2404.15269v2 [cs.CL] 9 Jun 2024

.
.

arxiv

Aligning LLM Agents by Learning Latent Preference
from User Edits

Ge Gao** Alexey Taymanov®* Eduardo Salinas® Paul Mineiro® Dipendra Misra®
Department of Computer Science, Cornell University® ~ Microsoft Research New York<
ggao@cs.cornell.edu {ataymano, edus, pmineiro, dimisra}@microsoft.com

Abstract

We study interactive learning of LLM-based language agents based on user edits
made to the agent’s output. In a typical setting such as writing assistants, the user
interacts with a language agent to generate a response given a context, and may
optionally edit the agent response to personalize it based on their /atent preference,
in addition to improving the correctness. The edit feedback is naturally generated,
making it a suitable candidate for improving the agent’s alignment with the user’s
preference, and for reducing the cost of user edits over time. We propose a learning
framework, PRELUDE that infers a description of the user’s latent preference
based on historic edit data. The inferred user preference descriptions are used
to define prompts for generating responses in the future. This avoids fine-tuning
the agent, which is costly, challenging to scale with the number of users, and may
even degrade its performance on other tasks. Furthermore, learning descriptive
preference improves interpretability, allowing the user to view and modify the
learned preference. However, user preference can be complex, subtle, and vary
based on context, making it challenging to learn. To address this, we propose a
simple yet effective algorithm named CIPHER that leverages the LLM to infer the
user preference for a given context based on user edits. In the future, CIPHER re-
trieves inferred preferences from the k-closest contexts in the history, and forms
an aggregate preference for response generation. We introduce two interactive
environments — summarization and email writing, and use a GPT-4 simulated
user for evaluation. On both tasks, CIPHER outperforms several baselines by
achieving the lowest edit distance cost while only having a small overhead in LLM
query cost over the base agent. Our analysis reports that user preferences learned
by CIPHER show significant similarity to the ground truth latent preferences.'

1 Introduction

Language agents based on large language models (LLMs) have been developed for a variety of
applications (Dohmke, 2022; Brynjolfsson et al., 2023), following recent breakthroughs in improving
LLMs (Achiam et al., 2023; Ouyang et al., 2022b; Team et al., 2023). However, despite their
impressive zero-shot performance, LLMs still need to align to a given user and task (Mysore et al.,
2023; Li et al., 2023). In many applications, a natural feedback for LLM-based agents is user edits,
where a user queries the agent and edits the agent’s response before their own final use. In contrast,
typical feedback used for fine-tuning, such as the comparison-based preference feedback in RLHF,
is explicitly collected by providing annotators with model responses and asking them to rank (Ziegler
et al., 2019; Stiennon et al., 2020; Nakano et al., 2021; Ouyang et al., 2022a, inter alia), making
such feedback an expensive choice for improving alignment. Motivated by this observation, we focus
on interactive learning of LLM-based language agents using user edits as feedback.

*Equal contribution.
'Our code and data are publicly available at https://github.com/gao-g/prelude.

Preprint. Under review.

Interactive Learning from User Edits

Round A <’> Step 1: User (and the world) provides a Article: {user-provided article} Tt
t : context [U'; to the LLM agent. Please summarize the above article.

(Farming, a part of agriculture, involves growing crops and
rearing animals for food and raw materials. It began thousands

: 4
(2) Step 2: LLM Agent generates a response | of years ago, likely in the Fertile Crescent, and led to the Y
: Ut given the context T¢. Neolithic Revolution as people transitioned from nomadic t
hunting to settled farming. This allowed for a significant increase
\in human population.)

~\

(- Farming, as a part of agriculture, involves growing crops

Minimize : O Step 3: User edits the response ¥/ to cultivation and animal rearing for food and raw materials. ’
/ before using it. - Originated it began thousands of years ago, likely in the Fertile | ¥t

cumulative f Crescent, leading to the Neolithic Revolution
cost @ - Transition as people transitioned from nomadic hunting to
L. \settled farming. resulted in significant human population increase)
c -
Z:l ‘ Agent incurs a cost ¢; = Aggie (Y1, Y))

Figure 1: Illustration of interactive learning from user edits. Color coding in edits is for visualization
only — our agent takes the plain revised text as feedback.

Consider the scenario in Figure 1 where a user interacts with an LLM-based writing assistant (agent)
to complete their task. The interaction starts with the user (and the world) providing a context to
the agent. This context may include a query prompt provided by the user, along with additional
information provided by the world, such as the content on the screen, current time, and the user’s
calendar information. The agent generates a textual response given the context.

In the beginning, the agent’s response may not be optimal for the user, as it is not personalized to this
user’s individual needs and preference. As most users are not familiar with prompt engineering, and
LLMs are often able to generate a reasonable response for the task, therefore, users may find it the
most convenient to simply edit this response when it is not ideal, rather than trying different prompts
to get new responses. The example in Figure 1 illustrates that the user directly edits the summary
generated by the agent to satisfy their preference for bullet point format. It takes time and effort
for the user to make edits which can be measured using metrics such as the edit distance between
the agent’s response and the user edits. Our goal is to minimize the cumulative user edit cost over
time using feedback from user edits. Notably, there is no distinction between training and testing
in our setting as every natural use of the agent yields an edit feedback for learning.

We conjecture that user edits are driven by user’s hidden preference which can be described in natural
language. These preference descriptions are different from the notion of comparison-based preference
used in RLHF. In this paper, we use the word preference to mean preference descriptions. For instance,
preference of the user in Figure 1 can be described as bullet points. In practice, user preference
can be compound, such as preferring bullet point, informal, with emojis at the same time, and also
context-dependent, e.g., informal tone when writing an email to a family member, and formal tone
when writing to a colleague. In more complex settings, user preference can evolve with time (non-
stationary), or depend on information unavailable in the context (partially observed). Further, users
may not be fully aware of all their preferences, or may fail to express these preferences in their query
prompt. These considerations imply that user preference is latent to the language agent. If the agent
could learn the latent preference correctly, it can significantly improve its performance by generating
satisfactory responses. Furthermore, preference learned by the agent can be shown to the user to
enhance interpretability, and can even be modified by the user to improve correctness. Motivated by
this, we propose a learning framework, PRELUDE (PREference Learning from User’s Direct Edits),
where we seek to learn a user preference description for a given context using the history of user edits.

In a typical real-world scenario such as writing assistants, one has to potentially update the
LLM-based agent for every user. Efficient approaches, therefore, must scale with the number of
users. This makes approaches that fine-tune LLM parameters expensive to scale. Furthermore,
LLMs typically undergo rigorous evaluation on a variety of safety tests before being released, and
fine-tuning them can result in loosing the safety guarantees offered by these tests. For example,
fine-tuning GPT-4 for millions of users can quickly turn very expensive. Approaches such as adding
LORA and Adapter layers and only updating them, or using federated learning, can reduce the
expense to some extent, but the loss of safety guarantees remains a concern. In this work, we focus

on leveraging a frozen, black-box LLM, and instead learning a prompt policy that can infer user
preference description for a given context, and then use it to directly drive the response generation.

We introduce a simple yet effective algorithm CIPHER that implements the PRELUDE framework.
CIPHER infers user preference for every context in the history with the aid of an LLM. In the future,
given a context, it retrieves inferred preferences of similar contexts from the history and uses them
to generate a response. CIPHER is computationally efficient and only slightly increases the LLM
query cost compared to the base agent.

We introduce two interactive environments that evaluate the agent’s ability to summarize documents
and compose emails from a given notes. These tasks are inspired by writing assistant applications.For
both tasks, we simulate a GPT-4 user that can generate edits based on a pre-designed latent preference
that can vary based on the context. We evaluate CIPHER against several baselines and show that
it achieves the lowest user edit cost. Additionally, CIPHER results in a lower LLM query cost than
other retrieval-based baselines. Finally, we analyze preferences learned by our agents, and find that
they show significant similarity to the ground truth latent preferences in our setup.

2 Interactive Learning from User Edits and the PRELUDE Framework

We first describe LLM agents and the general learning framework from user edits and then discuss
our PRELUDE framework and associated learning challenges.

LLM and Language Agents. We assume access to a language agent that internally relies on an LLM.
We make no assumption on the agent except that it can take as input a piece of context which can
include both texts and images and an additional prompt (which can be in-context learning examples or
learned preferences) and generates a text response. The language agent may simply perform greedy
decoding of the LLM given the input or may perform complex planning to generate a response.

