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ABSTRACT

Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learn-
ing and often achieves better generalization performance than SGD. However,
existing optimization theory can only explain the faster convergence of ASGD,
but cannot explain its better generalization. In this paper, we study the general-
ization of ASGD for overparameterized linear regression, which is possibly the
simplest setting of learning with overparameterization. We establish an instance-
dependent excess risk bound for ASGD within each eigen-subspace of the data
covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the
subspace of small eigenvalues, exhibiting a faster rate of exponential decay for
bias error, while in the subspace of large eigenvalues, its bias error decays slower
than SGD; and (ii) the variance error of ASGD is always larger than that of SGD.
Our result suggests that ASGD can outperform SGD when the difference between
the initialization and the true weight vector is mostly confined to the subspace of
small eigenvalues. Additionally, when our analysis is specialized to linear regres-
sion in the strongly convex setting, it yields a tighter bound for bias error than the
best-known result.

1 INTRODUCTION

Momentum (Nesterov, 1983) is an important technique in optimization. In the context of convex and
smooth optimization, Nesterov’s momentum (accelerated gradient descent (AGD)) achieves the min-
imax optimal convergence rate (Nesterov, 2014) and provably accelerates the vanilla GD method.
Recent work by Liu & Belkin (2018) shows that stochastic gradient descent (SGD) can also be
accelerated by momentum in the overparameterized setting. However, the effect of momentum on
the generalization performance is less studied. It has been empirically shown that ASGD does not
always outperform SGD (Wang et al., 2023), but there has been little theoretical work justifying
this observation. Notable exceptions are Jain et al. (2018) and Varre & Flammarion (2022), which
provide excess risk bounds for accelerated SGD (ASGD) (a.k.a., SGD with momentum) for least
squares problems in the strongly convex (Jain et al., 2018) and convex settings (Varre & Flammar-
ion, 2022), respectively. However, both of their results are limited to the classical, finite-dimensional
regime, and cannot be applied when the number of parameters exceeds the number of samples. On
the other hand, a recent line of work completely characterizes the excess risk of SGD for least
squares, even in the overparameterized regime (Dieuleveut & Bach, 2015; Défossez & Bach, 2015;
Jain et al., 2017b; Berthier et al., 2020; Zou et al., 2021b; Wu et al., 2022). In particular, Zou et al.
(2021b); Wu et al. (2022) provide finite-sample and dimension-free excess risk bounds for SGD
that are sharp for each least squares instance. Given these results, it becomes imperative to thor-
oughly investigate whether the inclusion of momentum proves beneficial in terms of generalization,
particularly in the context of least squares problems.

Contributions. In this paper, we tackle the question by considering ASGD for (overparameter-
ized) linear regression problems and comparing its performance with SGD.

* Our main result provides an instance-dependent excess risk bound for ASGD that can be ap-
plied in the overparameterized regime. Similar to the bounds for SGD in Zou et al. (2021b);
Wu et al. (2022), our bound for ASGD is independent of the ambient dimension and compre-
hensively depends on the spectrum of the data covariance matrix. When applied to the classical,
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strongly-convex regime, our results recover the excess risk upper bounds in Jain et al. (2018), with
significant improvements on the coefficient of the bias error.!

* Based on the excess risk bounds, we then compare the excess risk of ASGD and SGD. We find
that the variance error of ASGD is always no smaller than that of SGD. Moreover, the bias error
of ASGD is smaller than that of SGD along the small eigenvalue directions, but is larger than that
of SGD along the large eigenvalue directions, with respect to the spectrum of the data covariance
matrix. Thus momentum can help with generalization only if the main signals are aligned with
small eigenvalue directions of the data covariance matrix and if the noise is small.

» From a technical perspective, we extend the analysis of the stationary covariance matrix in Jain
et al. (2018) to the overparameterized setting, where we remove all dimension-dependent factors
with a fine-grained analysis of the ASGD iterates. Our techniques might be of independent interest
for analyzing ASGD in other settings.

Notation. In this paper, scalars are denoted by non-boldface letters. Vectors and matrices are
denoted by lower-case and upper-case boldface letters, respectively. Denote linear operators on
matrices by upper-case calligraphic letters. Denote the inner product of vectors by (u,v). For a
vector v, denote its j-th entry as (v);; For a matrix M, denote its ¢j-entry as (M),;. For a PSD

matrix M, define ||ul|3; = u"Mu. Denote the 2-norm of vector v as ||v||2 = Vv Tv. Denote the

inner product of matrices A, B € R24%%4 35 (A, B) = Z?i‘:l(A)ij (B);;. The Kronecker product

of matrices is denoted by ®. The operation of a linear matrix operator on a matrix is denoted by o.

2 RELATED WORK

The generalization performances of SGD and ASGD applied to underparameterized linear regres-
sion have been studied in a line of works, based on the technique of bias-variance decomposition. It
is shown that for SGD with iterate averaging from the beginning, bias error has a convergence rate
of O(1/N?) and variance has a convergence rate of O(d/N ), where N is the number of calls of the
stochastic oracle and d is the model dimension (Défossez & Bach, 2015; Dieuleveut et al., 2017;
Jain et al., 2017a). If the eigenvalue of the data covariance matrix is bounded away from zero, then
the convergence rate of the bias error can be further improved with additional exponential shrinkage
by taking tail averaging of the iterates (Jain et al., 2017b).

For ASGD applied to linear regression, there are two cases: one with the assumption that the eigen-
value spectrum of the data covariance matrix is bounded away from zero (strongly convex) and the
other without such assumption (general convex). For strongly convex linear regression, Jain et al.
(2018) show an accelerated convergence rate for the bias error of ASGD with constant stepsize and
tail averaging, compared to that of tail-averaged SGD in Jain et al. (2017b). We extend the use of
linear operators and the techniques for bounding the operator spectrum in Jain et al. (2018).
Recently, the generalization of ASGD applied to general convex linear regression is studied by Varre
& Flammarion (2022). Their result shows the acceleration of ASGD with time-varying parameters
and weighted iterate averaging, especially for large N. The case of general convex linear regression
is closer to the overparameterized setting where fast-decaying eigenspectrum is of special interest.
However, their result is not applicable to the overparameterized linear regression because of the
dimensionality dependence. Additionally, their result does not reveal the exponential bias decay of
ASGD with constant stepsize.

The generalization performance of overparameterized linear regression has been studied by a line
of works (Bartlett et al., 2020; Tsigler & Bartlett, 2020). For SGD applied to overparameterized
linear regression, Zou et al. (2021b) replace the model dimensionality d with the effective dimension
defined in terms of the eigenspectrum. This work manages to deal with any data covariance matrix,
while prior works require certain assumptions (Dieuleveut & Bach, 2015). Wu et al. (2022) show a
similar result for the last iterate of SGD with exponentially decaying stepsize.

3 PRELIMINARIES

3.1 LINEAR REGRESSION AND ASGD

The goal of linear regression is to minimize the following risk:
L(W) = 1/2 : ]E(x,y)ND [(y - <Wa X>)2} )

!'Our excess risk bound contains an extra term, which can be removed by a fine-grained analysis used by
Jain et al. (2018) in the classical regime.
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where x is an input feature vector belonging to a Hilbert space (denoted by 7, which could be either
d-dimensional for a finite d, or countably infinite dimensional), y € R is the response, w € H is the
weight vector to be optimized, and D is an underlying unknown distribution of the data.

We consider the ASGD algorithm with tail averaging. In detail, in the ¢-th iteration, a sample
(x¢,y:) ~ D is observed. Then the stochastic gradient is calculated by

VL(W) = —(ys — (W, X)) 3.1)

We follow the classical ASGD scheme (Nesterov, 2014), which maintains three sequences wy, v
and uy. Let N be the number of samples observed, then for any 1 < ¢ < N, the update rules of
Wy, Vi, Uy are as follows.

w1 =awi1 + (1 —a)veq, (3.2)
Wi = U1 — 66[/(1115,1)7 (33)
v =Bu_y + (1 - B)vie1 —7VL(u_1), (34)

where «, 8,7, > 0 are hyperparameters. The v; sequence is initialized at wg € H. We remark
that ASGD reduces to stochastic heavy ball (SHB, Polyak (1964)) when § = 0, so our results can be
directly applied to SHB by setting 6 = 0 (see Appendix C for details). We also remark that ASGD
reduces to SGD when 6 = ~.

In this work, following Jain et al. (2018) and Zou et al. (2021b), we consider ASGD with tail aver-

aging. The tail-averaged final output is W sy == N ! Zf:iv*l w,. With certain assumptions,
L(w) admits a unique global optimum denoted by w* := argmin,, L(w). We focus on the overpa-
rameterized setting, where d > N (or possibly countably infinite).

Wi = W* . Denote the noise in each sample as ¢; =
u; — W

yr — (W*,x¢). By (3.1), the stochastic gradient at u;_; can be expressed as

Define the centered ASGD iterate as 1, :=

%L(ut_l) = —(er + (W' x¢) — (Wpm1,X4) )Xt = xtxtT(ut_l — W) — ex;. 3.5)
By substituting (3.5) into (3.3) and (3.4) and eliminating v; using (3.2), we have

0 I- (SXtX;r :| C o |:5 . EtXt:|
’ t— ’

M= A1+ G, where A= [—CI (1+ oI — gxix/ q-€Xy

and ¢ .= a(1 — 8),q = ad + (1 — ). Denote the expectation of A, as

- 0 I-H
A =E[A] = [cI (1+ )1 - qH] )
]

where H = E,p), [xx '] is the second-order moment matrix of the distribution D, which is also

the Hessian of L(w). Let the eigen-decomposition of the Hessian be H = Z?Zl A\;iv;v;', where
{\i}4_, are the eigenvalues of H sorted in descending order with v;’s being the corresponding
eigenvectors. Similar to Jain et al. (2018), we assume that H is diagonal, then A is block diagonal
0 1—46N
—c 14+c—qg)\;
analyzing the eigenvalues of A;, since the spectral norm of A; determines the decay rate of the bias
error in the subspace of ;.

with each block being A; = ] . In this work, we are particularly interested in

3.2 ASSUMPTIONS

We then introduce assumptions required in our analysis, following those of Zou et al. (2021b); Wu
et al. (2022). Our first assumption regularizes the moments of the data distribution.

Assumption 3.1 (Regularity conditions). The second moment H exists, and tr(H) is finite. H
is strictly positive definite, i.e., H > 0. Thus, L(w) admits a unique global optimum w*. The
second-order moment of labels E[y?] is also finite. Let M denote the fourth moment of x:

M = Ex pyp[Xx®x@x @ X].

Then M exists and is finite.

Our second assumption is a proposition of the fourth moment of x, viewed as a linear operator M
on PSD matrices.
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Assumption 3.2 (Fourth moment condition). Assume there exists a positive constant 1) > 0, such
that for any PSD matrix A, it holds that

Eyp[xx"Axx "] < ¢ tr(HA)H.

A special case of Assumption 3.2 is when D is a Gaussian distribution. For that case, we have
1 = 3. We remark that although Assumption 3.2 does not cover some special cases, e.g., the one-
hot distribution discussed in Zou et al. (2021a), similar results can still be obtained by applying our
techniques with minor modifications (see Appendix J for details).

The following assumption characterizes the noise of the stochastic gradient.

Assumption 3.3 (Noise condition). Assume that
% = By [VE(W) ® VL(W")] = Eqeyyonlly — (w,x))?x 7],

and 02 := |[H 2XH 2, exist and are finite. Here, 3 is the covariance matrix of the gradient
noise at w*. For well-specified models where y; — (W*,x;) ~ N(0,02...), we have ¥ = 02, .H
and thus 0% = 02 .

4 MAIN RESULTS

We now provide an excess risk upper bound for ASGD.

4.1 RISK BOUND OF ASGD IN THE HIGH-DIMENSIONAL SETTING

Before we present the results, we first introduce three quantities which are cutoffs of the spectrum of
H. The eigenvalues of A; can be either complex or real, which depends on the range of \;. Define

k= max{i: A\ > (/g — ¢d + /clqg—6))?/¢%},
kT = max{i: N > (v/g — 6 — /c(g—9))?/d*}.

It is easy to see that k* < kf. For any i < k* and any i > k', A; has real eigenvalues z; < x5,
and for 7 between k¥ and kf, A; has complex eigenvalues 1, o with the same magnitude. We also

define % as

.1

k=max{i: )\ >(1—¢)/6}.
Parameter choice. We select hyperparameters of ASGD as follows: We first pick a non-negative
integer <. We then select parameters d, vy, /3, a as follows, based on k:

1 1) 1
.= 1\ | /6 = = @ = _—07.
23 i A YRy 1+5
We can show that with our choice of paramters, we have k< % < Kkt (see Appendix E.1 for details).

For convenience, we introduce the following notations for submatrices of H: for any non-negative
integers k1 < ko, denote

5L e [5, 42)

2¢ tr(H)

ko d
. T . T
Hy, .1, = E Aivivy , Hppoo = E AiVivy .
i=k1+1 i=k1+1

Now we present the main result, which gives a finite excess risk bound for ASGD under the specific
parameter choice (4.2).

Theorem 4.1. Under Assumptions 3.1, 3.2 and 3.3, with the parameter choice in (4.2), if N(1—c) >
2, the excess risk of tail-averaged iterate from ASGD satisfies:

E[L(Ws,s+n)] — L(w") < 2 - EffectiveVar + 2 - EffectiveBias. (4.3)

where the effective variance is bounded by

EffectiveVar < o | <+ + 18(s + N)y? ;; A?} + 57 { N 36Ny ;} A?} : {5“'0 —-wif

10 w112
o wo - wi

1—c

gl I Mo T,



Published as a conference paper at ICLR 2024

and the effective bias is bounded by

L 8(cd/q)* 452
EffectiveBias < %” — *”H_1 _|_ - 5H)s/2(wo — W%
16¢° o2 100c o/ .
gz | (0= TR 20w = W+ (0= SH)* 2 (wo — w)

2

kiRt

2
|H2:k1‘

y+6

1+o +18H(1——H) (wo — w*)

+N2(7+6)QH( 2

H) (wog —w") ‘2

H—l

kT ok* Hpx. o

with k£* = max{k : A\, > 1/((y+ 6)N)}, and

1 __ o0tr(H) L7
=" li=— Z)\

z>/<

Theorem 4.1 establishes the excess risk bound of ASGD under the overparameterized setting. To
our knowledge, this is the first instance-dependent bound of ASGD within each eigen-subspace of
H. Our excess bound includes both the variance term, which depends on the randomness coming
from the data distribution D, and the bias term, which includes “accelerated convergence” terms
brought by the ASGD.

Remark 4.2. The cutoff index k* is referred to as the effective dimension, which can be much
smaller than the model dimensionality d, especially when the eigenvalues decay fast. We want to
emphasize that similar effective dimension has also appeared in the previous work which analyzes
the convergence of SGD under the overparameterized model setting (Zou et al., 2021b; Wu et al.,
2022). Nevertheless, the effective dimension of SGD is k§qp := max{k : Ay > 1/(6N)}, which is
smaller than that in ASGD. In Section 5, we will provide a comparison of the risk bounds between
SGD and ASGD.

Remark 4.3. It is worth noting that under the parameter selection (4.2), one can verify that ] < 1.
Such a condition guarantees that r = 1/(1 — ¢)l) is finite, which further guarantees that our derived
risk bound for effective variance is valid.

4.2 IMPLICATION IN THE CLASSICAL SETTING

In this subsection, we show that Theorem 4.1 implies the excess risk bound in the strongly convex
setting and can recover a similar result as Jain et al. (2018). The hyperparameters of ASGD are

chosen to be
_ 1o
2¢ w®E) |\ Ypd W “Vawd “T1F ﬂ 44

where p := Ay is the smallest elgenvalue of H. We remark that the parameter choice in (4.4) is
different from the choice under the overparameterized setting given in (4.2) because k is chosen
as the model dimension d, and the upper bound of  in (4.2), which is 1/(2¢ ), = i), becomes
vacuous. Instead, we require v = 283/ to guarantee that no eigenvalue falls in the region of small
eigenvalues such that A; has real eigenvalues (i.e., when i > kT, see Section I for detailed proof).
The following corollary provides the excess risk bound in the strongly convex setting:
Corollary 4.4. Under Assumptions 3.1, 3.2 and 3.3, and with the parameter choice in (4.4), the
excess risk of tail-averaged iterate from ASGD in the classical regime satisfies:

100 Bs N
2 o (= 5 ) [E(wo) = L(w")]

Effective Bias
1008yd 360%d  12802d
L — L(w"

Effective Variance

E[L(Ws:s-‘rN)} - L(W*) <

Denote k = ( )/, then 8 = ©(1/vkk). Assuming that L(wo) — L(w*) = O(c?), then
the bound given in Corollary 4.4 fully recovers the excess risk upper bound given in Theorem 1 of
Jain et al. (2018) in terms of exponential decay rate, leading-order variance and lower-order vari-
ance. Moreover, the coefficient of effective bias is O(xk/N?), which significantly improves upon
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O(k¥3/*%%/*d/N?) given in Jain et al. (2018). It is worth noting that Liu & Belkin (2018) proved
O(1) coefficient for effective bias of ASGD. Our result can also recover the constant coefficient
when N(1 —¢) > 2, because 1 — ¢ = 2a8 < 28 and 1/(N?3?) < 1. The difference in this
coefficient between the bound in Liu & Belkin (2018) and ours is mainly due to slightly different
treatments of terms in the form of N ! Z 1 — )%, which is not essential.

5 COMPARISON BETWEEN ASGD AND SGD

In this section, we first introduce the SGD update, which is given by

WtSGD _ WtSE}D (SVL( SGD),

where ¢ satisfies the requirement in (4.2). Analogous to ASGD, tail-averaged SGD is defined as

WOGD = N-1 YNt wSGD  The excess risk of tail-averaged SGD is then E[L(WSSP )] —
L(w™). We then present the following theorem, which shows the existence of linear regression

instances where ASGD outperforms SGD (the proof is given in Appendix D.2):
Theorem 5.1 (Informal). There exists a class of linear regression instances and corresponding
choice of parameter such that the excess risk bound of tail-averaged ASGD satisfies
E[L(W.ssn)] — L(Ww*) = O(c? (N2 4 N~2.0.9873%)),
and the excess risk bound of tail-averaged SGD satisfies
E[L(®E V)] — L(w*) = Q(o? (N2 + N72.0.996%)).

Theorem 5.1 is inspired by the following comparison of the effective variance and bias of SGD and
ASGD with the assumption that s = O(N). This is a technical assumption that helps to simplify
excess risk bounds, and the comparison can be extended to the case of s = (V). Under the same
set of assumptions as Theorem 4.1, Zou et al. (2021b) prove that, with a bias-variance decomposition
similar to (4.3), effective variance and effective bias of SGD satisfy:

. kg
EffectiveVar < o2rsap - { SﬁD (s+ N)d Z )\2

i>kiap

dprsgp 1 ei2 - ko , )
+ N . |:5||W0 i\ ||IO:k§GD + (S + N)”W() - W ||Hk’§GD:oo:| . N + N§ Z )\1 ’

i>kiap

I—0H)*(wo — w)[f-r + (1= 0H)* (wo — w5, .

FSGD SGD

1
EffectiveBias < WH(
where rsgp = (1 — ¢ tr(H)) ™! and k§qp = max {i : \; > 1/(6N)}.

Comparison of effective variance. Assuming that the initial variance wy — w* is bounded, the
effective variance of ASGD is dominated by

24k*
2
0'7“|:N +18(s+ N)y ;ﬁ)ﬂ

and effective variance of SGD is dominated by

k*
2 SGD 2 2
UTSGD[ N +(s+N)o Z )‘i]-

i>k3ap

Thus, ignoring o2, r and rsgp and constants, effective variance of ASGD in the subspace of \; is
O(min {1/N, Nv2A?}), compared to O(min {1/N, N§?A?}) for SGD. With v > § according to
the choice of parameters in (4.2), we conclude that the excess variance of ASGD in every subspace
is larger than that of SGD.

The following corollary characterizes the effective variance of ASGD when the eigenvalue spectrum
decays with a polynomial or exponential rate. These examples have been studied for SGD in Zou
et al. (2021b) and Wu et al. (2022).

Corollary 5.2. Under the same assumptions as Theorem 4.1, suppose that ||wo — w™*||5 is bounded.

1. If the spectrum is \; = i~ (**7") for some r > 0, then the effective variance is O((x/N)"/(1+7)),
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2. If the spectrum is \; = e ¢, then the effective variance is O((% + log N)/N).

Remark 5.3. For SGD, the effective variance is O((1/N)"/(1+7)) if the eigenvalue spectrum is
A = i~ (47 and O(log N/N) if the eigenvalue spectrum is \; = e~* (Zou et al., 2021b). There-
fore, the effective variance of ASGD is larger than that of SGD under both eigenvalue spectra.

