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A B S T R A C T

This study develops a combinatorial approach for nonparametric short-term queue length estimation in terms

of cycle-by-cycle partially observed queues from probe vehicles (PV). The method does not assume random

arrivals and does not assume any primary parameters or estimation of any parameters but uses simple algebraic

expressions that only depend on signal timing. For an approach lane at a traffic intersection, the conditional

queue lengths given probe vehicle location, count, time, and analysis interval (e.g., at the end of the red signal

phase) are represented by a Negative Hypergeometric distribution. The simple analytical estimators obtained

are compared with parametric methods from literature and highway capacity manual methods using field

test data and simulation data involving probe vehicles. The analysis indicates that the nonparametric models

presented in this paper match the accuracy of the parametric ones used in the field test and simulated data

for estimating queue lengths.

1. Introduction

Probe vehicles (PV) or Lagrangian sensors can be considered as

tracking-device-equipped vehicles that can report critical informa-

tion (Hans, Chiabaut, & Leclercq, 2015) as they traverse transportation

networks. Commercial taxis, volunteers, transit buses, maintenance

vehicles, commercial trucks, etc., can report their location and times-

tamps through cellphones and GPS devices for improved traffic oper-

ations or better planning. The collected data can be used to estimate

traffic parameters (e.g., flow, density, speed, queue lengths, and de-

lays). The accuracy of these estimates depends on the quality of

reported sensor data and the penetration of the number of data received

from the vehicles. Regardless, observing mobile data from transporta-

tion networks gives critical coverage for dynamic traffic behavior. This

study presents a method for estimating queue length given that (1)

probe vehicles can be observed on a lane accurately and infer the order

of vehicles in a queue, (2) we can deduce the beginning of queue start
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time to probe vehicle arrival times (e.g., relative to the beginning of

red duration at a signal independent of signal control type), and (3) we

can track the number of probe vehicles in the queue. Assuming these

data are available, using the combinatorics approach, we develop cycle-

to-cycle (dynamic) queue length estimators that can be used for any

cyclic queues (e.g., signalized intersections) without requiring primary

arrival rate or probe vehicle market penetration rate (or percentage)

parameters.

In the previous related research, Herrera and Bayen developed

improved traffic (i.e., flow and density) estimation models using cell

phone-based probe vehicle data (Herrera & Bayen, 2010). The au-

thors compared traffic flow theory and Kalman filter-based approaches.

Ramezani and Geroliminis used high-resolution probe vehicle data to

estimate travel time distribution after allocation and decomposition.

The distribution could be used for reliability and report travel time

from uncovered roadways (Ramezani & Geroliminis, 2012). Jenelius
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and Koutsopoulos utilized low-frequency probe vehicles and spatial

and temporal link features (more than 50 features) to estimate travel

times (Jenelius & Koutsopoulos, 2013). The authors also show the

effectiveness of low-frequency probe vehicle data estimating travel time

distributions. The authors used theoretical travel time distributions

used in the literature. Zheng et al. developed a stochastic model based

on covariance dynamics for speed and density estimations and reported

promising results after 20% probe vehicle proportions (Zheng, Jabari,

Liu, & Lin, 2018). Duret and Yuan compared Eulerian (fixed loop

detector) and Lagrangian (probe) and combined them for travel time

estimation (Duret & Yuan, 2017). Authors reported that the above

10% probe proportion is needed for accurate estimations. Seo et al.

estimated the fundamental diagram (flow-speed-density) behavior from

probe vehicles, which can be used for planning or operations (Seo,

Kawasaki, Kusakabe, & Asakura, 2019). Florin and Olariu also esti-

mated density from probe vehicles using vehicles tracking the other

passing vehicles (Florin & Olariu, 2020). Wang et al. estimated the

queue profiles at signalized intersections using optimization and spa-

tiotemporal shockwaves (Wang, Zhu, Ran, & Jiang, 2020). The study

reported that 10%–20% probe proportion and 20–30 s sampling inter-

vals would provide acceptable accuracy. In a similar study, the back of

the freeway queue was estimated (Bae, Liu, Han, & Bozdogan, 2019).

Researchers have extensively studied the queue length estimation

problem by proposing parametric (Zhao, Shen, & Liu, 2021; Zhao,

Wong, Zheng & Liu, 2021; Zhao et al., 2019) and nonparametric meth-

ods. In this paper, we focused on the review of nonparametric ones.

