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Abstract—In the digital communication age, using social
media data to classify first responders presents a new and
promising approach to enhancing emergency response strategies.
We introduce the First Responder Classification System (FReCS),
a framework that annotates and classifies disaster tweets from 26
crisis events. Our annotations cater for first reponders and their
sub-layers. Furthermore, we proposed a classifier called RoOBERTa-
CAFE that integrates pre-trained ROBERTa with Cross-Attention
and Focused-Entanglement components, improving the precision
and reliability of classification tasks. The model is rigorously
tested across publicly available disaster datasets. The RoBERTa-
CAFE model outperformed state-of-the-art models in identifying
relevant emergency communications, displaying its generalization,
robustness, and adaptability. Our FReCS approach offers a
pioneering technique for classifying first responders and enhances
emergency management systems’ operational capabilities, leading
to more efficient and effective disaster responses. FReCS annotated
dataset and code are available on this Link.

Index Terms—Data Annotation, Social Media, Emergency
Management, First Responder, Transformer

I. INTRODUCTION

First responders are crucial in disaster response, playing a
vital role in safeguarding lives, properties, and communities
as a whole [1]. Their prompt response to emergencies is
significant, enabling swift and effective action in disaster
situations [2]. This immediacy is vital for mitigating the impact
of disasters, potentially addressing immediate needs in order to
achieve the aforementioned roles [3]. The predominant focus
of research in disaster management has been on the individuals
and communities directly affected by calamitous events, with
comparatively less emphasis on the experiences of professionals
such as police officers and firefighters.

Despite their importance, the effectiveness of first responders
varies significantly across different types of disasters. For
instance, the San Diego wildfires witnessed the effective
deployment of first responders. Emergency managers and
public health professionals played a crucial role in integrating
their prevention and response efforts, effectively managing the
significant disasters faced by the communities [4]. Similarly,
the response to mental health calls by first responders following
Hurricane Harvey provides insight into the emergency service
utilization during the disaster. This study examines the effects
of Hurricane Harvey on mental health calls to Emergency
Medical Services (EMS) and the Houston Police Department
[5], demonstrating the critical role of first responders in
managing complex emergencies.

However, the response to Hurricane Harvey also exposed
some critical challenges, particularly in the context of Graduate

Medical Education (GME) disaster planning at Corpus Christi
Medical Center (CCMC). This situation underscored the need
for more robust and effective disaster planning within GME
programs, highlighting gaps in preparedness and response
capabilities [[6]. Another significant challenge encountered in
disaster management, particularly highlighted during Hurricane
Harvey, is the need for accurate data classification for first
responders. This issue led to miscommunication between users
and responders or volunteers, as evidenced in the event [[7]. This
gap in clear and accurate information exchange impeded the ef-
fective coordination of emergency response efforts, showcasing
the need for improved data classification and communication
strategies in disaster response. Furthermore, the response to
Hurricane Maria brought to light significant challenges in
managing disaster complexities and data management. This
highlighted an urgent need for an automatic first responder
classification system and communication strategy improvements
during disaster response, emphasizing enhanced tools and
methodologies for managing large-scale emergencies [8].
The absence of a structured classification system for re-
sponders in disaster management can lead to significant
inefficiencies and heightened risks during emergency responses.
As noted by [9]], without a clear delineation and classification of
roles, first responders may face challenges in coordination and
communication, potentially leading to delayed response times,
misallocation of resources, and increased risks to responders
and affected populations. This lack of organization can worsen
the impact of the disaster and impede recovery efforts [9].
The utilization of Social Media (SM) platforms, particularly
X (formerly known as Twitter), in disaster management has
been increasingly recognized. An online survey conducted
among X users who sought help through tweets during
Hurricane Harvey revealed a significant finding: 91% of these
users reported that X was a valuable tool for facilitating the
rescue of affected victims [10]. This statistic reinstated the
growing importance of SM platforms in emergency response.
SM data can effectively supplement traditional systems like
dispatch calls, mostly used in emergency services [11]].
Integrating SM data to classify first responders offer sev-
eral transformative advantages, thereby enhancing disaster
response’s overall efficiency and effectiveness [1]], such as: 1.
facilitating the efficient allocation of resources for informed
and effective response strategies [12], 2. fostering greater
public engagement by responding effectively in times of crisis
as a critical service [11], 3. Scalability of the traditional
system using SM platforms to handle large volumes of data,
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enabling the monitoring and response to multiple incidents
simultaneously, which is too complicated and complex for
manual systems [1], 4. Stabilization plays a pivotal role in
providing immediate assistance, ranging from medical aid
and rescue operations to initial damage assessment [[13]. 5.
Psychological support, in addition to physical assistance, first
responders are instrumental in helping victims to calm, reassure,
and assist individuals in shock or distress, which is essential
in mitigating immediate psychological impacts [14].

