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Abstract. The rapid proliferation of false information on the internet
poses a significant challenge before, during, and after disasters, emphasiz-
ing the critical need for domain-specific automatic fact-checking systems.
In this study, we introduce DisFact, a new fact-checking pipeline, and a
dataset of disaster-related claims generated from the Federal Emergency
Management Agency (FEMA) press releases and disaster declarations.
Our retrieval method involves no model training, making it more efficient
and less resource-intensive. It starts by breaking a lengthy document into
sentences; we further apply embeddings to calculate the relevancy score
between a claim and document pairs and then compute the similarity
score between claims and sentences to rank the retrieved evidence(s).
For claim verification, we utilize a deep learning approach that com-
prises a transformer-based embedding with a feedforward neural network.
The experimental findings demonstrate that our fact-checking models
achieve top performance on our custom disaster dataset. Furthermore,
our models outperform other state-of-the-art models on FEVER and
SciFact shared tasks, underscoring the effectiveness of our approach and
its adaptability in handling longer documents and generalizing across
diverse fact-checking datasets. DisFact signifies a pivotal advancement in
automated fact-checking, emphasizing simplicity, accuracy, and compu-
tational efficiency. DisFact dataset and code are available on GitHubE
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1 Introduction
The emergence of the internet has transformed the way information is spread,
offering numerous advantages such as easy access to information and increased
public awareness. However, it also presents a notable challenge in the form of
misinformation [10]. Although the risks of online misinformation have received
considerable attention in areas like sports |11], politics [12], and journalism [13],
there has been little to no emphasis on fact-checking within disaster management.
The dissemination of inaccurate information before, during, or after critical
disaster occurrences hinders collaborative efforts for community safety, obstructs
the effective allocation of emergency resources, and disrupts business continuity.
The consequences of misinformation in disaster management are substantial
and extensive [14]|. They significantly impact all phases, from the preparedness
stage to the recovery phase, as they are juxtaposed with information provided by
reputable sources such as the Federal Emergency Management Agency (FEMA).

3 DisFact Dataset and Code - https://github.com/abdul0366 /DisFact
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One crucial method for combating misinformation involves verifying claims
through trusted sources supported by relevant evidence , playing a crucial role
in all stages of disaster management. In the context of disaster management, fact-
checking involves evaluating the accuracy of textual claims, often commencing
with the assembly of a comprehensive dataset. This manual process is exemplified
in datasets such as Fact Extraction and VERification (FEVER) and SciFact
17], reflecting the challenging nature of manually verifying textual information
within disaster management due to the considerable volume of data, leading
to labor-intensive and time-consuming procedures. Moreover, the limitations in
resources further impede the effective verification of information.

Recently, the field of fact-checking has undergone a significant transformation,
focusing on the potential of deep learning models, including transformers. For
instance, employed Bidirectional Encoder Representations from Transformers
(BERT) in a pairwise approach to ranking, whereas ﬂ2__0] utilized graph neural
networks. In contrast, developed a performance-optimized pipeline encom-
passing document retrieval, point-wise sentence selection, and claim classification.
This shift has sparked a new wave of exploration and innovation in fact-checking.

and , have demonstrated the effectiveness of transformer methods in
their research. Nonetheless, most fact-checking methods, including transformers,
depend on the training or fine-tuning of models to enhance contextual compre-
hension and adaptability to specific subjects. This intricate undertaking demands
substantial computational resources, time, and extensive labeled datasets. Fur-
thermore, these models necessitate frequent updates to accommodate new data,
rendering the process resource-intensive.

Traditional transformers such as BERT and Robustly Optimized BERT
Pretraining Approach (RoBERTa) face a particular challenge when processing
longer texts, as they are limited to sequences of up to 512 tokens. This constraint is
insufficient for long documents containing substantial evidence to support a claim.
To tackle this limitation, [21] introduced a novel method utilizing sparse attention.
This new approach can handle longer texts by initially predicting a score for
each token in a document and subsequently aggregating these scores at the
sentence level to facilitate sentence retrieval. Stammbach’s method for binary
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Fig.1: Problem with Token-Level Binary Prediction.

prediction at the token level encounters two primary challenges. Firstly, there is
a bias in relevance scoring towards shorter sentences with fewer relevant tokens,
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resulting in higher relevancy scores than longer sentences containing both relevant
and irrelevant tokens. As depicted in Figure[I]on the right-hand side, evidence 1.1
receives a higher relevancy score (0.83) than evidence 1.2 (0.33), despite evidence
1.2 encompassing more relevant tokens. This bias manifests in the form of inflated
scores for shorter evidence. Secondly, the binary token prediction approach fails
to consider the contextual fluctuations in word significance. Assigning identical
scores to all tokens neglects to discern their varying relevance to the argument.
As exemplified in Figure [ on the left-hand side, employing binary scoring for
evidence 2.1 yields relevancy score of 0.5, while utilizing non-binary scoring for
evidence 2.2 leads to a higher score of 0.52. This discrepancy highlights the
deficiency of binary token prediction in capturing contextual similarities, which
better encapsulates the diverse importance of tokens in the given context.