Jin and Ma presented a study on a nonparametric Bayesian method for

traffic state estimation (Jin & Ma, 2019). In their study, they developed

a generalized modeling framework for estimating traffic states at sig-

nalized intersections. The framework is nonparametric and data-driven,

and no explicit traffic flow modeling is required. Wong et al. estimated

the market penetration rate (probe proportion or percentage) (Wong,

Shen, Zhao, & Liu, 2019). Based on probe vehicle data alone, they

proposed a simple, analytical, nonparametric, and unbiased approach

to estimate the penetration rate. The method fuses two estimation

methods. One is from probabilistic estimation and the second is from

samples of probe vehicles which is not affected by arrival patterns. It

uses PVs and all vehicles ahead of the last PV in the queue.

Gao et al. presented queue length estimations (QLEs) based on

shockwaves and backpropagation neural network (NN) sensing (Gao,

Han, Dong, Xiong, & Du, 2019). The approach uses PV data and

queue formation dynamics. It uses the shockwave velocity to predict

the queue length of the non-probe vehicles. The NN is trained with

historical PV data. The queue lengths at the intersection are obtained by

combining the shockwave and NN-based estimates by variable weight.

Tan et al. introduced License Plate Recognition (LPR) data in their

study to fuse with the vehicle trajectory data and then developed a

lane-based queue length estimation method (Tan, Liu, Wu, Cao, & Tang,

2020). The authors matched the LPR with probe vehicle data. They

obtained the probability density function of the discharge headway

and the stop-line crossing time of vehicles. They presented the lane-

based queue lengths and overflow queues. Wang et al. proposed a

QLE method on street networks using occupancy data (Wang, Bengler,

Wets, & Niu, 2013). Their key idea is to use the speed decrease as the

queue increase downstream of the loop detector. This would result in

higher occupancy at constant volume-to-capacity ratios. Using VISSIM

simulation, they generated data for various link lengths, lane numbers,

and bus ratios. They fit a logistic model for the queue length and occu-

pancy relationship. Then, queue lengths were estimated using multiple

regression models. Van Phu et al. developed parametric estimators for

the intersections with multiple lanes and showed effectiveness using

microsimulations (Van Phu & Farhi, 2020). Then, the authors showed

two two-stage models with estimators for primary parameters, arrival

rate, and probe proportions (Van Phu & Farhi, 2022).

Contributions of this study

This paper aims to model cycle-to-cycle (i.e., dynamic) queue

lengths at intersections generally without assuming random arrivals or

any primary parameters (i.e., market penetration rate, arrival rate) or

estimating these parameters.

1. Unlike fundamental non-parametric queue length estimations

from arrival and service distributions (Goldenshluger, 2016;

Goldenshluger & Koops, 2019; Schweer & Wichelhaus, 2015;

Singh, Acharya, Cruz, & Quinino, 2021), our method uses math-

ematical techniques from combinatorics to derive discrete condi-

tional probability mass functions of observed information about

the queue and derive moments of the distributions without de-

pending on probe vehicle proportion (i.e., the number of probe

vehicle divided by all vehicles or also called market penetration

rate), arrival, or service distributions. Thus, estimators derived

can be used to calculate cycle-to-cycle queue length/delay values

for signal timing or optimization.

2. As the title suggests, the paper builds on the authors’ previous

work. However, the approach presented in this study signifi-

cantly extends the results from Comert (2013a), Comert and

Cetin (2009) where Comert and Cetin (2009) presented a condi-

tional probability mass function for probe location information

and Comert (2013a) provided closed-form dynamic queue length

estimators given probe vehicle location and time information.

Both studies assumed Poisson arrivals. In this study, formulas

do not assume any arrival distribution.

3. In this paper, derived estimators are the results of investigating

the experiments, finding arrival distribution-free probability dis-

tributions, and obtaining mean and variance, which are direct

estimators and errors. The results are simple and easy to use

in any control framework. They can be used if queue start and

end times are known or tracked (e.g., incident start and end, red

signal start and end).

4. Proposed estimators do not consider random overflow queues,

i.e., remaining queues from previous cycles, which can happen

during random high arrival rates as volume-to-capacity ratio gets

closer to 1.0.