Protocol 1 Interactive Learning from User Edits.
1: fort=1,2,--- ,T do
2: User and the world provide a context x;
3 Agent generates a response y; given the context xy
4 User edits the response to y;
5: Agent receives a cost of ¢; = Aegic(yt, U3)
6: Evaluate the agent and learning algorithm on Zthl ct

Interactive Learning from User Edits. In an application such as a writing assistant, a user interacts
with the language agent over 7" rounds. Protocol 1 shows such learning protocol. In the t** round,
the user and the world provide a context x; € X where X is the space of all possible contexts. This
context will include the user prompt in text, along with additional information provided by the user
or the world, and may include multimodal data as well such as images. Given the context z;, the
language agent generates a response y; € Y in text, where) is the space of all texts. The user edits
the response y; to y;. If the user does not perform any edits, we treat this as setting y;, = y;. The agent
receives a cost of ¢; = Aqit(yt, y;) for this round, which measures the user’s efforts on making edits.

The goal of the agent is to minimize the sum of costs across all rounds Z;T:l ¢¢. In our experiments,
we use Aggir as Levenshtein edit distance (Levenshtein, 1965) in the token space which computes
the minimum number of token insertion, deletion, and substitution necessary to convert y; to y;. In
general, a higher edit distance implies that the user has made more edits and spent more efforts.

PRELUDE Framework. We describe our PRELUDE framework in Protocol 2 which is a specializa-
tion of Protocol 1. In PRELUDE, in the ¢! round, the agent infers the preference of the user as f;,
and uses it to generate a response. We assume that in this round and for the given context z;, the user
has a latent preference f; that drives the user to perform all edits. Furthermore, we assume that if the
agent was able to infer this latent preference (f; = f;), then it will lead to minimal possible edits.”
To remove the dependence on performance due to the choice of the base LLM agent, we compare
with an oracle agent that has access to f; at the start of each round. We assume that the LLM remains
frozen across all methods in this work.

’The edit cost in practice may not always be 0, as the language agent could be incapable of adeptly using the
correct preference, or the user may perform edits that are inconsistent with their preference.

Protocol 2 PRELUDE: PREference Learning from User’s Direct Edits
1: fort=1,2,--- ,T do
2: User presents a text context x;

3 Agent infers a preference f; using the history {(x¢, ys, yf,)}f,: and context x;
4: Agent uses f; and x; to generate a response ¥

5: User edits the response to y; using their latent preference f}

6

7

: Agent incurs a cost ¢; = A(yy, y;)
: Return Zle ct

Challenges of Learning User Preference. Learning user preference from edits is challenging. In
practice, user preference are multifaceted and complex. Furthermore, user’s preference can also signif-
icantly vary based on the context. The feedback in the form of user edits emerges naturally but is inher-
ently implicit, lacking direct expressions of the actual preference and carrying subtleties that may lead
to diverse interpretations. The combination of preference variability and the implicit nature of feed-
back poses considerable challenges for agents in accurately learning and integrating these preferences.

3 Learning User Preference through Retrieval and Aggregation

In this section, we present our method, CIPHER (Consolidates Induced Preferences based on
Historical Edits with Retrieval), that learns user preference based on user edits.

Algorithm 1 CIPHER(¢, k,§). A context representation function ¢ : X — RY, the retrieval
hyperparameter k, and tolerance hyperparameter § > 0. We initialize history D = ().

1: fort=1,2,--- ,T do
2: User (and the world) presents a context

3: Retrieve the top-k examples {¢(x.,), f., }X_; in D with maximum cosine similarity to ¢ ()
4: If k > 1, then query the LLM to aggregate these preferences { fz k_ into f;, else f; = le
5 Agent generates a text response y; based on x; and f;
6: User edits the response to y; using their latent preference f;
7: Agent incurs a cost ¢; = Aegie(Yt, ¥})
8: if ¢; < ¢ then
9: Ji=fi
10: else B
11: Query the LLM to generate a preference f; that best explains user edits in (yy, y})

122 D+ DU{(d(xe), fi)}
13: Return Zthl Ct

Algorithm 1 shows CIPHER which implements the PRELUDE framework. CIPHER maintains a
preference history D; = {(x, f¢)},_] of past contexts x; along with a preference f; inferred by the
agent. CIPHER assumes access to a context representation function ¢ : X — R? that can map a
context to a vector representation. For a given round ¢ with context x;, the agent first retrieves the
k-closest contexts from the interaction history D,. We use cosine similarity for computing proximity,
although other metrics such as Euclidean distance, or Hamming distance when ¢ outputs a binary
vector, can be used. Given the retrieved contexts and their inferred preferences {(x.,, f.,)}5_;, we
query the underlying LLM to summarize the inferred preferences { f., }*_, into a single preference
ft. In the beginning, when ¢ < k, we retrieve all the past ¢ contexts. In particular, for £ = 1 we have
f1 as an empty string as the agent has no prior knowledge of this user’s preference.’

The agent uses the inferred preference f; to generate the response. This is done by concatenating the
context x; with an agent prompt such as “This user has a preference of < f;> which must be used
when generating the response”, where < f;> indicates where we insert the inferred preference f;. We
list the actual template used in our experiments in Table 7 in Appendix B.

Given the user edits y;, if the user edits are minimal, i.e., Aegic(ys, y;) < d for a hyperparameter 9,
then we set the inferred preference for this round as f; = f; as using f; for generating a response

3In practice, one can initialize with a publicly available preference history.

Table 1: Latent user preference design, specific to the document source.

Doc Source Latent User Preference Scenario

Summarization

News article targeted to young children, storytelling, short introduce a political news to kids
(See et al., 2017) sentences, playful language, interactive, positive

Reddit post second person narrative, brief, show emotions, for character development in cre-
(Stiennon et al., 2020) invoke personal reflection, immersive ative writing

Wikipedia page bullet points, parallel structure, brief take notes for key knowledge
(Foundation, 2022)

Paper abstract tweet style, simple English, inquisitive, skillful promote a paper to invoke more
(Clement et al., 2019) foreshadowing, with emojis attention and interests

Movie review question answering style, direct, concise quickly get main opinions

(Maas et al., 2011)

Email Writing

Personal problem informal, conversational, short, no closing share life with friends

(Stiennon et al., 2020)

Paper review casual tone, positive, clear, call to action peer review to colleague

(Hua et al., 2019)

Paper tweet engaging, personalized, professional tone, thank- networking emails for researchers
(Bar, 2022) ful closing

Paper summary structured, straight to the points, respectful, pro- milestone report to superiors
(Kershaw & Koeling, fessional greeting and closing

2020)

resulted in minimal edits. However, if Aggic(ys, y;) > 9, then we query the LLM a third time to

generate the inferred preference f; that explains why the user edited y; to y;. We call this the Latent
Preference Induction (LPI) step. In both cases, we append (z¢, f;) to the preference history.

Note that we cannot query the LLM for the inferred preference in the first case where the user edit
cost ¢ is small, i.e., ¢; < 4. In this case, querying the LLM to infer the preference to explain the edits
in y; given y, will result in the LLM outputting that the agent has no preference which is incorrect.

Computational Cost of CIPHER. In a given round, CIPHER adds a maximum of 3 LLM calls on
top of the cost of calling the underlying inference algorithm of the agent in line 5. CIPHER further
reduces the memory storage by only storing the representation of contexts in the preference string
instead of the input itself. Finally, CIPHER only adds a small prompt to the context x;, before
calling the agent’s inference algorithm. This only slightly increases the length of the prompt, thereby,
reducing the query cost associated with LLMs that scales with the number of input tokens.

4 Experiment

We first introduce two interactive tasks for learning from user edits, and then describe our results.

4.1 Two Interactive Writing Assistant Environments for Learning from User Edits

Task. We introduce two tasks inspired by the use of LLMs as writing assistants (Mysore et al., 2023;
Shen et al., 2023; Wang et al., 2023). In the first task, we evaluate the agent’s ability to summarize
a given document. In the second task, we evaluate the agent’s ability to compose an email given
notes. For both tasks, we use documents from several existing sources listed in Table 1. These
sources represent a diverse category of documents that a writing assistant would typically encounter
(see Table 4 in Appendix for examples). In any given round, the user is provided a context that is a
document from one of the sources for the given task. Importantly, the agent is unaware of the source
of the given document which as we discuss later, will determine the user preference. For both tasks,
we run an experiment for 7' = 200 rounds. We sample an equal number of documents from each
source and mix them to remove any temporal correlation in document sources.