To address the challenges mentioned earlier and explore
the benefits of integrating X data for emergency response, we
propose FReCS, a First Responder Classification System. The
objective of FReCS is to re-annotate 26 crises for the purpose of
first responder classification while also presenting a transformer-
based model for classification tasks. Moreover, the model also
includes a secondary classification to determine the specific
sub-personnel required for crisis and emergency situations. Our
FReCS system comprises four major classification tasks as
shown in Figure [T} (1.) Relevancy, (2.) Disaster Type, (3.) First
Responder, and (4.) Secondary Classification.

In order to achieve our objective, we have employed a
combination of sophisticated deep-learning techniques, which
include the utilization of a pre-trained transformer model and
a variety of customized attention mechanisms. As a result, our
classifier, RoBERTa-CAFE, is composed of a ROBERTa model
that incorporates Cross, Adaptive, and Focused-Entanglement
Components, which we employed to classify various tasks
and events based on X textual data for binary and multiclass
classification purposes. The primary aim of this study was to
address the following research questions:

To achieve this goal, we employ a blend of advanced
deep-learning techniques, including a pre-trained transformer
model and multiple custom attention mechanisms. Hence,
our classifier, RoBERTa-CAFE, comprised of a RoOBERTa
with Cross, Adaptive, and Focused-Entanglement Components
which we used to classify different tasks and events based on
textual X data for binary and multiclass classification. The study
aimed to provide answers to the following research questions:

o Research Question 1: How can we accurately classify the
appropriate type of first responder for different emergency
and crisis conditions?

o Research Question 2: Is it feasible to categorize first re-
sponders into sub-types that are customized to the specific
needs and contextual demands of unique situations?

Given tweets’ complex and semi-structured nature, manually
analyzing large amounts of tweets to understand their emotions
can be daunting. To address this challenge, deep learning
models have become increasingly crucial in formulating a better
context and understanding of users’ emotions. By leveraging
these models, we can gain insights into the reasons behind the
emotions and actions of soccer fans on Twitter.

This paper employs transformer-based models to classify
emotions in soccer tweets using high-level and low-level
approaches in the FIFA World Cup Twitter dataset.

The following are our major contributions to this work:

o We annotated 27,933 disaster tweets for first responders
using the CrisisLexT26 dataset [[15]. This framework
introduces specific categories for first responders such
as Police, EMS, and Firefighters. These classes enable
more accurate analysis and classification of crisis-related
tweets, thereby improving model training for disaster
management. The framework enhances the practical use of
SM data in crisis scenarios and strengthens the efficiency
of emergency response coordination via digital platforms.

« To achieve specificity and clarity in response, we intro-
duced a secondary annotation to add sub-layers to the first
responder category. This process specifies sub-personnel
roles such as Mobile Medical Units, Crime Prevention
Teams, and Urban Search and Rescue teams for various
crises. This detailed annotation allows for more precise
resource deployment. It improves the dataset’s utility for
deeper analysis and modeling, enhancing the effectiveness
of emergency management systems utilizing SM data.

o To ensure the reliability and accuracy of the dataset
annotations, we used the Fleiss Kappa measure to assess
the consistency of annotations among different annotators.
Our inter-annotator agreement rating for first responder
and secondary labels was 0.89 and 0.85, respectively.

o Our study introduces ROBERTa-CAFE, a modified pre-
trained ROBERTa model enhanced with Cross-Attention
and Focused-Entanglement Components to handle com-
plex data better in crisis scenarios. This model incorporates
Multi-Head Attention and an Adaptive Feed-Forward
Network, which enhances its ability to filter and prioritize
relevant SM information. The model demonstrates high
effectiveness, with F1 and accuracy scores ranging from
86% to 100% across the four tasks. Our model significantly
enhances the accuracy and reliability of automated disaster
management systems in real-time applications.