5. Proposed estimators are valid for low to medium volume-to-

capacity ratios (less than 0.80); thus, undersaturated conditions,

meaning the queue is not building up after each cycle.

The paper is organized as follows: In Section 2, the approach is

defined to set up derivations. In Section 3, we use combinatorial

arguments and present a closed form of the sum of the probabilities in

Eqs. (3) and (4). The result obtained in Section 3 enables us to define a

probability mass function. We show that this probability distribution is

Negative Hypergeometric. We use the results for the mean and variance

of the distribution to derive formulas for the queue length estimators. In

Section 4, we present numerical examples of the behavior of the derived

estimators and show the performance of the estimators using field

data. We summarize our findings and discuss possible future research

directions in Section 5.

2. Problem definition

Probe vehicles (PVs) and partially observed systems through in-

expensive sensors are facilitating real-time queue length estimations.

Our goal in this paper is to model queue lengths (𝑁) at intersections

without assuming random arrivals or any primary parameters or esti-

mating such parameters (i.e., arrival rate (𝜆) and probe vehicle market

penetration rate (𝑝)). In Fig. 1, a snapshot of an example queue (e.g., the

waiting vehicles at the end of the red signal phase) is shown. Suppose

that solid vehicles are observed. The total queue length 𝑁 is written as

a sum of two queues: the total number of vehicles up to the last probe
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Fig. 1. Snapshot of an intersection at the end of a red phase.

𝑁1 and the number of vehicles after the last probe 𝑁2. The estimator

for the total queue length (𝑁) given the location (𝐿), the number of

PVs (𝑀) in the queue, the time of the last probe (𝑇 ), and the signal

timing (or time interval of interest (𝑅)) can be expressed as follows.

𝐸(𝑁|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅) = 𝐸(𝑁1|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅)+

𝐸(𝑁2|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅) (1)

Now, the first part of the queue is trivial and equals the last

probe vehicle location (order in the queue) 𝑁1 = 𝑙 and the variance

of the 𝑁1 is 𝑉 (𝑁1|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅) = 0. After the last probe
vehicle, 𝑁2 contains uncertainty. If we simply assume Poisson arrivals

𝐸(𝑁2|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅) = (1 − 𝑝)𝜆(𝑅 − 𝑡). And, if no initial queue
(or overflow queue from the previous signal cycle) is assumed, the

estimator becomes 𝐸(𝑁|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅) = 𝑙 + (1 − 𝑝)𝜆(𝑅 −
𝑡). The essential information needed for the estimation is primary

parameters such as flow rate (𝜆) and percent of probe vehicles (or

market penetration rate 𝑝). However, both parameters are dynamic.

Especially in real-time applications, like cycle-to-cycle or shorter-term

queue lengths at signalized intersections, one would need to collect

data for a few cycles to estimate these parameters. The parameters

can then be updated and used in such applications. Assuming random

arrivals, in Comert (2016), Comert and Begashaw (2022), it is shown

that at least 10 cycles of PV data would be needed to start using queue
length estimators.

If Poisson distribution is too restrictive, one can attempt to model

the estimator as 𝐸(𝑁|𝐿,𝑀, 𝑇 ) =
∑

𝑛 𝑛𝑝(𝑁 = 𝑛|𝐿,𝑀, 𝑇 ). This can be

direct or using known or easier to identify simpler conditional distribu-

tions, e.g., Eq. (2). Please note that this approach would need to result

in a simple algebraic form of estimators. Otherwise, calculations would

be tedious.

𝑝(𝑁 = 𝑛|𝑙, 𝑚, 𝑡) = 𝑝(𝑇 = 𝑡|𝑙, 𝑚, 𝑛)𝑝(𝐿 = 𝑙|𝑚, 𝑛)𝑝(𝑀 = 𝑚|𝑛)𝑃 (𝑁 = 𝑛)∑
𝑛 𝑝(𝑇 = 𝑡|𝑙, 𝑚, 𝑛)𝑝(𝐿 = 𝑙|𝑚, 𝑛)𝑝(𝑀 = 𝑚|𝑛)𝑃 (𝑁 = 𝑛)

(2)