Comparison of effective bias. Effective bias of both SGD and ASGD decay exponentially in s
within each subspace. The decay rate of SGD is (1 — d;)® in the subspace of ;. For ASGD,

1. When i < k¥, the decay rate in the subspace of \; is (¢§/q)®. By definition of k*, we have
1 —0X; < ¢d/q (see Appendix E.1 for detailed proof).

2. When k¥ < i < ki, the decay rate in the subspace of \; is [c(1 — d);)]*/2. According to the
definition of k, when k* < i < k, we have 1 — 6)\; < /c(1 — d)\;); When k < i < kT, we have

1-— 5)\1 Z \/6(1 — (S)\i)

3. When i > ki, the decay rate in the subspace of \; is (1 — (v + §));/2)°. By the choice of
parameters (4.2), we have v > 0,50 1 — (v + 0)A\; /2 < 1 — ;.

Combining the three cases above, we conclude that  Eigenvalues of A; (complex/real)

the effective bias of ASGD decays faster than that of ~ Ad Akt Akt A1

SGD in eigen-subspaces of \; where ¢ > k, while -0+ N/2)° (el —on) (c5/q)°

it decays slower than SGD in subspaces of A\; where <€—Acceleration === Slow down =———3>>
Py Bias Contraction SGD: (1 — 0\)°

i < k. This phenomenon is illustrated in Figure 1.
Therefore, ASGD can perform better than SGD if
wo — W is mostly refined to the eigen-subspaces of
A; where ¢ > k.

We remark that this result is consistent with the acceleration of bias decay presented in Jain et al.
(2018). Without instance-specific analysis, the exponential decay rate of bias is determined by the
decay rate in subspace of the smallest eigenvalue. As the effective bias of ASGD decays faster than
that of SGD in the eigen-subspace of small eigenvalues, the worst-case decay rate of the bias error
of ASGD enjoys acceleration compared to SGD.

Cutoff: Ai = (1 —¢)/d
Figure 1: Illustration of the eigenspectrum.

6 EXPERIMENTS

In this section, we empirically verify that ASGD can outperform SGD when wy — w* is mainly
confined to the eigen-subspace of small eigenvalues.

Data model. Our experiments are based on the setting of overparameterized linear regression, where
the model dimenstion is d = 2000. The data covariance matrix H is diagonal with eigenvalues
Ai = i~2. The input x; follows Gaussian distribution A'(0, H), so Assumption 3.2 holds with
1 = 3. The ground truth weight vector is w* = 0, and the label y; follows the distribution N'(0, 02)
where 2 = 0.01.

Hyperparameters of ASGD and SGD. We select parameters of ASGD so that it satisfies the re-
quirements in (4.2). We first let K = 5. According to (4.2), ¢ satisfies § < 1/7r2, so we pick 6 = 0.1,
which is also the stepsize of SGD. We then let « = 0.9875, so that (1 — ¢)/6 = 2(1 — )/ =
0.25 = A, which implies that & = 2. Finally, we select § = (1 — «)/a and v = §/()Kk3). We can
verify that the parameters satisfy all requirements in (4.2).

We fix the length of tail averaging as N = 500, and conduct experiments on different s where
s = 50,100,150, ...,500. In each experiment, we measure WZS+NHW3:3+N- For each s, we run
the experiment 10 times and take the average of the test results.

We examine three different initializations: (a) wg = 10 - ey, representing the case where wy — w
is mainly refined to the subspace of large eigenvalues, (b) wg = 10 - ea, representing the case where
wo —w” is mainly refined to the subspace of )\E, and (¢) wg = 10 - eqq, representing the case where
wy — wW* is mainly refined to the subspace of small eigenvalues. Experiment results are shown
in Figure 2. We observe that ASGD indeed outperforms SGD in the scenario where wy — W™ is
mostly refined to the subspace of small eigenvalues, and performs worse than SGD when wy — w*
is refined to the subspace of large eigenvalues. Additionally, the excess risks of SGD and ASGD are
similar when wy — w* aligns with the subspace corresponding to A;, which is also aligns with the
implication of Theorem 4.1.

*
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(@) wo = 10 - e1. (b) wo = 10 - es. () wo = 10 - exo.
Figure 2: Comparison of excess risk of ASGD and SGD. The noise scale is o> = 0.01. We run each experiment
10 times and take the average of the excess risk in the 10 trials.

7 PROOF SKETCH

In this section, we present the high-level ideas in our proof. We mainly introduce two main ideas of
the proof, including (i) bias-variance decomposition, and (ii) analysis of excess risk bounds within
each eigen-subspace, based on the eigenvalues of A;.

s+N—1

Define the tail averaged centered ASGD iterate as 7, v = IV ST VT my. The excess risk is
then

B )] = 0v) = 5 ([ O] B 8 7iad).

We also define the linear operators B := E[At ® ;&t] and B := A ® A, which are both PSD

operators. Additionally, the difference B — B is also a PSD operator, which contributes to the effect
of the fourth moment in the excess risk bound. The reader can refer to Appendix F for details of the
linear operators.

7.1 BIAS-VARIANCE DECOMPOSITION
Following the techique used extensively in previous works (Dieuleveut & Bach, 2015; Jain et al.,
2018; Zou et al., 2021b; Wu et al., 2022; Liang & Rakhlin, 2020), we decompose the centered iterate

7 into the bias sequence 7Y and the variance sequence 1}*, defined recursively as

e = A, mb™ = no; (7.1)
n = Am G, my = 0. (1.2)
The tail averaged iterate is then 7., , y = Mo, x + HL , v, Where
‘ | SN e
W= D M W=y DL mt (7.3)
t=s t=s

The excess risk can be decomposed into bias and variance:

_ « 1 //H _ _ . .
E[L(Ws.s4n)] — L(W") = 3 < {0 8] EM v ® ns:S+N]> < 2 - Bias + 2 - Variance,

where
: . 1 H 0 —bias —bias : . 1 H 0 —var —var
Bias == 5 < |:0 0:| a]E[’r]s:iukN ® ns:1§+N] ) Variance := 5 0 0 aE[nsé:ierN ® nsa:ierN] .
Define the covariance matrices B, := E[n?® @ nb'®] and C, := E[n/™ @ n™]. The recursive forms
of B; and C; then satisfy
B;=BoB; 1, Bg=mn0® no; 7.4
C,=BoC,_1+%, Cy=0. (7.5)

7.2 PROOF OF THE BIAS BOUND

In this part, we provide an overview of the analysis of the bias bound in a simplified problem setting.
We consider the last bias iterate (i.e., N = 1) and assume that B = B. The analysis of the general
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cases is given in Appendix H. According to the recursive form of B, in (7.4), we have By = B*oB,.
With the assumptions that 5 = B, we have

&:@o&:A%Bi%M%—WW%—WwyNT.

Note that A is block-diagonal with each block being A, so bias can be expressed as

d 2
. 1 H O —bias —bias _ 1 H O _ 1 2 s 1
Bias = 5 <|:0 0:| 7E[ns:s+N Y ns:s-‘y—N] - 5 0 0 ?BS - 5 271: )‘iwi Az 1 1’

where w; = (wo — w*);. The following lemma explicitly characterizes A%:

Lemma 7.1. Let the eigenvalues of A; be =1 and x5. Then, for any integer k£ > 1, we have

P w1 Kyt
k__k .
Ty =Ty Ty —Ty

Al —

g1 _ k-1 -
[dléAﬁ~ill (1—0N) - =2 11
To—T1 Tr2—T1
The detailed proof of Lemma 7.1 is given as the proof of Lemma E.3. With Lemma 7.1, we have

I (Af H > _ _Mi)xi_l(xz —o)—ai (m—0)

T2 —T1

Fori < k* and i > k', i.e., A; has real eigenvalues z:; < x5, I decays exponentially with the same

rate of z§. For k¥ < 4 < kf,i.e., A; has complex eigenvalues with |x1| = |2], |I| is bounded by
= (1—6A) x5 g —¢) — i Hay —¢) T st r by — 2 . ay -t
§ To — X1 - 2 2 Ty — X1
B s e e
=12 2 To — X1

where the first inequality holds because 0 < 1 — §\; < 1, and the second inequality holds due to

triangle inequality. For the term |(z5 ' — 2571) /(29 — 21)|, note that

s—2 s—2 s—2
B e e I e e T e N CE D et
k=0 k=0 k=0

where the inequality holds due to triangle inequality, and the second inequality holds because |z1| =
|x2|. Therefore, the exponential decay rate of |I| is |2 |*. The following lemma provides tight bounds
of x,, thus characterizing the exponential rate of bias decay within each eigen-subspace:

s—1 s—1
Lo  — T4

T2 — X1

Lemma 7.2. Let z1, x5 be the eigenvalues of A;. Then
(@) When i < k%, (¢6 — \/c(q —0)(q —¢0))/q < x5 < cb/q.
(b) When k* < i < kT, |zo] = \/c(1 — 0\;).
() Wheni > kT, 1— (y+0)\i < a2 <1—(y+0)\i/2.

The detailed proof of Lemma 7.2 is given in Appendix E.1. We can thus obtain the exponential
decay rate of the effective bias.

8 CONCLUSION

In this work, we consider accelerated SGD with tail averaging for overparameterized linear regres-
sion. We provide instance-dependent risk bounds for accelerated SGD that are comprehensively
dependent on the spectrum of the data covariance matrix. We show that the variance error of accel-
erated SGD is always larger than that of SGD. We also show that the bias error of accelerated SGD
is smaller than that of SGD along the small eigenvalues subspace but is larger than that of SGD
along the small eigenvalues subspace. These together suggest that accelerated SGD outperforms
SGD only if the signals mostly align with the small eigenvalues subspaces of the data covariance
and that the noise is small. Our results also improve a best-known bound for accelerated SGD in the
classic regime (Jain et al., 2018).
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The organization of the appendix is as follows.

In Appendix A, we provide additional experiments to justify our theoretical results.
In Appendix B, we discuss the choice of hyperparameters mentioned in (4.2).
In Appendix C, we extend our main results to the Stochastic Heavy Ball method.

In Appendix D, we prove Theorem 4.1, which depends on two key lemmas: Lemma D.3 to
bound the variance term, and Lemma D.4 to bound the bias term.

In Appendix D.2, we prove Theorem 5.1.

In Appendix E, we provide the upper bounds for A, which is the population version of 11,5,
the update matrix of the noise 7);. The upper bound of A is crucial to our proof.

In Appendix F, we provide the upper bounds for a group of linear operators, which are
crucial to our proof.

In Appendix G, we provide the detailed proof of Lemma D.3.

In Appendix H, we provide the detailed proof of Lemma D.4.

In Appendix I, we prove Corollary 4.4.

In Appendix J, we provide the detailed proofs for the setting of standard basis.
In Appendix K, we provide the proof of all remaining lemmas.

12
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A ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments that justify the theoretical results provided in
Theorem 4.1.

Data model. Similar to the experiments provided in Section 6, the model dimension is set to be
d = 2000, and the input x; follows Gaussian distribution (0, H). We consider H with three types
of spectrum: (i) Ay = k=2, (ii) A\p = klog(k + 1), and (iii) \x = e~*/2. The ground truth weight
vector is w* = 0, and the label y; follows the distribution y; ~ N(0,0%) where o = 0.2.
Hyperparameters. We select the same hyperparameters of ASGD and SGD as the choice in Sec-
tion6,i.e.,v») =3, k=5, =0.1,a =0.9875, 8 = (1 —«)/aand v = 6 /(¥EKB). We fix N = 500
and conduct experiments on different s where s = 50, 100, . . ., 500.

In each experiment, we measure both the bias error (W22, ) THWS®,  and the variance error

(W, v) THW! | . For each s, we run the experiment 10 times, and take the average of the test
results. We examine two initializations: (a) wg = 10 - e;, which is the case where wy — w* is
mainly refined to the subspace of large eigenvalues, and (b) wy = 10 - e;p, which is the case where
wy — w* is mainly refined to the subspace of small eigenvalues.

The experimental results are shown in Figures 3, 4 and 5. In all experiments, the variance error of
ASGD is larger than that of SGD. However, the bias error of ASGD decays faster than that of SGD
when wy — w™ is mainly refined to the subspace of small eigenvalues.

—— ASGD bias
SGD bias

—— ASGD var

—— SGD var

—— ASGD bias
SGD bias

—— ASGD var

—— SGD var

Excess risk
Excess risk

\/\/\/_,\
103 4
1073 4 _,,.\_/\/\/\
100 200 300 400 500 100 200 300 400 500
s s
(a) wo = 10 - el (a) wo = 10 - €10

Figure 3: Comparison of bias error and variance error of ASGD and SGD. The spectrum of H is A, = k2.

—— ASGD bias 1004 —— ASGD bias

SGD bias SGD bias

—— ASGD var —— ASGD var
1014 —— SGD var —— SGD var
101 4 \

102 /—/
102 4 /‘/—//
/——/\’— M

100 200 300 400 500 100 200 300 400 500

Excess risk
Excess risk

(a) wo = iO el (a) wo = ].SO €10
Figure 4: Comparison of bias error and variance error of ASGD and SGD. The spectrum of H is Ay =
klog(k+1).

B PARAMETER CHOICE

B.1 DERIVATION OF PARAMETER CHOICE

Following the optimization literature (Nesterov, 1983), we first fix the relationship between « and 3
as

1
We then fix
§ = YKB, (B.2)

13
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100 4

—— ASGD bias
SGD bias
—— ASGD var
—— SGD var
1072 4
1071 4

—— ASGD bias
SGD bias

— ASGD var

—— SGD var

Excess risk
Excess risk

—

100 200 300 400 500 100 200 300 400 500

(a) wo = iO el (a) wo = 150 €10
Figure 5: Comparison of bias error and variance error of ASGD and SGD. The specturm of His A, = e
following Jain et al. (2018). We remark that introducing x prevents the effect of fourth moment
from blowing up (see proof of Lemma FE.5). Furthermore, we require v > § to enforce acceleration.
Then, from the requirement ¥l < 1, we require

Sptr(H) 1 Yy,
— +2+4ZA,<1.

—k/2

i>R
Therefore, it suffices to take
0 < 1 < !
SwaM) W, A

Combining (B.1), (B.2) and (B.3), we derive the choice of parameters in (4.2).
We remark that we get rid of dimension dependency by merit of the term ¢»y/4 - > . A;. Without
this term, % should be chosen as the model dimension d (as in Jain et al. (2018)).

(B.3)

B.2 DISCUSSION OF PARAMETERS

In the parameter choice (4.2),  is a free parameter. In this section, we discuss how the choice of K
affects the excess risk bound. Suppose that both equalities are attained in (B.3). We focus the impact

of K on (i) eigenvalue cutoff E, and (ii) bias decay rate.

Note that 1
Y=~
2 Zi>E Ai
S0 y increases as « increases. Furthermore,
6
f=-—,
YRy
so 3 decreases as k increases. We also have
1-p
c=a(l-p)= 35

s0 c increases as k increases. N

k is defined as k = max{k : Ay > (1 — ¢)/d}, so k increases as k increases; The bias decay
rate in the subspace of the smallest eigenvalues (i.e., i > k') is 1 — (y + §)\;/2, so the decay rate
accelerates for larger k. However, for the subspace of \; where kT < i < k*, the bias decay rate is
[c(1 — 6A;)]*/2, so the decay rate slows down for larger 7.

Combining all the above, we conclude that the choice of ¥ is subject to the eigenvalue spectrum of

the data covariance matrix. Additionally, choosing a small ¥ will make the algorithm perform more
like SGD.

C IMPLICATION FOR STOCHASTIC HEAVY BALL METHOD

In this section, we extend the results we obtained for ASGD to By taking 6 = 0 in (3.3) and
eliminating v; and u, using (3.2) and (3.4), we get

Wit =we — (1—a)y- VL(w) +a(l - B) - (W — wiy),

14
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which is exactly the form of the stochastic heavy ball (SHB) update. Therefore, the excess risk
bound we presented in Theorem 4.1 can be directly applied to SHB.

As there are three free parameters but only two combinations (1 — «)y and «(1 — ) are used, we
enforce that § = (1 — a)/a and define ¢ = o(1 — ) and ¢ = (1 — ), similar to ASGD. By (4.1)

and the definition of k, we have k! = k = 0. Therefore, the following corollary gives the excess
risk bound of SHB:

Corollary C.1. Consider stochastic heavy ball (SHB) method, given by the update rule
Wil = Wy — q@L(Wt) +e(wy — wy_q),

where the hyperparameters satisfy ¢ € (0,1 — 2/N] and ¢ = (1 — ¢)y/2 with

e (0 gam)

Define rsyp = (1 — ¥y tr(H)/4)7!, k* := max{k : A, > 1/(yN)}, and define k' as in (4.1).
Then we have the following upper bound for the excess risk:

E[L(Ws.s+n)] — L(w") < 2 - EffectiveVar + 2 - EffectiveBias,

where effective variance is bounded by

) 27k* W“SHB
2 2 2
EffectiveVar < o2rsyp [ ot 18(s + N)y Z A2 . + 36N~ Z A2
i>k* i>k*
10 2 . .
[ =l Bl = IR 4G+ Wl — w7

and effective bias is bounded by

*H2

100\ lwo—wl
1—¢)? N2

s 2 s
HY\ H
<I—’Y> (wo —w") —|—18H(I— ’Y> (wg —w")
2 -~ 2
kT:k*

Remark C.2. In the eigen-subspace of )\;, the exponential decay rate of effective bias of SHB is
max(c®, (1 —~\;)?*), which is never faster than that of SGD. This happens because for SHB, ~y has
to be smaller than that of ASGD to control the effect of stochastic gradient. We can thus demonstrate
that ASGD is superior to SHB in terms of the exponitial decay rate of the bias error, which extends
a similar result given by Kidambi et al. (2018) to the instance-dependent case.

EffectiveBias < ¢° - <4s2 + (

18 2

+ N2+2

Hix oo

D PROOF OF MAIN RESULTS
In this section we prove Theorems 4.1 and 5.1.
D.1 PROOF OF THEOREM 4.1

We start with the basic bias-variance decomposition lemma.

Lemma D.1 (Bias-variance decomposition, Jain et al. (2018)). The excess risk can be decomposed
into bias and variance as

1
E[L(Ws.s4n)] — L(w") = 3 < [E)I 8] EMan ®775:3+N]> < 2 - Bias + 2 - Variance,

(D.1)

where
. 1//H 0 b
Bias = 5 <|:0 0:| 7]E['r]ts) Z‘ISS+N @n T]s S+N]>

. 1 H O _ _
Variance = 3 ([0 o] By 7).
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This indicates that the generalization error could be bounded respectively by analyzing the bias and
variance. We then further decompose bias and variance.

Lemma D.2. Bias and Variance can be decomposed as

. 1//H 0 . 1//H 0
Vanance:2<[0 0],M1+M2>, B1as:2<[0 0},M;:,4—M4>7

where
1 [V N—1 T
M, = 5 lz AF Z Ak] , (D.2)
k=0
| No1 [Nzt N—t—1 T
2= N2 Z l Z (Cstt = BoCyuyo 1)[ Z Ak} , (D.3)
t=1 L k=0 k=0
1 [yl N—1 T
k k
_J\H[ZA ZA] : (D.4)
k=0 k=0
N—1[N—t-1 N—t—1 T
M, = N2 Z [ Z A" | (Boys — Bo s+t1)[ Z Ak] . (D.5)
t=1

Proof. The proof largely follows Zou et al. (2021b). From the definitions of 7} as in (7.1), we
have the following

[ blaelnblas] _ [Atnblas |,r'b1a<] An?ijnsl, (D.6)
and for nvar‘a"ce as in (7.2) we have

Im2] = E[Am + G|y ] = Any™y. (D.7)

Then, regarding the term E[R%; , x ® 735, v], we have

[ var

EMde v ® Mo v

1 s+N—1 s+N—1 s+N—1
S (e S mor o+ S B o)

t=s k=t+1 k=t+1
1 s+N—1 s+N—1 s+N—1
S SRR SRR ol
t=s k=t+1 k=t+1

N N—t-1 T
s+t_BoCs+tl)[ Z Ak‘| ,

L=
_ k
=Nz [Z A
—1 [N—t—1
DIt
t=1
where the second equality holds by applying (D.7) k — ¢ times, and the last inequality holds due

to Lemma K.4. The decomposition of bias into M3 and M, can be proven in exactly the same
manner. O

From Lemma D.2, we can further bound the variance and bias terms as follows.
We have the following bound for variance, whose detailed proof can be found in Appendix G.