« We validate the ROBERTa-CAFE model’s effectiveness
across diverse scenarios, showcasing its generalizability,
consistency, robustness, and adaptability. The model effec-
tively classifies data from various crises, tested on datasets
such as CrisisLexT6 and CrisisBench, as well as specific
events like the Nepal Earthquake and Queensland Floods.
Its consistent high performance across different validation
methods, including k-fold cross-validation, affirms its
reliability as a tool for real-time crisis management.

II. RELATED WORK

Recent evolutions in disaster management and first responder
effectiveness have highlighted the role of integrating technology,
policy development, and comprehensive training. These mutual
efforts aim to improve response times, situational awareness,
and overall outcomes during emergencies and disasters.

[16] identified a gap in real-time access to building system
data for emergency responders, emphasizing the potential to
significantly enhance situational awareness and reduce response
times. They proposed a roadmap to overcome challenges in
securely transmitting and processing building sensor data to



first responders, emphasizing the need for a systemic approach
to improve emergency response via informed decision-making.

Similarly, [1]] introduced the ONSIDE, which leverages SM
platforms to streamline disaster response coordination. By
integrating Information-Centric Networking with a SM Engine,
ONSIDE addresses the real-time analysis challenges of SM
data, utilizing natural language processing to ensure rapid and
relevant information delivery to first responders.

In aviation safety, [17] proposed an In-Time Aviation
Safety Management System designed specifically for UAS
and autonomous systems in emergency scenarios. This system
emphasizes predictive modeling to proactively identify and
mitigate risks, highlighting the need for scenario testing to
identify new safety data requirements and operational hurdles.

Furthermore, emphasizing the role of education, [18] ex-
plored the impact of an Emergency First Response (EFR)
training program at Tecnolégico de Monterrey. Their findings
underscored the importance of integrating emergency response
training within higher education to enhance EFR skills across
various disciplines, improving community and workplace safety.

Addressing the communication challenges in disaster scenar-
ios, [19] presented ReDiCom, a resilient architecture designed
to enhance first responder communication. By supporting
network resilience and utilizing coded computation, ReDiCom
facilitates efficient information dissemination and resource
management, underscoring the potential of technological ad-
vancements in improving disaster management.

On the policy front, [20] examined state-level policies ad-
dressing first responder mental health. Their study categorized
policies into workers’ compensation-related and non-workers’
compensation-related, highlighting legislative efforts to support
first responders facing adverse mental health outcomes due to
occupational trauma and the need for systematic evaluations
to establish evidence-based mental health care practices.

Lastly, [21] developed SOSFloodFinder, a system utilizing
NLP and GPS technologies to classify urgency in emergency
communications from flood victims. This innovation demon-
strates how technology can enhance the precision and efficiency
of first responder activities during floods, contributing to the
broader goal of improving disaster management and response.

These studies demonstrate a comprehensive approach to
enhancing the efficiency and effectiveness of emergency
management and first responder activities. These efforts aim to
improve safety, efficiency, and outcomes in disaster response
and emergency situations by leveraging technology, policy
development, and targeted training. However, FReCS stands
apart from existing studies by incorporating sub-types into the
first responder category. This allows for identifying specialized
personnel (such as those in the police units responsible for crim-
inal activities). This approach enables customized responses to
unique emergency situations instead of a generalized approach
that treats all situations with the same protocol.

III. OUR APPROACH

This section outlines our methodology for accurately catego-
rizing tweets for emergency response coordination. This process

involves dataset annotation and a multi-level classification
framework, as shown in Figure [1} We further provide a detailed
explanation of each step in the following subsection.

