

A Portal Vertex Channel Mediated Communication System in a Viral Genome Packaging Machine

Weichun Tang^{1*}, Masashi Waga^{1*}, Mounir Fizari², Brandon Rawson², Andrei Fokine³, Taekjip Ha⁴, Yann Chemla⁵, Douglas E. Smith² and Venigalla B. Rao¹

¹Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America,

Washington, DC, USA

²Department of Physics, University of California, San Diego, La Jolla, CA, USA

³Department of Biological Sciences, Purdue University, West Lafayette, IN, USA

⁴Boston Children's Hospital, Harvard University, Boston, MA, USA

⁵Department of Physics, Center of the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Large icosahedral viruses and tailed bacteriophages encode a portal protein that assembles into a dodecameric ring and occupies one of the twelve five-fold-symmetric vertices of a viral capsid. This unique symmetry-mismatched and structurally conserved portal vertex is essential for head assembly, genome packaging, neck/tail attachment, and genome ejection, but the underlying mechanisms remain poorly understood. Here, we present evidence that the phage T4 portal functions as a global assembly communicator and signal transducer, with its basket-shaped channel containing twenty-four anti-parallel helices at its core. Disruption of a single inter-helical salt-bridge that connects helices in a circular brace impairs channel movements that might be essential for a DNA grip-release mechanism during genome translocation. Second and third site suppressors that compensate for this defect fall in distant portal and packaging motor domains that together form a sophisticated communication network. Such networks might underlie the structural frameworks of macromolecular assemblies in biological systems.

^{*}These authors contributed equally