For instance, the conditional probability of the location (order) of

the last probe vehicle can be calculated by 𝑝(𝐿 = 𝑙|𝑀 = 𝑚,𝑁 = 𝑛) =( 𝑙−1
𝑚−1

)
∕
(𝑛
𝑚

)
given the number of probe vehicles and the total number

of vehicles in the queue. In this probability mass function, 𝐿 is the

location of the last probe vehicle, 𝑀 is the number of probe vehicles

in the queue, and 𝑁 is the total queue. In Fig. 1, 𝐿 is 6, 𝑀 is 2,

and 𝑁 is 8 vehicles. We can see that this approach does not assume

any arrival pattern or parameter and only depends on probe vehicle

data. Certainly, it is not taking advantage of queue joining time 𝑇

of PVs with respect to signal timing. Note that 𝑇 is assumed integer

representing whole seconds or fine discrete sub-second time intervals.

For signal timing, whole or half-second precision is commonly used in

calculations (Urbanik et al., 2015). There is also the physical constraint

of the vehicle following, which can be 0.5–2 s 𝑠 even if vehicles arrive

in a very closely following group.

This problem (i.e., derivation of conditional probability distribution

given probe vehicle information) described as a single lane of approach

can equivalently be expressed as Fig. 2 drawing balls labeled as arrival

as a probe vehicle, arrival as a non-probe vehicle, or no arrival. Con-

sider the approach lane queue formed in 2𝑅 (i.e., 𝑅 is the red phase)

time intervals where in a unit time interval, there can be, at most, one

arrival. So, in this setup, there can be at most one arrival per 0.5 s. This

can be thought of as the minimum possible time gap and can be updated

in the formulations derived. For example, in Fig. 2, we have 𝑙 arrivals

within 2𝑡 discrete unit time intervals. Among these time intervals, 2𝑡−1
contain 𝑚− 1 PVs, 2𝑅− 2𝑡 contain 𝑛− 𝑙 arrivals. Now, the problem is a

negative inference, meaning 𝑛 is changing as in Negative Binomial, so

we are interested in 𝑝(𝑁 = 𝑛|𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅), i.e., probability of
having 𝑁 = 𝑛 arrivals within 𝑅 time interval given 𝐿 = 𝑙, 𝑇 = 𝑡,𝑀 = 𝑚.

Calculating this probability, we obtain Eq. (3) or equivalently Eq. (4).

𝑝(𝑁 = 𝑛|𝑙, 𝑚, 𝑡, 𝑅) =

( 2𝑡
𝑙−𝑚

)(2𝑅−2𝑡
𝑛−𝑙

)
( 2𝑅
𝑛−𝑚

) (3)

𝑝(𝑁 = 𝑛|𝑙, 𝑚, 𝑡, 𝑅) =

(𝑛−𝑚
𝑙−𝑚

)(2𝑅−(𝑛−𝑚)
2𝑡−(𝑙−𝑚)

)
(2𝑅
2𝑡

) (4)

We can then calculate expected values to get the mean (𝐸(𝑁 =
𝑛|𝑙, 𝑡, 𝑚, 𝑅) or the queue length estimator) and the variance (𝑉 (𝑁 =
𝑛|𝑙, 𝑡, 𝑚, 𝑅)) of the estimator. However, we first need to

i. verify if this is a valid probability mass function,

ii. find the normalizing denominator for a valid probability mass

function,

iii. simplify to forms that can be used as input–output models like,

𝐸(𝑁 = 𝑛|𝑙, 𝑡, 𝑚, 𝑅) = 𝑙 + (1 − 𝑝)𝜆(𝑅 − 𝑡) in Comert (2013b).
iv. show if this approach leads to one of the known negative proba-

bility mass functions (e.g., Negative Hypergeometric). This could

facilitate (iii).

The above formulation approach would hold under certain condi-

tions. Without claiming all, the following can be noted as some of the

limitations of the study:

1. The paper models the cycle-to-cycle queue lengths at the end

of red duration which is the maximum queue for deterministic

queues. In real traffic signal queues when the signal turns green,

there is a short loss time due to vehicle acceleration and reaction

times. During this time, more vehicles can join the queue. Thus,

we only estimate the total queue at the end of the red duration,

not the maximum queue. They might slightly differ. Regardless,

the formulations are valid if the start and end time of the analysis

interval is known, e.g., the start and end times of red duration.