A. Dataset and Annotation Process

In this study, we utilized the CrisisLexT26 dataset [15]], com-
prising about 28,000 tweets across 26 crisis events from 2012
and 2013, initially annotated by crowdsourced workers based on
event types (e.g., Flood, Wildfire, Earthquake), informativeness,
information types (e.g., caution and advice, infrastructure
damage), and information sources (e.g., governments, NGOs).
For detailed documentation on the crowdsourced annotations,
see [15]. Notably, the dataset lacked annotations for first
responders and secondary classifications. To fill this gap, we
conducted a detailed annotation process over two months with
a team of three students (two annotators and one experienced
moderator). Our initial primary annotation encompassed four
label classes for first responders: Police, EMS, Firefighter, and
Other, aligning with FEMA standards. While recognizing that
some regions classify additional agencies as first responders,
we maintained these three primary categories for consistency
across different jurisdictions. For secondary annotations, we
initially introduced nine label categories: Mobile Medical
Unit (MMU), Community Emergency Response Team (CERT),
Crime Protection/Prevention Unit (CPU), Dispatch Call Center
(DCC), Traffic Enforcement Unit (TEU), Hazardous Materials
(HAZMAT), Fire Control (FC), Urban Search and Rescue
(USAR), and Other. Table [ shows the class-label distribution.

First Responder Labels ‘ Secondary Class Labels

Police: 3953, EMS: 753, Firefighter: 1248,
Police/EMS: 488, Police/Firefighter: 450, Fire-
fighter/EMS: 181, Police/Firefighter/EMS: 290,
Other: 20570

FC/USAR: 53, MMU: 481, USAR/MMU: 90, USAR: 236,
FC/MMU: 65, FC: 634, DCC/USAR/MMU: 290, DCC/MMU: 385,
DCC/USAR: 450, DCC: 2435, CERT/MMU: 158, CERT: 114,
CPU/MMU: 103, CPU: 315, HAZMAT: 325, HAZMAT/MMU:
26, TEU: 80, Other: 20570

TABLE I: Label Distribution for Task 3 and 4

This classification allowed for a more nuanced assignment
of resources, with DCC and TEU functioning as sub-layers
of Police; CERT and MMU under EMS; and FC, HAZMAT,
and USAR under Firefighter. This secondary classification
aimed to enhance operational specificity and improve response
efficiency by deploying the most suitable responder team to
each unique emergency. During the annotation, it became
evident that some tweets required the simultaneous deployment
of multiple responder types. We addressed this complexity
by assigning multiple labels where necessary, expanding the
first responder and secondary classification labels from four to
eight and nine to eighteen, respectively, as shown in Figure [I]
Following the initial annotation phase, we engaged in a rigorous
review process. This collaborative approach involved annotators
actively verifying each other’s work, with the experienced
moderator resolving any disagreements. We then assessed the
consistency of these annotations through the inter-annotator
agreement process. Each annotator rated their agreement with
a score of 1 or disagreement with a score of 0. We employed
the Fleiss Kappa statistical measure [22] to gauge the level
of consensus among annotators. The results revealed a high
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Fig. 1: FReCS Proposed System Framework.

consistency rate, with a Fleiss Kappa score of 0.89 and 0.85
for first responder and secondary labels, respectively, indicating
substantial agreement and affirming the reliability and accuracy
of our annotations. The dataset is is available on |Github.

Our preprocessing steps include normalizing text [23], re-
moving duplicates and extraneous links [24], special characters
and stopwords to ensure accurate and reliable deep learning
analysis.