Two-Stage GPT-4 Simulated User. We simulate a user that can edit a given response. We define
a set of latent user preferences for the user that vary based on the document source. Table 1 lists
the preference for every source. This captures the context-dependent nature of user preferences as
the document source influences the type of context. For example, the Personal problem document

source contains documents pertaining to discussions with a friend, and a user may have a different
preference when writing an email to a friend compared to writing an email to a colleague. We assume
that our user is aware of the document source d; of a given context x;. This implies, that we can
express the true user preference for x; as f;" = F(d;) where F maps a given document source to the
user preference. Recall that the agent is never provided the document source of any context.

We model our user using GPT-4 with a two-stage approach. Given an agent response y; and the
context x;, we first query GPT-4 to check if y, satisfies the preference in f;. If the answer is yes, then
the user preforms no edits and returns y; = y;. If the answer is no, then we use GPT-4 to generate the
edited response y; given y; and f;. We found that our two-stage GPT-4 user can generate high-quality
edits, consistent with observations in prior work that LLM-written feedback is high-quality and
useful to learn from (Bai et al., 2022; Saunders et al., 2022). We adopted a two-stage process since
using GPT-4 to directly edit the response y; always resulted in edits even when the response satisfied
the preference f;. We provide GPT-4 user prompt template and user edit examples in Appendix B.

Evaluation Metric. We propose three metrics for evaluating agents learning from user edits. Our

main metric is the cumulative user edit cost 23:1 Aeit(ye, y3) over T rounds where Aegic(Yt, y;)
is the Levenshtein edit distance between agent response y; and user edits y; computed in the
token space using Tiktoken tokenizer. For methods that learn an interpretable preference, we
additionally evaluate the quality of the inferred user preference f;. We do so by evaluating if f;
is closer to the true preference f; = F(d;), where d; is the document source of context in round
t, compared to preference of any other document source. Formally, we compute % ZZ;I 1{d; =
arg maxqes BERTScore(ft, F'(d))}, where BERTScore (Zhang* et al., 2020) is a text similarity
metric and S is the set of all document sources. Finally, we report the total number of input and
output BPE tokens to the LLM across all rounds. This measures the expense associated with using
LLM, used by popular LLM providers to charge their customers.

4.2 Details of CIPHER and Comparison Systems

We use GPT-4 as our base LLM for CIPHER and all baselines. We do not perform fine-tuning of the
GPT-4 and do not add any additional parameters to the model. We use a prompt-based GPT-4 agent
for all methods that uses a single prompt with greedy decoding to generate the response. Our main
method CIPHER and the baselines, can be extended to more complex language agents that perform
multiple steps of reasoning on top of the base LLM before generating a response.

CIPHER Details. We use a simple agent that uses GPT-4 with a prompt template to generate the
response ¥; given the context x; and preference f;. We list templates in Table 7 in Appendix B. We
experiment with MPNET (Song et al., 2020) and BERT (Devlin et al., 2019) as our two context
representation functions ¢, and use cosine similarity for retrieval. We experiment with two different
values of the number of retrieved examples k € {1,5}.

Baselines. We evaluate CIPHER against baselines that either perform no learning, or learn context-
agnostic preferences, or directly use past edits to generate a response:

1. No learning: The agent performs no learning based on interaction with the user.

2. Explore-then-exploit (E-then-e) LPI: This baseline is based on the classic explore-then-exploit
strategy in interactive learning (Garivier et al., 2016). The agent first generates responses for the
first T, rounds without performing any learning (exploration stage). It then infers a single user
preference f. using the user edits in the first 7, rounds by applying the LPI step (Algorithm 1,
line 11), which is used to generate responses for remaining rounds (exploitation step).

3. Continual LPI: This baseline is similar to E-then-e LPI except that it never stops exploring
and avoids overfitting to the first 7, rounds. In any given round ¢, it uses the data of all past
edits { (e, ¥p) ﬁ;% to learn a preference f; by performing the LPI step. It then generates a response

using this preference. Similar to E-then-e LPI, this approach learn context-agnostic preferences.

4. ICL-edit: This is a standard retrieval-based in-context learning (ICL) baseline (Brown et al.,
2020). In a given round ¢, the agent first retrieves the closest k examples {(y.,, v, e)}éf:l to the
given context x; using the representation function ¢. These examples are provided in an ICL
prompt and use to generate the response y;. This approach does not learn preferences but unlike
E-then-e LPI and Continual LPI it can perform context-dependent learning.

5. CoT-edit: This is a standard retrieval-based chain-of-thought (CoT) baseline (Wei et al., 2022).
This baselien is similar to ICL-edit except the prompt for generation requires the agent to infer
a user preference f; based on retrieved k examples, and generate an output according to f;.*

Oracle Method. We also evaluate an oracle approach which uses the true user preference in each
round to generate the response. This provides an upper bound on performance and helps to evaluate if
our setup is well-designed, i.e., whether learning the true user preference indeed leads to low edit costs.

4.3 Main Result and Discussion.

Main Results. Table 2 reports the performance of all methods on the two tasks on three metrics. We
report the mean and standard deviation across 3 different random seeds.’

Table 2: Performance of baselines and our methods in terms of cumulative edit distance cost and
classification accuracy. p, denotes the mean j and standard deviation o across 3 runs over different
seeds. Expense column shows budget as the average number of input and output BPE tokens across 3
runs (unit is -10%). We use -k in method names to denote that we use k retrieved examples. Numbers
in bold are the best performance in each column excluding oracle preference method, underline for
the second best, and dotted underline for the third best.

Method Summarization Email Writing
Edit Distance| Accuracy! Expensel Edit Distance] Accuracy? Expensel

Oracle Preference 6,5731.451 1.000 1.67 1,851243 1.000 1.62
No Learning 48,269957 - 1.50 31,103900 - 1.65
E-then-e LPI 65,2 1 8174,466 0.21 8()40()3 1.99 24,5621,022 0.2630,003 1.73
Continual LPI 57,9152,210 0.233()‘()1() 8.89 26,8521,454 0.243()‘019 8.63
ICL-edit-5-MPNET 38,5601 044 - 8.00 32,405, 307 - 12.12
ICL-edit-5-BERT 39,7341 929 - 7.96 30,9493550 - 11.55
CoT-edit-5-MPNET 40,7471 874 0.2300.026 6.82 24,2925 503 0.3000.023 8.74
CoT-edit-5-BERT 41,088 846 0.2300.013 6.92 24,301, 382 0.2630.032 8.26
CIPHER-1-MPNET 33,9264.000 0.5200.022 2.74 10,7811.711 0.4350.084 1.94
CIPHER-5-MPNET 32,974,95 0.4780.010 3.00 10,058,700 0.467 081 2.09
CIPHER-1-BERT 37,637,025 0.565 053 2.81 12,6344 863 0.487 125 1.99
CIPHER-5-BERT 35,8113384 0.4780.028 3.03 8,391 035 0.3630.075 2.22

Discussion of Main Result. We observe that not performing learning results in a high edit cost,
whereas using the oracle preferences achieves a significantly smaller edit cost. This shows that our
environments are sound and well-conditioned. E-then-e LPI and Continual LPI learn context-agnostic
preferences which cannot capture the context-dependent preferences in the environments and end
up doing poorly. For the summarization task, they end up with a higher edit distance than even
performing no learning. One possible explanation is that using context-agnostic preferences can push
the model to specialize to a given preference much more than the base model, resulting in more edits
when that preference is incorrect. We see this in preference accuracy, which is low for both of these
baselines, and lower for the summarization task than the email writing task where they outperform
no learning baselines. Further, Continual LPI has a higher expense cost due to constantly querying
the LLM to infer the user preference.

ICL-edit baselines perform significantly better on the summarization task. However, using a list of
user edits in the prompt results in a higher token expense cost, as the responses and their edits can be
significantly long in practice. Further, the ICL-edit baselines provide no interpretable explanation for
their response or for explaining user behavior. Although CoT-edit baselines provide an interpretable
preference, they still result in relatively high expense and low classification accuracy.

CIPHER achieves the smallest edit distance cost reducing edits by 31% in the summarization task and
73% in the email writing task. We observe that retrieving & = 5 preferences and aggregating them
achieves lower edit distance, however, the choice of ideal representation ¢ seems task-dependent.

* Appendix B reports additional details of our baselines, such as hyperparameters and promp templates.

>We randomize the context sampling from source datasets, so experiments on different seeds contain different
sets of input contexts. On the same seed, experiments across different methods are strictly comparable, as both
the set of input contexts and the order of input context seen are the same in our implementation.

Figure 2: Learning curves of different methods based on cumulative cost over time (average across 3
seeds). In the legend, -k means with top k retrieved examples, -B for BERT, and -M for MPNET.

