-order FACILITYLOCATION. Our results settle the approximability of
both the metric and non-metric versions this problem in the random-order model, and hence also in the prophet,
2-stage prophet, and online-with-a-sample models.
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7 Set Multicover with Multiplicity Constraints

We now give a second application of our framework to set multicover with multiplicity constraints, which we refer
to as SETMULTICOVER. This generalizes unit-cost set cover and additionally introduces non-covering constraints;
in particular, multiplicity constraints on the decision variables. The set multicover problem can be formally written
as the following IP:

min, (1,z)
(7.1) st.  Az>b
z€{0,1}™,

where the entries of A are in {0,1}. It is then without loss of generality to assume that b € Z7. We recover
SETCOVER as the special case where b = 1. We again observe that SETMULTICOVER is amenable to our framework:

OBSERVATION 7.1. SETMULTICOVER is an AIP.

This enables us to convert algorithms for random-order SETMULTICOVER into algorithms for the prophet,
two-stage, and with-a-sample settings.

In random-order SETMULTICOVER the rows of A are revealed in random-order, and the algorithm must
maintain a monotonically increasing solution z that satisfies all constraints revealed thus far. We show:

THEOREM 7.1. There exists an O(logmn)-competitive algorithm for random-order SETMULTICOVER.

By appealing to Lemma 7.1 and Theorems 3.1, 4.1, and 5.1 we then directly obtain:

COROLLARY 7.1. For SETMULTICOVER, there exists an O(log mn)-competitive algorithm in the single-sample
prophet setting, a O(logmn)-competitive algorithm in the 2-stage prophet setting, and a O(log(mn)/a)-competitive
algorithm in the online-with-a-sample setting.

Once again we show how to adapt ideas from [GKL21] to this more general setting. This time we extend their
more general algorithm for random-order CIPs. We will make use of the preliminaries given in Section 2, and our
approach will be similar to that of Section 6.

Let 2! denote the integer solution in round ¢. Let d! denote the undercoverage of i in the beginning of round ¢;
that is df := max (0, b; — (a;, 271)) where 2! is the integer solution at the end of round ¢. Now we define

pl= Z dk.

1€[n]

We pursue a guess-and-double approach to identifying 3 such that LPgpr < 8 < 2 LPopr, where LPopr is
the cost of an optimal fractional solution z* to (7.1). We will maintain a solution x* to (7.1) of cost 3.

In a manner similar to Algorithm 4, our algorithm will react differently to constraints which arrive uncovered.
In Algorithm 4 the criterion was that arriving clients cannot be cheaply connectable; here we perform a
LEARNORCOVER step if the element arrives undercovered, meaning that df, > 0 on Line 4.

THEOREM 7.2. For set multicover with multiplicity constraints, Algorithm 5 achieves an expected competitive ratio
of O(logmn).

Our potential is

() = C) - KL (2" || ') +Cy - B - log (Pt N 1>7
— B m

S (t)

D (t)

where again we view @ is the learning part of the potential and ®¢ is the covering part. We will fix constants Cy
and Cy later. To begin, we bound the value of this potential:
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Algorithm 5 LEARNORCOVERSMC

1: Initialize 2 % for every j, and set 2§ « 0.

2: fort=1,2,...do

3: i < t-th constraint in the random order.

4 if ¢ is not covered on arrival then

5: Let Tt :={j: z;fl =0,a;; = 1}. // unbought coordinates covering %
6 Let X7 := djeTt q:;*l. // frac. coverage by unbought j
7 dt = b; — (a;, 2t71). // integral uncoverage

8 for each j, sample 2} < Ber(d; -xz-_l/ﬁ).

9: if X!7! <d! then // i fractionally undercovered
10: Set 2 < 1 for j € T* with x;_l >1/e.

11: for each j, update 2} « xﬁfl cexp{1{j € T'}}.

12: Let Z® := (1,2%) /8 and renormalize z! « 2!/Z*.