In response to these challenges, we introduce DisFact, a novel and simple
approach for fact-checking disaster claims. The method involves the automatic
generation of a fact-checking dataset from the FEMA website, where claims
are matched with relevant documents (articles) to obtain relevant evidence.
This evidence is subsequently utilized to ascertain whether it corroborates or
contradicts the claim. In contrast to prior methodologies, our approach harnesses
embeddings to enhance precision and accommodate lengthier documents without
necessitating training or fine-tuning. Furthermore, our claim verification model
integrates embeddings and a straightforward neural network to categorize claims
as either substantiated or debunked.

Our contributions are as follows:

— We provide the first domain-specific fact-checking disaster dataset from
FEMA Press Releases and Declarations. It contains over 40K pairs of textual
claims and documents, with ground truth evidence labeled as supporting or
refuting the claims.

— We introduce DisRev, a cost-effective, simple, and novel retrieval method
called "embedding is all you need,” which uses pre-trained embeddings to
retrieve relevant evidence(s) for claim-document pairs without requiring
training or fine-tuning.

— Our claim verification model, DisC, follows a supervised learning approach
that combines a transformer-based embedding with a feedforward neural
network to classify claims as either supported or refuted based on DisRev
retrieved evidence.

— Evaluation results show that DisRev achieved 82% precision, 97% recall, 81%
F1 score, and MRR of 0.82, while DisC achieved 83% across all metrics.

— To test the generalizability of our models, we applied DisRev and DisC to
two well-known fact-checking datasets, FEVER and SciFact. We found that
our models effectively outperformed state-of-the-art models.

2 Related Works

In fact-checking, there has been a proliferation of works and recent progress.
This section delves into related works in fact verification, focusing on diverse
methodologies and their advancements.
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Finetuning and Multi-task Learning Approaches: [19] introduced
BEVERS. This highly optimized fact verification system achieved state-of-the-art
performance on FEVER and SciFact by finetuning each pipeline component
without novel improvements. Similarly, |5] proposed a paragraph-level multi-task
learning model employing BERT to jointly optimize rationale selection and stance
prediction for scientific claim, thereby improving performance on the SciFact
dataset. [14] introduced a unified model for multi-task learning in fact verification,
integrating document retrieval, evidence extraction, and claim validation into a
unified framework, yielding robust performance across multiple datasets.

Transformer and Neural Network-Based Approaches: |6] leveraged the
T5 model in their VERT5ERINI system for abstract retrieval, sentence selection,
and label prediction, significantly advancing state-of-the-art scientific claim
verification. |10] developed a joint model for document-level relation extraction
using dynamic pruning and sentence-level attention mechanisms to enhance
accuracy. |18] utilized BERT for evidence retrieval and claim verification, achieving
state-of-the-art results on the FEVER task with both pointwise and pairwise
training approaches. [17] introduced the SciFact dataset to facilitate scientific
claim verification, providing a challenging benchmark with annotated claims and
supporting evidence from scientific literature and proposing a baseline model
combining retrieval and textual entailment.

Knowledge Graphs and Reasoning Frameworks: |15] discussed a method
that uses a multi-hop reasoning framework leveraging contextualized representa-
tions for fact verification, achieving notable improvements in handling complex
claims. |20] integrated knowledge graphs with attention mechanisms to enhance
fact verification systems, significantly boosting verification accuracy. [3] utilized
logical reasoning and structured proofs for fact verification, providing transparent
and interpretable verification results and outperforming existing baselines.

Graph-Based Approaches: [1] presented a graph-based reasoning approach
for fact-checking, using semantic role labeling and graph convolutional networks
to improve accuracy and achieve state-of-the-art performance on the FEVER
dataset. |9] proposed a distillation-based method for improving recall in scientific
claim verification, achieving better performance on the SciFact dataset.

Novel Methodologies and Combined Approaches: [12] demonstrated
significant improvements in accuracy and efficiency with a neural network-based
approach for automatic fact verification over traditional methods. [19] highlighted
the effectiveness of combining traditional and neural approaches for improved
accuracy and recall in various fact-verification systems. [21] proposed a token-
level prediction approach for evidence selection, outperforming sentence-level
approaches in the FEVER dataset.