-10* Summarization 104 Email Writing

T T T T T T T T
Oracle

o [No Learning
6 E-then-e
------- Continual
R ICL-edit-B
ne | | 1CLeditM
. - P CoT-edit-B
= -~ — - Cot-edit-M
_____ CIPHER-1-B
-| | —— CIPHER-5-B
- —.- CIPHER-1-M
——— CIPHER-5-M

Cumulative Cost
A
Cumulative Cost

\ | : i I I
0 40 80 120 160 200 OO 40 80 120 160 200

Round Round
Figure 3: Percentage of zero-cost examples of CIPHER over time, binned per 20 rounds to show
the trend (average across 3 seeds). In the legend, -k means with top k retrieved examples, -B for

BERT, and -M for MPNET.

Summarization 0.6 Email Writing
. -08 o I T, | [—o—cpnerss | _ O T T e —
S & L | CIPHER-I-M | & &
2 5 0.6 —— CIPHERSM | & 5041 1
E 204+ N Oracle S g, (W
e [}3 O.ZC-W) < [}3 02 /\x/x—x—x/"—:
0 | | | | | | | |
40 80 120 160 200 40 80 120 160 200
Round Round

Further, CIPHER achieves the highest preference accuracy showing that CIPHER can learn
preferences that correlate more with the ground truth preference than preferences of other document
sources. Note that the performance of a random preference classifier is only 20% for summarization
and 25% for email writing. Further, CIPHER achieves a smaller cost than ICL-edit and Continual
LPI baselines, as it doesn’t use long user edits in the prompt for generating a response. In summary,
CIPHER provides a cheap, more effective, and interpretable method than our baselines.

Learning Curves. We plot mean cumulative user edit costs over rounds in Figure 2. The cumulative
user edit costs in Figure 2 show that the angle of the learning curves decreases for CIPHER after an
initial number of rounds, showing that learning helps decrease the rate at which user edits are accu-
mulated. In contrast, the angle of the learning curve for the no-learning baseline remains unchanged.

Evaluating Fraction of Non-Edited Responses. Recall that the first stage of our GPT-4 user checks
if the agent response satisfies the latent user preference f*. If it does, then no edits are performed,
otherwise, the user edits the response. We plot the percentage of examples with zero edit cost per
20 rounds bin in Figure 3. We notice a small increase in the number of examples with zero edit
cost. This indicates that gains come not just by increasing the number of examples that avoid getting
edited in stage 1 of our user but more generally across examples.

Qualitative Analysis of Learned Preferences. We evaluate the quality of preferences learned
by CIPHER on the harder summarization task. Table 3 lists 3 learned preferences per document
source for CIPHER-5-MPNET which are randomly sampled at the beginning, middle, and end
of the interaction history. We see that overall the agent can learn a reasonable description of the
latent preference. For example, it can learn bullet points preference for Wikipedia articles, and
second person narrative for Reddit posts, and QA style for Movie reviews. CIPHER can pick
some preferences fairly early such as bullet points for Wikipedia and emojis for Paper abstract,
whereas some are learned only later such as Structured Q&A for Movie reviews. This shows using
CIPHER can quickly learn useful preferences, but further interaction continues to help.®

%We present more additional analysis in Appendix C, including detailed expense report, normalized edit
distance cost, failure case analysis, and retrieval accuracy.

Table 3: Examples of learned preferences on summarization task with CIPHER-5-MPNET, grouped
based on the document source and corresponding latent preference. We randomly sample 3 examples
per type at the beginning, middle, and end of the interaction history.

Latent User Preference (Round) Learned Preference

News article. targeted to (22) Fairy tale narrative style, informal and conversational tone, use of rhetorical
young children, storytelling, questions, simplified language.

short sentences, playful lan- (115) Simplified, childlike storytelling with playful language and imagery
guage, interactive, positive (192) Simplified and playful storytelling language

Reddit post. second person (14) Concise and coherent storytelling

narrative, brief, show emo- (102) The user prefers a second-person narrative and a more direct, personal tone
tions, invoke personal reflec- (194) Poetic and descriptive language, narrative perspective shift to second person
tion, immersive

Wikipedia page. bullet (19) Concise, Bullet-Pointed, Structured Summaries with a Narrative Q&A Style

points, parallel structure, (124) Concise and factual writing style, bullet-point formatting

brief (197) Concise and streamlined formatting, with bullet points and clear subhead-
ings for easy scanning

Paper abstract. tweet style, (20) Concise, conversational summaries with bullet points and emojis.
simple English, inquisitive, (111) Concise, conversational, whimsical bullet-point summaries with emojis.

skillful foreshadowing, with & o4
emojis (193) Concise, conversational, and whimsical bullet-point summaries with emojis.
& ro#

Movie review. question an- (12) The user prefers a straightforward, clear, and concise writing style with
swering style factual formatting.
(123) The user prefers a clear and concise question and answer format with
straightforward language.
(199) Concise, Structured Q&A with Whimsical Clarity

4.4 Human Evaluation

We conduct two types of evaluation with human users to further understand the performance of our
methods on summarization. We focus on our best-performing method CIPHER-5-MPNET."

Win Rate Evaluation. We conduct win rate evaluation where evaluators are given a pair of text
and choose which one has higher quality. We compare the output of CIPHER-5-MPNET against the
output of the best-performing baseline /CL-edit-5-MPNET, and against the generation of the oracle
method. Each evaluation covers 15 text pairs, with three random samples from each scenario in the
last 50 rounds of interaction. We conduct these CIPHER vs. ICL and CIPHER vs. Oracle evaluations
with 7 human evaluators recruited through our personal network. For each text pair, we consider the
output receiving the majority vote as a win. We find that the win rate of CIPHER-5-MPNET against
ICL-edit-5-MPNET is 73.3%. This confirms that our method outperforms the best-performing
baseline for human users. In CIPHER vs. Oracle evaluation, the win rate of CIPHER-5-MPNET
is 23.7%, which reflects the performance gap we reported in previous sections.

Edits by Human Users. We study the edit feedback from human users to the generation of CIPHER-
5-MPNET and the oracle method. We instruct human users to edit the output based on the given latent
preference, and to leave no edits when the output aligns with the given preference. We mix 20 outputs
from CIPHER-5-MPNET and the oracle method so that human users cannot tell the source of each out-
put. The total edit distance, averaged across 3 human users, is 211 for CIPHER, and 98 for the oracle
method. The averaged percentage of zero-edit examples is 60% for CIPHER and 76.7% for oracle.

5 Conclusion

We study aligning LLM-based agents using user edits that arise naturally in applications such as writ-
ing assistants. We introduce the PRELUDE framework that seeks to learn the latent user preferences
that drive these edits, and uses them to generate a response. We propose a practical algorithm CI-
PHER that implements PRELUDEand outperforms baselines on two interactive tasks with a GPT-4
simulated user. Evaluating CIPHER with human-in-the-loop as well as developing algorithms that can
fine-tune LLMs using user edit where fine-tuning is feasible, are interesting future work directions.

"Examples in each evaluation have no overlap, which are sampled from experiments on different seeds.

Acknowledgments

Gao was a research intern in MSR NYC, and later was partially supported by NSF project #1901030.
All content represents the opinion of the authors, which is not necessarily shared or endorsed by their
respective employers and/or sponsors. We thank MSR NYC research community, Jonathan D. Chang,
Daniel D. Lee, Claire Cardie, and Sasha Rush for helpful discussions and support.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Sweta Agrawal and Marine Carpuat. An imitation learning curriculum for text editing with non-
autoregressive models. ArXiv, abs/2203.09486, 2022.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022.

Vidhisha Balachandran, Hannaneh Hajishirzi, William Cohen, and Yulia Tsvetkov. Correcting diverse
factual errors in abstractive summarization via post-editing and language model infilling. ArXiv,
abs/2210.12378, 2022.

Nitsan Bar. Papertweet. https://github.com/bnitsan/PaperTweet/, 2022.

Jan A. Botha, Manaal Faruqui, John Alex, Jason Baldridge, and Dipanjan Das. Learning to split and
rephrase from wikipedia edit history. ArXiv, abs/1808.09468, 2018.

Shaked Brody, Uri Alon, and Eran Yahav. A structural model for contextual code changes. Proceed-
ings of the ACM on Programming Languages, 4:1 — 28, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Erik Brynjolfsson, Danielle Li, and Lindsey R Raymond. Generative ai at work. Technical report,
National Bureau of Economic Research, 2023.

Mengyao Cao, Yue Dong, Jiapeng Wu, and Jackie Chi Kit Cheung. Factual error correction for
abstractive summarization models. ArXiv, abs/2010.08712, 2020.

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning
to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023.

Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noé&l Pouchet, Denys Poshyvanyk, and
Monperrus Martin. Sequencer: Sequence-to-sequence learning for end-to-end program repair.
IEEE Transactions on Software Engineering, 47:1943—-1959, 2018.

Ching-An Cheng, Andrey Kolobov, Dipendra Misra, Allen Nie, and Adith Swaminathan. LIf-bench:
Benchmark for interactive learning from language feedback. arXiv preprint arXiv:2312.06853,
2023.

Ruining Chong, Cunliang Kong, Liu Wu, Zhenghao Liu, Ziye Jin, Liner Yang, Yange Fan, Hanghang

Fan, and Erhong Yang. Leveraging prefix transfer for multi-intent text revision. Annual Meeting of
the Association for Computational Linguistics, 2023.

10

Colin B. Clement, Matthew Bierbaum, Kevin P. O’Keeffe, and Alexander A. Alemi. On the use of
arxiv as a dataset, 2019.

Mike D’ Arcy, Alexis Ross, Erin Bransom, Bailey Kuehl, Jonathan Bragg, Tom Hope, and Doug
Downey. Aries: A corpus of scientific paper edits made in response to peer reviews. ArXiv,
abs/2306.12587, 2023.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng Song,
Eric P Xing, and Zhiting Hu. Rlprompt: Optimizing discrete text prompts with reinforcement
learning. arXiv preprint arXiv:2205.12548, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. North American Chapter of the Association
for Computational Linguistics, 2019.

Thomas Dohmke. Github copilot is generally available to all developers. https://github.blog/
2022-06-21-github-copilot-is-generally-available-to-all-developers/, 2022.
Accessed: April-20-2024.

Wanyu Du, Vipul Raheja, Dhruv Kumar, Zae Myung Kim, Melissa Lopez, and Dongyeop Kang.
Understanding iterative revision from human-written text. ArXiv, abs/2203.03802, 2022.

Felix Faltings, Michel Galley, Gerold Hintz, Chris Brockett, Chris Quirk, Jianfeng Gao, and Bill
Dolan. Text editing by command. ArXiv, abs/2010.12826, 2020.

Patrick Fernandes, Aman Madaan, Emmy Liu, Ant6nio Farinhas, Pedro Henrique Martins, Amanda
Bertsch, José G. C. de Souza, Shuyan Zhou, Tongshuang Sherry Wu, Graham Neubig, and André
F. T. Martins. Bridging the gap: A survey on integrating (human) feedback for natural language
generation. ArXiv, abs/2305.00955, 2023.

Wikimedia Foundation. Wikimedia downloads. https://dumps.wikimedia.org, 2022.

Aurélien Garivier, Tor Lattimore, and Emilie Kaufmann. On explore-then-commit strategies. Ad-
vances in Neural Information Processing Systems, 29, 2016.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online
ai feedback. arXiv preprint arXiv:2402.04792, 2024.

Kelvin Guu, Tatsunori B. Hashimoto, Yonatan Oren, and Percy Liang. Generating sentences by
editing prototypes. Transactions of the Association for Computational Linguistics, 6:437-450,
2017.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel Mazaré, and Jason Weston. Learning from
dialogue after deployment: Feed yourself, chatbot! Annual Meeting of the Association for
Computational Linguistics, 2019.

Xinyu Hua, Mitko Nikolov, Nikhil Badugu, and Lu Wang. Argument mining for understanding peer
reviews. Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

June 2019.

Daniel James Kershaw and R. Koeling. Elsevier oa cc-by corpus. ArXiv, abs/2008.00774, 2020. doi:
https://doi.org/10.48550/arXiv.2008.00774. URL https://elsevier.digitalcommonsdata.
com/datasets/zm33cdndxs.

Zae Myung Kim, Wanyu Du, Vipul Raheja, Dhruv Kumar, and Dongyeop Kang. Improving iterative
text revision by learning where to edit from other revision tasks. ArXiv, abs/2212.01350, 2022.

Philippe Laban, Jesse Vig, Wojciech Kryscinski, Shafiq R. Joty, Caiming Xiong, and Chien-Sheng
Wu. Swipe: A dataset for document-level simplification of wikipedia pages. Annual Meeting of
the Association for Computational Linguistics, 2023.

11

Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja,
Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David Zhou, Emad A. Alghamdi, Tal
August, Avinash Bhat, Madiha Zahrah Choksi, Senjuti Dutta, Jin L.C. Guo, Md. Naimul Hoque,
Yewon Kim, Seyed Parsa Neshaei, Agnia Sergeyuk, Antonette Shibani, Disha Shrivastava, Lila
Shroff, Jessi Stark, S. Sterman, Sitong Wang, Antoine Bosselut, Daniel Buschek, Joseph Chee
Chang, Sherol Chen, Max Kreminski, Joonsuk Park, Roy Pea, Eugenia H. Rho, Shannon Zejiang
Shen, and Pao Siangliulue. A design space for intelligent and interactive writing assistants.
Conference on Human Factors in Computing Systems, abs/2403.14117, 2024.

Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet physics. Doklady, 10:707-710, 1965.

Cheng Li, Mingyang Zhang, Qiaozhu Mei, Weize Kong, and Michael Bendersky. Automatic prompt
rewriting for personalized text generation. arXiv preprint arXiv:2310.00152, 2023.

Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’ Aurelio Ranzato, and Jason Weston. Dialogue
learning with human-in-the-loop. ArXiv, abs/1611.09823, 2016.

Zichao Li, Prakhar Sharma, Xing Han Lu, Jackie Chi Kit Cheung, and Siva Reddy. Using in-
teractive feedback to improve the accuracy and explainability of question answering systems
post-deployment. ArXiv, abs/2204.03025, 2022.

Ruibo Liu, Chenyan Jia, Ge Zhang, Ziyu Zhuang, Tony X. Liu, and Soroush Vosoughi. Second
thoughts are best: Learning to re-align with human values from text edits. ArXiv, abs/2301.00355,
2023.

Yixin Liu, Budhaditya Deb, Milagro Teruel, Aaron L Halfaker, Dragomir R. Radev, and Ahmed Has-
san Awadallah. On improving summarization factual consistency from natural language feedback.
Annual Meeting of the Association for Computational Linguistics, 2022.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher
Potts. Learning word vectors for sentiment analysis. Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language Technologies, June 2011.

Chaitanya Malaviya, Subin Lee, Dan Roth, and Mark Yatskar. Pachinko: Patching interpretable qa
models through natural language feedback. ArXiv, abs/2311.09558, 2023.

Jonathan Mallinson, Aliaksei Severyn, Eric Malmi, and Guillermo Garrido. Felix: Flexible text
editing through tagging and insertion. ArXiv, abs/2003.10687, 2020.

Edison Marrese-Taylor, Machel Reid, and Yutaka Matsuo. Variational inference for learning repre-
sentations of natural language edits. ArXiv, abs/2004.09143, 2020.

Edison Marrese-Taylor, Machel Reid, and Alfredo Solano. Edit aware representation learning via
levenshtein prediction. The Fourth Workshop on Insights from Negative Results in NLP, 2023.

Dipendra Misra, Aldo Pacchiano, and Robert E Schapire. Provable interactive learning with hindsight
instruction feedback. arXiv preprint arXiv:2404.09123, 2024.

Masato Mita, Keisuke Sakaguchi, Masato Hagiwara, Tomoya Mizumoto, Jun Suzuki, and Kentaro
Inui. Towards automated document revision: Grammatical error correction, fluency edits, and
beyond. ArXiv, abs/2205.11484, 2022.

Sheshera Mysore, Zhuoran Lu, Mengting Wan, Longqi Yang, Steve Menezes, Tina Baghaee, Em-
manuel Barajas Gonzalez, Jennifer Neville, and Tara Safavi. Pearl: Personalizing large language
model writing assistants with generation-calibrated retrievers. arXiv preprint arXiv:2311.09180,
2023.

Reiichiro Nakano, Jacob Hilton, S. Arun Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
Browser-assisted question-answering with human feedback. ArXiv, 2021.

12

Khanh X Nguyen, Dipendra Misra, Robert Schapire, Miroslav Dudik, and Patrick Shafto. Interactive
learning from activity description. International Conference on Machine Learning, pp. 8096-8108,
2021.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke E. Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Francis Christiano, Jan
Leike, and Ryan J. Lowe. Training language models to follow instructions with human feedback.
ArXiv, 2022a.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730-
27744, 2022b.

Dominic Petrak, Nafise Sadat Moosavi, Ye Tian, Nikolai Rozanov, and Iryna Gurevych. Learning from
free-text human feedback - collect new datasets or extend existing ones? ArXiv, abs/2310.15758,
2023.

