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Abstract—Windings are the fundamental components of 
electric machines. Conventional winding analysis methods or tools 
include slot diagrams, star diagrams, phasor diagrams, winding 
functions, etc. This paper presents a new tool for winding analysis 
that encompasses the essential idea behind these conventional 
methods and at the same time facilitates computations. The idea is 
based on the relationship among multiple concepts specifically 
associated with electric machine windings, including magnetic, 
electrical, layer, and phase orders. Such a relationship can be 
described through tensors. Five example windings, namely 
fractional slot, full-pitch, short-pitch, concentric, and hairpin 
windings, are presented to illustrate the proposed framework. 
Furthermore, we discuss how we will use this new representation 
method to explore new winding configurations. 

Keywords—electric machine winding, matrix, tensor, winding 
function 

I. INTRODUCTION 
Windings are the fundamental component of electric motors 

and generators, or collectively electric machines (EMs). 
Together with current excitation, they provide magnetomotive 
forces (MMF) that facilitate force or torque production. 
Windings have received research and development attention 
given their significant role in EMs. For example, fractional slot 
concentrated windings are used to significantly increase the 
inductance in surface permanent magnet EMs (SPMs) and thus 
improve their flux-weakening capability [1]. Another example 
is the usage of hairpin windings in interior permanent magnet 
EMs (IPMs) to maximize the slot-filling factor so that 
conduction losses are minimized [2]. Applications like drones, 
servos, and EVs have driven these studies. 

For the purpose of designing EMs, there are four main 
methods of winding analysis: slot diagrams, star diagrams, 
phasor diagrams, and winding functions [3], [4]. They are 
illustrated in Fig. 1 through an example winding (18-slot, 3-
phase, 2-pole, short-pitch winding). Their advantages and 
disadvantages are summarized below: 

• a slot diagram presents the layout of coils and their 
interconnections clearly, but the phase relationship among 
coils or windings requires closely following the coil 
routing, which leads to the corresponding star diagram; 

• a star diagram is almost the opposite of its corresponding 
slot diagram in terms of the information it displays. It 
mitigates the drawbacks of slot diagram mentioned above, 

but the information about coil side layout and 
interconnection is lost; 

• a phasor diagram groups the phasors in the star diagram 
and aggregates them to produce the phasors for each 
phase. It inherits the disadvantages of the star diagram; 

• a winding function encodes the layout of coil sides and the 
number of turns. However, similar to the star diagram, the 
coil side interconnection is not represented. Due to this 
deficiency, the same winding function may result for full-
pitch, short-pitch, and concentric windings. This will be 
seen in the example windings presented in Sections IV, V, 
and VI. Nevertheless, winding functions uniquely 
facilitate the computation of self and mutual inductances 
[5]. 

As a result, these tools or methods are often combined to fulfill 
the analysis of EM windings. 

This paper presents a winding representation method that 
encompasses the strengths of these conventional approaches 
while facilitating computation. The idea is based on 
relationships among multiple concepts specifically associated 
with electric machine windings, including magnetic, electrical, 
layer, and phase orders. These relationships can be described 
through tensors (generalized matrices). Five example windings 
are used to illustrate this representation method. Given that 
fractional slot and hairpin windings have been investigated 
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Fig. 1 Conventional winding analysis methods and tools. 
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extensively in recent years, they are included to illustrate the 
modern application of the proposed framework. It is worth 
noting that the idea is stemmed from [6], where only the 
relationship between magnetic and electrical orders is modeled.  

The rest of the paper is organized as follows. Section II 
elaborates on the concept of magnetic, electrical, and layer 
order. These concepts are used in the examples to represent 
electric machine windings using tensors. Sections III, IV, V, VI, 
and VII present five example windings to demonstrate the tensor 
representation method across various winding types, including 
fractional slot, full-pitch, short-pitch, concentric, and hairpin 
windings. Given the recent research attention, fractional slot 
winding and hairpin winding will be primary areas of 
discussion. Applying the new representation method to hairpin 
windings requires an additional layer of complexity to 
accommodate layer orders in hairpin windings. Lastly, Sections 
VIII and IX respectively outline plans for future work and 
conclude the contribution. 

II. THE CONCEPT OF MAGNETIC, ELECTRICAL, AND LAYER 
ORDERS 

A. Magnetic Order and Star Diagrams 
The concept of magnetic order concerns coil sides. As the 

rotor in an EM revolves, the flux path rotates as well. The coil 
sides on the stator thus cut through the field lines. The induced 
back-electromotive force (back-EMF) will have phase relations 
according to the circumferential positions of coil sides. Such a 
sequence in back-EMF is the magnetic order. Referring to Fig. 
1b, a star diagram reflects the magnetic order when phasors 
account for coil sides instead of coils. 