In contrast to the works mentioned above, which primarily rely on train-
ing or finetuning their fact-checking models, DisFact diverges by introducing
an "Embedding is All You Need" method for evidence retrieval. This method
leverages pre-trained embedding models for evidence retrieval without the neces-
sity for extensive training or finetuning. It effectively integrates token-level and
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sentence-level information, providing a holistic view of evidence and demonstrat-
ing simplicity and generalizability in fact-checking tasks.

3 Methodology

This section outlines our approach to DisFact, depicted in Figure|2] encompassing
the creation of datasets, document retrieval, claims generation, evidence retrieval,
and claims classification. Each of the steps depicted in Figure [2 will be briefly
explained in the subsequent subsections.
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Fig.2: Our DisFact Approach.

3.1 Document Retrieval

In order to facilitate fact-checking, an automated document retrieval system
was developed to systematically scrape FEMA Press Releases, FEMA Disaster
Declarations, news media, and reports/notices from the FEMA website. The
retrieved document, as shown in Table [T, consists of 40,648 articles. For each
article, the full text, title, and date were scraped. The earliest article was published
in 2001, while the latest was published in 2024.

The document retrieval system comprises collecting detailed and relevant
disaster-related information, thereby forming a robust dataset for analysis and
verification. To ensure the efficiency and effectiveness of the scraping process,
various components, including user agents and asynchronous requests, were
employed. This approach enabled comprehensive data collection for our work
while maintaining a coherent flow of information. In order to systematically access
and navigate the disaster-related pages on the FEMA website, we employed a
base URL and disaster declarations URL. To enhance the robustness of the
scraping process and evade detection, we utilized a range of user agents to
simulate different browsers. Additionally, random headers were allocated to each
request to maintain access and further avoid detection.

Furthermore, we implemented asynchronous fetch using asynchronous I/0 to
efficiently send HT'TP GET requests and retrieve webpage content by concurrently
handling multiple requests. Employing BeautifulSoup for HTML parsing, our
scraping function extracted relevant data such as titles, publication dates, and
main text content from individual articles. To simulate human browsing behavior
and reduce the risk of being blocked, random delays were introduced between
requests.
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Concurrently, the scraping function gathered links to articles from a given
page and initiated scraping tasks for each article, significantly accelerating data
collection through parallel processing. Moreover, the scrape disaster page function
navigated through disaster declaration pages, identified links to specific decla-
rations, and coordinated the scraping of associated articles and reports/notices.
To ensure data integrity and efficient processing, we utilized batch processing,
looping through multiple pages, and saving collected data incrementally.

Throughout the entire scraping process, we integrated error handling mecha-
nisms to capture and log issues, ensuring a smooth continuation of the scraping
process in the event of encountering problems with certain pages or articles.

3.2 Claim Generation

Claims play a crucial role in the process of fact-checking as they serve to authen-
ticate the accuracy and veracity of statements, thereby safeguarding the public
from misinformation. In our pursuit to automatically generate claims from textual
documents, particularly focusing on claims related to disasters, we employed
the Text-to-Text Transfer Transformer (T5) model |7]. Through training on the
FEVER dataset, T5 understood the typical construction of claims, which we
leveraged to produce claims from our FEMA dataset. The selection of T5 was
based on its capacity to craft abstractive claims, which encapsulate the essence
of a sentence rather than merely extracting the exact text, resulting in more
intricate claims. In contrast to extractive models, which extract verbatim text
from the source, abstractive models generate new text that effectively conveys
the original input’s intended meaning. The process commences with compiling
a dataset comprising articles containing titles, text, and publication dates. A
crucial step involved the utilization of two pre-trained T5 models: one dedicated
to producing affirming statements and the other specialized in refuting claims.
These models were meticulously fine-tuned using the FEVER dataset to enhance
their comprehension of fact-checking claims. Text tokenization was achieved using
the NLTK library to segment the articles into individual sentences. Subsequently,
two random sentences were selected from each article containing at least two
sentences, with each sentence being modified to incorporate the respective article
title for contextual reference.

Due to computational limitations, the text was processed in batches, com-
prising up to 64 sentences. The text was inputted into the T5 models following
tokenization to generate supporting and refuting claims. These claims were then
decoded back into text format.