13: if ¢ still uncovered then

14: 2t 21 and 2t + 271,

15: 2§ < 1 for dj-many arbitrary j € T". // buy backup sets

16: else

17: | 2t 2t and 2t 2L

18: return z

LEMMA 7.1. (BOUNDS ON ®) The initial potential is bounded as ®(0) = O(8 - logmn), and ®(t) > —p -log(n)
for all rounds t.

Let U denote the constraints i which have not yet arrived in round ¢; that is, Ut = {3, "1 ... i"}. We now
turn to the expected change in the learning portion of the potential in each round.

LEMMA 7.2. (CHANGE IN ®1) For rounds in which i arrives uncovered, the expected change in ®p, is

(7.2) E [®,(t)—®(t—1) |2 U, di > 0] < E [(e —1)-min(X]*, db) — dl].
it,Rt i~nUt—1

When it is covered on arrival,
(7.3) Or(t)—Pr(t—1)<0.
We next bound the expected change in ®¢(t).

LEMMA 7.3. (CHANGE IN ®¢) In every round for which it is uncovered on arrival, the expected change in ®¢ is

(7.0 B [Bo(t) ~ bo(t—1) |« Ul > 0 < <2 B fmin (X7, )]
i',R* it

where v is a fized constant. On rounds in which i* arrives covered,

(7.5) Do (t) — Bt —1) < 0.

We again defer the proofs of Lemmas 7.1, 7.2, and 7.3 to Section A, and now show how to combine them to
bound the expected cost of Algorithm 5:

Proof of Theorem 7.2. Combining Lemma 7.2 and Lemma 7.3, choosing Cy = (e+2) and Cy =2- (e +2)(e — 1)/,
and recalling that dit = 0 in rounds for which #! arrives covered, we have that

O(t) —®(t—1)|dt,... iR R
it Rt
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Cl'(éL(t)_‘I’L(t_l)) -1 1—1 1 t—1
= E iU RY R
ire |+ G (@o(t) —@e(t—1)) |
(7.6) <— E [(e+2)-d|i",....i" "R, ..., R
it’Rt

for all rounds ¢. In each round the algorithm buys at most e - d! coordinates in Line 10 (since this only happens
in the case when X!~! < d!), and samples d! sets in expectation in Line 8, and buys at most d! coordinates in
Line 15, for a total of at most (e + 2) - d! sets bought in expectation. From (7.6) we therefore have that for all
rounds t,

(7.7) E, [(I)(t) —®(t — 1) + e(ALG(D) — e(ALa(t — 1)) | i®), ... d¢=D RW . ,R(t*”} <0.
it~Ut
Raz®

Repeatedly applying (7.7) for all 1 <t <n yields

E[®(n) — 2(0) + c(ALG(n)) — (ALG(0))] < 0

B le(ALG(n))] < e(ALG(0)) + @(0) — E [®(n)],

and so observing that ¢(ALG(0)) = 0 and applying Line 7.1 we have

(7.8) E [¢(ALc(n))] < O(B - logmn),

i, R

as desired. |

This concludes our discussion of SETMULTICOVER. Once again our results settle the approximability of this
problem in the random-order, prophet, 2-stage prophet, and online-with-a-sample models. This gives a partial
answer towards the question of [GKL21] on whether the same results are possible for general box-constrained
CIPs; it remains a tantalizing open question to understand the general case.

8 Conclusion

In this paper we showed that stochastic set cover can be solved “even more obliviously” than [GGL*13], with
only coarse advice about the process generating the input. It is tempting to try to relax these online-with-advice
models for set cover by allowing for bounded error in the advice. We discuss why this is challenging in Appendix B,
as some natural candidates for relaxed models have strong lower bounds.

We submit as an interesting open problem the task of determining the tight dependence on « in Theorem 1.3.
We conjecture that it should be O(log(mn)log(1/«)). Theorem 1.3 implies that when @ = ©(1) there is an
O(log mn) competitive algorithm, and when a = 1/poly(n) the O(logmlogn) competitive algorithm of [BN09] is
best possible; this conjecture interpolates smoothly between these extremes.