Dheeraj Rajagopal, Xuchao Zhang, Michael Gamon, Sujay Kumar Jauhar, Diyi Yang, and Eduard H.
Hovy. One document, many revisions: A dataset for classification and description of edit intents.
International Conference on Language Resources and Evaluation, 2022.

Machel Reid and Graham Neubig. Learning to model editing processes. Conference on Empirical
Methods in Natural Language Processing, 2022.

Machel Reid, Vincent J. Hellendoorn, and Graham Neubig. Diffuser: Diffusion via edit-based
reconstruction. International Conference on Learning Representations, 2023.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Ouyang Long, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. ArXiv, abs/2206.05802, 2022.

Jer’emy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Angelica Chen, Kyunghyun
Cho, and Ethan Perez. Training language models with language feedback at scale. ArXiv,
abs/2303.16755, 2023.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with pointer-
generator networks. Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), July 2017.

Zejiang Shen, Tal August, Pao Siangliulue, Kyle Lo, Jonathan Bragg, Jeff Hammerbacher, Doug
Downey, Joseph Chee Chang, and David Sontag. Beyond summarization: Designing ai support for
real-world expository writing tasks. arXiv preprint arXiv:2304.02623, 2023.

Weiyan Shi, Emily Dinan, Kurt Shuster, Jason Weston, and Jing Xu. When life gives you lemons,
make cherryade: Converting feedback from bad responses into good labels. ArXiv, abs/2210.15893,
2022.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
pre-training for language understanding. ArXiv, abs/2004.09297, 2020.

Felix Stahlberg and Shankar Kumar. Seq2edits: Sequence transduction using span-level edit opera-
tions. Conference on Empirical Methods in Natural Language Processing, 2020.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan J. Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human feedback. ArXiv,
abs/2009.01325, 2020.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Sitong Wang, Lydia B Chilton, and Jeffrey V Nickerson. Writing with generative ai: Multi-modal
and multi-dimensional tools for journalists. The Second Workshop on Intelligent and Interactive
Writing Assistants at ACM CHI, 2023.

13

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. ArXiv,
abs/2201.11903, 2022.

Jason Weston. Dialog-based language learning. ArXiv, abs/1604.06045, 2016.

Jing Xu, Megan Ung, Mojtaba Komeili, Kushal Arora, Y-Lan Boureau, and Jason Weston. Learn-
ing new skills after deployment: Improving open-domain internet-driven dialogue with human
feedback. Annual Meeting of the Association for Computational Linguistics, 2022.

Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. Learning structural edits via
incremental tree transformations. ArXiv, abs/2101.12087, 2021.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexander L. Gaunt.
Learning to represent edits. ArXiv, abs/1810.13337, 2018.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milo§ Gligori¢. Coditt5:
Pretraining for source code and natural language editing. Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering, 2022.

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. International Conference on Learning Representations, 2020.

Daniel M. Ziegler, Nisan Stiennon, Jeff Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. ArXiv,
2019.

14

Appendix

A Related Work

We describe related work in this area grouped by main themes in this work.

Learning from Feedback. Besides pair-wise comparison feedback from annotators used in Rein-
forcement Learning from Human Feedback (RLHF) research (Ziegler et al., 2019; Stiennon et al.,
2020; Nakano et al., 2021; Ouyang et al., 2022a, inter alia), prior work has also studied free-form
text feedback provided by annotators (Fernandes et al., 2023), such as on the task of dialog (We-
ston, 2016; Li et al., 2016; Hancock et al., 2019; Xu et al., 2022; Petrak et al., 2023), question
answering (Li et al., 2022; Malaviya et al., 2023), summarization (Saunders et al., 2022), and general
decision making (Cheng et al., 2023). This feedback, tailored to each example, is often utilized
to rank candidate outputs, thereby improving task performance. Some work studies learning from
text feedback to generate outputs directly (Scheurer et al., 2023; Bai et al., 2022; Shi et al., 2022),
by generating multiple refinements of the original output based on the feedback and fine-tuning
the original model to maximize the likelihood of the best refinement. In grounded settings such
as instruction-based navigation, one line of work has also used hindsight feedback that explicitly
provides a text instruction for the generated trajectory, to train policies (Nguyen et al., 2021; Misra
et al., 2024). Moving beyond the conventional focus on text feedback that explicitly articulates
human intent, we investigate feedback in the form of direct edits on the original model output. Such
revisions by users occur naturally during model deployment in practice. Additionally, we examine
the learning of user preferences through historical interactions, aiming to surpass the constraints of
example-specific feedback.

Language Agents and Personalization. LLMs have enabled the development of language agents
for a variety of tasks from writing assistants (Lee et al., 2024), coding assistants (Dohmke, 2022),
and customer service assistants (Brynjolfsson et al., 2023). Since these LLM-based assistants are
often used by individuals, a natural question has arisen on how to personalize these agents for
each user. Straightforward approaches for fine-tuning LLMs includes supervised learning, online
DPO (Guo et al., 2024), learning-to-search (Chang et al., 2023), and reinforcement learning (Ouyang
et al., 2022b). These approaches can be directly applied to our setting. For example, one can use
(yt,y;) in Protocol 1 as the preference data where y; is preferred over y;, or use y; as the ground
truth for supervised learning. However, fine-tuning is expensive and hard to scale with the number
of users. Therefore, a line of work has explored improving the alignment of frozen LLMs by prompt
engineering, such as learning a personalized retrieval model (Mysore et al., 2023), learning a prompt
policy given a reward function (Deng et al., 2022), or more generally, learning to rewrite the entire
prompt (Li et al., 2023). We focus on learning a prompt policy by learning from user edits, and
specifically, using them to extract textural descriptions of user preference.

Edits and Revisions. Many prior work on editing model output focuses on error correction, such
as fixing source code (Yin et al., 2018; Chen et al., 2018; Reid et al., 2023) and improving the factual
consistency of model summaries (Cao et al., 2020; Liu et al., 2022; Balachandran et al., 2022). A
line of work has explored understanding human edits based on edit history of Wikipedia (Botha
et al., 2018; Faltings et al., 2020; Rajagopal et al., 2022; Reid & Neubig, 2022; Laban et al., 2023),
or revisions of academic writings (Mita et al., 2022; Du et al., 2022; D’ Arcy et al., 2023). Prior
work explores predicting text revisions with edit intents (Brody et al., 2020; Kim et al., 2022; Chong
et al., 2023), and modeling edits with various approaches, including latent vectors (Guu et al., 2017,
Marrese-Taylor et al., 2020, 2023), structured trees (Yao et al., 2021), discrete diffusion process (Reid
et al., 2023), or a series of singular edit operations (Stahlberg & Kumar, 2020; Mallinson et al.,
2020; Agrawal & Carpuat, 2022; Zhang et al., 2022; Liu et al., 2023). However, these methodologies
predominantly target generic improvements in model performance, overlooking the intricacies of
individual user satisfaction and preference. Our research takes a distinct direction, focusing on
understanding edits across a variety of examples to study user-level preferences, with a practical goal
of aligning the agent to individual preferences.

15

B Additional Details

Dataset Examples. We list links to dataset sources for our user-provided context in Table 4.

GPT-4 User’s Edits We list examples of OUR GPT-4 user’s edits with different latent preference
on summarization in Table 5.

GPT-4 User Templates. Prompt templates used by our GPT-4 user are provided in Table 6.

Baseline Hyperparameters. For E-then-e LPI and Continual LPI we set 7, = 5. For ICL-edit
baselines, we experimented with different values of k, and report our best results with & = 5.

CIPHER Templates. Prompt templates used by CIPHER are provided in Table 7.
ICL-edit Templates. Prompt templates used by ICL-edit baseline are provided in Table 8.

CoT-edit Templates. Prompt templates used by CoT-edit baseline are provided in Table 9.

C Additional Analysis

Evaluating Normalized Edit Cost. The cumulative user edit cost measures the total effort of
the user but is susceptible to outlier examples, as the edit distance for a given round is potentially
unbounded. Therefore, we also compute a normalized edit distance Aegic(yt, y;)/|yt| by dividing
the edit distance by max{|y:|, |y;|}, i.e. the max length of the agent output or user revised text. As
Levenshtein distance Acgit(ys, y;) is upper bounded by max{|y:|, |y;|}, therefore, the normalized
cost is at most 1. Figure 4 reports normalized cost over rounds for the top 3 methods. We notice that
for all variants of CIPHER for the summarization task, and for CIPHER-5-M for the email writing
task, the normalized cost decreases notably as training progresses indicating learning. As the cost is
normalized by the response length, even a small decrease can lead to a significant reduction in the
number of tokens edited.