Lemma D.3. Under Assumptions 3.1, 3.2 and 3.3, with our choice of parameters as in (4.2), we

have
27k N 18(s 4+ N)( q—0(5 Z /\2]

Variance < o2 5N e

i>k*
where k* = max{k : A\, > 2N (¢ —¢d)/(1 —¢)}.
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The following lemma provides an upper bound for the bias error, whose detailed proof can be found
in Appendix H.

Lemma D.4. Under Assumptions 3.1, 3.2 and 3.3, and with our choice of parameters as in (4.2),
we have

9k*  36N(q — cd)? 14 w*
Bias < Effective Bias + Qf\f N (1((1_6)2) i;* )\121 ’ ?HWO - H%M
10 1-c X *
b Wl b wo w4+ N o — w ||Hx]
where
. . S(Cé/q)zs * 4 S S *

Effective Bias < WHWO - W Hf{—l + 70 [(I—-0H) /2(“’0 - )”%Ik”.
16¢ s 1006 s «
g U= B2 w0 — Wl s o+ gl (O OH) v — ')

9(1 —c¢)? qg—cd . \° 2
I- H —w"
TaNE(g - )2 ( =) eIl
kTiR*
—co ?
+18H(I H) (wg —w")
- Hpx .o

Substituting Lemma D.3 and Lemma D.4 into (D.1) in Lemma D.1 yields our final result presented
in Theorem 4.1.

D.2 PROOF OF THEOREM 5.1

We consider the linear regression instance where the samples x; follow the Gaussian distribution
N(0,H) where \; = i~2, so ¢ = 3 in Assumption 3.2. The hyperparameters of ASGD are chosen
asd =0.1,a =0.9875, = (1 —a)/a, K = 5,7 = §/(¢&B) = 79/150 and N = 500. Finally,
we require (wg — w*); = 0 fori > 8.

We now present a formal expression of Theorem 5.1:

Theorem D.5 (Restatement of Theorem 5.1). When applied to the aforementioned class of problem
instances and initialization such that ||[wo — w*||%; = O(0?), the excess risk of SGD satisfies

E[L(#3P )] — L(w*) = Q(oe*(N~Y2 + N~2.0.996°)),
and the excess risk of ASGD satisfies
E[L(Wyssn)] — L(w*) = O(c?(N~Y2 4 N=2.0.9873%)).

Proof. We first recall the excess risk lower bound for SGD given by Theorem 5.2 of Zou et al.
(2021b):

2 k*
EILWSD )]~ Lw") 2 oo | S 4 (s 4+ N)§” 3 N2
1>k3ap

Variance

1 . 1
+ Tooez A= SH) (wWo = wI)lgo + 555

EffectiveBias

Asc=2a—1and ¢ = ad+ (1 — a)y, we have ¢ = 0.975 and ¢ = 79/750. By definition of k, Kk,
kT in (4.1), we have

(T = AH)* (wo — W) Ify,..

k=0 k=2 kl =6.
The analysis of the Variance term is given in Corollary 5.2. For the EffectiveBias term, note that
all coefficients are absolute constants, so it suffices to consider the exponential decay rate in the
eigen-subspace of A\7. For SGD, the exponential decay rate is (1 — d;) = 0.996°, and for ASGD,
the exponential decay rate is (1 — (v + d)\;/2)° = 0.9873°.
O
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E PROPERTIES OF A;

E.1 SEGMENTATION OF EIGEN-SUBSPACES
Recall that A; is defined as

_ 10 1—90X\
A, = [C 1+cq)\1}’ (E.1)
so the eigenvalues of A; are
1 —q\; 1 —qA\i)? —4e(l =6\
oy = +02 q)\z_\/( +c—gq\i) o )7 (E.2)
1 —q\; 1 —qXi)? —4de(1— 0N\
R -y Yty - ol =0k (E3)

From (E.2) and (E.3), we see that whether A; has complex or real eigenvalues depends on whether
the following holds:
(1+c—qhi)? —4c(1 —6)\) < 0. (E.4)

Directly solving (E.4), we have
(Va—cd=/elg=0))? /¢ <X < (Vag—c5+elg—6)* /.

Define the eigenvalue cutoffs as

kT = max{i: A\ > (/g — cd — /clqg—6))?/¢%}, (E.5)
k= max{i: N > (Vg — 0 +/c(qg—0))?/¢?}, (E.6)
and we note that
V=B =D _1-c VIEB- =T (-
¢ 4 Vag—cd+/ce(a—0) (Va—cd+/c(qg—19))?
(Va—ci+/elg—0)* 1—c Vg—cd++/elg—9) _ (1-¢)?
¢ ¢ Vg—cd—\/e(g=0) (Vg—cd—/c(g—9))?

Thus, if i < k* ori > kf, then A; has real eigenvalues; If k¥ < i < kf, then A; has complex
eigenvalues. We also define two other important eigenvalue cutoffs

k:=max{i: )\ > (1—c)/6} (E.7)

and

1-c¢
*i=m N> ———————— .
F ax{z Ai 2 2N(q—c§)}

We have the following lemma concerning the cutoff of eigenvalues:
Lemma E.1. Let k™ and k% be defined in (E.5) and (E.6). Then we have

e Forall i > kT, we have
1—c l—c.

)\i< )
="y S

IN

e Foralli < k¥, we have
1—c¢

i

IV
>,

Proof. Forall i > Et, according to (E.5), we have

)\.<1—c.\/q—06—w/c(q—5)<1—c<1—c
ST Ve at a9 - 4 5

where the second inequality holds because Z:ZZ;—\/* ”ZEZ:Z? < 1, and the last inequality holds be-

cause q > 0.
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For all i > k¥, we have

1—c> 1l—c Vg—cé+ c(q—5)_1—c

Ai — >
d q Vag—cd—/elg—96 0
(- T q+5 V@ 5)(q —cb)/c
6q(v/q — cd — \/c(q — 9))
(1-¢ (q—®
(q+6) — (¢ —cd)]
q(vVq—cd—/e(q -
<1—c> c(q—6> -
a(Vg—cd —+/clqg—90))
where the first inequality holds due to (E.6), and the second inequality holds because ¢ — § <
c(q — cd). O
With Lemma E.1, we immediately know that k¥ < & < k. If we also assume that N' (1—¢c)>2,
then
1-c (1-1c)? < (1-1¢)?

2N(q—cd) = 4(g—cd) = (\g— b+ +/clg— )%’
where the inequality holds because ¢(q — §) < g — ¢d. We thus have k* > Et.

We then provide bounds for the spectral norm of A ;. The bounds are accurate in the sense that when
x1, Ty are real, the upper bound of 1 — x5 is at most the multiply of a constant of its lower bound.

Lemma E.2. Let 27 and z5 be defined in (E.2) and (E.3). Then we have

o If i < k%, then x1, X2 are real, xo is an increasing function in )\;, and
6 — C@—éﬂq—w)§x2§gi
q
o If k¥ <4 <kt then x1, X2 are complex, and
|z1] = [22] = V(1 — 6A);
o If k£ > kT, then x1, To are real, and

1 Vaq—cd(Vqg—cd+ +/c( co

)\< <
1—c¢ 2=

i

Proof. 1f 1 < k%, then by definition of x5, we have
ghitc—1—/(T4+c—q\)? —4dc(l—6N)

C— T =

2
_ 2¢(g — o)\
i +c—14+/(T+c—qg\)? —dc(1—6N;)
B 2¢(q —9) 1
4 ey (12 tme VESEVGD ) (| L 1ee | VimS Va0
i X Jg—cd—/e(q-0) AN Jg=cd4r/c(q-0)

Note that the denominator is decreasing as a function of (1 — ¢)/(g\;), so we have

1_1—c+ 1_1—0'\/q705+ c(qg—90) 1_1—6'\/Q*C*\/C(Q*5)
qAi i /g —cd — \/c(q—6) q\i g —cd+ \/clg—9)

<1-0+1=2

we also have

Lloe, (1_1—c.w¢ﬂﬁ+ dq—&)(l_l—c_%pﬂ:—vaq—®>

g Jqg—cd —\/c(qg—9) qAi g —cb + \/e(q—6)
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o Ye-—cd—yea—0)  2yelg—9)
T Va—d+ela=0)  Va—cd+/elg—9)

Therefore, we have

g < ¢ 2470 _ b
2q q
and
x2>c_2c(q—6)_\/q—c5+ clg—90) _cd—+/clg—0)(g—cd)
B q 2y/c(q—9) q

If k¥ < i < kT, then we have

L1 = C(l — 5)\1),
where x1 = Zo. Thus, |z1]| = |z2] = /(1 — 0)\;).
If i > kT, then we have

_1—c+q/\—\/(1—|—c—q)\) —4e(1 = 86N;)

1-— To = B)
g — .
= (4= DA . (E.8)
1 _C+q)\7,+ \/(1"‘0—(])\1)2 —40(1 —(;)\1)
Note that
9 2¢0 — q(1 4+ ¢ —q\;)
l—c+qghi+ 14+c—qr)2—4e(l—0N)) =q+

O\; ( 4 \/( ai) ( )) 1 \/(1 +c—qhi)? —4e(1—06N)

_ —4e(q — 9)(q — cd)

V(@4 —gA)? —4e(1 = 6X\){g/ (1 +c—qhi)2 —4e(1 — 0N) + [(1 4 ¢)g — 2¢6 — 2Ny
We also note that

av/(1 +c—q%)2—40(1—5Ai)+[(1+0)q—205—q2&]
> (14 ¢)g —2¢d — ¢*\

> (14¢)g—2¢6 — \/cq 8) — e(qg—9))?

2y/c(q— 0)(a—8) > 0,

where the first inequality holds because /(1 + ¢ — gA;)2 — 4c(1 — 6);) > 0, the second inequality
holds because due to (E.5). Therefore, we have

_ , — o2 — — 5\
Y (1 c+aghi +V (1 +¢c—q\)? —4e(l 5)\,))§0

so1—c+qhi++/(1+c—g\)2—4c(l —6)\;)is a function decreasing in ;. We thus have

L—ctaghi+V/(A+e—qrh)2—4c(1—0N\)<1—c++/(1+¢)?2—4dc=2(1-0),

and

L—c+ghi+V(1+c—qh)2—4c(l —6\)

>1fc+<1,0)\/ﬁ*m: 21 —c)Vg—c5
- Vi—+/clg—0) a—cd+/clg—0)

Therefore, we have

2(q — o)\ q—cd
<]l]— ——— =1-— .
wsl-maTy Tlo gz M
and
2(q —co)Ny Vaq—cd(Vqg—cd+ \/c(qg—9))
To>1l—-—=1-— Y

- 2(1—c)\/q—cd 1—c¢ v
Vq—cd++/c(q—9)
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E.2 CHARACTERIZATION OF A¥

Before we prove the upper bound for variance and bias, we first characterize the property of A¥ for

k> 1landi € [1,d],i.e., each block of matrix A corresponding to each eigenvalue \; of H.

Lemma E.3. Let A; be defined as in (E.1), write Af as

(AR, (A
Af‘[(A?)i <A5>l§]

Let the eigenvalues of A; be x1 and x5 as defined in (E.2) and (E.3). Then, for any integer k£ > 1,

we have
k—1 k—1
T T
AR = —e(1 - ox) 22 L
(A1 = —c( i) g
k k
5 x5 —x
(A2 =(1- 5)\1)332 — xi,
E_ ok
x5 —x
AR — 2 1
(AF)21 g
(A’-c)22 x§+1 x’erl
v X9 — I

Proof. We prove Lemma E.3 by induction. For k£ = 1, we trivially have

0_ .0 1_ .1 1_ .1
(1 -2 g, (1—ea) 2T Sy gy, ez
To — I To — I T2 —T1
We also have
a3 — i
—— =z1+r2=1+c—q\.
To — T

Therefore, Lemma E.3 holds for £ = 1. Suppose that the lemma holds for k. Note that Af“ =

A; - A%, so by induction hypothesis, we have

AR (1 5 (AR = — (] — a:'g—a:’f
(A7 )1 = (1= 0A)(A)21 = —c(1 = 0\;) ;
T2 — 1
U L
(A7 )12 = (1= 0A)(A7)22 = (1 —6N;) P
2 — 41
(Afto1 = —c(AF)11 + (14 ¢ — q)i) (A2
k=1 k-1 k_ .k
21— T e gr) 2T
T2 — 1 T2 —T1
k=1 k-1 ko ok
X — X Ty — X
=c-rymy- 22— —¢(ny +x2)g
T2 — T1 T2 — T1
L gkt
= —Cc——,
To — X1
(Aft)os = —c(AF) 12+ (14 ¢ — q\i)(AF)2
k_ .k k+1 _ k+1
=l -N)Z2" I L Qe 2L
T2 — 1 T2 — 1
K ok k41 ktl
X X — X
= —T1Z9 2 1 + (5U1 +.’E2) L2
To — X1 To — X1
ke gk
 om—x

where we used the property that 1 + 22 = 1+ ¢ — ¢A; and z129 = ¢(1 — d;). Therefore, Lemma

E.3 holds for k£ + 1, and induction is completed.
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F LINEAR OPERATORS AND EFFECT OF FOURTH MOMENT

F.1 PROPERTIES OF LINEAR OPERATORS

In this section, we introduce linear operators on matrices as well as their properties. We first give
the following definitions of linear operators:

I=11, M=Exox®x®x], M=HcH,

- - (F.1)
B=EA, ®A)], B=ARA.
Kt can be defined as the sum of deterministic component V; and stochastic component {\[2:
Vi= {?;I (1 +Ic)1} . Vi [8 :Ziiﬂ ' F2)
Define
Vo = E[Vy] = [g :23] , (E3)

then A = V; + V4. We are also interested in linear operators ]E[\A/'z ® \72] and Vo, ® V.
We introduce the concept of PSD operators:

Definition F.1 (PSD operator). An operator O defined on symmetric matrices is called a PSD oper-
ator if M > 0 implies O o M > 0.

The following lemma summarizes some basic properties of the linear operators.
Lemma F.2. The operators defined in (F.1) have the following properties:

(a) M, /W, and M — M are PSD operators.
(b) For any PSD matrix M € R24%2¢ et

_ |[Mi1 My
M = [M21 MQJ : (F4)

where M1, M2, My, and My, are d-by-d blocks. We then have
52
dq

52
dq

E[\A72®\72]0M= [ gg} ® (M o Mag),

(V2®V2)OM: [ gg:| ®(MOM22).

Thus, E [\A/'g ® \Afg} and V5 ® V5 are both PSD operators.
(¢) Band BB are both PSD operators.
d B- B=E [i\/’g ® Vg] — V3 ® V3 is a PSD operator.

Proof. The proof follows those of Jain et al. (2018), Zou et al. (2021b), and Wu et al. (2022).
(a) For any PSD matrix M, we have
MoM =E[xx"Mxx"] = E[(x"Mx)xx "] > 0,
where the inequality holds because x ' Mx > 0 and xx | > 0. Furthermore,
MoM = HMH » 0,
where the inequality holds because M > 0 and H is symmetric. Lastly,
(M —M)oM = E[xx Mxx'| — HMH = E[(xx " — H)M(xx ' — H)| = 0,

where the inequality holds because M = 0 and xx " — H is symmetric.
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(b) Note that M55 > 0 because M > 0. We thus have

E[V,® Vy]oM =E [\721\/[\7;]

) 0 7($XtX;r M11 M12 0 0

- 0 —gxix;,| [Mar Moo| |—0xix,] —qxix]
. §2xyx, Maooxyx;  dgx;x] Maoxix,

- Sgxix) Maoxix,|  ¢*x;x] Maoxix,

5% 6
= |:5q qg:| QRE [XtX;FMQQXtX:}

2
= [gq gg} ® (MoMyy) =0,

2
where the last inequality holds because Moy > 0, M is a PSD operator and [gq 23} = 0.

In a similar way,
(Va®Vy)oM = V.MV,

[0 —6H| [M;; Mp|[ 0 0
B _0 —qH M21 M22 —0H —qH

_62HM22H 6qHM22H
_(SqHMQQH q2HM22H

M2
= gq gg] ® HMyoH
(62 &g

10g

_ 2
where the inequality holds because Mo = 0, M is a PSD operator, and {gq gg] = 0.

(c) We have R R B
BoM=E[A;MA/], BoM=AMA",

so both B and B are PSD operators.
(d) Note that Kt =V + \72, and A = V; + Vg, so

(B—B) oM = (E[(V1 + Va) @ (V1 + V)] — (V1 + Vo) @ (V1 + V3)) o M
= (E[\A72 & \72] —-Vy3Vy3)oM

2 —~
- [gq 23} & (M= M) o My) = 0,

where the second inequality holds because because E[V; ® i\/'g] =V; ® Vyand E[Vg ®
V1] = Vo®Vy, the third inequality follows from part (b), and the inequality holds because

. 2
Mjy = 0, M — M is a PSD operator, and [gq gg] = 0.

F.2 ANALYSIS OF FOURTH MOMENT

In this section, we study the difference of operators B and B (due to the fourth moment) when they
are operated on PSD matrix M. Specifically, we are interested in bounding the inner product

t—1
0 o0 j
<[0 H},ZB oM>. (F.5)
§j=0
The following lemma is the starting point of the analysis of fourth moment:
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Lemma F.3. For any PSD matrix M, we have

(B—B)oM < E[Vy,® Vy] oM,

~ ~ 2
HVﬂﬂHOMi¢<B ﬂme~quﬂ®H.

where

Proof. By Lemma F.2(d), we have

(B—B)oM = (E[\A/‘Q@\A/‘Q] —V2®V2) oM < E[Vy® Vy] oM,
where the inequality holds due to Lemma F.2(b).
Let My, be the matrix that contains the last d rows and d columns of M. By definition of V5 in
(F.2), we have
6% 4q

E[V20 Vo] oM = [&1 qQ} ® (Mo M)

2
5¢MHMmyﬁqgﬂ®H

0 0 5% &q
= ’ M)- & H7
w<k H] >[® f}
where first eqaulity holds due to Lemma F.2(b), and the inequality holds due to Assumption 3.2. [

The operators (Z — B)~! and (Z — B) ! are of special interest in the analysis of fourth moment. We

first show the existence (Z — B) L.

Lemma F.4. With the parameters in (4.2), (Z — E)_l exists and is a PSD operator.

Proof. Tt suffices to show that the property holds for any rank-one matrix xx . We have

(Z-B)loxx")=> Bro(xx") =) Af(xx")(AF)" =3 (Arx)(AFx)T.
k=0 k=0 k=0
Thus, the ij-entry of (Z — B) "1 o (xx ") is
D (AFx)i(AFx); < [(AFx)] - |(AFx), o0
k=0 k=0
The series converges because all eigenvalues of A, i.e., eigenvalues of all A;, have magnitudes
strictly smaller than 1. O

We then define operator 7 as
T=T-V,98V,-V,@Vy—Vy83V,; =7 —B+Vy® V,. (F.6)

Since Z — B is invertible and (Z — B) ™! is a PSD operator, 7 is also invertible, and 7~ is a PSD
operator. We can thus define matrix U as

_ 5% &q
U=7"'o QH ). E7
(I E)
The following lemma charanterizes a key property of U:

Lemma F.5 (Modified from Jain et al. (2018)). With the choice of parameters in (4.2), the inner

product < [8 Ig] 7U> is upper bounded by [, where

. 0 tr(H) L i 4
| = > —5—21/)—5—42/\1. (F.8)

1>R
Specifically for SHB where 6 = 0, we have

<B ﬁyU>§§Tﬁg
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Proof. Denote U; € R?*2 as the i-th block of the block-diagonal matrix U. By Equation (56) of
Jain et al. (2018), we have

(14 c—coX)(qg—cd) +2cqdN; & (I14+¢)(qg—9)
Ui)os = =2 . F
(Us)ez 31— + chilq £ D)) st rengtray Y
On the one hand, (U; )22 is bounded by
5 (I4+¢)(g—9) § (Q+c¢)(g—9)
U;)ee < = =4 M 7
(Ui)2z < 2 + 2((1 =)o + eXi(g+ b)) 2 2(eq + o)\

5§ (I+e)g—68) & qg—6 l—c

2t 2T aen, 2T 1=¢ 28N

NI SIS N -
2 2 2(5)\ 2 2 (5)\1 2 Qwﬁ,)\i

where the first inequality holds because d\; < 1, and the second inequality holds because g > 9,

and the third inequality holds because v — § < 7 and a5 < 3. On the other hand, (U; )22 can also

be bounded by

<

0 (I4+c¢)g—9) o q—9 ) 7—6 5 v
. < R — l - A
(Uiez < 5 + 2(1 — ) 2 21— 27 1 soty E11)

where the first inequality holds because 1 — ¢? + (¢ — ¢d)\; > 1 — ¢2, and the second inequality
holds because (v — 0)/4 < «/4. Thus, we have

0 0 : R . Nt
<{0 H:|aU>:;>\i(Ui)22<2;)\i+;2¢ Zv r2 ’yz)\za

i>kK

where the inequality holds due to (F.10) for ¢ < k and (F.1 1) for 1> K.
Specifically for SHB, we have
(1+¢)q < _

Ui = ’
(Us)ez 21— ) +eqh) — 20— 2(1—c)
where the inequality holds because 2((1 — ¢?) + cg);) > 2(1 — ¢?). We thus have

(o &]-v)- ZA =

(1+0c)g q

The following lemma charaterizes (Z — B)~! in terms of 7 and Vo
Lemma F.6. The operator (Z — B) ™! can be written in the form of geometric series

(IT-B)'= i(rluz[% ® Vo)) o771

k=0
Proof. According to the definition of B,
B=E [& ® f&t} =E {(Vl +Vo) @ (Vi + \72)}
— Vi@ Vi+ Vi@ Va+ Vo @ Vi+E V20 Vs,
where the last equality holds because IE V3| = V. We thus have
= (r-ave V)
~{7[z-TEWV, ®V2]”_1

-1
{ -7 1E V2 ®V2]} 7!
= Z(T‘lE[\A/'Q @ Vo) oT 1,

k=0
where the last inequality holds due to geometric series of linear operators. [
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We now show that (Z — B)~! exists and is a PSD operator.