Acknowledgements Roie Levin would like to thank Guy Even for asking about the 2-stage prophet model,
and Niv Buchbinder for helpful discussions.

A Deferred Proofs

Here we present the proofs of lemmas supporting our random-order algorithms of Sections 6 and 7.

A.1 Facility Location

LEMMA 6.1. (BOUNDS ON ®) The initial potential is bounded as ®(0) = O(S - logmn), and ®(t) > —f -logn for
all t.

Proof. To begin, we claim that for all f in the support of z*, we have c; < 3. To see this, consider an
optimal fractional solution (z*,y*) to (6.1), and assume for the sake of contradiction that there is some
facility f € support (z*) for which x> B. This f provides some fractional connection to some clients; let
€:= min(y})v : y;;)v > 0) be the minimum connection provided to all such clients. Finally, consider the perturbed
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solution given by setting x} = x; — ¢, setting 2; = min(z} +¢, 1) for f # f, and setting Yy, = min(yj , +€1) for

all f,v. This solution (z’,3’) remains feasible for (6.1) and costs strictly less than 3; therefore no such f exists.
Having established that ¢; < 8 for all f, we know that support (z*) C support (z). We then bound the
initial K L-divergence term by

KL, (z* || 2°) Zcfxflog(a:f 3 )—FZcf FTy)

< B(logm + 1),

where we used that xcy < 8 above, that (c,z*) = LPopr < 3, and that (c, 2%) = 3.

Next we consider the second term in ¢,. This is the second half of the objective of the fractional relaxation
(6.1), evaluated at the optimal solution; therefore it is bounded above by LPopr < .

We turn to the last term, B-log (3, K9/8 +1/n). In order to show that this is at most O(3-logn), it suffices
to demonstrate that £ < 3 for all chents v. This can be seen by considering the relaxation of (6.1) to serving
only the client v, Wthh is the problem of fractionally finding the cheapest augmentation for v at time 0. Since
this is a relaxation of (6.1), its optimal solution will cost at most 3. Finally, this relaxation integrally chooses the
facility f, := argmings ¢y + cy,; therefore kY < B. (Since augmentation costs only decrease, indeed x! < k) < 3
for all v and ¢.)

We conclude with the lower bound on ®. Both terms in ®; are nonnegative, and so ®c > —f - logn since
pt > 0. 0
LEMMA 6.2. (CHANGE IN ®) For rounds when the event =' holds, the expected change in ®r, is
JE [@L(t) — @r(t—1) |2 U E
e?—1

1 . 1
(6.2) < i |m5 e min (X*(v), 1) = k7M.

When the arriving vt is preemptively connected and Z¢ does not hold,
(6.3) OL(t)—Pr(t—1)<0.

Proof. Inequality (6.3) is straightforward: when Line 5 does not execute, there is no change to zf, and so the KL
term is unchanged. At the same time, the fractional optimum term only decreases.

Our main task is to prove (6.2). We break the proof into cases. Let A! be the event that X*(vt) < 1. If A?
does not hold, in Line 12 we set the vector z* = 2'~!, so the change in KL term is again unchanged. This means
that inequality (6.2) holds trivially, since (€2 — 1)/2 > 1. Henceforth we focus on the case when A’ holds.

Recall that the expected change in relative entropy depends only on the arriving uncovered element v?.
Beginning with the KL term and expanding definitions, and writing v = v* when it is clear from context,

E [KL. (2" || 2') — KL¢ (2% || 271) [ 2", U1 AT

vt Rt

=t t
=t A

= E7 <C7 x*> . log Zt i Z Cf . x} . logenzfl/Cf Et7At

U fer=1(v)
Cf  t—1 /e t—1
Blog| > B T+ 5 Ty L
(A1) < IIJE fert—1(v) fert—1(v) =AY
v Ut t—1 *
- D mTag

fETt =1 (v)
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where in the last step (A.1) we expanded the definition of Z?, and used (c,z*) < 8. Then we can further bound
(A.1) by

t—1
L

2 g

1 e2—1 &K

(A.2) < E |B-log Z%xf +
f

S Xw) | - Z /-@ffl'z;? =AY

~Ut—1
! Fert=1(v)

where we use the approximation e* < 1+ (€2 — 1) - a/2 for a € [0,2] (note that x!~! is the cheapest marginal
connection cost for v, so for any f € I'""!(v), meaning that cs, < k!71/2, we have that c¢; > £!7'/2 and thus
ki1 /cp < 2). Finally, using Invariant 6.1, along with the approximation log(1 + y) < y, we bound (A.2) by