Finally, the generated claims were matched with their respective sentences
and additional metadata such as article text, title, and date. Each sentence was
linked to both a supportive and a refuted claim. The resulting dataset, which
includes the generated claims, evidence sentences, and relevant article metadata
marked as either "Supported" or "Refuted," can be accessed on GitHub, and
detailed dataset statistics are provided in Table

3.3 Evidence Retrieval

Our retrieval task (DisRev) is inspired by |21]; however, the method presented
therein encounters the two issues outlined in Figure[I of Section[I. To address
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Label Train Test
Supports 16,248 4,076
Refutes 16,245 4,079
Total 32,493 (80%) (8,155 (20%)

Table 1: Statistics of DisFact Annotated Dataset

these challenges and enhance the performance of existing models, we introduce a
novel method known as "Embedding is All You Need" for evidence retrieval in
the context of automatic fact-checking. This technique involves processing a set
of claims {c1,¢a,...,c,} and their associated documents {d;,ds,...,d,}. Our
method utilizes a no-training approach, which computes relevancy and similarity
scores between pairs of claims and their corresponding documents to extract
pertinent evidence. This is achieved through a combination of tokenization,
embedding models, and similarity measures, as shown in Figure [3. To prepare

| there are no organizations involved in survivor recovery.

Textual Claim (c)

Relevancy score of (c and s)

Embedding of ¢ and s; of d Split into Sentence (si of d) canked
Evidence
1."san juan: it has been just over two months since hurricane fiona impacted 0.
Document (d) individuals and communities across puerto rico." -
["san juan: it has been just over two months since hurricane fiona impacted 2. "the heavy rains and strong winds damaged homes, and critical | 0.01
individuals and communities across puerto rico.”, "the heavy rains and strong Infrastructure. *
Winds damaged homes, and critical et 3. "nevertheless, fema, the government of puerto rico and other federal and | 022\l by 2nd

local partners swiftly came together to support the island\u2019s recovery.”

4. “fema Individual assistance & sba numbers fema public assistance numbers
disaster recovery centers disaster survivor assistance crews disaster | oo ||l . o
unemployment assistance disaster legal services ensuring equitable o= |
accessible communications in puerto rico although the federal government
cannot make you whole, it is part of the solution.”

5. "many entities are involved Inciuding local and state agencies, NONProfits, |  0.50—j» 1st
voluntary and faith-based organizations, and the private sector to assist in
survivor recovery.” 043—1> 4th

G.“visit fema.govidisaster/4671 to learn more about puerto ficoi2019s
recovery after hurricane flona.”

Fig.3: Evidence Retrieval Approach (DisRev).

our input data for the model, we tokenize each claim ¢ and document d using
the BigBirdTokenizer. Furthermore, we ensure uniform sequence length for batch
processing by implementing padding and attention masks. It is important to
note that contextual document information is provided in the form of a list of
sentences. To tokenize each document into its constituent sentences, we employ
the pre-trained nltk.tokenize.punkt tokenizer.

The tokenization process for a claim ¢ and a document d is defined as:

T(C) = {thtg,. .. ,tn}
T(d) = {81, S92y .y Sm}

Where t; and s; represent the tokens from the claim and document, respectively.

The tokenized claim T'(¢) and document T(d) are encoded and depicted by:

input-ids = [CLS] 4 T'(c) + [SEP] + T'(d)

Note: CLS is the Classification Token and SEP is the Separator Token.

The utilization of the RoberTa model in our sentence selection framework
serves to complement BigBird by leveraging its pre-trained knowledge, which has
demonstrated strong performance in natural language processing (NLP) tasks and
offers robust language understanding capabilities. Extending the Roberta Model
to incorporate BigBird addresses the challenge posed by the limitation of sequence
length in most transformer models, particularly when handling long sequences.
Drawing inspiration from @’s approach, we opted to integrate BigBird into
our model due to its efficient handling of long sequences, with the ability to

fema, the government of puerto rico and other federal and local partners swiftly
came together to support the Island\u2019s recovery.”, "fema Individual
assistance & sba numbers fema public assistance numbers disaster recovery| NLTK
centers disaster survivor assi crews disaster i
disaster legal services ensuring equitable accessible communications in puerto
rico although the federal government cannot make you whole, it is part of the
solution.”, "many entities are involved including local and state agencies,
its, voluntary and faith-based izati and the private sector to
assist in survivor recovery.", "visit fema.gov/disaster/4671 to learn more about
puerto ricolu2019s recovery after hurricane fiona."]
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accommodate up to 4096 tokens through the use of sparse attention mechanisms,
thus making it well-suited for processing lengthy documents. This is a crucial
feature as it obviates the necessity for document truncation, thereby preserving
a more comprehensive context for accurate evidence retrieval.

In our approach, we employ a multi-head attention mechanism to augment
the model’s capacity to focus on various segments of the input sequence, thereby
enhancing the accuracy of evidence retrieval. Subsequently, relevancy scores for
each pair are outputted. We utilize 16 heads in the attention mechanism. The
multi-head attention is represented by:

Attent’ton(Q K L ) - SOft a ( )
5 5 max [/
\% dk}

Where @, K, and V denote the query, key, and value matrices derived
from the input sequences and dy is the dimensionality of the key vectors. This
integration of the RoberTa and BigBird models, combined with a multi-head
attention mechanism, enhances the effectiveness of our approach in processing
and analyzing lengthy texts for evidence retrieval.