B. Electrical Order and Slot Diagram 
The concept of electrical order concerns the polarities of coil 

sides or coils when they are used to form coils or windings 
respectively. Since only one current direction is possible at any 
instant in a coil or a winding, the current polarities of their 
constitutive components are forced. Referring to Fig. 1 (a), this 
is reflected in a slot diagram through the arrows. Notice that all 
arrows in one winding can be flipped simultaneously according 
to the preferred polarity convention. 

C. Layer Order 
In conventional windings with two layers, a coil usually 

consists of one coil side from the upper layer and another coil 
side from the lower layer. This practice balances out 
mismatching of back-EMF induced in these two layers, 
therefore there is no need to distinguish the two layers in the 
presented tensor representation. However, this is not the case for 
hairpin windings whose layers are often more than two. To 
distinguish layers in such windings, we increase the rank of 
tensors from 2 (matrices) to 3; the third rank denotes layers. 

III. EXAMPLE 1: FRACTIONAL SLOT WINDING 
Figure 2 shows a slot diagram for a 3 phase, 12 slot, 10 pole, 

fractional slot, concentrated winding [1]. In distributed 
windings, the number of slots is an integer multiple of the 
number of poles. Fractional slot windings do not abide by this 

regularity. This said, the number of slots must be a multiple of 
the number of phases. In this winding, the slot per pole per phase 
(SPP) is 2/5, which meets the definition. For clarity, the slots are 
labeled 1-12 and the coils are labeled A1-C4. The span of each 
coil is one slot. For example, coil A2 has one coil side in slot 1 
and the other coil side in slot 2. Furthermore, adjacent coils from 
the same phase belt may have current flow in opposite directions 
(e.g. A1 and A2). These concepts and characteristics of the 
windings are to be clearly present in our tensor representation. 

The rank 2 tensors (i.e. matrices) shown in Fig. 3 are an exact 
and computationally friendly method of representing all the 
details from the slot diagram shown in Fig. 2. As discussed, the 
winding has coils that span one slot and either carries 
counterclockwise or clockwise currents. Tensor C1 in Fig. 3 (a) 
is rank 2 (i.e. a matrix) and documents the relationship between 
magnetic order and electrical order. Magnetic order is mapped 
directly to the slots on the winding diagram. For example, 
magnetic order 1 represents the first slot, magnetic order 2 
represents the second slot, etc. The electrical order is a 
strategically chosen sequence of the coils in the winding. When 
the electrical order is chosen carefully, C1 has an intuitive 
appearance that may provide new insight into the winding 
pattern. For this winding, the electrical order starts with the coil 
that begins in slot 1 and ends in slot 2 (i.e. coil A2). Using the 
magnetic order or slot number as a reference, this is the first coil 
that does not wrap across the boundary (between slot 12 and slot 
1). Using Fig. 2, the electrical order convention then progresses 
from left to right until it ends with coil A1 (i.e. A2, B1, B2, C1, 
C2, A3, A4, B3, B4, C3, C4, A1). Note this concept is not 
directly tied to the slot diagram, it is simply a strategic naming 
convention for the coils.  

To create C1, it is necessary to understand the meaning of the 
‘1’s and ‘-1’s. In C1, a ‘1’ represents the first side of the coil, and 
a ‘-1’ represents the second side of the coil. The tensor C1 does 

 
Fig. 2 Slot diagram of a fractional slot winding [1]. 

  
(a) (b) 

Fig. 3 Tensor representation of the fractional slot winding in Fig. 2. 
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not encode current direction, it simply assembles the coil sides 
into coils and puts them in a strategically chosen order called 
electrical order. For the fractional slot winding in Fig. 2, the 
chosen electrical order allowed each vertical pair of ‘1’ and ‘-1’ 
to shift down by one slot for each progression in electrical order. 

The tensor C2 (also rank 2, i.e. a matrix), shown in Fig. 3(b), 
registers how coils are assembled into phase windings. It 
accounts for the direction of current and phase order. 
Specifically, C2 shows whether a coil is connected in a reverse 
direction and thus carries a current flowing in the opposite 
direction. The convention used in this paper is that 
counterclockwise currents are represented by ‘1’s and clockwise 
currents are represented by ‘-1’s. This is a chosen convention 
and can be reversed if advantageous for the problem. In most 
applications, this decision does not hold much weight. For this 
winding and corresponding C2, the coils flip back and forth 
between counterclockwise and clockwise currents 6 times. 
Hence, C2 will alternate between 1 and -1 except between pairs 
5/6 and 11/12.  