Detailed Expense. We list a detailed computational expense of different methods in Table 10.

Failure Case Analysis. CIPHER notably reduces the edit cost and learns useful preference,
however, significant gaps to the oracle method remain, especially in the summarization task. We
manually analyze failure cases on summarization task with the best performing method CIPHER-5-
MPNET. Table 11 in the Appendix reports the summary and example of our findings, categorized as
preference inference from output-revision pair, consolidation of inferred preferences, and retrieval. In
brief, the most common type of failure is on the preference inference step given the agent output and
user revision. For example, the agent often misses the exact keyword for brief or short sentences,
and sometimes struggles with inferring the second-person narrative aspect.

Retrieval Accuracy. We calculate retrieval accuracy for CIPHER as the fraction of all retrieved
contexts that are of the same document type as the currently given context across all seeds and
time steps. We report the results in Table 12. We find that the retrieval accuracy is higher on the
summarization task than on email writing. and using MPNET typically performs better than using
Bert to encode context.

Survey Details. We did a small survey with several participants recruited from our personal network.
The instructions for the two tasks are as follows:

1. Task 1 instruction: “You're asked to compare 2 pieces of writing in terms of satisfaction
towards certain preference. There are 15 pairs to compare in total.". For a specific example,
we ask “Assume that the writing style you prefer is <preference>. (e.g., you want to quickly
get main opinions from a movie review) Which piece of writing below do you like better".
We replace <preference> with the given preference.

16

Table 4: Link to each source dataset, from which we randomly sample examples as the user-provided

context in our tasks.

Data Source

Link and Example

CNN Daily Mail (See et al., 2017)
SLF5K (Stiennon et al., 2020)
Wikidump (Foundation, 2022)
Arxiv (Clement et al., 2019)
IMDb (Maas et al., 2011)
PaperTweet (Bar, 2022)

https:
https:
https:
https:
https:
https

Elsevier OA CC-By (Kershaw & https:

Koeling, 2020)

//huggingface.
//huggingface.
//huggingface.
//huggingface.
//huggingface.
://huggingface.
//huggingface.

co/datasets/cnn_dailymail
co/datasets/JeremyAlain/SLF5K
co/datasets/wikipedia
co/datasets/CShorten/ML-ArXiv-Papers
co/datasets/imdb
co/datasets/nitsanb/paper_tweet
co/datasets/orieg/elsevier-oa-cc-by

Figure 4: Normalized cost and percentage of zero-cost examples of CIPHER over time, binned per
20 rounds to show the trend (average across 3 seeds). In the legend, -k means with top k retrieved
examples, -B for BERT, and -M for MPNET.

Summarization

o o o
~oo
I

O
T

Normalized Cost

o

—o— CIPHER-5-B
CIPHER-1-M

—s— CIPHER-5-M

------- Oracle

160 200

Email Writing

e
=~
T
|

Normalized Cost
o

b

(

o

40 80 120 160 200
Round

2. Task 2 instruction: “This study is a simulation of how you use Al writing assistants. There
are 20 pieces of text that you need to review. You will be given an assumption of the
preferred writing style, and you can edit the piece of writing if it doesn’t satisfy the given
preference. If the writing aligns with the specified style, please leave no edits! Please treat
each writing as an independent piece, even though some writings are based on the same
article. For example, when reviewing the writing and making edits, do not bring in the
knowledge you learned from another piece of writing.

17

Table 5: Examples of user edits with different latent preference on summarization. The agent output
column shows the agent generation without conditioning on any preference. The latent preference for
the user edits is in bold and parenthesis. We truncate some examples due to limited space.

Agent Output

User Edits

Leon Fenner, the suspected gunman in a $2 million
diamond heist at Watch Standard Jewelry in New
York City, was arrested in Maryland. The robbery
occurred on November 11 and resulted in the in-
jury of the store owner’s elderly father. Fenner’s
accomplice, Rondu Frisby, was a friend of the store
owner and was apprehended a week after the heist.
The robbery took place during the city’s Veteran’s
Day Parade, leading to a block shutdown. Fenner
and Frisby stole numerous jewels and 20 luxury
watches, but were caught on surveillance cameras.
Fenner is set to appear before a federal court in
Maryland.

(targeted to young children, storytelling, short
sentences, playful language, interactive, posi-
tive)

Once upon a time in the big, bustling city of New
York, during a parade filled with music and march-
ing on Veteran’s Day, something sneaky happened
at a place called Watch Standard Jewelry. This
wasn’t just any store; it was a treasure chest full of
sparkling diamonds and shiny watches that could
make your eyes twinkle like stars.

Now, two not-so-nice men, Leon Fenner and
his buddy Rondu Frisby, thought they could be
sneaky and take these treasures without asking. On
November 11, while everyone was watching the
parade, they tiptoed into the store. But oh no! They
accidentally hurt the store owner’s dear old dad,
which wasn’t very kind at all. [TRUNCATED]

The article describes a situation where a neigh-
bor’s cat, one of seven rescued by a "cat lady,"
has started frequenting the author’s front yard after
leaving its original home due to the presence of
other cats. Over the past few months, the cat has
become more consistent in its visits, meowing at
the author and their family members for attention.
The cat allows itself to be petted and shows af-
fectionate behavior, such as rubbing against legs
and headbutting hands, until it is fed. After eating,
the cat typically leaves but returns in the evening.
The author is seeking advice on how to handle the
situation, expressing concern about feeding the cat
because it is not legally theirs and there could be
potential ownership and legal issues.

(second person narrative, brief, show emotions,
invoke personal reflection, immersive)

Imagine yourself in a quaint neighborhood, where
the gentle purrs of a feline friend have become a
familiar part of your daily routine. This isn’t just
any cat—it’s one of seven, a charming escapee
from the home of a local ""cat lady,"" seeking
solace in the tranquility of your front yard. Over
recent months, this whiskered wanderer has turned
your doorstep into its personal stage, meowing
for attention with a persistence that tugs at your
heartstrings.

Each encounter with this affectionate creature is
a dance of mutual admiration. You find yourself
captivated by its soft fur and the way it eagerly
rubs against your legs, headbutting your hands in a
silent plea for affection. [TRUNCATED]

The Puerto Plata Province is a northern province in
the Dominican Republic, known for its beautiful
beaches and as a popular tourist destination since
the late 1990s. Its capital is San Felipe de Puerto
Plata, named after the silver clouds Columbus saw
on a mountain nearby in 1493. The city of Puerto
Plata was founded in 1502.

Historically, the first European town in the Ameri-
cas, La Isabela, was established by Columbus near
Puerto Plata in 1493. In 1605, the governor An-
tonio de Osorio destroyed Puerto Plata and other
towns to curb illegal trade, leading to the formation
of new settlements.

Puerto Plata became a Maritime District in 1865
and was later recognized as a province in the 1907
constitution. Over time, it expanded to include
more municipalities and municipal districts, with
the latest additions in 2007. [TRUNCATED]

(bullet points, parallel structure, brief)

- Location: Northern Dominican Republic

- Capital: San Felipe de Puerto Plata

- Founding: 1502 by Europeans

- Historical site: La Isabela (1493, first European
town in the Americas)

- 1605: Destruction by Governor Antonio de Oso-
rio to stop illegal trade

- Status: Became Maritime District in 1865, recog-
nized as province in 1907

- Expansion: Added more municipalities, latest in
2007

- Borders: Atlantic Ocean, Espaillat, Santiago,
Valverde, Monte Cristi provinces

[TRUNCATED]

18

The article discusses the challenge of detecting and
classifying stuttered speech, which affects many
people but has been subject to limited research.
The authors present a new model that differs from
most existing methods, which typically use lan-
guage models for stutter identification. Instead,
their model is based on acoustic features, which
allows it to identify various kinds of stuttering dis-
fluencies without relying on speech recognition
technology. The proposed model combines a deep
residual network with bidirectional long short-term
memory (LSTM) layers to classify different stutter
types. It has been shown to significantly outper-
form current leading methods, reducing the aver-
age miss rate to 10.03%, which is a 27% improve-
ment over the state-of-the-art.

(tweet style, simple English, inquisitive, skillful
foreshadowing, with emojis)
Ever struggled with stuttering or know someone

who does? %¢ Research on detecting stutters
hasn’t been huge, but guess what? A new study is
changing the game! M8 Instead of just looking at
words, this smart model listens to how things are
said. v/ It’s like a detective for sounds, using cool
tech called deep learning and memory networks to

. ® . .
spot different stutter types. # And it’s crushing
it, beating old methods by 27%! Missed stutters?