2. Undersaturated conditions are assumed, meaning, the queue is

not building up after each cycle. In fact, the signal queue is

cleared after each cycle, and sometimes overflow queues (re-

maining queues) are observed. Note that since the presence of

PV in the queue is tracked, the estimators can show slightly

overestimated results as overflow queue PVs are not from the

same cycle arrivals. If the volume-to-capacity ratio gets higher

(> 0.80), the expected queue length would have a significant

overflow queue presence, thus, a long queue is expected. With

more PVs present in the queue, estimators would show better

results with 𝑀 = 𝑚 and 𝐿 = 𝑙 getting higher. The time infor-

mation should be revised as it would be from a previous cycle.

Overall, this can be corrected via scenario analysis (Comert,

2013b). However, it is not within the scope of this paper. For

oversaturated conditions, the queue would grow steadily. In

such cases, relative referencing of the probe vehicle information

would be changed. The rate of queue growth could be estimated,

and the unknown queue length after the last probe vehicle can

be scaled accordingly.
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Fig. 2. Example queue with queue length, PV data, and arrival-no arrival spots.

3. How vehicles can be identified on a lane or limitations of GPS or

tracking technology is not discussed. One can approach similarly

to identify probe vehicles in a lane.

3. Probability mass function, expected value, and variance

We first provide combinatorial arguments and derive a closed form

for the sum of the function in Eq. (4). Let 𝓁, 𝑡, 𝑅, and 𝑚 be as defined

in the preceding section. Then

2𝑅−2𝑡+𝓁∑
𝑛=𝓁

(𝑛−𝑚
𝓁−𝑚

)(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝓁

)
(2𝑅
2𝑡

) = 2𝑅 + 1
2𝑡 + 1

(5)

The complete derivation of Eq. (5) is provided in the Appendix

under Theorem 1. We can see that the identity proved in the above

theorem enables us to revise Eq. (4) and define a probability mass

function. We can divide both sides of the identity by the expression

on the right-hand side of the identity to get one on the right-hand

side (i.e., the right-hand side of the identity is the normalizer of the

probability distribution, which we explain below). Note that additional

results from combinatorics and discussions are presented in Appendix.

In Negative Hypergeometric distribution (Johnson, Kemp, & Kotz,

2005), the probability of having 𝑘 successes up to the 𝑟th failure given

sample size of 𝑆 and maximum possible queued vehicles 𝐾 is given by

𝑝(𝑘|𝑟, 𝐾, 𝑆) =

(𝑘+𝑟−1
𝑘

)(𝑆−𝑟−𝑘
𝐾−𝑘

)
(𝑆
𝐾

) (6)

where 𝑆 is the sample size (time capacity for arrivals and non-arrivals),

𝐾 is the total number of successes (arrivals) in 𝑆, 𝑟 is the number of

failures (non-arrivals), and 𝑘 is the number of successes (realizations

of arrivals). The probabilities sum to 1. For the Negative Hypergeo-
metric distribution, the expected value 𝐸(𝑘|𝑟, 𝐾, 𝑆) and the variance
𝑉 (𝑘|𝑟, 𝐾, 𝑆) are given by Eqs. (7) and (8).

𝐸(𝑘|𝑟, 𝐾, 𝑆) = 𝑟𝐾

𝑆 −𝐾 + 1
(7)

𝑉 (𝑘|𝑟, 𝐾, 𝑆) = 𝑟𝐾(𝑆 + 1)(𝑆 −𝐾 − 𝑟 + 1)
(𝑆 −𝐾 + 1)2(𝑆 −𝐾 + 2)

(8)

In the probability mass function of the Negative Hypergeometric

distribution (Eq. (6)), let 𝑆 = 2𝑅 + 1, 𝐾 = 2𝑅 − 2𝑡, 𝑟 = 𝑙 − 𝑚 + 1,
and 𝑘 = 𝑛 − 𝑙. Then the result proved in the theorem above gives

the following probability mass function, which is a Negative Hyper-

geometric distribution since
∑2𝑅−2𝑡+𝑙

𝑛=𝑙
(𝑛−𝑚
𝑙−𝑚

)(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝑙

)
=

(2𝑅+1
2𝑡+1

)
. Notice

that with these assignments arrivals and non-arrivals are fixed, and the

probability of the total queue 𝑁 = 𝑛 is calculated with known 𝑙, 𝑚, 𝑡, 𝑅.