2
-1
< E ¢ 5 kL X () — E Ky teay | 2 A
U fer1(v)
e2—1 ., . ¢ _ t—1 % | ot At
(A.3) < ) 5 'ky  -min (X*(v), 1) E Ky o xy | ELAT
v~Ut—
L fert=1(v)

where (A.3) follows by the definition of the event A’.

We now turn to the second part of ®,. The change to fractional optimum term in each round is —2~Zf Cfot .y;vt'
Combining this with (A.3) gives

E [®,(t)—®L(t—1) | E"AY]

o Ut—1

e T t t—1 % * =t At

< gtil Ky -min (X*(v), 1) — Z Ky, '.Tf+2'ZCfvt'yfv =A
° fert=1(v) f

Since the fractional connection v receives from outside of I''"1(v) is at cost at least k!~ by definition, we may
bound this by

< E e T Xt t—1 o« Ky !
< Ry -mln( (v), 1)— Z Ky T+ 2 Z
JFert=1(v) Fert=1(v)

=t t
]|,

Yo =AY

e -1

(A.4) < E [|&it.
UNUt—l

-min (X*(v), 1) — &

where (A.4) follows because the fractional connection v receives from outside of T*=1(v) in (z*,y*) is at least

L= perrqw) ¥
We have shown the lemma statement both when A holds and when it does not, which completes the proof.
d

LEMMA 6.3. (CHANGE IN ®¢) For all rounds t for which =t holds, the expected change in ®¢ is

1— —1
(6.4) E, [@c(t) — Pc(t—1) |21 U ET] < — 46 : g{fl[nf;l -min (X*(v), 1)].
For rounds in which =t does not hold,
(6.5) Do(t) — Pe(t—1) <0.

Proof. (6.5) is once again straightforward, since pt is monotonically decreasing in t. We therefore focus on proving
(6.4).

We start by considering the expected change to ®¢ over the randomness of the sampling, for a fixed arriving
client v. Expanding definitions,

%[QC(U — Pt —1) |27 U E W = v]
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1
p P t—1 —t .t _
_/8 E 10g< W) U , =, U —U]
1 _
(A.5) S—ﬂ'm Elp ™ = p" [ULE 0 = 0],

Above, (A.5) follows from the approximation log(1 —y) < —y. Expanding the definition of p?, (A.5) is bounded by

-1

B Ky,
S_pt71+ﬁ'7@, Z 9

t—1
:_Lﬁ Z K .E(Ft—l(u)mRt#®|Ut—17Et7,Ut:U)

ST () NRE £ 0}

Ut et = v}

t—1 4 B
P+ S 2
B ki _ [ wEE ,
(A6) S_T_A'_é Z (1—6 1)-m1n Z ml} 17 1
P n oueUt-1 Fert="1(u)
1—e?t |Ut=1
(A7) e e [Kt_l -min (X*(u), 1)].
2 v pt—1 4 % u~pt-1Lt %
Step (A.6) is due to the fact that each facility f is sampled independently with probability min( -1 / B, 1),

so the probability any given client u € U'~! gets at least one facility from I'*~1(u) is

. K’f} lx} ! . f‘@f,_l t—1
1-— H 1 — min T,l >1—exp{ —min 3 Z Ty , 1
)

fert=i(y fert=1(u)

() t—1
> (1—e 1) min al

B

>

fert=1(u)