Down to just 10%! “\ This could be a big deal for

speech therapy! #Stuttering # SpeechTech #

Innovation

The article discusses a movie that begins promis-
ingly but later becomes confusing due to a poorly
depicted portrayal of ancient black magic rituals.
The male lead delivers a strong performance de-
spite his character’s unfavorable outcome in the
climax. The movie is compared to a mix of
"Boomerang" and "Extremities."

(question answering style, direct, concise)
What is the general sentiment of the article about
the movie?

The article suggests that the movie starts off well
but eventually becomes muddled. The depiction of
ancient black magic rituals is criticized for being
confusing.

How does the article describe the male lead’s per-
formance?

The male lead’s performance is described as strong,
even though his character does not have a favorable
outcome in the climax.

What films is the movie compared to in the article?
The movie is compared to ""Boomerang"" and
""Extremities"" in the article.

Table 6: Prompt templates for the Al user. The first step is to prompt the user for yes/no answer
regarding satisfaction. If the answer is no, the second step is to ask the user edit the agent output
according to the latent preference. If the answer is yes, the agent output receives 0 edits.

Summarization Email Writing

Step 1 Article: Notes:
Summary: {agent-generated summary} Email: {agent-generated email}
Is the above summary of the above article s the above email based on the above notes good
good for person who would love to use the for a user who wants the following style: {latent
following style: {latent user preference}? user preference}? Please answer yes or no.
Please answer yes or no.

Step 2 Summary: {agent-generated summary} Email: {agent-generated email}

Please revise the above summary of an article
to meet your style: {latent user preference}.

Assume that you prefer {latent user preference}.
Please revise the above email to meet your style.

19

Table 7: Prompt templates for CIPHER.

Summarization

Email Writing

Task prompt
conditioned
on inferred
preference
(line 5 in Al-
gorithm 1)

Article:

Assume that you need to summarize the above
article for a user, who prefers the following
style: {inferred user preference}. Please write
a summary of the above article to address those
specified preferences.

Notes:

These notes are written by a user who prefers
the following style of emails: {inferred user
preference}. Please write a short email based
on the above notes to address those specified
preferences.

Prompt to in-
fer user pref-
erence based
on revision
(line 11 in Al-
gorithm 1)

Original summary of an article:
generated summary}

Revised summary by a user: {user revision}
Based on the edits and revision by this user on
the original summary in the above examples,
what do you find about this user’s generic pref-
erence in terms of writing style and formatting?
Please answer in a short phrase and only recom-
mend those preferences that are widely used.

{agent-

Original email: {agent-generated email}
Revised email: {user revision}

Based on the edits and revision by this user on
the original email in the above examples, what
do you find about this user’s generic preference
in terms of writing style and formatting? Please
answer in a short phrase and only recommend
those preferences that are widely used.

Prompt to
consolidate
inferred
preferences
from history
(line 4 in Al-
gorithm 1)

List of user preferences successfully being used
to generate summaries of similar documents:

- {inferred preference in a retrieved example}
- {inferred preference in a retrieved example}

Based on the the above examples, please come
up with short phrase with the most represented
summarization preferences of the user.

List of user preferences successfully being used
to generate emails of a similar kind:

- {inferred preference in a retrieved example}
- {inferred preference in a retrieved example}

Based on the the above examples, please come
up with short phrase with the most represented
writing preferences of this user.

Table 8: Prompt templates for the ICL-edit baseline.

Summarization

Email Writing

Prompt with
retrieved
user

examples

edit

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Article:

Based on the edits and revision by this user on
the original summary in the above examples,
Please summarize the above article:

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Notes:

Based on the edits and revision by this user on
the original email in the above examples, Please
write an email based on the above notes for this
user:

20

Table 9: Prompt templates for the CoT-edit baseline.

Summarization

Email Writing

Prompt with

retrieved
user
examples

edit

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

FIRST, come up with short phrases that explain
edits made by the user in the above examples, to
show this user’s writing preference. SECOND,
on a new line, summarize the above given arti-
cle using the inferred preference. Your response
MUST FOLLOW THE FOLLOWING FOR-
MAT: PREFERENCE: <your inferred prefer-
ence as a list of short phrases> RESULT: <your
summary of the given article>

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Original summary of an article: {agent-
generated summary in a retrieved example}
Revised summary by a user: {user revision in
a retrieved example}

Notes:

FIRST, come up with short phrases that explain
edits made by the user in the above examples,
to show this user’s writing preference. SEC-
OND, on a new line, write an email based on
the above notes using the inferred preference.
Your response MUST FOLLOW THE FOL-
LOWING FORMAT: PREFERENCE: <your
inferred preference as a list of short phrases>
RESULT: <your email based on the given
notes>

Table 10: Expense of different methods: number of BPE tokens in terms of input, output and total.
Each number is the average across 3 runs (unit is -10°).

Method Summarization Email Writing

Input Output Total Input Output Total
Oracle Preference 1.14 0.53 1.67 0.91 0.71 1.62
No Learning 1.06 0.44 1.50 0.85 0.80 1.65
E-then-e LPI 1.16 0.83 1.99 0.94 0.79 1.73
Continual LPI 8.14 0.75 8.89 7.89 0.73 8.63
ICL-edit-5-MPNET 7.35 0.65 8.00 11.05 1.06 12.12
ICL-edit-5-BERT 7.32 0.64 7.96 10.51 1.03 11.55
CoT-edit-5-MPNET 6.23 0.59 6.82 7.67 0.79 8.47
CoT-edit-5-BERT 6.34 0.58 6.92 7.48 0.78 8.26
CIPHER-1-MPNET 2.02 0.72 2.74 1.21 0.73 1.94
CIPHER-5-MPNET 2.27 0.73 3.00 1.44 0.64 2.09
CIPHER-1-BERT 2.10 0.71 2.81 1.27 0.73 1.99
CIPHER-5-BERT 2.32 0.71 3.03 1.48 0.73 222

21

Table 11: Summary of failure cases on summarization task with CIPHER-5-MPNET.

Type of Failures

Summary

Examples

Preference inference
based on an output-
revision pair (f)

(the most common fail-
ure type)

1) Not totally wrong but in-
sufficient, i.e. the inferred
preference only captures a
few aspects of user’s latent
preference. This is most
common for news articles
and Reddit posts, for which
the user shows nuanced pref-
erence for several aspects.
2) Sometimes fail to in-
fer some important aspects,
even though the user edits
clearly show such prefer-
ence.

The dominant missing aspect is brief or short sen-
tences across different context, although the agent
can infer keywords such as concise. For news
article context, the agent tends to infer the prefer-
ence keyword whimsical. The agent has difficulty
to infer subtle aspects, including invoke personal
reflection, immersive, positive, parallel structure,
inquisitive, and skillful foreshadowing.

The agent often could not infer second-person nar-
rative. For question answering style, the agent
occasionally only learns consistent format.

Consolidation of
induced preferences
from retrieved interac-
tions (ft)

Overall, this step can cap-
ture the majority preference
relatively well, although it
tends to result in a more gen-
eral preference compared to
the retrieved ones.

When both specific phrase second-person narra-
tive and general phrase narrative or narration oc-
cur in retrieved examples, the agent often chooses
to give a final preference not including the second-
person perspective aspect.

Retrieval of historical
examples relevant to
the given context

The retrieval part in general
works reasonably well, with
more than half of the re-
trieved example being truly
relevant to the given con-
text. Note that one incor-
rect retrieved example typ-
ically does not affect the
performance, as we instruct
the agent to only use the
most represented preference
keywords among all five re-
trieved examples.

The agent sometimes retrieves wrong examples
for Wikipedia context when its topic very relates
to other context, e.g. wrongly retrieving past ex-
amples on news articles and movie reviews when
the topic in the given Wikipedia context relates to
these domains.

Table 12: We report retrieval accuracy as the percentage of total retrieved document representations
across all time steps and seeds that are of the same document source type as the context document for
which they were retrieved. We use 3 seeds. We retrieve 600 examples for £ = 1 and 2970 examples
for k = 5.

Method Summarization Email Writing
CIPHER-1-B 72.00 25.83
CIPHER-1-M 82.00 26.33
CIPHER-5-B 65.79 26.57
CIPHER-5-M 76.33 25.45

22

	Introduction
	Interactive Learning from User Edits and the PRELUDE Framework
	Learning User Preference through Retrieval and Aggregation
	Experiment
	Two Interactive Writing Assistant Environments for Learning from User Edits
	Details of CIPHER and Comparison Systems
	Main Result and Discussion.
	Human Evaluation

	Conclusion
	Related Work
	Additional Details
	Additional Analysis