In our retrieval model, we consider the relevance of each token or sentence in
the document in relation to the claim. To generate token and sentence embeddings,
we employ the Sentence Transformer. This particular model can produce high-
quality sentence embeddings that capture the semantic meaning of the text. It
offers a method to gauge the similarity between sentences and claims without
additional training. Additionally, we utilize cosine similarity as a measure to
assess the similarity between the claim and context sentences due to its simplicity
and efficiency in computing the direct measure of similarity between claim and
sentence embeddings. This method enables the comparison of sentence and token
embeddings to determine relevance without complex training procedures.

To be succinct, we compute three kinds of relevancy scores for each input:
token-level, sentence-level, and combined-level.

a. Token-Level Relevancy Score - Recall that document d contains sentences
sn, each sentence s in the document d is tokenized, and token ¢t embeddings
are generated using the Sentence Transformer model. Subsequently, the cosine
similarity between each token embeddings of s in d and embedding of the claim

is computed, as demonstrated by:

i - 1(Si
cosine-similarity(c;, t((s;)) = G- ts)

 eilllltCsa)l
Moreover, the average token relevancy similarity score for aggregated tokens

at the sentence level is computed, as depicted by:
n

avg-token-score(s) = — Z cosine-similarity(t;, claim)
i=1
Where t; represents the tokens in sentence s;. This average score indicates
the relevance of each token in each sentence in the d; to the claim.

b. Sentence-Level Relevancy Score - At the sentence level, an embedding
is generated for the entire claim ¢ and each sentence s in the document d. The
cosine similarity between each sentence s embedding in d and the embedding of
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¢ is calculated similar to cosine-similarity in the token-level. This similarity score
is employed to measure the relevance of each s in d to c.
G t(Sz)

l[eilllltCsa)l
c. Combined-Level Relevancy Score - As previously mentioned, the cal-
culated average token-level relevancy scores for each sentence in d and the
sentence-level relevancy scores are used. These scores are then combined for each
sentence to produce a final relevancy score, as demonstrated by:

cosine-similarity(c;, t((s;))

avg-token-score + sentence-score

2
This combined score assigns equal importance to both token-level and sentence-
level relevancy, thus offering a more comprehensive measure of the relevance of
each sentence to the claim.

combined-score =

3.3.1 Ranking: After calculating the relevancy and similarity scores, the cor-
responding evidence sentences for each claim are sorted in descending order
based on their scores, as depicted in Figure E The top-ranked sentence (top-1)
is regarded as the primary evidence. Subsequent top-ranked sentences (from
top-2 to top-n) serve as multiple pieces of evidence determined by the number of
sentences in the documents. This sorting process is carried out independently for
token-level, sentence-level, and combined scores. Subsequently, the top-ranked
sentences are considered primary or secondary evidence based on their ranking.

3.4 Claim Verification

In order to classify claims as either supports or refutes based on the retrieved
evidence in Section our claim verification approach (DisC), as depicted in
Figure [4, employs pre-trained models similar to the one used in our evidence
retrieval task and efficient feature transformations. Through our method, pairs
of claims and evidence are processed to classify the claims as binary tasks
"SUPPORTS" and "REFUTES" for our DisFact dataset, and we also made it
to classify multiclass labels such as "SUPPORTS," "REFUTES," and "NOT
ENOUGH INFO," ensuring robustness and generalization on other publicly
available fact-checking datasets. As shown in Figure [f, we explain the different
& P
299 r Iﬁ‘m, Concatenation of Features
XXy :
L

Claim (c) l

Embedding of ¢ & e

components of our model as follows:
Supports
e X \ \: /. Refutes
WA

Feature Transformation Feed Forward Neural Network

Evidence (e).