B. RoBERTua-CAFE Classifier

Our classifier model, RoBERTa-CAFE (Cross-Attention
and Focused-Entanglement) include classification of Task 1
(Relevancy), Task 2 (Disaster Type), Task 3 (First Responder)
and Task 4 (Secondary layers), which integrates advanced
attention mechanisms and RoBERTa’s contextual embeddings
to accurately classify disaster tweets for different tasks. The
model has several core components, as shown in Figure Q

Tokenize Tweet i
BTG calapsed aonmiown i

Multi-Head Attention
3

s-Attention Module

RoBERTa Contextual Embeddings

Disentangled Attention Adaptive Feed Forward Network

Fig. 2: RoBERTa-CAFE Classifier

(1) RoBERTa contextual embeddings I]E]: RoBERTa,
an advanced version of BERT, forms the backbone of the
RoBERTa-CAFE model, providing the ability to generate deep
contextual embeddings. These embeddings enable the model
to understand subtle language dynamics. The embeddings are
expressed as follows:

E = Eiokens + Epositions @D

We then process the input embeddings through multiple layers
of transformer block, each block consisting of:

o Multi-Head Self-Attention, which allows the model to
attend to different parts of the input sequence:

MultiHead(Q, K, V) = Concat(heady, . . ., headp)W®  (2)

« Additionally, a position-wise fully connected feed-forward
network is applied to each position separately and identi-
cally in each layer:

FFN(x) = max(0,2W1 + b1)Wa + b2 3)

o To aid in stabilizing the learning process, residual con-
nections and layer normalization are used. The output is
obtained by adding the output of the sublayer operation
to the input, followed by layer normalization:

output = LayerNorm(x + Sublayer(x)) 4)

Where Sublayer(x) is the operation by the multi-head
attention or the feed-forward network.

(2) Cross-Attention Module (CAM): integrates external
contextual information with ROBERTa’s embeddings [27]). This
mechanism allows the model to focus on specific parts of
the text by considering the additional context provided, thus
enhancing its ability to adapt to various situations and datasets.
The module is an extension of the self-attention mechanism and
is applied between two different sets of inputs: the main input
x and the context input context. Our CAM module comprises
multiple steps:

o A linear transformation of the x (query) and context (key
and value) inputs into query, key, and value spaces:

Q = Wyz+by, K = Wycontext+bg, V = Wycontext+b, (5)

Where Wy, Wy, W, are weight matrices and by, by, b, are
biases for queries, keys, and values, respectively.

« Attention scores are computed by taking the dot product
of the query with the key of each element in the context
and dividing it by the square root of the dimension of
keys to stabilize gradients during training:

QKT
Vi,
Where dy, is the dimensionality of the keys.

o We applied the softmax function to the scores to obtain
the attention weights:

scores =

©)

attention weights = softmax(scores) @)
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o The output is computed as a weighted sum of the values
with the weights given by the attention weights:

output = attention weights - V' (8)

o Finally, the output is summed with the input to let the
layer perform as a residual connection:

attended output = output 4 = (O]

(3) Disentangled Attention (DeA): This component divides
the attention mechanism into various paths (aspects) to aid
the model in separately and simultaneously learning different
kinds of features from the data [28], such as semantic and
syntactic features. This division helps capture the diverse
nature of language used in disaster-related communications
more efficiently. In the DeA module, we processed two
separate aspects of the input using sigmoid-activated linear
transformations. It allows the layer to concentrate on different
input aspects or features independently. The output is obtained
by combining the two aspects and multiplying it with the input.
The mechanism is represented as:

aspect, (z) = o(Wix + b1) and aspecty(z) = o(Waz + b2) (10)

output = (aspect, (x) + aspecty(z)) - (11)

Where o is the sigmoid function, Wi, W, are the weight
matrices, by, by are bias vectors, and z is the input.

(4) Multi-Head Attention (MHA): is a mechanism that
allows models to attend to different representation subspaces
at different positions, enabling them to capture a variety of
dependencies in the input [29]. With multiple ’heads, the
model can capture a variety of dependencies in the input, such
as those between different key terms in disaster data, which is
crucial for accurate classification. Our MHA module divides
the model’s attention into multiple "heads,” allowing it to attend
to different parts of the input simultaneously. We represent the
breakdown of the multi-head as follows:

Q=WoX, K=WgX, and V =Wy X (12)

K
Attention(Q, K, V) = softmax <L (13)

)Y

MultiHead(Q, K, V) = Concat(heady, . . ., headh)WO (14)

Where heads are the individual attention outputs and W is
another learned parameter matrix.