 
Fig. 4 Resultant of matrix multiplication of C1 and C2 namely C1C2. 

The multiplication of tensors C1 and C2 delivers the most 
powerful aspect of the tensor representation. In this paper, we 
will denote the resultant tensor of this multiplication as C1C2. 
Figure 4 presents C1C2 for this fractional-slot winding. Notice 
that Fig. 4 has been transposed for display. In fact, C1C2 shows 
the differential of the winding function, meaning the cumulative 
sum of C1C2 down a phase will match the winding function 
shape. To match exactly, it must be shifted vertically to have an 
average of zero, as the definition of the winding function [7]. 

In this problem, the current flowing downward in Fig. 2 is 
taken as a positive change in the winding function and the 
current flowing upward in Fig. 2 is a negative change. As one 
progresses across the slots or magnetic order, one will notice that 
slots covered by the same phase belt will have a 2 or -2. If the 
absolute value of each cell in tensor C1C2 is taken, the sum of 

each column will be 2. This intuitively makes sense because 
there are 2 coil sides on each slot. These patterns highlight the 
intuitive nature of the tensor representation method. 

Figure 5 displays the winding function of phase A or the 
cumulative sum of the phase A row in (C1C2)T with the proper 
vertical shift. The Fourier series expansion of the winding 
function (the first 4 odd harmonics) is also overlaid. Figure 6 
shows the Fourier series spectrum. As expected for a 10 pole 
machine, the 5th harmonic is the biggest component. 

 

 
Fig. 6 Fourier series spectrum of the winding function in Fig. 5 

IV. EXAMPLE 2: DISTRIBUTED FULL-PITCH WINDING 

 
Fig. 7 Slot diagram for a distributed full-pitch winding. 

 The slot diagram in Fig. 7 is for a 3 phase, 18 slot, 2 pole, 
full-pitch winding. Because it is 18 slots, 2 pole, and full-pitch, 
each coil spans 180 mechanical degrees or 9 slots. Hence, the 
top side of this diagram will connect coil sides with 9 slots 
between them. For example, the coil side in slot 1 is connected 
to a coil side in slot 10; this is repeated for the rest of the coil 
sides. It is important to also notice that there are 4 coils on the 
left side of the diagram and 2 coils on the right side of the 
diagram. The left 4 are connected reversely to the coils on the 
right. This will be reflected in the C2 tensor. 

Tensor C1 connects the coil sides so that there are 9 slots 
between them. The electrical order convention for this winding 
is identical to the convention for fractional slot windings. The 
electrical order begins with the first full coil that does not wrap 
around the boundary: the coil with a ‘1’ in row 1 and ‘-1’ in row 
10. Referencing Fig. 7, the electrical order progresses from left 
to right. The final coil, which begins in slot 18 and finishes in 
slot 9, has a ‘1’ in row 18 and ‘-1’ in row 9. This pattern 
facilitates the construction of C1. 

Understanding the shifts between phases is crucial for 
constructing C2. Phase B and phase C are shifted 6 slot forward 
and backward from phase A, respectively. The shift is 6 slots 

 

 

 

 

 

Fig. 5 Phase A winding function of the fractional-slot winding with 
Fourier approximation and graphed 1st, 3rd, 5th, and 7th harmonics. 
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because there are 18 slots, 1 pole pair, and 3 phases 
( !"	$%&'$
(	)*+$,$	∗!	)&%,	)+./ = 6). It is necessary to recognize the base 

pattern of connections for the coils: the first four coils are 
connected so that the current flows clockwise and the final 2 
coils are connected so that the current flows counterclockwise. 
C2 can be constructed by reflecting this pattern with the 6-slot 
shift between phases. 

The multiplication of these rank 2 tensors will be discussed 
in section VI. The full-pitch winding and the next two example 
windings have the same winding function so their C1C2 resultant 
tensors will be identical. The main differences among them are 
how the coil sides and coils are connected, which are reflected 
in C1 and C2. 

V. EXAMPLE 3: DISTRIBUTED SHORT-PITCH WINDING 

 
Fig. 9 Slot diagram for a distributed short-pitch winding. 