Fig.4: Claim Verification System (DisC).

a. Preprocessing: In the preprocessing phase, unnecessary characters are re-
moved from the text, and text normalization is applied. Loading the data entails
extracting claims and evidence, as well as assigning labels for training purposes.
The emphasis on clean, structured data is imperative for improving model per-
formance and ensuring generalization. Subsequently, the careful preprocessing of
the data sets the stage for optimal model performance and generalizability.
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b. Embeddings: In our approach, we employed the Sentence Transformer model
to produce high-quality sentence embeddings. Specifically, we opted for the ‘bert-
base-nli-cls-token‘ due to its pre-training on natural language inference tasks.
This enables a comprehensive comprehension of the semantic connections between
claims and evidence. Consequently, this choice facilitated a deeper understanding
of the relationships between different elements in the context of our study.

c. Feature Transformation: In feature transformation, textual data is con-
verted into numerical features to be utilized in model training. This process
encompasses the generation of embeddings for both claims and evidence and the
creation of combined features, including sums, differences, and products. By com-
bining these features, the model’s capacity to comprehend intricate relationships
between claims and evidence is significantly enhanced. Moreover, our feature
transformation approach mitigates the necessity for intricate feature engineering.
The generation of embeddings is carried out utilizing the Sentence Transformer
model to derive features based on the provided claims and evidence. Denoting
¢; as the embedding for claim ¢ and e; as the embedding for the corresponding
evidence, our feature combinations are structured as follows:

— Sum of Embeddings: In exploring the sum of embeddings, we aim to capture
the combined semantic information of both the claim and the evidence. This
feature facilitates an understanding of the overall semantic similarity by
combining the magnitudes of the embeddings, which enhances comprehension
of how the combined meaning of both texts relates to each other. Equation
is used to determine the sum of embeddings is given by:

le + esll = | D ey +ei)? (1)

j=1

— Difference of Embeddings: In our feature extraction, we examined the
variance in embeddings to emphasize the disparities between the claim and
the evidence. This method effectively captures dissimilarity by quantifying
the spatial separation between the embeddings within the semantic domain.
Our focus on these distinctions is essential for determining whether the
evidence substantiates or contradicts the claim. This approach is represented

by Equation

D ey —eij)? (2)

j=1

llei —eil| =

— FElement-wise Product of Embeddings: The third feature in our ap-
proach encompasses the element-wise product of embeddings, allowing us
to capture the interactions between each dimension of the embeddings and
their corresponding dimensions. This method highlights specific feature-level
interactions, providing insights into the specific relationships between the
claim and the evidence. Mathematically, the element-wise product between
the embeddings ¢; and e; is represented in Equation [3| as:

(ci X €3)j = cij - €35 (3)
d. Concatenation of Features: The amalgamation of features generates the
ultimate feature vector for each claim-evidence pair. This vector is a composition
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of the separate embeddings and the trio of combined features. By joining these
components, the resulting vector encapsulates a comprehensive array of infor-
mation regarding both the claim and the evidence. Specifically, it encompasses
their implications, combined implications, divergences, and synergies. This is
mathematically formulated in Equation 4] as:

features, = [c;,e;,¢; + €;,¢; — €5, ¢ X €] (4)
e. FeedForward Neural Network (FFNN) Model: The combined features
were fed into sequential feedforward neural networks comprising dense and
dropout layers, which are known for their capability to capture intricate patterns
and interconnections within data through multiple layers. The incorporation
of dense layers and dropout mechanisms enhances generalization and mitigates
overfitting. This distinctive architecture, coupled with the utilization of combined
features such as sum, difference, and product, confers enhanced efficiency upon
the model in terms of learning from the provided data.

4 Experimental Setup and Results

This section outlines the experimental setup of our models. The performance
of our models was rigorously evaluated using an 80% train and 20% test split,
as shown in Table [I, with metrics such as accuracy, precision, recall, Fl-score,
and mean reciprocal rank (MRR). These experiments were conducted on a
robust computational system featuring dual NVIDIA® Tesla V100 GPUs and
an Intel® Xeon® Gold CPU, providing computing power to process our models.

Table 2: Claim Verification and Claim Generation Hyperparameters

Claim Verification Claim Generation

Hyperparameter | Value Hyperparameter Value Hyperparameter| Value

Model Name bert-base and FFNN |Hidden Layer relu Random Seed 12

Model Max Length 512 Output Layer (binary) sigmoid Epoch 50

Max Length 50 Output Layer (multiclass) [softmax Tokenizer Model |th-base

Dropout Rate 0.2 Kernel Initializer uniform Max Length 512

Epochs 15 Optimizer RMSprop Max Length 50

Verbose T Loss (binary) CrossEntropyLoss/BCE || Batch Size 64

Batch Size 1024 Tnput Layer (Dense) Size [300 Units Tabel Supports/Refutes

Table |2 details the hyperparameters and their candidate values used in our claim
generation and claim verification models. Additional information on our code
and the hyperparameters used for all models can be found on the GitHub link
provided in the abstract.

4.1 Results
The experiments are conducted to study the performance of our retrieved evidence
and claim classification; our model possesses advantages in different reasoning
scenarios, such as single or multiple evidence(s), which shows the effectiveness of
our approach.