(5) Adaptive Feed Forward Network (AFFN): This is
composed of feed-forward layers that utilize gating mechanisms,
such as GLUs, to regulate the flow of information. This network
adapts by enhancing or reducing feature representations,
enabling it to focus on relevant features while discarding less
important data [30].

xnew = GLUW;x +b;) = (W12 +b;,1) @ c (Wi oz + b 2)  (15)

Where W, 1, W, 2 and b; 1,b; o are the weights and biases of
the linear transformations, o is the sigmoid activation function,
and ® denotes element-wise multiplication.

(6) Classification Layer: The final layer of the model is
a linear layer that maps the enriched text representations to

the output classes, which correspond to different classifications
under different tasks. This makes the model a valuable tool
for automated disaster response systems.

Uniqueness: Our ROBERTa—CAFE is unique as it integrate
enhanced attention mechanisms (CAM and DeA) that allows the
model to focus on what is being said and how different aspects
of the information related to external contexts and internal text
structures. It also provides robust feature processing (AFFN
and MHA) that ensures the model can efficiently process a wide
array of textual features, enhancing the classifier’s accuracy
and flexibility across diverse disaster-related datasets.

IV. RESULTS

This section outlines the experimental validation of the
methods introduced previously. The performance of our models
was rigorously tested through train/test splits and k-fold cross-
validation, employing metrics such as accuracy, precision, recall,
and F1 score. These experiments were performed on a robust
computational system featuring dual NVIDIA® Tesla V100
GPUs and an Intel® Xeon® Gold CPU, offering substantial
computing power to meet the intensive processing requirements
of our deep learning frameworks.

A. Model Training and Testing

Our RoBERTa-CAFE classifier employs advanced neural
network architectures for accurate tweet classification. Recall in
Section that we use sophisticated attention mechanisms,
including cross-attention, disentangled attention, multi-head
attention, and an adaptive feed-forward network, to effectively
handle complex textual dependencies.

Preprocessed tweets use RoOBERTa’s tokenizer to transform
the text into token sequences. The tokens are managed by
a custom PyTorch Dataset class for optimized batching and
loading during training and testing. The ROBERTa-CAFE model
is trained on a labeled dataset, split into different training and
testing sets, using a Dataloader for efficient batch processing.
We use RAdam and a learning rate scheduler to optimize
training and achieve stable convergence in multiple epochs.
The training process involves minimizing the cross-entropy
loss for multi-class and binary classification tasks by adjusting
model weights iteratively. Our hyperparameters are shown in
Table [T

The model’s performance is assessed using the metrics de-
scribed, including classification reports, after thorough training.
This evaluation process examines the model’s classification
accuracy and its capacity to generalize to unseen data, ensuring
that the RoOBERTa-CAFE classifier effectively learns from
the training data and remains robust when faced with new
datasets. More information about our model training and
hyperparameters can be found in our code on this link.

B. Train/Test Split Vs. K-fold Cross Validation

For all four tasks, our study tested different train/test splits
(90/10, 80/20, 70/30, 60/40) and cross-fold validations (5, 10,
and 15). Our analysis indicates that the performance metrics
results for different train/test splits ranging from 90/10 to
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TABLE II: Hyperparameters and their values for the Disaster
Type Classifier model

Hyperparameter Value
Input Dimensions 768
Number of Heads in MHA 8

AFFN Dimension 2048

Depth of AFFN 2 layers

Dropout Rate 0.2

Number of Classes Variable (as per task)
Batch Size 64

Optimizer RAdam

Learning Rate 2 x 1075

Loss Function CrossEntropyLoss/BCE

Learning Rate Scheduler Step LR (gamma=0.1, step size=10)
Epochs 10
Max Length for Tokenization 128 characters

60/40 are highly consistent. This uniformity is illustrated in
Table [IT]] by the matched F1 score and accuracy results across
all tasks. The outcome of our analysis suggests that there are no
significant differences in the performance metrics attributable to
the proportion of the split, thus indicating the model’s stability.
Moreover, the cross-fold validation results comprising 5, 10,
and 15 folds, as demonstrated in Table [[V] show comparable
outcomes with negligible variances. The consistency of the
results across various split ratios and cross-validation folds
highlights the robustness of our model, which confirms its
reliability irrespective of data segmentation methods.