Lemma F.7. With the parameters in (4.2), for any PSD matrix M, (Z — B)~! o M exists and is a
PSD matrix. Moreover, if we define Q := 7 ! o M, then we have

_ -~ Y 0 0
(Z - B) 1OM_Q+1—W<[0 H}’Q>'U‘

Proof. With Lemma F.6, we have

(Z-B)toM=> (T 'E[Vo®V3))foQ.
k=0
Note that by Lemma F.3
S S 00 52 6
evaovasa<o ([ 8.Q) [f Won

and by definition of U in (F.7), we have
TE[Vy® Vs]oQ 5¢<{8 121} ,Q>-U.
Then, applying Lemma F.5 and the definition of U recursively, we have for all £ > 1,
(TT'E[V2 @ Va))k 0 Q < pFIF! <[g SI} ,Q> U, (F12)

Summing (F.12), considering the special case of k = 0, we have

_ — k1 /[0 0 0 0 0
(Z-B) 1oMjQ+kZ:1wklk 1<{0 H],Q>-U_Q+1_W<[O H},Q>-U.

Therefore, (Z — B) ! exists and is a PSD operator. O

The following result shows that the inner product (E.5) is different by only a constant if all B opera-
tors are replaced with B.

Lemma F.8. For any PSD matrix M € R2?*24_ define the partial sum
t—1
R, =) BoM.
k=0

Then we have

t—1 i—1
> Y 0 0 Sk
<§ KoM+ —— E M)-
Rt_k:OB ) +1W<[0 H},kZOB o U

<BH@9@$§%@’

Proof. By definition of R, we have
R;=(Z-B) Y Z-B)oM
< (Z-B)"YZ-B")oM
t—1
=IZ-B)HT-B)Y B'oM, (F.13)

k=0

and

where r = (1 — 1)~ L.

where the inequality holds because B =< B. Note that by definition of B, we have

I-B=T—(Vi+ V)@ (Vi+ V)T -V,0V, -V, ®Vy,—V,@V, =T, (Fl4)
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where the inequality holds because Vo @ V3 is a PSD operator. R can thus be further bounded as

R, < (Z-B)'To (ié’“ OM>

k=0

<ZB’COM+11@Z<{ } ZBkoM>

k=0
where the first inequality holds due to (F.14), and the second inequality holds due to Lemma F.6.

Therefore, taking inner product with [g Ig] , we have
0 o0
o Al =)
-1
0 Sk P 0 & 0 0
H| B OM>+11/)Z<|:0 :| ZB OM> <|:0 H]’U>
- k=0
0 0] © AL =
2k k
<b Hy B°M>+1—w<b }§380M>
k=0
! ZB’f M
= 0]
1—ol

where the second inequality holds due to Lemma F.5. O

1
&~ ~
= o

IN

G VARIANCE UPPER BOUND

G.1 PROOF OF LEMMA D.3

In this subsection, we prove Lemma D.3. We need the following lemmas. The first lemma charac-
terizes the recursive formula of C;:

Lemma G.1 (Section E.2 of Jain et al. (2018)). Define
= E[G @ ¢, G.1)
then the covariance matrix C; satisfies
Ct :BOCt,1+§:.

Combining Lemma G.1 with Lemma K.3, we immediate know that C, is an increasing sequence
with

t—1 R
=> B'o3. (G.2)

The following lemmas provide upper bounds for M; and Mo, respectively:
Lemma G.2. With the choice of parameters as in (4.2), we have

[H 0] e 36N ,
< o o ,M1><ar vt z};)\
[0 0] i et

Lemma G.3. With the choice of parameters as in (4.2), we have

H 0] 9 [18k* 365 (q —¢d)? 5
<_O 0_,M2>§07’ N + (1—cp >Zk*/\

We now prove Lemma D.3.
Proof of Lemma D.3. By Lemma D.2,

Variance < — 3 <[8 g] M, + M2>
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o?r | 9k* 36N —05 2
< N l + — Z A;

L 18k* 365 q—c5 2
2[ + DN

N N (1—¢)?
i>k* i>k*
27k*  18(s+ N)( q —cd)?
2 2
= A
o [ oN © 1-c)? 2 ]
i>k*
where the second inequality holds due to Lemma G.2 and Lemma G.3. O

We remark that due to Lemma K.1, we have % = "’TH < ~. Additionally, the constants in this

proof are smaller than those given in Theorem 4.1. Therefore, the variance bound in Theorem 4.1
can be fully covered by the result provided in this proof.

G.2 PROOF OF LEMMA G.3

We start with an upper bound for s
Lemma G.4. Let 3 be defined in (G.1). Then

N 2
3 <o? [gq gg] ® H.

Proof. By definition of S in (G.1), we have

S _ 52 - e?xtx;r oq - e?xtx;r _ 5% &q
=E[G®@G]=E H(gq cExx, ¢ exx) || T |dq ¢ ® 3. (G.3)

By Assumption 3.3, we have 02 = |[H~Y/2XH~1/2||, so H"/2XH~1/2 < ¢°I, and
3 < o?H. (G.4)
Combining (G.3) with (G.4), we complete the proof. O

We then provide an upper bound for the limiting matrix C,
Lemma G.5. Let C, be defined as

Co = (IfB)*lo§:ZBko§, (G.5)
k=0

Then

where [ is defined in (F.8).

Proof. By definition of C,, we have

-1 4§ 2 -1 8 dq
Co=(Z—-B) " oX=x0*(ZT—-B) "o 5q ¢ ®H

P 0 0
(U+1—wl<[0 H]’U>'U>
Pl o?
<U+1_w U> U

where the first inequality holds due to Lemma F.6, and the second inequality holds due to Lemma
F.5. Therefore, the inner product is bounded by

0 0 o? 0 0 o2l
<[0 H}’CW>S1W<{0 H}’U>§1w1’

where the second inequality holds due to Lemma F.5. [
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We now prove Lemma G.3. For the matrix M5, we have the following upper bound:

N—t—1 T
>
k=0

N—-1[N—-t—-1

M, = 3 A [(B —B)oCuy 1 + f:}
L k=0

Rk
g

~
Il
-

1 N—-1[N—-t—-1 T r 0 0 2 6 N—-t—1
v | Z Al &l o))l Henl[ 3
t=1 L k=0 4+ k=0
N—-1[N-t—-1 N—t—1

A
2|
1

k=0 i
[N—t—1

17/ o2l 52 5
A () oo o]
= _<1—¢l+0 sq 2| ©

o2y N=1 [Ntz 52 s N—t-1 T
- lz A’“]([aq ﬂ@H)[Z A"'] :
k=0

t=1 k=0

5[ 8o o]

Z
L

PN
ks

“ 1

(G.6)

where the first equality holds due to Lemma G.1, the first inequality holds due to Lemma G.4 and
Lemma F.3, the second inequality holds because C, is increasing, and the third inequality holds due
to Lemma G.5. As A is block diagonal and H is diagonal, plugging (G.6) into the inner product, we

have

N-1 N—t—1 2
H O 0’27" 2 k )
<[0 0}7M2><N22Ai ([Z A M)
=1 t=1 k=0 1
o2y N1 t—1 5 2
_ 2 k
ey (X 1)
t=0 i=1 k=0 1
o2r N~ 36N?(q — cb)? 5
< — * ;
- N2 9k (1 _ )2 Z )\l
t=0 i>k*
9k*  36N(q — cd)?
2 2
=o°r N-|- (1—02 igk:*)\i ,

where the second inequality holds due to Corollary K.7.
G.3 PROOF OF LEMMA G.2

The following lemma provides an upper bound on C; by its update rule.
Lemma G.6. For any ¢ > 0, C; can be upper bounded by

-1 52 s
C; jO‘Q’FZBkO ([6(] qg} ®H).

k=0

Proof. By the recursive formula (7.5), we have the following,

Ct:BOCt_1+§:goct_1+(87g)oct_1+§

5 0 0 &2 6 &2 6
<secsol[3 Ylon) [0 Hon i [f 4o

~ 0 0 52 6 52 6
jBoCt1+1/J<[0 H}7Cm>.[5q q§]®H+o—2[5q qg]@m

- 21 2 2
<Boct1+aw'[gq gg]@H—FUQBq Z§]®H

~ 52 6
=BoCia+olr [5q qg} oM,
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where the first inequality holds due to Lemma F.3 and Lemma G.4, the second inequality holds due
to holds because C; is increasing, and the last inequality holds due to Lemma G.5. Applying (G.7)
recursively, we have for all £ > 0,

L < B*o | o m.
o rz [ o ]
We are now ready to prove Lemma G.2. With Lemma G.6, we have
L [Nl N-1 T
_ k k
M- s | T e[ ]
k= k=0
—1 [N-1
ag°r k st (52 6q
N2 Z[ZAl [B]O[&] q? ®H
k=0

IA
|

N-1 T
> o
=0 k=0
2, s=1 [N-1 ) N-1 7T
= N—g [Z Aﬁk] (Bq 23} ®H) [Z Aﬁ’“} : (G.8)
=0 Lk=0 k=0

As A is block-diagonal and H is diagonal, plugging (G.8) into the inner product, we have

> AT { Dj (G.9)

<.

s—1

(HEDE o>

2(q —
0T[18Nk* 36sN=(q — cd)* c6)? Z)\Q]

IN
|

1—c
>k*

18k*  36s(q
_ 2 2
—O‘T[N + 1—c Z/\]

i>k*

where the second inequality holds due to Corollary K.6.
H BIAS UPPER BOUND

H.1 PROOF OF LEMMA D .4

In this subsection, we prove Lemma D.4. We first need the following lemma for B;:
Lemma H.1. With B, as defined in (7.4), we have

B; =BoB;_i,

and

_ t—1 _ 2
BthtoBo+wZ<[g I?I},Bt_l_k>~6’“ [gq zq]@@H.
k=0

We also have the following lemma for the partial sum of By:
Lemma H.2. Let B, defined in (7.4). Then we have

t—1

0 0 14 . 10 W
Z < {0 H} ka> sr [5“’0 -w ||%0:g 17||W0 - H%IMT
k=0

¢ . .
+—=lwo - Wl . +4tllwo — w II%MW]-

q —C kTikx

We are now ready prove Lemma D.4.
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Proof of Lemma D.4. By Lemma D.2, it suffices to bound the inner produce of {I(—)I 8} with M3

and M, separately. For M3, by Lemma H.1, we have
L= N-1
~z [Z A*IB, | ) Ak}
k=0 k=0
N-1 N-1 T
[Z AkJrs Z Ak+s‘|

k=0 k=0

T

= By

5 -

w 0 0 N-1 - 52 (5q N—-1 s T
+ﬁ <[0 H} s— 1—t> > AR ({5(] q2]®H> STAMT @D
=0 k=0 k=0

‘We also note that

(wo — w*)(wo —w*) T

RGN PGS (wo — w*)(wo —wgq _ [1 1]®[(W0—W*)(Wo—w*)T],

(wo — w*)(wg —w 11
(H.2)

H is diagonal and A is block diagonal, so plugging (H.1) and (H.2) into the inner product, we have

(B 8= denee (S [])
L o) pr(Eal)

1

|

K

By Corollary K.9, we have
2

d N-1
o1 ) ks 1
Effective Bias := IN? ;_1 AW; ( E Al [1] ) 1

k=0
8 06 q 2s * 4 S s *
< MO g —w s+ (T = )20 — W),

16¢° . 100c* . .

+ yage 0= 0H) > (wo —w) + xz e I ) (wWo = W)l
9(1 — ¢)? qg—cd_\° N 2
2N2(q — ¢d)? (I 1—c¢ H) (wo—w") o
kT:k*

2

+18 H (I - ql_ C5H>S (wo —w")

Hix oo

K can be bounded as

< S8 gmen) S (Sa )

t=0 1
Y [, 36(a—cd)’N? ~ L= /o 0
< ﬁ 9k™ + W Z )\,L Z 0 H 7:Bsflft
i>k* t=0
[ 36— c0)’N? ~ L] = /0 0
= 5 | o -+;;;zi;:;gﬁfggfj£: MDY (g | B
i>k* t=0
Yr |9k* 36N (q — cd)? 5 14
< = vl T _
Sl I ;: XL wo = wll,
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10 . 1-c
+ = olwo =Wl

W*H%m:k* + 4s||lwo — w*||%{k*:oo1 , (H.4)

where the first inequality holds due to Corollary K.6, and the second inequality holds due to Lemma
H.2.

For M,, we have

1 Nol Nzt
M, - [

2 AT

N—t—1

e BBOBSt Ak
w2 S
N
S )

where the first equality holds beause B o Bs ;1 = Bsy+, and the inequality holds due to Lemma
F.3. H is diagonal and A is block-diagonal, so plugging (H.5) into the inner product, we have

(5 Som =50 8] me) S (5w [])

N—-t—1 52 N—t—1
k k
;O A ([M } ) Z A] ., (H.5)

IN

where the second inequality holds due to Corollary K.7. Note that

£ aoe) £ (8 8

t=0 t=0
14 . 10
<7"[5||W0— I3 i T alwo—w I,
l-c * (12 4 N * (|2 H.7
+mHWO*W 5, . t4(s+N)llwo —wllg,. |, (H.7)

where the first inequality holds because B; > 0, and the second inequality holds due to Lemma H.2.
Plugging (H.7) into (H.6), combining the result with (H.4), we have

H o
Bias = 2<[O 0} M3—|—M4>

Pr | 9k* 36N (g 9
< _ _
Effective Bias + — o | N +— e Z A ||w0 w ||I
i>k*

10 1-c N N
b fwo — Ry, oo~ Wl dsliwo — w ||%{,,fm]

Yr | 9k* 36N q—cé 10
ton I vt o §A Blwo = w3 + 7w — Wl

1—c
oo~ W s+ N e w*|%{,c*m]
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k* N(qg— (5
<Effect1veB1aS+ﬂ ) +36 lg—c ZAQ] [HWO_ *H%O-E

N | N
i>k*
* |2 1—c * 112 * |2
+y—alwo =il + m”wo -wili, . +4s+N)[wo—wg,. |
where the second inequality holds because 4s||wo — w* |3, < 4(s+ N)[|wo —w*[3, . O

We remark that due to Lemma K.1, we have 4= (f = %‘6 < ~. Additionally, the constants in this

proof are smaller than those given in Theorem 4.1. Therefore, the bias bound in Theorem 4.1 can be
fully covered by the result provided in this proof.

H.2 PROOF OF LEMMA H.1

The recursive formula B; = BoB;_; is proven in Section B.2 of Jain et al. (2018). We further have

B;=BoB,_; =BoB;_; +(B—B)oB,_;

~ 2
jBoBt1+w<[g ﬁ] ,Bt1>~ {5 5q] ©H

dq q
~ /o o ~ 52 5
jBtOBO+wZ<[0 H}’Bk>'6t_l_ko{5q qq]®H
k=0
~ /[0 o ~ 82 6
=BfoB0+¢Z<[O H}7Bt1k>~8ko{5q q]@H
k=0

where the first inequality holds due to Lemma F.3, and the second inequality holds by recursively
applying the bound.

H.3 PROOF OF LEMMA H.2
Note that B; = B! o By by (7.4). By Lemma F.8, we have
t—1 t—1 t—1
0 O 0 0| 0 0
(RN IR (LR SR R
=0 =0 =0

H is a diagonal matrix, and A is a block-diagonal matrix with each block being A, so (H.8) can be
further bounded by

2

([0 8] ) <rsaurs (at[l])]

14 (|2 10 (|2
< ?HWO -wil + EHWO - wg,

— C
g wo = wIR,, . + 4o — W, |,

where the second inequality holds due to Corollary K.11.

I PROOF FOR THE CLASSICAL SETTING

In this section, we prove results for the case of finite dimensions. Before we prove the theorem, we
first note that with the parameter choice in (4.4) and Kk = d,

potr(H) 1 1

1l—-¢Ypl=1-—7—F——-=-
v 2 2 4
so = 4. We also note that with yu = 23, we have
(1—c)? (1 —c)? (1—c)?

(Vg —cd + c(q—(i))2 (I14+¢)g—2¢d +2y/c(g—9 q—c6 (1+c)g—2¢6
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(2(1 — a))? 2(1 — «) < 2(1 — «) _ 2p _

20(ad+ (1 —a)y) —2Q2a—1)0 (1—a)d+ay = ay v o

where the first equality holds because 2+/c(q¢ — §)(qg — ¢d) > 0, the second equality holds because
¢=2a—1and g = ad + (1 — @), and the second inequality holds because (1 — «)d > 0. That is
to say, there is no eigenvalue in the region of i > k.

The main idea of the proof is similar to that of Theorem 4.1. We decompose the excess risk into
variance and bias, and then characterize M, My, M3 and My. The following lemmas provide

upper bounds for the inner product of [%I g} with M, My, M3 and M.

Lemma I.1 (Modified from Lemma G.2). With M; defined in (D.2), we have

H O 128052d
<
<{0 0] ’M1> =N (1)

Lemma 1.2 (Modified from Lemma G.3). With M5 defined in (D.3), we have

H 0 93%rd  3602d
([0 o me) =5 =25

Lemma 1.3. With M3 defined in (D.4), we have

H 0 100 (I1-0)s w12 504pd 12
<[0 0:|7M3>§]\72(1—C)2€XP<_ 9 )'|WO—W ||H+7_C”WO_W -

Lemma I.4. With M, defined in (D.5), we have

H 0 5044pd -
([ o] Mu) = 30l - wlie

With the lemmas above, we can prove the upper bound of excess risk in the classical setting.

Theorem L5 (Restatement of Corollary 4.4). Under Assumptions 3.1, 3.2 and 3.3, with the param-
eter choice in (4.4), we have

_ . 100 (1-0¢)s .12
ElL(Wsis4n)] = L(w") < mexp (_ D) ) “wo — w |
3602d 128 1008yd

_ * (12
N taea—o Tz ghve W ke

Proof. By Lemma D.1 and Lemma D.2, we have

E[L(Wassn)] — L(w") < < {E 8] M, + M, + Mj + M4> . (w1

Substituting the results of Lemma 1.1, Lemma 1.2, Lemma 1.3 and Lemma 1.4 into (I.1), we get the
desired result.

We remark that due to Lemma K.1, we have 1 — ¢ > 5. Additionally, the constants in Theorem 1.5
are smaller than those in Corollary 4.4. Therefore, Theorem L.5 can fully recover Corollary 4.4.

I.1 VARIANCE UPPER BOUND

The proof for Lemma 1.2 is straightforward given Lemma G.3 and the fact that there is no eigenvalue
in the region of > kT. Below we provide the proof for Lemma I.1.

Proof of Lemma I.1. According to (G.9) in the proof of Lemma G.2, we have

H o o2 s—1 /N—1 Ts 2
j+
<{0 0],M1>§NQ§:)\§§ <§ AJ [QD (1.2)
1

i=1  j=0 \ k=0

Similar to the proof of Corollary K.6, we have
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(a) When i < k*,

)

s—1 — - 4
Jj+k <
(ZA _Q>1_(1c))\%'

7=0
(b) By (K.24) and (K.26), when k¥ < i < kf,

1 N-—1 q
3 Al <32
Cola) T =

k=0 -

»
|

)

<.
I
<)

(1.2) can thus be bounded by

2
H o 102 & 2571 N-1 s
<{0 0]’M1><N;)\i,§% 2 AT
1= J= =

1

402 32
< — AP A
< W |2 )\2+Z T
i<k*
o? i 1
= ——— |16k* +128(d — k
N2(1 _ C) [ 6k* + 8( )]
12802%d
-~ N2(1-¢)’
where first inequality holds because » = 4 and due to (I.2), and the last inequality holds because the
coefficient 16 < 128. O

1.2 BIAS UPPER BOUND

We first provide a list of lemmas modified by considering only eigenvalues \; with i < kT:
Lemma 1.6 (Modified from Corollary K.6). Let A; be defined in (E.1). Then for all j > 0,

ZAZ (i ATth BD? < 9d.

k=0

Lemma 1.6 follows directly from the corresponding results in the overparameterized regime, and we
do not provide the proof here.