This winding is a 3 phase, 18 slot, 2 pole, short-pitch 
winding. It is similar to the previous winding except there is a 
small change in the connections of the coil sides. It is short 
pitched by 20 degrees, or equivalently the coil span is 160 
degrees. The pitch is "0 =

!12°
!"2° , meaning that there will be 8 slots 

between each coil side instead of 9. This causes one of the 
clockwise coils to flip and be connected counterclockwise. 
These changes are reflected in the tensors C1 and C2. 

Now there are only 8 slots between the ‘1’s and ‘-1’s in C1, 
reflecting the short-pitched nature of the winding. Comparing to 
Fig. 8b, C2 shows that one of the clockwise coils is connected 
counterclockwise; hence, there are groups of three ‘1’s and three 
‘-1’s. Because the shifts between phases are the same, the 6 slot 
gaps between the ‘1’s and ‘-1’s are still present. The differences 
between the full-pitch winding and the short-pitch winding are 
subtle but clearly captured in the tensor representation. 

  
(a) (b) 

Fig. 10 Tensor representation of the short-pitch winding in Fig. 9. 

VI. EXAMPLE 4: CONCENTRIC WINDING 

 
Fig. 11 Slot diagram for a distributed short-pitch winding. 

The winding in Fig. 11 is a 3 phase, 18 slot, 2 pole, 
concentric winding. The concentric winding is quite different 
than the full-pitch and short-pitch winding. A concentric 
winding wraps inward on itself. This creates the two 
independent sections of coils seen in the slot diagram in Fig. 11: 
one section with counterclockwise coils and one section with 
clockwise coils. This slot diagram only has one phase, so there 
will be six independent sections of coils in the full, 3-phase, slot 
diagram. These independent sections are reflected in both C1 and 
C2 as well. 

 
 

(a) (b) 
Fig. 12 Tensor representation of the short-pitch winding in Fig. 11. 

 This tensor C1 may be the most interesting one discussed 
thus far. The phases have been highlighted and color-coded for 
clarity. The red regions are for phase A, the yellow regions are 
for phase B, and the blue regions are for phase C. There are 6 
semicircular regions in C1, two for each phase. This semicircular 
shape reflects the inward wrapping of the concentric winding 
slot diagram. Tensor C2 for the concentric winding (Fig. 12b) is 
the same as that for the short-pitch winding (Fig. 10b). This 
observation indicates there are underlying similarities in their 

  
(a) (b) 

Fig. 8 Tensor representation of the full-pitch winding in Fig. 7 
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designs. Both the short-pitch winding and concentric winding 
have 3 clockwise and 3 counterclockwise connected coils; both 
have 6 slots between phases. 

Next, the resultant tensor for the full-pitch, short-pitch, and 
concentric winding will be presented. Although the full-pitch, 
short-pitch, and concentric windings have shown a considerable 
amount of differentiation in slot diagram as well as C1 and C2, 
each product of C1 and C2 results in the same tensor shown in 
Fig. 13. This inherently means that their winding functions are 
all the same and their only differences are in the method of coil 
construction and coil interconnection. 

The cumulative sum of the phase A row results in the 
winding function shown in Fig. 14. Again, this validates the 
accuracy and applicability of the tensor representation method. 
Fig. 15 shows the Fourier series spectrum for the winding 
function in Fig. 14. As expected, the 1st harmonic or the 
fundamental component has the highest amplitude. 

VII. EXAMPLE 5: HARIPIN WINDING 
Figure 16 on the next page shows the slot diagram for a 24 

slot, 4 pole, 4 layer hairpin winding [8]. Only phase A coils, 
connections, and terminals are depicted to avoid crowdedness.  

Layers in hairpin windings present an additional 
complication to the tensor representation method. This 
complication is handled by increasing the rank of the tensors 
from rank 2 to rank 3. The slot diagram displays the layering 
through the vertical lines that are drawn on each slot. The left 
most solid line is the first layer, the dashed line is the second 
layer, the dotted line is the third layer, and the rightmost solid 
line is the fourth layer. This slot diagram shows that there are 
four groups of pins, which is expected considering it is a 4 pole 
machine. 

Fig. 17 shows a rank 3 C1 tensor. Displaying rank 3 tensors 
on paper is not straightforward; hence a graphical approach is 
used in this paper. Each pin represents one element of the 
electrical order and is allocated an individual matrix (a slide of 
the rank 3 tensor). Each matrix registers one coil: layer order 
(horizontal) by magnetic order (vertical). Multiplication of rank 
3 tensors (known as tensor product [9]) works in a similar way 
as the multiplication of matrices except for an important 
difference. The ranks of the rank 3 tensors that are multiplied 
must be specified. In this case, just like in the previous examples, 
the electrical order rank needs to be multiplied for it to collapse 
out of the resultant tensor. This is possible by specifying that the 
electrical order ranks are being multiplied in the tensor 
multiplication of C1 and C2. In this case, C1 times C2 still 
produces the winding function. The winding functions for phase 
A, phase B, and phase C are shown in the C1C2 tensor in Fig. 18. 