𝑝(𝑁 = 𝑛|𝑙, 𝑚, 𝑡, 𝑅) =

(𝑛−𝑚
𝑙−𝑚

)(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝑙

)
(2𝑅+1
2𝑡+1

) (9)

From the formulas for the expected value and variance of the

Negative Hypergeometric distribution, we get the following formulas

for the expected value (Eq. (7)) and variance (Eq. (8)) of this probability

distribution in Eq. (9). Note that 𝐿 = 𝑙,𝑀 = 𝑚, 𝑇 = 𝑡, 𝑅 are basic

information from PVs, not primary parameters (arrival or penetration

rate of probe vehicle in the traffic stream). We also do not require

steady-state behavior if this Probe vehicle information is available. The

expected queue length and its variance are short-term (𝑅 seconds or

time interval) estimators.

The expected value 𝐸(𝑛|𝑙, 𝑡, 𝑚, 𝑅) can be determined by

𝐸(𝑁 = 𝑛|𝑙, 𝑚, 𝑡, 𝑅) =
2𝑅−2𝑡+𝑙∑

𝑛=𝑙

𝑛(2𝑅 + 1)
(2𝑡 + 1)

(𝑛−𝑚
𝑙−𝑚

)(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝑙

)
(2𝑅+1
2𝑡+1

)
=

2𝑅−2𝑡∑
𝑛′=0

𝑛′(2𝑅 + 1)
(2𝑡 + 1)

(𝑛′+𝑙′
𝑛′

)(2𝑅−𝑙′−𝑛′
2𝑅−2𝑡−𝑛′

)
(2𝑅+1
2𝑡+1

)
where 𝑛′ = 𝑛 − 𝑙, 𝑙′ = 𝑙 − 𝑚, and

(2𝑅+1)
(2𝑡+1) is the normalizer.

By Eqs. (7) and (8), simplified expected value or the queue length

estimation 1 and the variance can be obtained as in Eqs. (10) and (11).

𝐸(𝑁1 = 𝑛1|𝑙, 𝑚, 𝑡, 𝑅) = 𝑙 + (𝑙 − 𝑚 + 1)(2𝑅 − 2𝑡)
2𝑡 + 2

= 𝑙 + (𝑙 − 𝑚 + 1)(𝑅 − 𝑡)
𝑡 + 1

(10)

𝑉 (𝑁1 = 𝑛1|𝑙, 𝑚, 𝑡, 𝑅) = (𝑙 − 𝑚 + 1)(2𝑅 + 2)(2𝑅 − 2𝑡)
(2𝑡 + 2)(2𝑡 + 3)

[1 − 𝑙 − 𝑚 + 1
2𝑡 + 2

] (11)

Alternatively, from Eq. (12), we can get the following equivalent

estimator without PV time (𝑇 ) information (Eq. (13)) and its variance

in (Eq. (14)).

𝑝(𝑁 = 𝑛|𝑙, 𝑚, 𝐶) =

(𝐶−𝑛+𝑚
𝐶−𝑛

)(𝑛−𝑚
𝑛−𝑙

)
(𝐶
𝑙

) (12)

where 𝐶 is capacity or maximum possible arrivals (e.g., 2𝑅 with 0.5 𝑠

headways), 𝐽 = 𝐶 − 2𝑙, 𝑟 = 𝑙 − 𝑚 + 1, 𝐾 = 𝐶 − 𝑙, and 𝑘 = 𝑛 − 𝑙. Note

that, with time discretization, we can infer 𝑡 from 𝑙. The expected value

𝐸(𝑛|𝑙, 𝑚,𝑅) is given by

𝐸(𝑁 = 𝑛|𝑙, 𝑚, 𝐶) =
𝐶+𝑙∑
𝑛=𝑙

𝑛(𝑙 + 1)
(𝐶 + 1)

(𝐶−𝑛+𝑚
𝐶−𝑛

)(𝑛−𝑚
𝑛−𝑙

)
(𝐶
𝑙

)
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Fig. 3. Example behavior of conditional probabilities.

Fig. 4. Example behavior of conditional expectations.