Lemma 1.7 (Modified from Corollary K.9). Let A; be defined in (E.1). Then we have

ZA o (Z Ast [ D < e (—(1 ‘20)3) Jiwo — wl.

Proof. By Lemma K.8,
(a) Forall i < kt, we have

(NZ Ay H) < S lebfa) <

k=0

s/2

o

RREAE

where the second inequality holds because (¢§/q)? < ¢? <
(b) Forall k¥ < i< 75, we have

S 4 S
2sfe(1 = OA]"/2 4 - [e(1 = A2

jz:: (1 — o))/ 4 sy [ (1—6X)]%/?
c(L = O]/ — [e(1 — o))/ L4
1—[e(1—6x)]1/4 SN

2 [e(1 — 0X;)]%/2
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[e(1 = 6X)]/* = [e(1 — 6N/ 4
/A MY
8le(1 — dX)]*/* —4le(1 — o028

= <
5)\1 _5i

where the first inequality holds because [¢(1 — 6A;)]*/2 < [¢(1 — 6A;)]*+9)/4, the second
inequality holds because 1 — [c(1 — 6X;)]Y/* > 1 — (1 — 6);)Y/* > §);/4, and the last
inequality holds because [c(1 — §);)]*/2 > 0. We thus have

2

(JVZ At H) < (2ele1 =01 4 et~ a2

k=0

<2 [e(1 = 6X)]/?

[e(1 — oX)]*/4, (1.3)

64

Sw[( o/2,

—60)]% <

52N2 e

where the first inequality holds due to Lemma K.8, the second inequality holds due to (I.3),
and the last inequality holds because ¢(1 — 0);) < ¢

(c) Fork < i < k', we have

261e(1 — 6)]"/7 + T le(1 — A2

<25 ket - a4 2L g

7=0

=) -3 | 10 :
=2 1—[e(1 —8N)]4/4 * 1— c[c(l — 0] "
el — i s/4 _ c(l — i 5/2
< ol = o )](1_c£/(41 ] +11_Oc[c(1—5Az—)]s/2
_ 8[e(1 — 6)\1,)]5/‘; —|_— i[c(l —oN)]*? - 11_()6[0(1 B 5/\i)]5/47 (14)

where the first inequality holds because [¢(1 — 6A;)]*/2 < [¢(1 — 6);)]*+9)/4, the second
inequality holds because 1 — [c¢(1—6);)]"/* > 1—¢'/* > (1 —c)/4, and the last inequality
holds because [c¢(1 — 6);)]*/? < [e(1 — 5);)]*/*. We thus have

(NZl ASTH EDZ < <2$[c(1 o)+ 11—00[‘3(1 - 5&)}5/2)2

k=0

100 100
< (1 —6\)]2 < ——— - ¢¥/?
S G L A
where the first inequality holds due to Lemma K.8, the second inequality holds due to (I1.4),
and the last inequality holds because ¢(1 — §\;) < ¢
Concluding all the above,

2

d N-1
Sor(Zal)
i=1 1

k=0
4 64 100
2 s/2 s/2 s/2
SZAiwi 52\ T Z Aiw; 52>\2 e/ —i—Z)\w (1—0)2.0/
i<kt kt<i<k i>k
<Z)\vw2 e/ 4 Z \w? . S/2+Zx\ .10 cet?
- i (1 —c)? s (1—2¢)?
i<kt kt<i<k i>k
100¢5/2 & 100¢5/2 W
< (1 — C)2 ZAlwf - (1 — C) HWO - H%I
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100 (1-c¢)s w12
ST ) ek

where the second inequality holds because dA\; > 1 — ¢ for i < k, the third inequality holds
because the coefficients 4, 64, 100 are bounded by 100, and the last inequality holds because ¢*/? <
exp(—(1 —¢)s/2). O

Lemma L.8. With B; defined in (7.4), we have

t—1

0 0 56

(o 8By = 2olwo - wlie
k=0

Proof. By Lemma H.2, taking = 4, we have

t—1

SH{IFENEE ISR

k=0 i<k% ki<z<kT
56 , 40 )
Sl,CZ)\zwzJ’_E Z )\ZU}Z
i<k? ki<i<kf
56 )
< T lhwo — wlly

where the first inequality holds because 6\; > 1 — ¢ for i < k%, and the second inequality holds
because the coefficients 40, 50 can be bounded by 56. O

We are now ready to bound the inner product of [EI g} with M3 and My.

Proof of Lemma 1.3. Similar to the proof of Lemma D.4, we have

=1 k=0
s—1 d N-1
¥ 0 0 2 ket |0
Tz 0 H|Bs1) D A DAl
t= i=1 k=0 1
100 (1-2¢)s “112
= N2(1—¢)? exXp (_ 2 > [wo —w ||H+N22::0 s—1-¢ ) - 9d
100 (1-2¢)s w2 9Yd 56
< N2(1— c)2 eXp (_ 5 ) wo —w ||H+W'71 [wo — w™||&
100 (1-0¢)s 2 504v¢d w12
= Nzi(l_c)g exp (_2 > lwo —w ||H+m\\wo—w Il
where the second inequality holds due to Lemma 1.7 and Lemma 1.6, and the third inequality holds
due to Lemma L.8. O

Proof of Lemma I.4. Similar to the proof of Lemma D.4, we have
N-1 d t—1 2
H o Y 0 0 2 k|0
([ 8 )< X (B 8] mevec)3ont (Lt
= i= =0 1

T fm)
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91/1d s+N—1 0 0
v (o e

<
t=0
9yYd 56 w2 504¢d 2
< W'T”WO I = m“wo—w (=8
where the second inequality holds due to Lemma 1.6, the second inequality holds because B, > 0,
and the last inequality holds due to Lemma I.8. [

J PROOF FOR THE ONE-HOT DISTRIBUTION SETTING

The choice of parameters is as follows:

€ (0,1), 6 € (0,4], B (0,1), a=—

We now present the excess risk bound:

Theorem J.1. Under Assumptions 3.1, 3.3 and 3.2, with the parameter choice of (J.1), assuming
N(1 —¢) > 2, we have the following upper bound for the excess risk:

E[L(Ws.s+n)] — L(w*) < 2 - EffectiveVar + 2 - EffectiveBias,

where effective variance is bounded by

126
EffectiveVar < o?r a [ [wo — *HH—l
i>k*
90 18
+ 1— ”WO - *H%g;m + 7”“’0 - *”H—l + 3672]\728”“’0 o W*”%—Ii*:oo ’

and effective bias is bounded in the same way as Theorem 4.1.

The constant 7 is formally defined as

1
r= , J.2
1 — maxi<i<q(Uj)a2 d-2)

Note that 5
q—c _7

(Uj)a2 < 2(i—c) =2

so the upper bound of r is given by
1

r< —.
—1-7/2
The proof of Theorem J.1 depends on the following lemmas:
Lemma J.2 (Modified from Lemma G.2). Let r be defined in (J.2). Then we have

H 0] , [18k*  36s(q — c6)? )
<0 0,M1>§0r N+ (-2 Z)\
P>k
Lemma J.3 (Modified from Lemma G.3). Let r be defined in (J.2). Then we have
H 0] ks 36N )
< 0 0 7].\/.[2> SO’ T N + Z )\
L J L i>k*
Lemma J.4. Let r be defined in (J.2). Then we have
H 0 r 126 W 90 " 9(1 —¢) W
EDE Ng[vvo s+ poliwo = w4+ D g — w2
—¢8)2N?
(q(l—cc))QSHWO — W*@Ii&x] + EffectiveBias,

where EffectiveBias is the same as one in Theorem 4.1.
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Lemma J.5. Let r be defined in (J.2). Then we have

H 0 r 126 . 90 o 9(1 — ¢) o
(16 6] Ma) < [ F50wo = w7y + 0w = w7+ S o —

36(qfc5)2N2(5+N) w12
(1—¢)? lwo = w HHi*m :

Proof of Theorem J.1. Note that the excess risk is

<[Ig g} ,M1+M2+M3+M4>,

so the upper bound can be obtained by combining Lemmas J.2, J.3, J.4 and J.5. O

Notations. In this section, for any matrix M € R24%24_ denote

Mi; My, 2dx2d
M = R
{le M, | € ’

where M;; € Rxd,
J.1 ANALYSIS OF FOURTH MOMENT
In this setting, for any matrix M € R?%*24_ we have

s = 6% 4q 82 dq .
E[Vy x Vy]oM = 5q o ® (HO Mag) = g ® diag(A (Ma2)11,- - -, Aa(M22)4q).

Lemma J.6 (Modified from Lemma F.7). For any PSD matrix M € R2¢%24 define Q := 7' o M.
Then
_ . Q22)11 (Q22)dd
Z—-B)"'oM=Q+dia <(U e, ———-Uy ).
(Z-B) Qrding | TG 00 T (Ug)es OO
Proof. By Lemma F.6, we have

(Z—-B) 'oM= Z B[V, @ Va])F o Q.

Note that )
6% 0 .
E[V,® Vo] o Q = [5q qg] ® diag(A1(Qa2)115 - - - » Ad(Q22)dd),

so by definition of T,

T'E[V, ® Vo] 0 Q = diag((Q22)11 Uy, - .-, (Q22)4aUa).
We can similarly prove that for all £ > 1,

(T7'E[V2 @ Va))F 0 Q = diag((Qa2)11(U1)55 UL, .., (Qa2)11(Ua)ks 1 U,).
Summing the above, we have

_ . Qa2)11 (Qa22)dd
ZT-B)'oM=Q +dia ((U,...,U .
( ) Q 1= (U)s 1— (U2 ¢
O
Lemma J.7 (Modified from Lemma F.8). For any PSD matrix M € R??*24_ define the partial sum

t—1
= Z BF o M.
k=0
Then we have

t—1 t—1 ~ ~
5 . B¥ o M)y,) ((B* o M)y,)
~ k (( 22)11 22)dd )
R, < Z:B oM—i—’;Jdlag( O U T U O

and

o~ o 52 6q] . A ((B* 0 M)gz) 1 Aa((B* 0 M)22)aa
B[V, @ V)] < ® dia, . .
[ 2 2] - |:5q q2 188 ( 1-— (U1)22 1-— (Ud)22
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Proof. Similar to the proof of Lemma E.§, we have

t—1 t—1
Y BFoM=(I-B)'To <Z§k oM>

k=0 k=0

where the equality holds due to Lemma J.6. We thus have

2
E[V>® Va]o (ZB’“0M> [gq ‘ﬂ@

+ Zdlag ( M1 (U2 ((g’C oM)a2)11,- -5 M(([gﬁf o M)22)dd> 1

i dlag (Al((gk [©] M)Qg)ll, ey )\d((gk o M)22)dd>
k=0

1—(Uy)ae 1—(Ua)22
_ {52 5q} % diag A ((BY 0 M)g2) 1 Aa((B* 0 M)as)aa
dq ¢ 1— (U)o 77777 1—=(Ug)ae )

J.2 VARIANCE UPPER BOUND

We now provide the proof of Lemma J.3.

Proof of Lemma J.3. Note that

Co=(T-B) oS =<c2T-B) o ([52 5‘1} ®H>

oq ¢°
. Ui)22 (Uqg)22
=0'2|:U—‘rdla <(1U,...,U
t\1- (U1)22 ! 1—(Uqg)a2 ¢
U U
= o2dia ( L S d ) ,
e (U1)22 1—(Ug)a2

where the second equality holds due to Lemma J.6. We thus have

- - 5% 6q . A (U1)22 Ai(Ug)22 )
E[V,® V] o Cy < 02 d 13
V2@ Vo]e =7 {5(1 qz] © diag (1 — (Uq)a2 1—(Uqg)22 I3

Therefore, M5 can be bounded by

| N1 [Nt N [Nt
M, = N2 l Z AF [(B —B)oCgsyio1 + 2} Z Ak]
t=1 | k=0
| NerpNotoroo7 R L [N=t—1 T
2SSO Ak E[V2®V2]OCOO+E] > A’“]
t=1 | k=0 - k=0

IA

| T
L k [ 2 52 dq . )\1(U1)22 )\d(Ud)QQ N_t-l A
2 ; Z A- _0 {&] qz}®<d1ag(1_(U1)22,...,1_(Ud)22>+H>} l ];) A
_ 7 k_ [[6% dq ) A N—t—1 )
=7 - Z A [5(] q2]®d1ag<1_(U1)22,.. T Ud )] [ Z A
N—t—1 T
> Ak] : (.4

k=0

PN
‘Q
N
(S
i
| — T
7
1+
—
>
B
-
| —
——
S
QN
K S
N
—_
®
o
—_
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where the first inequality holds because B — B = E[\Afg ® Vg] —Vy®Vy < E[\A/'Q ® \72] and
Bsit—1 X Cx, the second inequality holds due to (J.3), and the last inequality holds due to defini-

tion of r. The inner product of My and {E)I g] can thus be bounded by

( 8},Mz><z?§;ﬁizf<%lm>i

9k* 36N
2 2
S ag'Tr [N + — Z A7 ]
i>k*
where the second inequality holds by deduction similar to that of Lemma G.3. O

Lemma J.8 (Modified from Lemma G. 6) For any ¢t > 0, C; can be upper bounded by
o< S ae ([ ] om).
k=0
Proof. By the iteration formula C; = Bo C;_1 + EA) we have
=BoCy_1+(B-B)oCi_1+ %
<BoC, +E[\A72 ®\72] 0Ci 1+ %

23 U U 2 62 dq
jBOCt_l—FE[VQ@Vg]OCOO—FO' 6q q2 ®H
=~ 5% &g A Ad
<BoC;_ +02{ ]@dla < ey )
=1 dq t\1- (U1)a2 1—(Uqg)22

~ 52
<BoC;_; +02r[

5q

where the first inequality holds because B — B < E[V2 ® \A/'g], the second inequality holds because
C;_1 X C and Lemma G.4, the third inequality holds due to (J.3), and the last inequality holds
due to the definition of r. Iterating the inequality above, we have

<~ ([0 6
Ctja2r28ko<{6q q}@H)
k=0
O

As the bound for C; is exactly the same as the bound given in Lemma G.6, we can prove the Lemma
J.2 in exactly the same way as Lemma G.2.

J.3  BI1AS UPPER BOUND
Lemma J.9 (Modified from Lemma H.1). For any ¢ > 0, B, can be upper bounded by

t—1
. . 52 5
t k q
B, <B oBo+k§:0jB Oqcsq 7 ] QMO (B k)zz))

Proof. By the iterative formula B; = B o B;_1, we have
Bt :gOBt_l‘F(B*g)OBt_l
<BoB, 1 + E[\A@ ® {,2] oB:1

5% g

= go Bt*l + |:5q q2:| ® (H @ (Bt71)22)

~ t—1 N 2
jBtoBoJrZBkO({gq gq] ®(HO (Bi—1- k)22)>

k=0

where the first inequality holds because 5 — B = E[\A/'Q ® \A/'g], and the second inequality holds by
iteratively applying the previous inequality. [
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Lemma J.10. We have

Proof. Note that

S (Bl = 3 ((B'0Bo),)..

:1?5)2(‘“ H)Z

t=0
s—1 1 2
i)
t=0 2

where the first inequality holds due to Lemma J.7, and the second inequality holds due to the defini-
tion of 7. O

Proof of Lemma J.4. By the bound for B, we have

L [Nl N-1 T L [Nl N-1 T
M3 _ ﬁ [Z Ak Z Ak] < ﬁ Z Ak+s Z Ak+;|
k=0 k=0 k=0

([?Z 23}®(H®( 1-0) )[ZAM} |

1 s—1 [N—-1
k+t
t Nz [Z A
t=0 Lk=0

so its inner product with [I(;I g} is

2

(1 gow)e St (Enfl)

k=0
Effective Bias
1 d s—1 N—1 5 2
2 k+t
+ N2 ;Ai ;((Bkkt)zz)n (,;) A} {q}) )
— _ — 1

K

The Effective Bias is the same as the standard case. K can be bounded by

1 o S gt . 36(q — c6)2N?
KSNi Z/\Z s—1—t)22) )\2+ Z /\Z 51—t)22)ii'w
- t=0 i =k*4+1  t=0
[ k" s—1 d s—1
1 36(q — cd)>N2\?
= m 922((B571 t u + Z 1 — C) ((Bsflft)gg)“‘
L =1 t=0 i=k*+1 t=0
r 126w? 90w? 9(1 — c)w? 36(q — c6)?>N2sAiw?
< - 7 7 3 3 7
— N2 < 0N +AZ 1—c+ Z (q—c&))\i+z (1—1¢)?
Li<k k<i<kt kt<i<k* i>k*
r [126 90 ) 9(1 — c) .
= [ B = Wl + o = Wl o+ D - il
36(q — c§)®’N

Ry }

(1-0¢)?
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where the first inequality holds due to Corollary K.7, and the second inequality holds due to Lemma
J.10. O

Proof of Lemma J.5. For My, we have

T
;
T

N—t—1 T
M, = (B=B)oByi1 [Z A’C]

2|
i
%

T

z
L
=
L
L

| A
|-
1
)
>

N—t-1
(E[V2® Vo] o Boyss [Z Ak]

PE ASSERE
2 (5 Hemeomia)[3x]

1 k=0

H
i
:
T

Rk

o~
Il

where the inequality holds because 3 — B = E[Vg ® {\72] The inner produce of M, and {%I g]

is thus bounded by

s 3])

2

1 N-1 N—-t—1
SR W mu2<2AﬂD
i=1 =1 1
k* N-—1 d N—-1
1 36( q — 6)2N2)\?
< Nz [9 Z((Bs+t 1)22)ii + Z — o2 Z((Bs+t71)22)ii
i=1 t= i=k* 41 t=1
E* s+N—1 d s+N—1
1 36(q — c0)2N2\2
< l9 Z (B)az)ii + Y (q(l _)0)2 Y ((Bt)QZ)ii‘|
=1 t= i=k*+1 t=0
r [126 90 w2 9(1 —¢) s
< | 5w = Wy + 1 - Wl o+ S e
36(q—05)2N2(3—|—N) 112
i (1—0¢)? o = wllez. |

where the second inequality holds due to Corollary K.7, the second inequality holds due to Corollary

K.7, the third inequality holds because Zivz_ll(( st—1)22)ii < ZS+N 1((Bt)22)“-, and the last
inequality holds due to Lemma J.10. O

K AUXILIARY LEMMAS

The following lemma summarizes properties of auxiliary parameters g and c in relation to model
parameters «, 3, and 9.

Lemma K.1. We have the following properties regarding ¢ and c:

(a) Wehave c =2a — 1,and 0 < ¢ < 1. Moreover, 8 < 1 —c¢ = 2af8 < 20.
(b) We have 0 < ¢ < (14 ¢)d. Thus, g — 0 < ¢(g — ¢9).

(c) We have
q—c6 y+d6 q—6 -0
l—¢c 27 1—¢ 2 °
Thus,
5_q_65§’y
1—c¢c

Proof. We first recall that ¢ = a(1 — 8) and ¢ = @d + (1 — «)~.
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(a)

(b)

()

Substituting 5 = (1 — )/« into the definition of ¢, we have

ca(110‘>2a1.
(67

Note that 8 € (0,1), so « = 1/(1 + ) € (1/2,1). Therefore, c = 2a — 1 € (0,1).

Moreover,
l—-c=1-a(l-p)=1-a+af>(1—a)f+aB =273,
where the equality holds because 3 < 1. We also have
1—c=2(1-a)=2a8<28,

where the inequality holds because o < 1.

we have
g—o0=ad+(1—-—a)y—90=(1—a)(y—49) >0,

where the inequality holds because v > ¢ and a € (0, 1). We also have

(K.1)

g—(14+c)d=ad+(1-a)y—2ad=(1—a)y—ad =a(fy—90) =« (J;—é) <0,

where the third equality holds because 1 — @ = «f, the fourth equality holds because

B = §/(¢k~), and the last inequality holds because ¢k > 1. We thus have
(q=96) —clg—cd) =1 —c)lg— (1+¢)d] <0.
We have
g—cd=ad+(1—a)y—(2a—-1) =(1—a)(y+9).
Combining (K.1) and (K.2) with the fact that 1 — ¢ = 2(1 — «), we have
qg—cd ~y+d§ q—§6 -6
l-¢ 2 1-¢ 2

Note that 6 < ~, so

Sq_caév-
1—c

0

Lemma K.2. Let x1, x5 be defined in (E.2) and (E.3). Then we have
(@ (1—2z1)(1 —x2) = (g — cH)A;.
(b) (c—z1)(c—x2) =clg— ).
© (I1+z1)(14+22)=2(1+¢)— (g+ cHN.
(d) (cd —qz1)(cd — qa) = c(qg — 0)(q — ¢d).
Proof. In the proof, we will use the properties x1 + x2 = 1 + ¢ — g\; and 129 = ¢(1 — o))
extensively, which follows from Veda’s Theorem.