Above, (xx) follows from convexity of the exponential. Step (A.7) then follows by rewriting the sum as an
expectation and using the fact that x{~!/8 < 1, which is justified (and used) in the proof of Lemma 6.1.
Taking the expectation of (A.7) over v' ~ U'"!, and using the fact that E, g1 [k{71] = p!=1/|U7Y|, the
expected change in &~ becomes
E, [@c(t) — ®o(t—1) |21 U EY

1— efl ptfl

—1 .
S e B e (K, ),
1—e ! P .
(A5) <O B [ min (X (), 1),

Where in (A.8) we finally use the fact that the event =! holds. Since this is the case, we know that v is not

preemptively connected in round ¢, and so ,0'5_1 > nf;l > B/t > B/n, and so ptp_t%_:é > % This is the claimed

bound. 0
A.2 Set Multicover

LEMMA 7.1. (BOUNDS ON ®) The initial potential is bounded as ®(0) = O(8 -logmn), and ®(t) > —f -log(n)
for all rounds t.

Proof. We start with the upper bound, and address each portion of the potential in turn. First, KL (z* || 2°) =
> 25 log (z—é) = >, zjlog (m%]) < > xjlogm < Blogm, since zj < LPopr < B for all j. Second,
B - log (%0 + %) < f-log (ZZ %’) < Blogn, since b; < LPgpr < 8 for all b;.
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We now justify the lower bound. The KL divergence is nonnegative, as is p’; therefore ®(t) > 3 - log(1/m) =
—p - logm. |

LEMMA 7.2. (CHANGE IN &) For rounds in which it arrives uncovered, the expected change in ®p, is

(7.2) E [@p(t) —@p(t—1) 2" U di > 0] < E_le-1) -min(X}1, db) — di].
iR i~nUt—

When it is covered on arrival,
(7.3) Dr(t)—PL(t—1) <0.

Proof. We first show (7.3). This holds because if i* is covered on arrival then
We break the proof of (7.2) into two cases. If Xffl > d!, by Line 9, the vector z* is not updated in round ¢,
so the change in KL divergence is 0 which means that
* t * t—1 t—1 t—1 t—1 t
Z_t%t[KL(x || 2') =KL (z* || 2'1) | 2 UL X7 > dl]
(A.9) < E [(e—1)-min(X;7",df) — di | X;~" > di],

T sttt

implying (7.2) trivially. Henceforth we focus on the case X!~ < dt.
Recall that the expected change in relative entropy depends only on the arriving uncovered element it.

Expanding definitions,

* * — — —1
it%t[KL (z* || 2T1) = KL (z* || 2") [ 2" U X7 < dY]

_ et
_ . J t—1 t
= Z-N[]thl ij log x; X7 <d;

J

= E > aj-logZ' = > a}-loge | X[7! < dl
L J

e jET
(A.10) < E |Blogz'= ) af| X[ <d]
i JET?
(A.11) < E [B-logZ'—di | X[ <dl],
i~nUt=1

where in (A.10) we used (1,2*) < 3. Since 2* is a feasible fractional set cover, we know that >, a;;zj > b;, and
since 7 < 1 this implies that »°; - 7 > df, giving (A.11). Expanding Z*, we have that

1 -1
= E |B-log 7Zx§»_1+(6 )Zx§—1 —dt | X < dt

e A5 =
(A.12) - E, {[3 -log (1 - (6; 1)Xf—l) —di | X7t < d;?]

Finally the approximation log(1 + y) < y allows us to bound (A.12) by

< E [e-1)- X7 —di | X;7h < d]]

inUt1
(A.13) = E [(e-1) ~min(X] 7 dl) —db | X < dl).
iUt
The lemma statement follows by combining (A.9) and (A.13) using the law of total expectation. 0
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LEMMA 7.3. (CHANGE IN ®¢) In every round for which it is uncovered on arrival, the expected change in ®¢ is

(7.4) E [®c(t) —®c(t—1) |27 U™ dy > 0] < 1. K [min (X!, d)],

it R inUt—1
where v is a fized constant. On rounds in which it arrives covered,
(7.5) Do(t) — Pe(t—1) <0.
We will require an additional fact, the proof of which appears in [GKL21, Appendix AJ:

Fact A.1. Given probabilities p; and coefficients b; € [0,1], let W := Zj b; Ber(p;) be the sum of independent
weighted Bernoulli random variables. Let A >= (e — 1)_1 be some constant. Then

E[min (W, A)] > ~v - min (E[W], A),

for a fized constant v independent of the p; and b;.