=
𝐶∑

𝑛′=0

𝑛′(𝑙 + 1)
(𝐶 + 1)

(𝑛′+𝑙′
𝑛′

)(𝐶−𝑙′+𝑛′
𝐶−𝑙′−𝑛′

)
(𝐶
𝑛′

)
where 𝑛′ = 𝑛 − 𝑙, 𝑙′ = 𝑙 − 𝑚, and

(𝑙+1)
(𝐶+1) is the normalizer for valid

probability mass function.

𝐸(𝑁2 = 𝑛2|𝑙, 𝑚, 𝐶) = 𝑙 + (𝑙 − 𝑚 + 1)(𝐶 − 𝑙)
𝑙 + 2

(13)

𝑉 (𝑁2 = 𝑛2|𝑙, 𝑚, 𝐶) = (𝑙 − 𝑚 + 1)(𝐶 + 2)(𝐶 − 𝑙)
(𝑙 + 2)(𝑙 + 3)

[1 − 𝑙 − 𝑚 + 1
𝑙 + 2

] (14)

One of the advantages of the derived estimators in Eqs. (10) and

(13) is that the denominators are nonzero since 𝐿 ≥ 0. This enables us
to estimate queues even if there is no probe vehicle in the queue. The

behavior of conditional probabilities, expected values, and variances

are shown in Figs. 3–5. We can see in Fig. 3 that the likelihoods are

right to the 𝑁 = 𝑙 values. In Fig. 4, as the queue time joining of the

last probe vehicle increases, the expected queue length gets closer to

𝐿 = 𝑙 for both models. The variance of the conditional distributions is

high. However, for these examples, 𝑀 = 2. The variance will decrease
when the number of PVs increases in the queue. Similarly, in Fig. 5,

the variance of the estimated queue length reduces as 𝑙 and 𝑡 increase.

Having time information also shows smoother behavior compared to

having only location information.

Fig. 6 shows the percent coefficient of variation (CoV) with respect

to 𝑇 or 𝐿 to understand errors relative to true average queue lengths.

Suppose the maximum queue length is 20 vehicles per red duration

(on average, the unconditional queue length is 16.52 vehicles), then,

depending on the information 𝑀,𝐿, the error is within 30% of the av-

erage queue length for the estimator with time information. Similarly,

given information 𝑀 , the error for the estimator without 𝑇 is within

40% of the average queue length and decreases to zero as the location

of the last probe increases. Note that the figures show the behavior of

the conditional CoVs where𝑀,𝐿, 𝑇 values are selected for illustrations.

For other values, CoV values are going to change.

4. Evaluation with field queue length data

To show the effectiveness of the estimators developed, we used

2014 ITS World Congress Connected Vehicle Demonstration Data (CV

Dataset, 2014). The authors’ previous works used this field data for

evaluating range sensor inclusion and filtering for queue length esti-

mation (Comert & Begashaw, 2022; Comert & Cetin, 2021). The results

of this study are new. For completeness, assumptions and setup are

reported again. The dataset contains manually collected queue lengths

at the intersection of Larned and Shelby streets in Detroit, Michigan,
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Fig. 5. Example behavior of conditional variances.

Fig. 6. Example behavior of conditional variances.

between September 8 and 10, 2014. The number of observations per
day is 98, 254, and 135, respectively. During data collection, probe

vehicles were identified with the blue 𝑋s. Each row of data includes

the hour, minute, and second of observation, the maximum queue

lengths, and the number of probe vehicles in these queues (i.e., 𝑀 in

the formulations above) from the left, center, and right lanes of the

Larned street approach.

The dataset provides 𝑀 = 𝑚 and 𝐶 cycle time values but not the

information of 𝐿 and 𝑇 from PVs. Hence, we generated random variates

of this information from Uniform distribution (𝐿 = 𝑙 location 𝑙 ∼
𝑈 (𝑚, 𝑛)) and Gamma distribution (𝑇 = 𝑡 queue joining time 𝑡 ∼ 𝑎(𝑙, 𝐶

2𝑛 ))
distributions for all lanes independently and repeated for 1000 random
seeds. Note that, integer values are used for 𝐿,𝑀 , and 𝑇 . The overall

average of estimation errors is reported to compare models. In addition,

the followings are assumed related to the traffic signal and the dataset:

1. Back-of-queue observations are obtained at the end of red phases

(vary cycle-by-cycle). The time between two observations is

assumed to be the cycle length (𝐶), and red phases are assumed

to be half (𝑅 = 𝐶∕2).
2. There is no steady growth of queue and many zero queue values.