4.1.1 DisFact Evaluation

a. Retrieval Task - Table [3| presents the results of evidence retrieval and claim
verification models of the fact verification system of our disaster domain dataset.
As our dataset is new to the fact-checking field, the results will establish a baseline
for future work utilizing it. Multiple testing scenarios were carried out to compare
the effectiveness of single (top-1) and multiple evidence (top-2 or more).

A comparative analysis presented in the retrival task of Table [3 illustrates
that sentence-level ranking for top-1 yields the highest performance across all
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metrics. In contrast, token-level scores are notably lower, indicating that focusing
solely on token-level information is less effective for evidence retrieval. Precision
decreases as more top-N sentences are analyzed (from top-1 to top-5) across
all ranking types as more sentences are included. Conversely, recall increases,
demonstrating that more considered sentences retrieve more relevant evidence.
Notably, sentence-level ranking consistently achieves the highest MRR values,
indicating that the most pertinent evidence is often found in the top-ranked

positions.
Table 3: DisFact Retrieval and Classification Results

Retrieval Task Classification Task
Relevancy Type|Top-N P R | Fi IMRR| P R | F1 LA
Token-Level Top-1 29.17(28.98|26.33]0.1002|81.92{80.43|80.20{80.43
Token-Level Top-2 |25.32|41.95|29.13]0.1455|81.83|80.94|80.81{80.94
Token-Level Top-3 |22.88(51.42|29.63]0.1737|81.80(80.98|80.86(80.98
Token-Level Top-4 |21.24|58.03|29.21]0.1933|82.29|81.87|81.82|81.88
Token-Level Top-5 |19.84|64.24|28.59(0.2095|81.51|81.26|81.23|81.26

Sentence-Level Top-1 |82.05(82.05(81.11{0.7493(83.70(79.18|78.39(79.10
Sentence-Level Top-2 |52.23]91.16(63.81{0.8050(82.49(77.38|76.39|77.30
Sentence-Level Top-3 |37.87|94.87|51.74/0.8205|83.13|82.70|82.63|82.68
Sentence-Level Top-4 |30.50{96.45|44.18]0.8261|82.76|82.63|82.62|82.64
Sentence-Level Top-5 |25.71]97.46|38.86(0.8294(82.07|78.76|78.14|78.69
Combined-Level |Top-1 |77.14|77.02|75.78/0.6806|83.67|78.35|77.43|78.31
Combined-Level |Top-2 |50.62|86.70({61.31{0.7377|83.47|83.08|83.04(83.09
Combined-Level |Top-3 |37.56(91.49(50.91{0.7590(83.45(83.41|83.41|83.41
Combined-Level |Top-4 |30.68(93.71(44.11]0.7666|83.22|82.64|82.55|82.63
Combined-Level |Top-5 |26.06/95.25(39.09{0.7711|83.01|83.00{82.99(83.00

The superior performance of sentence-level and combined-level rankings em-
phasizes the significance of considering broader contextual information rather
than concentrating solely on individual tokens. This approach ensures that the
retrieved evidence is not only relevant but also contextually coherent.

The implications for model design suggest that future models should prioritize
sentence-level and combined-level approaches for evidence retrieval tasks. Combin-
ing sentence-level context with token-level details can lead to more accurate and
reliable fact-checking systems. Moreover, the results indicate that optimizing for
sentence-level relevance may yield the best immediate improvements in precision
and recall, while combined-level optimization can enhance the balance between
these metrics, resulting in robust overall performance.

b. Claim Verification - The findings presented in the classification task of
Table [3| indicate excellent performance across various metrics, particularly at the
top-2 and top-3 ranks, with the highest accuracy and F1-Score observed at the
top-3 level for our claim verification system. Furthermore, the combined-level
ranking consistently outperforms both token-level and sentence-level rankings,
emphasizing the significance of integrating multilevel information for evidence
retrieval. Additionally, the results imply that leveraging the top-ranked pieces of
evidence yields optimal overall performance by effectively balancing precision,
recall, F1-Score, and label accuracy (LA).
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4.1.2 Beyond DisFact: FEVER and SciFact

In expanding the assessment of our automatic fact verification pipeline, we
extended our evaluation to encompass the FEVER and SciFact datasets. The
FEVER dataset, a publicly available dataset with 185,455 claims, is manually
annotated and accompanied by 5,416,537 supporting Wikipedia documents. On
the other hand, SciFact, which shares similarities in structure with FEVER,
comprises scientific articles and encompasses 1,409 claims along with 5,183 article
abstracts. This expansion broadens the scope and generalizability of our study
and provides a more comprehensive understanding of the performance of our
methods across different datasets. It is worth noting that our evaluation was on
the training and development sets of both datasets.