C. Task I and Task 2

Our RoBERTa-CAFE model outperforms [Iﬂll model in Task
1 as proven in Table [V, which focuses on relevancy. RoBERTa-
CAFE achieved a recall improvement of 20% and an F1 score
of 0.93, showing a 14% improvement over []i]’s F1 score.
ROBERTa-CAFE’s higher difference recall suggests that it is
better at identifying relevant cases, while the increased precision
suggests that its relevancy classification is more accurate. The
higher F1 score confirms that ROBERTa-CAFE has a better
balance of precision and recall, as shown in Table E

Both the RoOBERTa-CAFE and the [Ii] model achieved
perfect scores in Task 2, which involves classifying disaster
types. This indicates that both models are highly effective in
accurately identifying all relevant cases without false positives
or negatives. Furthermore, there is no significant difference in
performance metrics between the two models for this task.

D. Task 3 and Task 4

Due to the uniqueness of our annotation labels, which creates
a gap of not having related work to compare with, we evaluated
the performance of the ROBERTa-CAFE model against four
baseline classifiers: Decision Tree - DT, Naive Bayes - NB,
Support Vector Machine - SVM, and Logistic Regression - LR
in Tasks 3 and 4, which involved first responder and secondary
classification. The implementation of the four baselines is
similar to the work of [32]. The results from Table [VI and
showed that RoBERTa-CAFE provided a competitive approach
with high and consistent scores across metrics, demonstrating
its robustness in handling the tasks’ unique requirements.

The model’s performance was particularly notable for main-
taining high accuracy and recall, which are crucial for reliable
disaster response applications. ROBERTa-CAFE performed well
in the recall, which is a critical factor in secondary classification
tasks. It showed effectiveness in handling complex classification
tasks, as demonstrated by its high F1 scores across all splits.
The model’s accuracies were also consistently high, indicating
reliable performance across different data partitions.

E. Ablation Study

In our experiments, we analyzed the impact of custom
attention layers on the performance of the RoOBERTa-CAFE
classifier. We compared the RoOBERTa-CAFE with a version
without custom attention layers (CAFE) across four tasks and
train/test splits, using F1 scores as the benchmark. The results
showed that incorporating custom attention layers improved
the ROBERTa-CAFE’s performance, as shown in Figure

F1-Score

Task 1 Task 2 Task 3 Task 4
Tasks

Fig. 3: ROBERTa—CAFE Vs finetuned RoBERTa without CAFE

The RoBERTa-CAFE model consistently outperformed the
RoBERTa w/o CAFE model in Task 1 for all train/test dataset
splits. For Task 2, both models performed well, with the CAFE
layers not showing a significant performance enhancement;
this is attributed to the straightforward and distinguishable
characteristics inherent in this classification task. Task 3
demonstrated a noticeable improvement in performance for the
RoBERTa-CAFE model compared to the RoBERTa w/o CAFE
model, with the most significant increase in F1 score observed
in the 90/10 data split. Task 4 showed a robust enhancement in
the ROBERTa-CAFE model’s performance, particularly in the
60/40 split, where the CAFE layers resulted in a 15% increase
in F1 score over the ROBERTa w/o CAFE model.