(a) We have

(1—z1)(1—23)=1—(x1+a2) — 2122 =1 — (1 +Cc—qN;)) —c(1 —0X\;) = (¢ — cd) ;.
(b) We have

(c—z1)(c—22) = P —c(x1422) + 7179 =  —c(1+c—qg\) +c(1—30N;) = c(g—)\;.
(c) We have

(I+z)(14+ze) =14+ (z1+x2) + 1220 =14+ (L +c—g\;) + (1 —0N\)

=2(14c¢)— (g + o).

(d) We have

(cd — qx1)(cd — qaa) = 262 — cog(xy + x2) + GPrixs

=c20% — cdq(1 4+ ¢ — q\) + ¢ - c(1 — 6)\;)

=c(q—0)(q— cd)
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O

Lemma K.3. For a given PSD matrix M, we define the following sequence of matrices recursively:
Ry =0, and

Rt+1 =Bo Rt + M, t Z 0. (K3)
Then for all ¢ > 0, we have
t—1
R, = Z BF o M. (K.4)
k=0

Thus, R; is an increasing sequence:
Ry <R; < < R.. (K.5)

Proof. We prove (K.4) by induction. When ¢t = 0, (K.4) holds trivially. Suppose that (K.4) holds
for t. By the recursive formula K.3, we have

t—1 t t
Rt+1:BoRt+M:Bo<ZBkoM>+M: B*oM+M=> B'oM,
k=0 k=1 k=0

where the second equality holds due to the induction hypothesis. Thus, (K.4) holds for ¢ + 1.
By (K.4), note that

t t—1
Ry —Ry=) B oM-) B oM=8oM:=0,
k=0 k=0

where the inequality holds due to Lemma F.2(c). Therefore, R; < Ry4;. ]

Lemma K.4. Let {M,};>1 be a sequence of PSD matrices and s, IV be positive integers. Then

s+N—-1 [s+N—-1 s+N—-1
z:[zAWM+m+zzmmwﬂ
t=s k=t+1 k=t+1

T No1 [N—t—l

N—t—1 T
+ Z Z Ak] (Mg — BoMgyy 1) l Z Ak] .

t=1 k=0

][

k=0 k=0

Proof. Fort =s,s+1,...,s+ N — 2, we have

s+N—t—1 s+N—t—1 T s+N—t—2 s+N—-t—2 T
Z AJ Mt[ Z A’f] — Z AJ (AMtAT)[ Z Ak]
j=0 k=0 k=0

=0
s+N—t—1 s+N—t—1

= > AMAHT - > AIM(AHT
7,k=0 7,k=1
s+N—t—1 s+N—t—1

= > AM+M+ > (AT
j=1 k=1
s+N-—1 s+N—-1

= > AFMM M+ Y (AT
k=t+1 k=t+1

Take the sum over ¢, and we have

s+N—-1 [s+N-—1 s+N—1
>3 Ay ]
t=s k=t+1 k=t+1

s+N—-2 [s+N—t—1 s+N—t—1 T
=Man-1+ ) [ > A’“]Mt[ > A‘f]
k=0 k=0

t=s
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s+N—

>

t=s

2

[s+N—-t—2

Z A
L k=0

k] (AM;AT) l

s+N—t—2

T
k=0

T

N-1 7 N-1 s+N—1 [s+N—t—1 +N—t-1 T
] [
k=0 | k=0 t=s+1 k=0 k=0
s+N—1 [s+N—-t—1 s+N—-t—1 T
- > > A’“] (AMt_lAT)[ > Ak]
t=s+1 L k=0 k=0
N-1 7 N-1 T st N—1 [s+N—t—1 _ stN—t—1
:[ZA’c M, lZAk’ + Z [ Z Ak’] (M, —BoM,_; [ Z Ak]
k=0 | k=0 t=s+1 k=0
- N-1 k' N-1 . T N_1[N-t-1 . r N—t—1 ) T
= ZA M, ZA Jrz Z A" (Mgt —BoMgyy—1) Z A )
k=0 | k=0 t=1 | k=0 k=0

where the second equality holds due to change of index, the third equality holds due to the definition
of B, and the fourth equality holds also due to change of index. O

Lemma K.5. With A; defined in (E.1), let z; and =2 be the eigenvalues of A; defined in (E.2) and
(E.3). Then

For all i < k*, we have

S (ea) <

3

Forall kf < i< 75, we have

(& ll))-

Forall k < i < kT, we have

(& 1l)

For all i > kT, we have

-

Proof. Note that

E’\w

—1)/2

1

t—1

k=0

Zi_:AZ*"’ o] =z arna-an o] =
(A1 + (A2 — (A7),

{(AJ)M + (A2 — (A1
Combining Lemma E.3 with (K.6), we have

1

ab (K.6)

t—1
TS 1 , . A ,
(Z AP [qD = (AN + (A2 — (AT — (AT )2)
k=0 1 v
1 xlxé — zgx{ a:% — le xlxéJr :cgzjlﬂ x%ﬂ — :c{”
L P e RN T Y 16X
)\i[ To — T +( ).’172—371 To — T = ) To — T
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1 (1—6X\ —z)ad(1—ab) — (1= 6 — a0)ad (1 — 2t)

. . K.7
)\i To — X1 ( )
For i < k¥, note that 2120 = ¢(1 —0X;) and z2 < ¢ by Lemma E.2, so we have
1-— (5/\1 S X1 S X9 S C. (KS)
Thus, the upper bound of (K.7) is given by
S Al [5] 1 =GNt = Dri(1 - ab) + (6X @n — Daj(l —af)
=0 ¢ q L - )\1 To — I
J t t
L Lo — X7 t
= — |(6)N; -1 1-—
]
) 1—af 6l (1 —at) oad
< ZL (8 ~1 L1 —gt)| =222 L < 1 K.9
Y |:< ta )1—.1‘1+( xl):| 1—xq 71—3317( )

where the first inequality holds because dA; + 1 — 1 > 0 and z2 > x7, and the second inequality
holds due to Lemma K.12. Note that

1 1— 2o 1— 29

1l—zp (Q—z2)(1—21) (g—coN

cd—+/c(q—06)(q—cd
<1_ (qq )(q )_ 1 - o(q — 9) ) 9
- (g — o)\ g\ g—cd |~ 6N

(K.10)

where the second equality holds by Lemma K.2(a), the first inequality holds due to Lemma E.2, and
the second inequality holds because ¢(q¢ — §) < g — ¢d and ¢ > 6. Note that 1 < 2o < ¢d/q, S0
(K.9) can be further bounded by

t—1 it 5 5 j ) j
<;)Ai+ [q])l ST (@) < A—i(ca/q) :

where the second inequality holds due to (K.10).
The lower bound of (K.7) is given by

SAj+k 4] 1 — (N + 1 — D) (1 — ab) 4+ (6X; + x2 — D)ad (1 — ab)
- Ai To — X1

Y

1—a) —(0A+a1 — Dah 4 (6X\; + z — 1)a]
/\i To — X1 ’
where the first inequality holds because 6\; + 1 — 1 > 0 and z; < xs. If j > 1, then

(K.11)

_<5>\i +x1 — 1)$% + (5>\z + X2 — 1)$]1
T2 — T1
o - x{_l

= —(5)\L +x — 1)372 2

1—6M)ad !
p— + (1= dX\)zq

(cd/q)’ "
cd/q— x4
- _.13131‘2 — (1 — 5)\2)56‘2 j—1
- 65/Q7131 (06/Q)

C— T2
( 5/\»05/(]—3:1

where the inequality holds due to Lemma K.12, and the last equality holds because z122 = ¢(1 —
dA;). Note that

Z —(5)\2 +x1 — 1)1’2 .

(cd/q)’~ 1, (K.12)

Ly Cm T2 o (e—mo)(ed/g—xa)  q*(1—0Ni)(c— w2)(cd/q — w2)
(=0 7= = U= ) = o Ja — 22) clg—0)(q — c0)
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= a0\ ‘ y
c(q —9)(q — cd)

7 ,(1_5,(m+my>'< e c(qé)(ch)>
q—cd) ¢

q
_ (6= elg=0)(g—c0)? [ [ela—0)
e + —_—= @7
cq? q—co
252
<0 9 <9? (K.13)
cq q

where the second equality holds due to Lemma K.2(d), the first inequality holds due to (E.6) and

Lemma E.2, the second inequality holds because cd—+/c(q — §)(q — ¢d) < ¢d and c(g—9) < g—cd,
and the last inequality holds because § < ¢. Therefore, substituting (K.12) and (K.13) into (K.11),

we have o
g 1 — gt ) ) )
<ZAZ+'“ BD > =2 (b /q) 2~ (eb]a),
k=0 1 g 7

where the second inequality holds because 1 — :cé < 1.Ifj =0, then

171’3 7(5)\1+$171)+(§)\2+’I271) 171’3
. - >0,
i To — T Ao

so the upper bound holds trivially.
For k* < i < k', the upper bound of (K.7) is given by

S:IA?*k {5] _ 1 -0oN —a)ad(1 —ab) — (1— 6\ — zp)af (1 — at)
k=0 ' 4 1 Ai To — T
_ 1| —ab) + {01 - ab)
Y 2
n (1 Con 1 +x2> . 21— ab) —ad (1 —xt)
2 To — X1
1| 2)(1—ab) + 2](1 — at) N 1—c— (26— @)\

2 2

%

[t (e r(-a) ah-at Ao

To — I 2 To — I 2

J ot J ot o _ )
< |z3llt — @3] + 211 :61|+\1 c— (26 — g\

- 20 2\
v Mottt ook k] g,
Ty — X1 2 To — X1 2 ’ ’

where the second equality holds because z; + zo = 1 + ¢ — ¢)\;, and the inequality holds due to
triangle inequality. Note that |1 — zf| = |1 — 24| < 1 + |z4| < 2 because |x}| < 1. We can thus
bound (K.14) as

(Sl

J J 1—c— (285 — )
|+ Jd] | [L—e— (20 q)AZ,[Q

23l + |4
2

J J t t
Ty — I Lo — T3

IN

>\z’ 2)\7 To — I To — I

IN

R [241e(1 = EA)]TD/2 4 (1 — gx)] T+ D/

2
¥ 2),
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1—c— (26— q)\ ,
_j e @O o gy gje-vre

+ {f + ‘1 — C—;ié - Q))\z| 't[C(l o 5}\1)](161)/2} . [C(]. o 5/\1_)]3’/2, (KlS)

where the second inequality holds due to Lemma K.13. For k¥ < i < ?c\, we have
1—c— (2(5 — Q))\l S 6>\z — (2(5 — Q))\l == (q - 6)>\7, S (S)\i,

where the first inequality holds because 1 — ¢ < §\;, and the second inequality holds because
g < (1+¢)d < 26. We also have

where the first inequality holds because 1 — ¢ > 0, and the second inequality holds because ¢ > 9.
Therefore,

|1 —c— (20 — q)\i| < 6. (K.16)
(K.15) can thus be bounded by
t—1
) P 2 6 2 i
‘ <Z AJTE BD < jle(1 = o))V 4 (x +5 M) e(1 = 6X)]77?
k=0 1 ? Q

= 5jle(1 — NI 4 o1 — NP,

3

where the inequality holds due to (K.16) and Lemma K.14. For I3 < i < kT, we have
(1-c)(g—9)
)

where the first inequality holds because \; < (1 — ¢)/d, and the second inequality holds because
q > 9. We also have

l—c—20—@) i >1—c—(1—-¢)(20—¢q)/6 = >0,

l—c—(20—gNi<1—c¢,
where the inequality holds because 20 — g > 20 — (1 + ¢)d = (1 — ¢)d > 0. Therefore,
l1—c—(2—N|<1-c (K.17)
(K.15) can thus be bounded as

t—1
itk |0 1—c . i 2 1l-c¢c 2 ,
(ZA%*‘“ [qD < 8t (2 I )t - o
k=0 1 v g g
1-— . )
= e = BT el - o),

where the inequality holds due to (K.17) and Lemma K.14.
For i > kT, note that

1—5&—3:22(1—5&)—(1—q_65Ai) _179, 5,

1—c¢c 1=t T

where the first inequality holds due to Lemma E.2, and the second inequality holds because ¢ > 9.
The upper bound of (K.7) is thus given by

(Z AL H) _ L (1= 0N —a)wh(1 —ah) — (1= 0N — wo)r](1 — o)
7 q = )\i
k=0 1

XTo — I
17 t J o J .
- TIQ [(1 — 0\ fxg)z — 2 + (K.18)
where the inequality holds due to z1 < z9. If j > 1,
R , [ e bl .
1— 6N\ —a9)2—"L 4 ad =(1—0N — 2L (=)t
( xz)xQ o, T ( T2)T1 pra— +( )3
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< <1 _ 4z 05A1->j1 [M_”)xl +(1- M—)}

—cd
1-— ql—c )\z — X1

_ i=1 (1=0X) (1= 4=20) —c(1—6\)
:<1_q CéAi> _ ( I )

—cd
1-— qlfc )\z — T

:(1_q_06)\,)j L —0A; 1_(11:63)‘%’_0
‘)1

—cd ’ —cd 4
1-c _qlfc)\i 1-4 A — T

1—c

where the inequality holds due to Lemma K.12. Note that
1 -6 ——="

1—6N < (Va—cd++/c(q—9))?

1— q—cts)\' - 1— g—cé . (1—c)?
e 1= (Va=edty/ela=0))?

A+ elg=ch)/a=0)* _  (a+1> 4
1+ /elg—cd)/(g=0)2—(1—¢) ~ (1+1)*=(1—-c) 3+c

where the first inequality holds due to (E.6), and the second inequality holds because ¢ — 6 <
¢(q — ¢0). We also note that

(K.19)

1- LN —¢ 1-1L) —¢
1- qfff Ai—@1 1 a=edy _ (temad)—/(Fe—adi)?—de(1-0))
1—c 7' 2

s 1—c— g—cd (1—c)?
<9. 1—c—=2N <9. G (Va—cd++/c(q—0))?
T 1 e QHgg=2edy =7 o (A4c)g=2¢h (1-c)?

tre Ime (Va=esty/e(g—9))?

-0

—24 céq_ - 5) <24e (K.20)

where the first inequality holds because /(1 + ¢ — gA;)2 — 4c(1 — 6);) > 0, the second inequality
holds due to (E.6), and the third inequality holds because ¢ — 0 < ¢(q — ¢d). Combining (K.19) and
(K.20), we have

1—6N  1—99)\ —¢c 42
7&51 : = cdere) g (K.21)
1—2==2);, 1-—L=)\,—n; 3+c

l1—c 1—c

where the second inequality holds because ¢ < 1. where the second inequality holds because

To>1— 2qffc‘s A; due to Lemma E.2. Combining (K.18) with (K.21), we have

t—1 1
|6 3 q—co J
E AJ-‘rk <2 (1_ ) 1— t

1

_ J _ t
Si 1_(] 05)\Z 1-— 1_2q Cd)\z )
i 1-c 1-c

where the second inequality holds due to Lemma E.2. If j = 0, then by (K.18)

t—1 ) ot _ t
S Adtk m i N (1—2" C%) ,
k=0 q )\1 )\i 1—c¢

1

where the second inequality holds due to Lemma E.2. Thus, the upper bound also holds for j = 0.
The lower bound of (K.7) is given by

<ZAg+k m) 1 [(1 I (U e (Lt _xé)l
k=0 1

0y To — X1
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1 (1 —ab) —ah(1—at)
>)\Z[1—5)\ ) ;2_; Yo ad (1 — ab)
J t t
) Lg — 27 t
== |—(1=-6\— 1-—
)\i |: xz)lEQ — X1 * ( x2):|
P 1—at
> 21 (1—6)\; — 2101 -4t
_Ai[ >1_x2+< )
5:5 (1 - xz)
1-— T2
where the first inequality holds because ;1 < x5, the second inequality holds due to Lemma K.12,
and the third inequality holds because 0 < z2 < 1. O

The following corollaries follow from Lemma K.5.
Corollary K.6. With A; defined in (E.1), assuming that N (1 — ¢) > 2, we have

d s—1 /N—-1 2
; N2 — ¢d)
Z/\fz (Z AT [ﬂ) < 18Nk* + M Z A2,
i=1  j=0 \ k=0 q 1 — ¢ i>ke
Proof. By Lemma K.5, we have
(a) Fori < kF,
s—1 /N-1 2 s—1 s—1 )
4k |6 4 2 4 4 1=
Z(Z“” [q]) S PBLLES DI
7=0 \ k=0 1  j=0 v j=0 z
4
< = c)/\f (K.22)
2N
S F7

where the second inequality holds because (cd/q)? < ¢? < ¢, the third inequality holds
because 1 — ¢® < 1, and the last inequality holds due to the assumption that N (1 —¢) > 2.

(b) For k* < i <k,

%[0(1 — X2+ 8e(1 — ox;) U172
J/2—1

< )%[ (1 — 0\ )]1/2 + 2(5[0(1 — 6/\i)]j/4 ; [C(l . 6}\0]1&/2

3 _ j/2 [e(1 — 6)\i)]j/4 —[e(1 - 5)\i)]j/2

= 5 [e( = 8X)F7 +26 s

— A = Je(1 — ij/2

< %[ (1— 672 4 g5l = 9A)] 6Ai/[2(1 oN)]
- 5&)]3/4; =B < %[0(1 — )P, (K.23)

where the first inequality holds because [c(1 — d\;)]7/4~1/2 < [e(1 — 6);)]H/2 for all t <
j/2 — 1, the second inequality holds because 1 — y/c(1 — dX;) > 1 — /1 —dX; > 0);/2,
and the last inequality holds because [¢(1 — d);)]7/? > 0. We thus have

si <Z_: AT { D2 < S (i[c(l — SN2 le(1 — 5,\1,)]01)/2)2

Jj= k=0 7=0

Y A 1= /eI =6N)

s

- _ — 5N )18/2
<105 g = 19 125
7=0
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_ 16 1 _ 16 13
TN 11— Je(l=6N) A (1—¢)/2 (1o
(K.24)
16N
S AZ 9

where the first inequality holds due to Lemma K.5, the second inequality holds due to
(K.23), the third inequality holds because 1 — [¢(1 — 6);)]*/? < 1, the fourth inequality

holds because 1 —
to the assumption that N (1 — ¢) > 2.

c(1—6X\;) > 1—+/c> (1-c)/2, and the last inequality holds due

(c) Fork <i <kf,
el = AP/ 4+ 2 jle(1 = AT
. LR
< %[ (1—oX))% + %[CQ — M)A ; [e(1 = 6X)]2
3 vz 20— o) e = o )P — fe(1 - 0N/
3 i2 20 =¢) [e(X = 6N/ —[e(1 — 6N;))/
S)TL[ (1= + X (1-¢)/2
4

o(1— 627/ —
g

[e(1 — o\))P/?