a. FEVER - For the FEVER evidence retrieval task, our DisRev model demon-
strates superior precision and F1-score compared to other models, as illustrated
in Table [4, thereby showcasing its effectiveness in identifying relevant evidence.
The DisRev model exhibits a significant improvement of 12% in precision and
approximately 9% in Fl-score over its closest counterpart, KGAT. However, our
recall lags slightly behind that of KGAT. Analysis of Table 5 reveals that our
DisC model surpasses all other models in the FEVER classification task with an
accuracy of 85.93%, signifying its exceptional performance in validating claims
based on retrieved evidence. Furthermore, our model outperforms the nearest
competitor, ProoFVer-SB, by 5% in label accuracy.
Table 5: revER £4 score Table 6: Bvatuation on SeiFact

Table 4: FEVER Retrieval Model Label Acc del SS Only SSFLabel
Model P R F1_|[Stammbach [21] 80.59 Models R P | R [ F1
Stammbach [21]] 25.49 | 90.79 | 39.81 |[ProoF Ver-SB [3] 80.74 Zhang [9] 60.7 |67.0|52.1]58.7
KGAT [20] 27.29 |94.37| 42.34 |[KGAT [20] 78.29 Wadden [17]| 43.4 | 48.5|38.8[43.1
DREAM [1] 26.67 | 87.64 | 40.90 |[GEAR |2] 74.84 Pradeep |6] 57.4 | 60.8]53.8|57.1
Soleimani [18] | 24.97 | 88.32 | 38.93 |[DREAM [1] 79.16 [T 5] 57.4 | 63.8|48.9]55.2
Ours (DisRev) |39.46]87.71 |50.89|[Soleimani 18] 74.59 Zhang [4] 58.5 | 66.5|51.1]57.8
Ours (DisC) 85.93 Ours (Both)| 87.7 |75.7|74.3|75.0

b. SciFact - Our DisRev model demonstrates exceptional performance within the
SciFact dataset, achieving an 87.7% recall and 75.0% F1 score, thus clearly out-
performing other models documented in Table [6] This underscores the proficiency
of our model in effectively generalizing scientific claims, surpassing the scope of
the disaster dataset. Given that recall holds greater significance in retrieval tasks,
our model notably surpasses the subsequent best model in recall, achieving 27%
for sentence selection exclusively. Furthermore, for sentence selection combined
with labeling, our model excels across all metrics compared to the closest models.

Our model’s ideal performance can be attributed to incorporating straightfor-
ward and precise relevance and similarity methods. These techniques guarantee
the prioritization of the most pertinent evidence, enhancing precision and recall
metrics. Additionally, our approach harnesses the power of context-aware pre-
trained embedding models, benefiting from comprehensive pre-training across
diverse datasets, consequently bolstering its generalization prowess.

5 Limitation

a. Domain Shift/Mismatch: In claim generation, we train T5 on FEVER
data but used it for DisFact generated data resulted in a few hallucinated claim
due to domain shift and data mismatch, which were manually corrected. T5
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sometimes struggles to differentiate between generating claims based on input
data and relying on pre-learned knowledge, leading to errors with unfamiliar
concepts, vocabulary, or styles in the claims.

b. Impact of Noisy Data: Despite using preprocessing to eliminate noise,
generating claims from the FEMA dataset may still require these noises, such as
special characters like the dollar ($) sign (for example, if $450 used in a claim was
preprocessed to be 450). However, this noise could actually enhance the DisRev
model’s ability to support or refute claims. By analyzing the impact of this noise,
we could uncover opportunities to improve the model’s robustness.

c. Challenges with Long Documents: DisFact tackles long-document prob-
lems using BigBird, a model that can handle sequences of up to 4096 tokens via
sparse attention. However, the model might still need help with sequences beyond
this limit or when crucial information spans multiple segments. Investigating
these cases is crucial, as doing so could suggest better segmentation techniques
or models that capture cross-segment relationships more effectively.

6 Conclusion and Future Work

DisFact’s use of embeddings (without additional training) for evidence retrieval
and automatic dataset generation from the FEMA website has significantly
advanced fact-checking for disaster-related claims. By integrating contextual
relevancy and similarity information through pre-trained models, DisFact has
outperformed existing methods. Its capability to handle long documents and
diverse datasets underscores its robustness in real-time fact-checking scenarios.
These findings validate DisFact’s potential to greatly improve the accuracy and
reliability of automated fact-checking systems in disaster management contexts.
In the future, the focus will be on expanding the dataset to encompass a wider
array of disaster-related and social media data sources. This expansion aims
to enhance DisFact’s capabilities and position it as a premier automated fact-
checking solution for disaster management and other fields.
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