Proof of Lemma 7.3. When ' is covered on arrival (7.5) holds trivially, since in this case df, = 0 and so no sets j
are bought and p! = p'~1. We therefore focus on proving (7.4) in the case when i‘ is uncovered on arrival.
Conditioned on i = 4, the expected change in log p* depends only on R*:

E [®c(t) — @c(t—1) |2 Uit =]

it Rt
t—1 t
_n. P —p t—1 .t _
_ﬂ}a[itlog<1 pt1+5> U™ —z]
1 t—1 t t—1 .t .

Above, (A.14) follows from the approximation log(l — y) < —y. Expanding definitions again, we further bound
(A.14) by

_ 1 t—1 t
(A.15) =8 i E | Zﬁ (d —di,)]
m i eyUt—1
1
- g E[dS ! - d)
pt—l + % i,§71 Rt 2
1
(AIG) S 7ﬂ . m Z 7]]3'% min Z Ber(:cj»_l . dz_l/ﬂ), df/

m ¢/ eUt—1 JET?

Here (A.16) follows from the preceding line by the definition of the random sampling performed in Line 8 (with
inequality because the algorithm buys other coordinates also). This Bernoulli probability is well-defined because
dffl < LPopr < B, and since Line 10 guarantees that a:;*l < 1 for all j in 7*. The expectation of this sum of

Bernoullis is ZjeTt x’;_ldf_l/ﬁ = Xit_ldﬁ_l/ﬁ. Since df_l > 1, we may apply Lemma A.1 to obtain

1 di=t
(A.17) <———+ Z ~ - min (Z S XL d’?,l)
-14 8 v
pt + m 7lleljt—l /8
1

1 . 1 -1

< - ﬁ ——F — 7 Z min (Xf, ,dE/ )
p m ,L'/eUtfl

_ i1 (U . t—1 gt—1
= -d; —— . E [mln (XZ-, ,di ))]

ptfl + % i~ Ut—1
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t—1
ww s g

where (A.18) follows from the observation that i’ arrives uncovered, so p'~! > di > 1 while g/m < 1;
therefore < Taking the expectation of (A.18) over i ~ U'~! and using the fact that

1 1
Pt 14+B/m 2:pt= e
Eipe-1 [di ] = pt=1/|U*71, the expected change in log p! becomes

— — Y . _
it%t[qm(t)—cbc(t—nut LUt g—iiwgat_l[mm(xf Ldh],

as desired. 0

B Lower Bounds for Relaxed Models

B.1 Adversarial Corruptions It is tempting to try to extend the with-a-sample model to the case where the
samples are noisy. In this section, we study one natural model, and show that, sadly, no randomized algorithm
can achieve a competitive ratio of o(logmlogn) in polynomial time, unless P = NP.

We begin by describing the model, which we call (a, 0)-NO1sSYSAMPLESETCOVER. The adversary begins by
committing to an online set cover input sequence of length n from a set system with N elements and m sets. Next
a uniformly random subset 57 of the input is sampled, with |S;| = « - n. The adversary then chooses a set Sy
of size at most J - n, independently of S;. The algorithm is given the set of constraints S = S U S5 in advance.
Finally, the online sequence begins. In this model « is the proportion of the online input sampled (as before),
6 represents the rate of corruption that the adversary can introduce to the sample solely by adding additional
constraints, and Sy the adversary’s choice of additions. (A very similar construction demonstrates lower bounds
in an alternative model where the adversary may instead omit already-sampled constraints and the algorithm is
given the set S = 57 \ S2.)