< —[e(1 — o))/,

4

» (K.25)

where the first inequality holds because [c(1 — d;)]7/4~1/2 < [e(1 — 6A;)]*/? for all

t < j/2—1, the second inequality holds because 1 —

c(l=0))>1—ve>(1-0)/2,

and the last inequality holds because [c(1 — §);)]’/2 > 0. Due to the same deduction as

that in part (b), we have

2

S

-1 _
S (s fl]) <o 2
J=0 1 (1=
16N
A2
(d) For kt < i < k*,
s—1 /N—1 2
3 (i)
J=0 \k=0 I 1
— N2 2j
q—cé q—co
< _ ) _ .
Sl (D) ()
25-1 j
9 q—cd N g—cd \’
< = _ ) _ .
() TS (e

J

9(1 —¢) g—co \V
R [1‘ (1-25=0)
9(1 —¢)
= (g— )N
9(1—-¢c) 2N(qg—cd) 18N
S q—c)X2 1—c A2
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2j J
where the second inequality holds because (1 — ql__cc‘s )\i) < (1 — ql__cc‘s /\i) , the third

N s
inequality holds because 1 — (1 — 2qffc‘s )\i) <land1l — (1 — qlicc‘s )\i) < 1, and the

last inequality holds because \; > m due to definition of k*.
(e) Fori > k*,

s—1 /N— 2 s N2 2j
9 q—cod q—co J
N DIP-ta <> S j1-(1-2 : 1- ;
( {]> ‘E:A%[ (1-2=0) ] (1-=2)
J=0 1 j=0
9 2 36sN2(q — cd)?
s (VER) -
i =0

Jj=

N
where the second inequality holds because 1 — (1 — 2qf_cc‘s )\i) < 2N qf_cf A; and

(1fq—c5x)2j<1
1—c 7' -

Concluding all the above, we have

d

s (S arf)])

1

Sy xS s g N e )

. i z 1- C)
i<kt ki<i<kf kt<i<k* i>k*
36sN2(q — cd)
= 9Nk} + 16N (kT — k) + 18N (k* — k) + S(—q; SN
(1-¢) >k
N2%(q -
< 18NK* + —365 q—cf) 3o
P>k
where the second inequality holds because all coefficients 2, 16, 18 are bounded by 18. O

Corollary K.7. With A; defined in (E.1), we have for all j > 0,

d N-1 2
ik |o 36(q — cd)?
A2 AJTE <ok 4+ N N2
e (S ar[]]) <o e >
i=1 k=0 1
Proof. By Lemma K.5, we have
(a) Fori < k*,

k=0

N—1 5 2 4 4
ik 0
(E Al M) < 23/ < 5.

where the second inequality holds because ¢d/q < 1.
(b) Forkt <i <k,

o1 = AP+ 8jle(1 — 52612
3 i/2 - t/2
< /\7[0(1 — 5x)/ +6'§[C(1_5)\i>] /
_ic _S)\.\]9/2 . 1 —[e(1—ox))/?
B /\i[ A=)+ == c(1—oN)
3 i/2 1 —[e(1 —6X)]7/?
SE[C(l—&\i)} 2+5 22
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2

+ [e(1 = 0A;))7/?

As

where the first inequality holds because [c(1 —dA;)]T—1)/2
the second inequality holds because 1 —

< (K.27)

3
A
< [e(1—=6X)]/2 fort < j—1,
c(l—=90XN;) > 1—+/1—0X\ > d\;/2, and the

last inequality holds because [c¢(1 — 6);)]?/? < 1. Therefore,

3
g

(S a ) <

[e(1 — o)/ + 8jle(1 — 5)\,;)](j1)/2>2

9
Sﬁv

where the first inequality hold due to Lemma K.5, and the second inequality holds due to

(K.27).
(c) Fork < i < kt,
/\i[ (1—oN))% + . _,C Jle(1 = ax;)|U=H72
3 oo 1—c 2
< )\7[ c(1 = X)) + v > le(t = ox))?
) 7 =0
3 L—c 1—[c(l—6))[/?
Ze(1 — X)1P/2 + .
)\z [ ( )] )\z 1— C(l — 5)\7,)
3 : 1—c 1—[e(1—6N))7?
RENIEE /2 .
< Az[ o1 =X " + Y 1=0/2
_ /2
_ 2+ [c (1)\- ) < %7 (K.28)

where the first inequality holds because [c(1 —0A;)]U~1/2 < [¢(1—6);)]/? fort < j—1,

the second inequality holds because 1

c(1—=06))>1—+/c>(1—c)/2, and the last

inequality holds because [c(1 — §);))7/? < 1. Therefore

3

<

g

<

e mf ;

1

e(1 = NP2 +

9
<77

2
j[c(l—axi)}“”/z) <12

%

where the first inequality holds due to Lemma K.5, and the second inequality holds due to

(K.28).
(d) Fori > k*, we have

(Zx ),

IN

S)@

<min{

where the second inequality holds because 1 —
<land1l-(1-—

because 1 — (1 — )V

Combining all the above, we have

(i)

1

<>z —+ >z —+ >z )\2 + A2

kt<i<k* H

i<kt l ki<i<kt Z

9 [1_

=,
Al

q—co
1—c¢

”

N
q—cd
129720,
(=) |
9 36N2%(q—cd)?

(I-0)? ’
cd

q1:C Ai < 1, and the last inequality holds
r)N <rN forallr € (0,1).

36N2(q — cb)?

_ 2
i>k* 1 C)
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N2(q — ¢b)?

— 4k (T — BF) 4+ 9k — k) 4 20 1q NN
—C

i>k*

N
< g 4 20— O Z A
i>k*
where the first inequality holds because the bound % is applied for kT < i < k*, while the upper

bound % is applied for ¢ > k*, and the second inequality holds because coefficient 4,9

can be bounded by 9. O

Lemma K.8. With A; defined as in (E.1), let 21 and x5 be the eigenvalues of A; defined in (E.2)
and (E.3). Then

e Foralli < k¥, we have

/0y < (Z Al H) < S (/o)

k=0

e Forall kt < i< E, we have

t—1
) . 4
(Z AT [ﬂ) < 2jle(1 — oX)P/2 + ﬁ[ (1 —6x)P/?
k=0 1 :
e Forall k < i < kT, we have
10

< 2je(1 — 0N/ + ——[e(1 — 6]/,

(&1}

e Forall i > kT, we have

t—1 ‘ .
; 3(1—c¢) q—cd qg—ci Y\’
< gk |1 < == 21— (1- ; — i .
() < ]
k=0 1
Proof. Note that
t—1
itk (1) o ad _oadtty g a1 L] ad_ Adtty . L l—c+(g—0)N
> A |- arnae s [l = ar s [T

_ 1 [ (1—c+(g—0)X)(AD11 — (A1) + (1 — ) (AD)12 — (A)10) }
(g—co)Xi [(1=c+ (g —)A)(AD)ar — (AT)21) + (1 — ) ((Ad)22 — (AT)1a).
(K.29)

1

Combine (K.29) with Lemma E.3, and we have

(St ) = i [0 o-omy 2=t e

o — X
k=0 2 1

o=l

X9 — I

L1 0= =8 = (1= e+ (g HA)eiad(l — ab)
(g —co)N; T1 — T

(A= (1=6N) = (1 —c+ (= 8)A)aala] (1 — ab) } , (K.30)

To — X1
For i < k¥, note that
(1 — C)(l — 5)\2) — (1 —c+ (C] — 6)/\1)331 = —(1 — C)(.Z‘l + o\ — 1) — (q - (5))\1'331 <0
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due to (K.8) and ¢ — § > 0. The upper bound of (K.30) is thus given by
(Z ATt H) S { (1= )(1 = 6X) = (1= c+ (g = §)A )] (1 — xh)

1

P ) ~ (g— o)\ 1 — T2
[ == 8N) — (1— e+ (g — )Ml (1 — )
To — X1
= (q—cé))\z{(l —ct(g—3)N)(1 —xy)
L= et (= O - (1= - 5] 220
< et a-amn -
+[(1=c+(@=HN)x1— (1 —0c)(1—=0N)]- 1 :zi}
ad(l-al) (g-cdh _ al(l—at)
(g — o)\ 1—a 1—a
2 i
< S (eS/a))

where the first inequality holds because x5 > x1, the second inequality holds due to Lemma K.12,
and the last inequality holds because 1 < x2 < ¢d/q, 1 — xﬁ < 1 and (K.10). The lower bound of
(K.30) is given by

(ti AT m> > 1 {—[(1 —ct(g= D)Xz — (1= )1 — 6X)]af(1 — xb)
' —
k=0 1

q— o)\ T — T2

(et (g— M) — (1 — )1 — SN (1 - wé)}

To — X1
1—a) j—1
=—"2 {(1—¢c)(1—=066)\)2’
oY {( o1~ A)a]
AR
— (1 =c+(g—)A)xr — (1 —e)(1 — d\)]ag - 21— (K.31)
Xro — I
where the inequality holds because x1 < xo. If 7 > 1, then
1 P
(1—e)(1 =X\l = [(1—c+ (g —)N)zy — (1 —c)(1 — 6))]wn - =2 !
ro — I
(I—=0)(1 =Nz — (L —c+ (g —0)A\)x1229 L
> . J
> . (cd/q)
B (1 — C)(l — (5)\1‘)1'2 — (1 —c+ (q — 5)/\1) . C(l — (5)\1) -1
- C5/q—x1 (Cd/q)
(1 —c)(c—m3) +c(g— )\ -
= —(1—=06\ . 7 K.32
( 5)‘1) cé/q—:cl (05/Q) 9 ( 3 )

where the ineugality holds because (1 — ¢)(1 — 6A;)z " > 0 and due to Lemma K.12. Note that
(I—c)(c—x2) +clg— )N\
cd/q— a1

(1—c) 71+c+q>\i7\/(1+;7in)274¢(175>\1‘) +elg— )N
1+c—qgX;— 14+c—qX;)2—4c(1—=6X;
8/q — axi—/( . qXq) ( )

(1—0\)

=(1=0N)
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(1 — )= 4 (g — 5)A
1+c—qgX;
cd/q— fq

[(1+c)g —2e0]\; — (1 —c)?
N — [(1 4+ ¢)g — 2¢6)

< (1-6X\) L= (1= 6\)

5 V=D + \/ela =) (14 €)g — 28] LTV (g g2

<q|l-

7 (Vg —cd++/clg—96))2—[(1+c)g— 2]
(8 = /elg—8)(g— 8)* (Vg — 8 + /e(g — 9))?
cq®
. (ch)? - 4(3q —cd) _ Aelg - 05)7 (K.33)
cq q

where the first inequality holds because /(1 + ¢ — gA;)2 — 4c(1 — 6);) > 0, the second inequality
holds due to (E.6), the third inequality holds because cd — \/c(q — §)(q¢ — ¢d) < ¢d and ¢(q — J) <
q — cd, and the last inequality holds because § < g. Combining (K.33) with (K.32) and (K.31), we
have

t—1 j 1 1— 2t 4e(q — ) i1 4 ;
(%Ai% H) e P T C L R WL I

where the second inequality holds because 1 — z§ < 1.
For k¥ < i < kf,ie., A; has complex eigenvalues =1, xo, we have

(S ) |-

(1—¢)(1—6X\)ad 1 (1 —ab)

j—1 _ _j—1 1— 2t) — J=l/ .t _ .t
=1 =0A) — (L—c+ (= Dag] -y - T2 =21 N Z@p) man (@5 = )
To — X1
1
< — (1 —=¢)(1—=6N) — (1 — — ‘ .
= (qiag)/\ﬁ( C)( 6)‘l> ( C+(q 6)/\1)372| |5C1|
vy —af ¢ g1, |7h —af (L—c)d—0N) | j ¢
[ To — 71 '|1—CE2|+|{L‘1 | Ty — 21 (q_05))\i '|1’2 "|1—$2|,

(K.34)
where the inequality holds due to triangle inequality. Note that
[(1—=¢c)(1—=6N)— (1 —cH (g—)Ai)xza|
= V(1T =) X =0N) — (1 —c+ (g —)M)za][(1 — ) (1 — X)) — (1 — ¢+ (g — )N\ 1],
where
[(1=c)(1 = 6X) = (1 =+ (g = )A)z2][(1 = ¢)(1 = ;) — (1 — ¢ + (¢ — §)Ai)z1]
=(1—-0c)*(1—6XN)*— (1 —c)(1 = 6AN) (L —c+ (g — O)A\) (21 + 22)
+ (1 —c+(qg—)N)? - x129
=(1=c) 1 =N)* =1 =c)1 =X)L —c+ (g—HN)(1 +c—q\i)
+ (1 —=c+(g—0)N)?* c(1—\)
= (1=6X)(g —0)(q — co)A;
< (1 —0M)(q—c6)? )2,

where the inequality holds because ¢ — 6 < ¢(gq — ¢d). Therefore,

[(T=c)(1 =0X) — (1= c+(g=)Ai)za| < (g — cd)Aiv/e(l = 6Ni). (K.35)
(K.34) can thus be further bounded by

(1),
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Jj—1 Jj—1 t t

T —x |2y =2 2(1=c)(1 =6N) i1
< 1— 6}\2 . .12 2 1 j—1, 2 1 L aed
< VT3 | [ (2| ¢ 2 e

S{Wﬂ5MWm+(i}d§4/1;ni+ﬂjD}.kuéMWm7 (K.36)

where the first inequality holds because |1 — 2| < 2 and due to (K.33), and the second inequality
holds due to Lemma E.2 and Lemma K.13.
For k¥ < i < k, we can further bound (K.36) as

t—1 ik [1 2¢/c(1—=90N\;) 2(1—c¢) 1—6\; ’ ;

< [ 2 + 2 -1-1-23} [e(1 —6X))7/?

1

o 0N
= 2][0(1 — 6>\i)]]/2 + K[C(l - 6}\1')]‘7/2,

2

where the first inequality holds due to Lemma K.14, and the second inequality holds because
Ve(l=60X0)<1,(1-¢)/(g—cd) <1/6,1—6)\; <candj—1<j.

For k < i < k', note that

1—c¢ 1_5>\z
(q—ch)N V¢

l—c  (Vg—ci+ c(q—é))Q_\/l_ 5(1 —c)?
(Vg —cd ++/c(g —0))?

= Vg - ) -0
(VT= + /a=0)(T=3 + /elg— D))
Vel = c)(g— )
(1+Va= 2/l — )
Vel = o)(g — )
, (K.37)

<
—1—-c

where the first inequality holds due to (E.5), the second inequality holds because ¢ — 6 < ¢(q — ¢d),
and the third inequality holds because ¢ < 1. Therefore, (K.36) can be further bounded by

t—1 p 1 2¢/c(1—0N\;) 2(1—¢) 1— 06X ‘ o
‘(;;Aﬁk[lbl S[ 1—c +(q05)Aiﬁ+2(y—1) le(1 — 6X;))/

2 8 ,
< —— 25| [e(1 — 6X;)]7/?
_[1C+1C+(ﬂk( o))

= 2j[e(1 — M) + el - AP,

where the first inequality holds due to Lemma K.12, and the second inequality holds because
e(l=6X;) <1,j—1 < j and due to (K.37).
For j = 0andt > 1, we have

b

1

_ 1 [(1—¢)(L = Ni) — (1 —c+ (¢ — H)N)a](1 — zh)
(g—co)\; To — T
(1 =)L =dXN) = (1 —c+ (g = )N)wa] (1 — z7)

T2 — T1
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! -1
=G an et @) - - -z
~ (1= (1= 63) = (1= e+ (g = oo - 2—T1—
! t—1
= (=N [(1 =)+ (@= A+ (1 —c)(1 = N[z |
+](1 =) A =6XN)— (1 —c+(qg—0)\)x1| - |w2] - % ]
1—c q—9 (176)(175)\1')6 oy =1)/2
= (g — o)A i qg—cé + (g —cd)N; le(1 = d)]

Fe(l = 6X;) - (t—1)[e(1 — 5A;)]2/2, (K.38)

where the first inequality holds due to triangle inequality, and the second inequality holds due to
Lemma K.13. When k¥ < i < k, (K.38) can be further bounded by

(1),

1—c g—0 (1—=c)(1—=06N)  c(1—=68N)

= (gq—cd)N;  q—cd (g — o)\ OA;
< i + 1+ ¥ + L
(g o)\ (g—cohNi O\

1 1 1 1 4

< -
Son Ton Ton Ton T o

where the first inequality holds due to Lemma K.14, the second inequality holds because (¢ —
cd)/(L—¢) > 6,1 —06)\ < 1landc < 1, and the last inequality holds because 4= > § and

l1—c
dX\; < 1. When k < i < kT, (K.38) can be further bounded by

(1),

< 1-c¢c g—0 (1—=0e)(1=06XN) c(1—=6N\)
“(g—cd)N; g—cb (g — o)\ 1-c¢
< 1-c L1 1-c " 1

= (g — o)\ (g—coh)Ni 1—c

<2(1—c) (Vg —cd++/c(qg—9))? 1 1

: - -

~ (g—cd) (1—-1¢)? 1—¢c 1-c¢
2
2
_ 14+ c(qg—9) 2
l1—c q—co 1-c
2 2 10
< (14+1)*+ — =
“1l-c¢ (1+1) +1fc 1-¢’

where the first inequality holds due to Lemma K.12, the second inequality holds because ¢ — § <
q—cd, 1 — 9\ < 1andc < 1, the third inequality holds due to (E.5), and the last inequality holds
because ¢(q — &) < g — ¢d. Therefore, the upper bounds hold for j = 0.

For i > kT, note that

(I—e)(1=06XN)— (1 —cH+(g—9)\)x2
> (1—0)(1—5)\2‘) — (1 —c—l—(q—é))\i) (1 — ql_cj)\l)
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- WA? >0, (K.39)

where the first inequality holds due to Lemma E.2, and the second inequality holds because g — cé >
q — 0 > 0. We thus have

o Ltk |1 1 [(1—¢)(1 = 6X\) — (1 — e+ (g — §)A)a|ah (1 — ab)
A’ 1 <

2 A =

k=0 1

q— o)\ T — T

T2 — T1

(=) = 0X) = (1= e+ (g — O)M)an]a](1 — f) }

- @1__&%2)\1'{(1 — o) (1 —6n)z)

Nl — 60 — (1 — et (0 — BN M}
+[1=0c)1—=0X)— (1 —c+ (g—)N)xa]zy - , (K.40)
To — X1

where the inequality holds due to (K.39) and 1 < zo. If j > 1, (K.40) is further bounded by

(L =) (L= 0N)ah " +[(1—e)(1 = 6Xi) — (1 —c+ (g — H)Ni)wz]a: %

1-c¢ l—qlicf/\i—l‘l
—es \'7!

()
1-c

. l(l — C)(l - 5/\1) + (

< (1 Ca- Cé)\j)j_l [(1 (1 — a4 LZAA=0X) = (=t (=) .m]

_gq—cd
1 1—c

1—e)(1—6X\)z1 — (1 —c+ (g—0)A) - e(1 — 5&)]

Ai — T1

— J Yy )2 — — ,
_ (1 3 q1 66)\1) - 1—6X\i (1-¢)—[(1+c)g 206])\1’ (KA1
—c

—cd —cd
a=c /\1 l_ql_cc /\i_l‘l

1—c
where the inequality holds due to Lemma K.12 and Lemma E.2. We already have
1—6N 4
<
1-94); ~ 3+c

by (K.19). We also have

(1—0)?—[(14c)g—2c8)N; (1—0¢)? = [(1 4 c)g — 2c8]|\;
1— 9=y, — o s (1+c—ghi)—/(1c—qrs)2—4c(1—0X;)
T—¢ xI1 1— ql_c /\z _ q \/ - q
—o(l—0) (1—¢)? = [(14¢)g — 28]\
(1—¢)2 = [(14c)g—2c0)\; + (1 —¢)/(1+c—gA\;)2 —4e(1 —6)\;)
<2(1—v¢),

where the inequality holds because (1 — ¢)/(1 + ¢ — ¢\;)2 — 4c(1 — §);) > 0. We thus have

1—0N .(1—0)2—[(1+c)q—206])\i< 4

1-— qlicf)\i 1-— qliccé)\i — X o 3+C

2(1—c) < 2(1 —¢) <3(1—¢), (K42)

where the second inequality holds because ¢ > 0, and the last inequality holds because 8/3 < 3.
Combining (K.42) with (K.40) and (K.41), we have

(Sar[]) = 5 (=) 0

k=0
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<l () [ (e

where the second inequality holds due to Lemma E.2. For 5 = 0, we have
0

(1)1 —03) (1= g~ M) 2 4 (1t g— et
(1-c)?

(Vg —cd+ /c(g—90))?

(- lm 9+ (a= ) +2yelg = 0)(g — )

(g —0) + (¢ — cd) +2v/c(g — 6)(g — cd)

(g=0)+(g—9)/c+2(¢—9)

clg—06)+(q—90)/c+2(q—9)

=(1-¢) [llJrc + {a 30)2} <3(1-¢),

where the first inequality holds due to (E.6), the second inequality holds because g —cd > (¢—4)/c,

and the last inequality holds because ¢ > 0. Therefore, the upper bound also holds for j = 0.
The lower bound of (K.30) is given by

(ti ATtk H) o 1 { [(1=¢)(1—6N) — (1 —c+ (g — 8)A)a]ad(1 — xb)
' — (
k=0 1

q—co)\; T1 — T

(1= o)1= 0N) = (1 —c+ (g — 6wl (1 - xi)}

=l—-c+(q@g—H)N<1l—c+(g—9)-

<(1-¢

T2 — X1

J
T2 t
= ——<(1- —0)A)(1—
e {a-era-omn -
t ot
—[(1=c)(1=6N)—(1—c+ (g —98)\;)z2] i B }
Xro — I
S o (1—c+(g—8)A)(1 —ab)
— —c -1 —=
" (g — o)\ 1 2
1—at
- A= 0) - (= ck lg = DNl 2 |
1-— To
_ai-ab)
1-— ) -
where the first inequality holds due to (K.39) and 1 < x2, the second inequality holds due to
Lemma K.12, and the third inequality holds because 0 < x5 < 1. O

The following corollary follows from Lemma K.8.
Corollary K.9. With A; defined in (E.1), we have

S (Sac i)

1
16 s S S *
< 52 (e0/a lIwo = wl[f 1+ 857 (1— 6H) " (wo — W)y,

32 . 200
+ = - ¢[[(T - 6H) /2(w -w )IIH-1~ a-o ¢ II(

52
-5 \°
(I_ql—cH) (wg —w")

2

1 6H)"(wo — w) &,

2 2

9(1-¢)
(q—co)?