FE. Beyond FReCS: CrisisLexT6, CrisisBench, NEQ and QFL

In our study, we extended the RoBERTa-CAFE model to
analyze its performance on various publicly available crisis-
related datasets to evaluate its effectiveness and generalizability
beyond the FReCS dataset. We considered four datasets:
CrisisLexT6, CrisisBench, Nepal Earthquake (NEQ), and
Queensland Flood (QFL). Subsequently, we summarize our
findings and highlight the comparison with existing models,
thereby demonstrating the robust capabilities of RoBERTa-
CAFE across diverse crisis communication scenarios.
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Task 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00| 1.00 0.99 1.00 1.00 1.00 1.00 1.00 || 1.00 099 099 099 099 099 099 | 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Task 3 0.71 0.70 0.70 0.87 0.87 0.87 0.87| 0.71 0.72 0.71 0.87 0.87 0.87 0.87 | 0.67 071 0.68 0.87 0.87 0.87 0.87 | 0.68 0.69 0.68 0.86 0.86 0.86 0.86
Task 4 0.58 0.66 0.60 0.87 0.86 0.86 0.86] 0.65 0.54 0.57 0.86 0.86 0.85 0.86 || 0.61 059 059 0.86 0.85 0.85 0.85]0.59 0.57 056 0.86 0.84 0.85 0.84

TABLE III: Performance metrics for our 4 tasks under different train/test splits using ROBERTa—CAFE.
Split 5-Fold 10-Fold 15-Fold
M Macro Average Weighted Average Macro Average Weighted Average Macro Average Weighted Average

Pr Re F1 Pr Re F1 Acc Pr Re F1 Pr Re F1 Acc Pr Re F1 Pr Re F1 Acc
Task 1 085 081 082 093 094 093 094 085 081 083 093 094 093 094 0.85 081 0.83 093 094 093 094
Task 2 .00 1.00 1.00 1.00 100 1.00 1.00 1.00  1.00 1.00 1.00 1.00 1.00 1.00 .00 1.00 1.00 1.00 100 1.00 1.00
Task 3 068 072 070 087 086 0.86 0.86 069 072 070 0.88 0.87 0.87 0.87 0.67 071 0.69 0.87 0.86 0.87 086
Task 4 060 062 060 086 086 0.86 0.86 062 063 061 087 0.86 0.86 0.86 058 063 059 086 0.86 0.86 0.86

TABLE IV: Performance metrics for our 4 tasks under different folds using ROBERTa—CAFE.

TABLE V: Performance of Task 1 and 2

Task 1 — Relevancy || Task 2 - Disaster Type

Model P R F1 || P R F1
Burel et al. 31 087 074 079 100 100 100
RoBERTa - CAFE 093 094 093 100 100 100

NEQ dataset from Table [[X, RoOBERTa-CAFE, significantly
outperformed [34] by increasing all metrics by 17 points,
achieving 0.79 across these metrics. Similarly, in the QFL
dataset, ROBERTa-CAFE’s performance outperformed [34] by
achieving an impressive score difference of 0.17 for precision,
0.16 for recall and F1 score, marking substantial improvements.

Regarding the CrisisLexT6 dataset from Table [X, ROBERTa-
CAFE achieved an accuracy and macro-F1 score of 0.95,
matching the performance of the best existing model by
[35] and slightly outperforming [36] on accuracy. As for the
CrisisBench dataset in Table |\7gj, RoBERTa-CAFE mirrored
the performance of 33| across all metrics.

These results affirm the versatility of our ROBERTa-CAFE
model in handling a range of crisis-related communications
with high precision and reliability. Its ability to adapt and
maintain high performance across various datasets stresses its
potential as a powerful crisis management and response tool.

V. CONCLUSION AND FUTURE WORK

The effectiveness of FReCS, a First Responder Classification
System that utilizes the advanced capabilities of the ROBERTa-
CAFE model to scrutinize and classify SM data for emergency
response purposes, has been demonstrated in this study.
Our findings reveal that integrating refined custom attention
mechanisms into the pre-trained RoOBERTa model significantly
enhances FReCS’s precision and speed in identifying rele-
vant emergency-related communications. The system’s robust
performance across various datasets highlights its potential
to revolutionize the landscape of disaster management by
providing timely and accurate information crucial for first
responder deployment efficiency.

In future research, we plan to enhance the system’s ap-
plicability and reliability across different geographical and
cultural contexts; we intend to expand the dataset to include a
more extensive range of languages. Additionally, integrating

multimedia data, such as images and videos to enrich the
system’s contextual understanding and response accuracy.
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