We now construct our hard instance for («, §)-No1sYSAMPLESETCOVER when o = Q(1) and § = n~1+9(1),
We will use as a sub-instance the construction from [Kor04] which shows an Q(logmlogn) lower bound for the
original online set cover problem, which holds in the setting where the universe of elements is known (though the
arriving subset and order are not). Let (Unard, Shara) be the underlying set system in the [Kor04] instance. Let
Ohard e the sequence of elements given to the algorithm, and let the unordered set of these elements be called
Uhard C Unard. In the construction of [Kor04], Uperq is a random variable such that |Upgra] = O(\/ |[Unardl)-

Our construction is the following. The set system consists of a set Sy containing N — ¢ - n elements, together
with a copy of the set system (Unard, Shara) With parameters n' := |Upgra| = 6 - n and m' := |Sparq| = poly(n').
The adversary commits to the online sequence which reveals all the elements of Sy in arbitrary order, and then
the elements of Upgrg C Unara in the order opqrg. This sequence is of length n = O(N) (provided § is bounded
away from 1). Some sample S; of this input sequence is drawn. The adversary then picks Sy, which is of size
d - n, to be all the elements of Uyq,q. Hence no matter what the realization of the sample S is, the algorithm has
no information about the identity of Uparq € Uparq and must cover the hard online set cover sequence opq.q Of
length @(\/7? )= () with no useful advice. Since any polynomial-time randomized online set cover algorithm
has competitive ratio Q(logn’logm’) on oparg, no algorithm can achieve competitive ratio o(lognlogm) for
(v, 0)-No1sYSAMPLESETCOVER when o = Q(1) and § = n~1+%1),

B.2 Relaxed Random Order Another interesting question is whether [GKL21] can be made to work when
the input ordering is not fully uniformly random, but only nearly so.

We show that the entropy of the arrival order distribution is not a good parametrization of the distance
to random order, in that there exist instances and distributions over arrival orders with nearly full entropy,
(1 —e)nlogn = log(n!), but for which any online algorithm has competitive ratio Q(log(em)log(en)).

One simple such instance is the following. There are (1 — €)n dummy elements presented in uniformly random
order, followed by a hard online set cover sequence opqy-q of length en. The permutation distribution has the desired
near maximal entropy, but no randomized polynomial time algorithm has competitive ratio o(log(em)log(en))
unless P = NP, by the lower bound of [Kor04].
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C Error in [DEH"18b]

In [DEHT18b] the authors claim an O(logn)-competitive algorithm for prophet set cover via a reduction from
prophet set cover to known i.i.d. set cover, which is the special case when all distributions are identical. (They
also claim an O(1)-competitive algorithm for prophet METRICFACILITYLOCATION via the same reduction.) Their
proof of this reduction, which appears in [EB17, Theorem 9.10] relies on the following claim.

Let D',..., D™ be a sequence of distributions over elements of I/, and let D* = % Z?zl D' be the average
distribution. Let OPTpy; be the expected size of the optimal set cover for U when U is formed by drawing one
element from each of D', ..., D™. Let OPT;;4 be the size of the optimal set cover when U is formed by drawing n
times from D*. The claim is that OPT;;q < OPTppe, and we demonstrate that this does not hold in general.

Consider the instance with universe (i, j) for i € [2] and j € [2] and the set system

S={1,2DEL{11),(2,2)},{(1,2),(2, D)}, {(1,2),(2,2)}}.

Let the prophet distributions D! and D?, be the uniform distributions over (1,1),(1,2) and (2,1),(2,2). Let
D* = 1(D' + D?) be their average. Then OPT,;,; = 1, while E[OPT;;4] = 5/4. More generally, let the universe
be (i,4) for i € [n] and j € [logn] and the collection of sets be all sequences S = [logn]l™. Then the n prophet
distributions D? are each the uniform distribution over {(4,1), (i,2), ..., (i,logn)}, and the average distribution is
D* = % >, D" as before. A balls-and-bins argument shows that

1
0P, = 1, E[OPT;q) = Q [ —2" ),
loglogn

which demonstrates that the claimed inequality is in the worst case violated by at least this multiplicative factor.
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