— 5. \°
(I - ql_cCH> (wo —w™)

—1
HkT k*

+ 36N?

Hyx o
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Proof. By Lemma K.8, we have

(a) Fori < k*, we have
2

N-1
s+k 1 16 2s
(ZAi [1 < 5oy (e0/a)™.
k=0 1 4
(b) Forkt <i< 74\, we have
2

(ZVZ AFtE H) < (2sle1 - 001 4 et - wr”)g

k=0

S 32 S
< 852[6(1 — o))+ 522 [e(1 —dN)]°,

where the inequality holds due to Cauchy-Schwarz inequality.
(c) Fork < i < k', we have

(JVZI At ED? < (23[0(1 o)+ 117_06[6(1 —5&)]5/2)2

k=0
200
(1-¢)?
where the inequality holds due to Cauchy-Schwarz inequality.
(d) Fori > kt, we have

S 2 § 2 2s
st |1 <M .4 —c RECN
<kZ=0AZ [1}>1 (g - c0)?A R c)\l L=

. 9(1—c¢) 9 g—cs \*
< - 7 — .
mln{( 6)2A2’36N}(1 1_0)\1 ,

where the second inequality holds because 1 — (1 — 7)Y < land 1 —(1—7)" < rN hold
forall r € (0,1).

< 8s[c(1 — 6X\)]° + [e(1 = 0N:)]%,

Concluding all the above, we have

3 (zwﬂf

1

<)} 62)\2 (€/q)* + > Aw} ( [e(1 — 6N + 5312 [c(léA,;)]S)

i<ki ki<z§k

+ 3 A ( [e(1 = 0X)]° + 200 [0(1—5&)?)

1—c¢)2
k<i<kt ( &
—c)? —cd 9 g—cd \*
Aw? - 1- i i N i
+ Z Wi q—c&) < 1-c > Z wi 36 < l-c
k,‘*<z<k* i>k*
-5 2 (e8/0)* [wo =Wy 857 (L= 0H) 2 (wo — W)l
32 s 200 e s X
+ 52 ¢l - dH) /2 (wo — )HH—l a—co2 (T — 6H)*/2(wo — W) |1,
9(1 —¢) 1 ¢ C5H (wo — w*)
@—ep [\' " T=¢ -
kTik*
-5 .\’ 2
+ 36N? (1 - qH) (wo — w*) ,
1—c¢ H o
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where the first inuequality holds because the upper bound ((7) is applied for kT < i < k* and

3)22
36?2 is applied for i > k*.

O

Lemma K.10. With A; defined in (E.1), let 1 and =2 be the eigenvalues of A; as defined in (E.2)

and (E.3). Then

e Foralli < k¥, we have

e Forall ki <i < ’15 we have

« Forall k < i < kT, we have

e Forall i > kT, we have
¢

-1 2 2t
1 1—c q—co
3 (Al [ D SR (12)\i> |
pars ( 1), = (g—co)X\ l1-c¢
Proof. Note that

ko ok oktl K+l
(AéC H) = (AF)y1 + (Ak)yy = 22— 2L 4 22—

2 T2 — T1 T2 — T1

_ (w2 —c)af — (w1 — o)}

T2 — T1

)

where the second equality holds due to Lemma E.3. Summing up the square of (K.43) yields

i (Af my - tif [(xz _C)f?; :;xll —C)x’fr

k=0 2 k=0
:HM_ S (332_0)(351—0 (1‘1332 tzi (1 — c)223F
=0 (w2 —x1)? P (29 — x1)? = (12— 71)2
_ (w2 — (1 —ad) 2(302 —c)(z1 — o)[1 = (z122)"] (xl —¢)2(1 — 2% .
(1 —a3)(z2 — 21)? (1 = z122) (20 — 21)? (1 —2F)(22 — x1)?
Denote
A= (@-cf B = (@1 =c)(z2—¢) O — (z1—0)?
- l-ag’ . l—azy R

then we have
A—B  (z2—c)(1—cap) B-C (1 —¢)(1 — cxy)
ro—x1  (1—23)(1 —x2112) 22— 1 (1 —22)(1 — zy22)’
A-2B+C  (1+4A)(1+z122) — 2¢(21 + 22)
(za —21)> (I —af)(A—a23)(1 —a1a2)
For all i < k¥, (K.44) is bounded by

—0 (z2 — 1) T2 — X1 T2 — 21
<(1—a3h)- AZ285C 2x4 - ¢-B x%t (z12)"
- 2 (xo —x1)2 Ty— T T3 —T179
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A-2B+C 25(C-B) 1

(fEQ 7%1)2 Xo — X1 1 — L1X2
(14 )1+ z122) — 2¢(21 +22)  222(c — 21)(1 — c21)
= 2 5 (K.45)
(1 =21 —23)(1 — z122) (1—23)(1 — z122)
)
where the first inequality holds because C (w ii) > 0, and the second inequality holds because

due to Lemma K.12. Note that
(1+ ) (1 + wax2) — 2¢(21 + 22)
(1 —a?)(1 - z3)

(1+ ¢)? (1—-¢)? < (1+c)2+ (1—-1¢)?
20+ x1) (1 +22)  2(1-— xl)(l - mg) - 2 2(q — o)\
(1+¢?® (Vg—cd—y/elg—20 (1+1)*, q—c5 5
= 2 " 2(q — ¢d) =Tt 2(q—co) 2 (K.46)

where the first inequality holds because 1 + x5 > 1 + z; > 1, the second inequality holds due to
(E.6), and the last inequality holds because v/q — ¢ — y/c(q — &) < v/q — ¢d. We also have

(c—z1)(1 — cx1)mo <(c (c — z1)(c — m2) Lo _ c(q—6)Ni - x2

1—a? < (e—w)rs = ¢ — Ty ¢ — T
cd— c(q 6)(g—cd)
_ela= oINS e - Jelg— D= ),
R \/c<q 6><q cb) N ( —9) ’
/e(q — 5 .
clg A = 2N (K.47)

\/cq— —l—\/cq—&)l 2
where the first inequality holds because 1 —cz; < 1— x% (due to the fact that 1 < zo < ¢d/q < ¢),
the second inequality holds due to Lemma E.2, and the last inequality holds because /¢ — c¢d >

c(qg—0)and ¢d — y/c(q —8)(qg — ¢d) < ¢d < 5. We finally have
1— T1Xg = 1-— C(l — 5)\1) 2 5)\1 (K48)
Substituting (K.46), (K.47) and (K.48) into (K.45), we have

t—1 2
1 501 1 7
A¥ <o F 0N = .
kz_o< H) 2 on 0N G T 20h

For k¥ < ¢ < kT, (K.44) can be bounded as

% («[]);

= (1= (z122)") -

A-2B+C A+C <x§—x’i>2 C—-A 23t ¥

(x9 — 1)? 2 1'2_x1). Ty — X1

T2 — X1
A—2B+C| |A+C| |ab—al]> 1 |C—A| |23 —a2
<|1—(x1m2)t~‘ (g — x1)? | 2 g xz—mi 2 |z — 2 xi—xi
A-2B+C |[A+C| (t—1) 1 |C-A _
- /22y S2t[e(1 — oN;)]|BED/2
R B Y L R e IS
_ 1 . (1 +02)(1 +$1$2) _ QC(xl +‘T2) + |A+ C‘ . (t[(l _ 5/\4)](1571)/2)2
1— T1X9 (1 — 1‘1)(1 — .’17%) 2 !
2¢(1 + 2119) — (1 + ) (21 + 22) - 2tfe(1 — 6)\4)}(2“1)/2 (K.49)
2(1 —2%)(1 —23) ' ’ '

where the first inequality holds due to triangle inequality, and the second inequality holds because
0 <1— (z122)" <1 and due to Lemma K.13. We now bound the coefficients. Note that

1-0? _ (-0 _(Ve=—cd+Velg=9))* _ (Va—cd++q-cd)’
(I—z1)1—22) (g—co)N — q—cd - q—co

=4
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where the first inequality holds due to (E.5), and the second inequality holds because ¢(q — §) <
q — ¢d. We also note that

(1+ ¢)? _ (1+c)? - (1+¢)?
(1+z1)(1+x2)  2(1+¢c)—(g+cd)Ni ~ 2(1+¢) — (1 +2c)d\;
(1+c¢)? (14 1)

< =4
“2(14+¢)—(1+42¢) - 1 ’
where the first equality holds due to Lemma K.2(c), the first inequality holds because ¢ < (1 + ¢)J,

the second inequality holds because §\; < 1, and the last inequality holds because ¢ < 1. We thus
have

(14 )+ a125) = 2c(@r + @) | _ 1 (1+c)? (1—c)?

(1 —2)(1 - x3) S 2 ‘ (1 +z1)(1+22) + ) <4, (K.50)
2¢(l+ zi20) — (14 62) 1 + x2) B 1 (1+ c)2 - (1- 0)2

(1 —a)(1 —x3) S 2 ‘(1+x1)(1+$2) (1 —21)(1 + 22) <2. (K51)

We then bound |A 4+ C/|/2. Note that
XY O QN AJRCEL IS EICPLAIES.
2 2| 1—a3% 1— a3 2(1 — 23)(1 — 23)
_2¢2 = 2¢(my + x2) + (1 — ) (2} + 23) 4 2caq@o () + 22) — 20323
- 2q—cO)hi 201+ ) — (g + DN
1+c)(1—=c)® =21 =) (14 c+c?)g—c(l+2c)8]\i + [(1 — ¢?)g® + 2c¢*5q — 2¢25%)\2
2(g— o)X - [2(1+c¢) — (g + o)A '

(K.52)

Forkf < i < E, we aim to bound the denominator of (K.52) by )\% multiplied by a constant. Denote
the denominator divided by A\? as

(1+c)(1—c)? 2(1—=0)(1+c+c?)g—c(l+2c)d)

o(N;) = 2 — N +[(1 = c*)g* +2c25q — 2c267],
then
887? —2(1—¢) [(1 = 4 eh gl + 2@5]]
Ti 7

(1+¢)(1—¢)?
<2(1—c) [(1_6)/5
=-2(1-c)(1+c+c*)(g—9) <0,

(T +c+cHg—c(l+ 20)(5]]

where the second inequality holds due to (E.7), and the last inequality holds because g > 4, so ¢ is
a decreasing function in 1/X;. We thus have

P(Xi) = ¢((1 = ¢c)/0)

L+e)(l—c)? 2(1—¢)[(1+c+c?)g—c(l+2c)d] 2y 2 2 252
A=c2je =0/ +[(1 — ¢*)g” + 2¢°6q — 2¢67]

=1 +c)(g—0)[(1—c)g—(1+c)d]

> (1 +¢)(qg—08)[(1—c)d — (14 ¢)d] = —2¢d(1 + ¢)(q — 6)

> —46(q — ¢d),

where the first inequality holds because A\; > (1 — ¢)/J, the second inequality holds because ¢ > 4,
and the last inequality holds because ¢ < 1 and ¢ — § < ¢ — ¢d. We also note that 2(1 + ¢) — (¢ +
cd)A; > 1,50 (A+ C)/2 < 26);. We also have

(Va— 8 +\/elqg — 6)>2>

P(Xi) < ¢ ( .
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204¢)—(g+ )N >2(1+¢) — (g + <d) - (\/erQ c(q—0))?

)

q
so the upper bound of # is
A+C _ (clg=0)+ Velg—0)(g—d)* i
2 T 1 (6= elg—0)(g—cd)?/a> (Va—cd+/clg—19))?
o (elg=0) + v/elg—9)(g = cd))* i
1= (cd—/elg=0)(g—cd))/qa (Va—cd+\/c(qg—9))?

q-clg— 9N
(¢ —cd) + /clg = 6)(q — cd)
< 20(q — o)\
- q—cb

— 20N,

where the second inequality holds because (¢d — v/c(q — §)(g — ¢d))/q < 1, and the last inequality
holds because ¢(q — 0) < ¢ —¢d, ¢ < (14 ¢)d < 20 and v/¢(q — §)(g — ¢d) > 0. Therefore,
|A+C|

5 <20, (K.53)

where the second inequality holds because 2(1 4 ¢) — (¢ + ¢d)\; > 1. For k < i < k', we aim to
bound the denominator of (K.52) as \; multiplied by a constant. Denote the denominator devided
by \; as
1 1—¢)?
w(\) = W —2(1 =) [(14+c+c?)g—c(14+2c)8] + [(1 — c*)g* +2c25q — 2¢* 6%\,
then the lower bound of ¢();) is given by
e(N) > —2(1 —o)[(1 + e+ c?)g — c(1 + 2¢)d]

=—2(1 = )[(1+)(g — cd) +¢*(g — 9)]

> —2(1 —¢)(1+c+c*)(g— cd),
where the first inequality holds because W > 0and [(1 — ¢?)¢® + 2¢25q — 2¢26%]\; > 0,
and the second inequality holds because and ¢ — § < g — ¢d. Note that the maximum of ¢(A;) is

1—c or (1_C)2 .
8 (Va—city/e(g—9))?

(1401 —-¢)p?
(1 —1c)/d) = W
+ (1 = *)g? + 2¢%6q — 2767 - %
(1=c)1+c)(g—0)[(1—c)g/6 — (1 +c)]
(1= +c)(g—0)[1-c)I+c)—(1+c)
—c(l—c)(1+¢)(g—9) <0,

where the first inequality holds because ¢ < (1+c¢)d, and the second inequality holds because ¢ < 4.
For the latter,

attained at either For the former, we have

—2(1 = o)[(1+c+c)g—c(l +2¢)]

A

(=)
\Va— @+ eg o)
5) (clg —6) — V/elg = 0)(g — ¢d))* q+cd++/e(qg—0)(q — cd)

=2(q— q? q—cd—\Jelqg—0)(q — cd)
=2(1—c)e(q — 6) - g g+ cd+\/e(qg—0)(q - cd)
Vi —cd+/clg =) q
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1. q+cd+q—co

q
where the inequality holds because ¢ — 6 < ¢(q — ¢d) and ¢(q — ) < ¢ — ¢d. We finally have

201+ ¢) = (g+cd)Xi >2(14+¢) — (14+2¢)00 > 2(1+¢) — (1 +2¢)(1 —¢) = 1+ ¢+ 2¢2,
where the first inequality holds bAecause g < (1 + ¢)0, and the second inequality holds because
0\; <1 — ¢ (due to definition of k). Therefore,
2 2

14 ; Y < max { 11:;*;62 T CC+ — } (-0 <(1—c), (K.54)
where the second inequality holds because 1 + ¢ + 2<l4+c+2c%andc® <1+c+2c%
Therefore, when k¥ < i < k, 1 — zy29 > 6\, SO (K.49) can be further bounded by

< 2¢%(1 —¢)(q — ¢d) =2c%(1 - ¢)(q — ¢b),

t—1 2
> (A;ff H) < % + 20 - (E[e(1 — X)) ED/2)2 4 % -2 2t[e(1 — 6N, D2
k=0 2 t
4 4 2 14
< 20\ - —— -
Son PN e TR, Ty

where the first inequality holds due to (K.50), (K.51) and (K.53), and the second inequality holds
due to Lemma K.14. When k < i < kf, 1 — 2129 > 1 — ¢, so (K.49) is further bounded by

t—1 2
4 1
3 (Af H) <ot (=0 (A =0TV 4 o2 atfe( - oA D2
k=0 2 N

4 4 2 10
1—c+(1_c). (1—c)2+1—ci 1—¢’

where the first inequality holds due to (K.50), (K.51), and the second inequality holds due to Lemma
K.14.
For all i > kT, (K.44) can by bounded as

1 -

<

k=0 2 (w2 — 21)? T2 — T1 T2 — 1 T2 — 21
<-agy AP E Bt N ) 2l )
(w2 — 1) (1 —21)(1 —23)(1 — z172)

(K.55)
where the inequality holds because negative terms are dropped. Note that
(1-c?  (1-¢?

(1—z1)1—x2) (g— o)A’

and
(1+c)? (1+0)? (1—c)? (1-0)?
A+a)(i+as) ~ (1107 (Va—+Jela—0)PA 4= N’
where the first inequality holds because ¢ < 7 < x5, the second inequality holds due to (E.5), and
the last inequality holds because y/c(q — d) > 0. We thus have

(1+ )1+ z@2) — 2¢(xy + 22) (1+ ¢)? (1—-r¢)?
(1—22)(1 —22) S 2(1 4z (14 x) 21 —x1)(1 — x0)
(1-0¢)? (1-¢? _ (1-¢?
S Ag—n Ag—dN  [@—con (K30
We also have
l—zizo=1—c+co)\; >1—c, (K.57)

where the inequality holds because c¢d\; > 0. Substituting (K.56) and (K.57) into (K.55), we have

i1 112 1-c 1-c q—cod 2
AF < (1—22Y- < 1—(1-2 i
kzzo( lH)z_( %) (qcé)Ai_(qcé)Ai[ ( 1—c ’
where the second inequality holds due to Lemma E.2. [
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The following lemma follows from Lemma K.8.
Corollary K.11. With A; defined in (E.1), we have

d t—1 2
1 14 10
S r 3 (A1) = Mo wli, 12 o - vl
i=1 k=0
b o w7+ Ao —
q—cd Kt ok ¥ oo

Proof. By Lemma K.8, specifically for kT < i < k*, we have

t—1 2 2t
L A e PO Y e VR N PR e
%(Al 1)), <amam [1 (1-25=0) 1<q—c5>x/

2t
124 C‘%\) < 1;Fori > k*,

(
,:Z;(Ai-“ H)jﬂql_asc l <1 'ﬂS(ql__c(si&"“(q:im‘“’
(

2t
1-24 c‘s)\) < 4t%. Therefore,

where the inequality holds because 1 —

where the inequality holds because 1 —
d t—1 11\ 2
2 k
>ty (Ai 1),
i=1 k=0
<Z)\w + Z/\w 4—|— Z)\iwz- 10
25/\ )\i ' 1—c

i<k k‘i<z<k R<i<kt
Ai Niw? - 4t
+ Z lw (q — C§ + Z ’LU
kT<i<k* i>k*
7 14 10
- 275““70 N W*H%O:ki + f”WO - W*HI“ — 17||W0 - *||%+IMT
1—c . .
oo W 4 D o — Wl
i>k*
14 10
< S ltwo = wrllg 4+ 7= lIwo — Wl
—c X .
oW~ WU+ Ao — Wl
where the second inequality holds because 7/2 < 14. O

Lemma K.12. Forany 0 < 21,29 < 0 < 1 (1 # x2) and integer ¢ > 0, we have

t_ gt t_ ot
TH— @ 0" —x
2711 1

To — I - 60— X1 '
Proof. The lemma holds trivially for ¢ = 0. For ¢ > 1, we have
t t t— t-1 t t
Lo — T3 kot—1—Fk K opt—1-k _ 0 — T3
T2 < .0 2"
To — 1 2;331332 —Z% 0— 2,
where the inequality holds because zo < 6. O

Lemma K.13. Suppose x1, x5 are complex eigenvalues of A; for k* < i < kf. Then for any ¢ > 0,

t t
T2 7T < ple(1 — ) D72,
To — I
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Proof. We have

532—551 ktlk

t—1
<D lasl et T = tle(t — o))

T2 — T1

where the inequality holds due to triangle inequality, and the second equality holds due to Lemma
E.2. O

Lemma K.14. For any ¢ > 0, we have

2 2
S )ED/2 s
tle(1 — 6N;)] _mln{(s)\i, l—c}'

Proof. Note that

t—1 -

c(1 — 6A;)) =1/ 1— o)) 1/2 < JF2 = 1— [e(1— o))
te( ) kgo[( ]g a0

1 1 2
< < < ,
T 1- C(l—&)\i) o 1_\/1_5)\2' - 5)\1
where the first inequality holds because ¢(1 — 6);) < 1, the second inequality holds because 1 —

[e(1 — 5)\1-)]” 2 < 1, the third inequality holds because ¢ < 1, and the last inequality holds because
1 —+/1—20X; > dX;/2. Similarly we have

1 12
=1 cl—0oN) l—ve~—1-¢

where the second inequality holds because 1 — §)\; < ¢, and the last inequality holds because

1—ye>(1-0o)/2 =

tle(l —aA)] 172 <
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