Fig. 19 shows the winding function of the hairpin winding. 
It also has the Fourier series approximation and the first 4 
harmonic components. Fig. 20 shows the Fourier series 
spectrum of the winding function in Fig. 19. 

 
Fig. 13 Resultant from multiplication of C1 and C2 for the full-pitch, 
short-pitch, and concentric windings (transposed). 

 
Fig. 15 Fourier series spectrum of the winding function in Fig. 14. 

 
Fig. 14 Phase A winding function of the full-pitch, short-pitch, and 
concentric winding with Fourier approximation and harmonics. 

 
Fig. 17 Rank 3 C1 tensor for the hairpin winding in Fig. 16. 
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Fig. 18 Transposed rank 3 C1C2 tensor for the hairpin winding in Fig. 
16. 

 
Fig. 19 Phase A winding function of the hairpin winding with Fourier 
approximation and harmonics. 

 
Fig. 20 Fourier series spectrum of the winding function in Fig. 19. 

VIII. FUTURE WORK 
One of the advantages of the new tensor representation is 

that it facilitates computation directly. The four existing 
tools/methods presented in Fig. 1 may be categorized as winding 
analysis tools. The proposed tensor tool sheds light on winding 
synthesis, where novel winding configurations are to be 
explored. 

Through the five example windings, it has been clear that 
only ‘1’s, ‘0’s, and ‘-1’s will show up in C1 and C2 to describe 
the relationship among magnetic, electrical, layer, and phase 
orders. This characteristic lends itself to computer programming 
and thus exploration of new windings. It is worth noting that in 
our presentation, turns numbers have been omitted and they can 
be encoded in C1 if necessary. For most electric machines, 
however, all coils have the same number of turns and this 
information can be hidden by normalizing C1. 

Furthermore, the tensor C1C2 is closely related to winding 
function (one-to-one mapping). This enables the quick 
evaluation of winding configurations without resorting to 
existing tools/methods in Fig. 1. 

Our next step in this research thrust is to design algorithms 
that can efficiently explore high-performance winding 
configurations. We may convert the winding exploration 
problem into a combination of an exact cover problem [10] from 
computer science and an optimization problem. The goal is to 
fill C1 and C2 with ‘1’s, ‘0’s, and ‘-1’s to maximize pre-
determined objective functions. The number of options filling 
C1 and C2 is limited due the following constraints (using rank 2 
tensors as an example): (1) each column of C1 contains exactly 
one ‘1’ and one ‘-1’; (2) the sum of the absolute value of each 
row of C1 equals number of layers; (3) the sum of the absolute 
value of each row of C2 equals number of layers; (4) the sum of 
each column of C1C2 is zero; (5) columns of C2 and C1C2 are 
circular shift of each other. The objective of the exploration can 
be high fundamental component, lower total harmonic 
distortion, end winding length, etc., or a combination of them. 
The corresponding objective function can be obtained via the 
postprocessing of C1, C2, and C1C2. 

IX. CONCLUSIONS 
This paper has introduced a new method of representation 

for EM windings. It has been applied to five different example 
windings: fraction-slot winding; full-pitch, distributed winding; 
short-pitch, distributed winding; concentric winding; and 
hairpin winding. The first four types of windings were 
represented with rank 2 tensors, namely C1 and C2. The hairpin 
winding involves non-identical layers which necessitate an extra 
rank to encode the layer information. Hence, the hairpin winding 
is represented with rank 3 tensors. For all of these windings, the 
C1 and C2 tensors can be multiplied to create a third tensor called 
C1C2, which interestingly encodes the differential of the winding 
function. We also presented Fourier analysis for all winding 
functions, demonstrating how the new representation method 

 
Fig. 16 Slot diagram for a hairpin winding [8]. 
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encompasses the advantages of existing tools/methods for 
winding analysis. 

Furthermore, we further discussed how the new winding 
representation approach can be useful in exploring novel 
windings, which has been largely relied on EM designers’ 
intuition. The fact that C1 and C2 are filled ‘1’s, ‘0’s, and ‘-1’s 
lends itself to computer programming. The relationship between 
C1C2 and winding function facilitates straightforward evaluation 
of winding configurations. We will explore this opportunity in a 
follow-up work. 
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