Thus, the overflow queues are omitted. The data was collected

during low to medium 𝜌 (i.e., volume-to-capacity ratio= 0.50

assumed for HCM models). Please note this is real-life demo data

from an urban arterial and is used to show the performance of

the models against known parameters ones. Regardless, 𝜌’s are

also calculated using estimated arrival rates and used in relevant

models.

3. The capacity of the approach was approximated by the observed

overall maximum queue value of 10 vehicles within 70 s (10 ×
3600∕35 = 1029 vehicles per hour or 0.286 vehicles per second
(𝑣𝑝𝑠) saturation flow rate). These values are used essentially in

the Highway Capacity Manual (HCM) from manual and back-

of-queue calculations. Note that the values may not reflect the

actual capacity and phase splits; however, we compare and

report true queue lengths. This would provide insights into the

accuracy of our approach.

Compared HCM delay (i.e., 𝐷𝑒𝑙𝑎𝑦 time difference between ideal

versus actual conditions (or simply waiting time)) and back of the

queue (i.e., 𝑄𝑏𝑎𝑐𝑘) models are given in Eqs. (15) and (16). These

models are approximations for given time intervals (e.g., 15 min) and
fully observed traffic.

𝑑1 =
𝐶

2
[

(1 − 𝐺∕𝐶)2

1 − [𝑚𝑖𝑛(1, 𝑋̂)𝐺∕𝐶]
]
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Table 1

Estimators given for the queue lengths.

Estimator 𝐸(𝑛|𝑙, 𝑚, 𝑡, 𝑅)

Est.1 𝐼(𝑚 > 0)[𝑙 + (𝑙 − 𝑚)(1 − 𝑡

𝑅
)] + 𝐼(𝑚 = 0)[(1 − 𝑚̄

𝑙
)(𝑙 + (𝑙 − 𝑚̄)(1 − 𝑡

𝑅
))]

Est.2 𝐼(𝑚 > 0)[𝑚 + (𝑙 − 𝑚)𝑅
𝑡

] + 𝐼(𝑚 = 0)[𝑚̄ + (𝑙 − 𝑚̄)𝑅
𝑡

]

NP.Est.1 𝑙 + (𝑙 − 𝑚 + 1)(𝑅 − 𝑡)
𝑡 + 1

NP.Est.2 𝑙 + (𝑙 − 𝑚 + 1)(𝐶 − 𝑙)
𝑙 + 2

𝑑2 = 900𝑇 [(𝑋̂ − 1) +
√

(𝑋̂ − 1)2 + 8𝑘𝐼𝑋̂
𝑐𝑇

] (15)

where 𝑑 = 𝑑1 × 𝑃𝐹 + 𝑑2 + 𝑑3 is control delay seconds per vehicle,

𝑑2 is uniform delay, 𝑃𝐹 is progression factor due to arrival types, 𝑑2
is random delay component, and 𝑑3 is delay due to initial queue. In

this study, only 𝑑1 + 𝑑2 are considered with 𝑑3 = 0 since no overflow
queue is assumed. 𝑃𝐹 = 1.0 is used for random arrivals. Volume-to-

capacity is 𝑋̂ = 𝜌̂ = 𝜆̂

0.286 . Green time 𝐺 is in seconds 𝑠, 𝐶 is cycle

time in 𝑠. 𝑇 is the analysis period in hours where in cycle-to-cycle

estimations 𝑇𝑖 = 𝐶𝑖∕3600 is assumed where 𝑖 denotes cycle number.

𝑘 is incremental delay factor, and 0.5 is assumed for fixed time like

movement. 𝐼 = 1 upstream filtering is assumed for no interaction

with nearby intersections, and capacity is 𝑐 = 1029 𝑣𝑝ℎ. Note that in

our calculations, the uniform delay is the main component updated by

changing 𝐺 and 𝐶 values. Queue lengths are approximated by Little’s

formula 𝑑𝜆 where 𝑑 and 𝜆 are both calculated at each cycle using 𝑀

number of probe vehicles in the queue. This method is based on HCM

2000 (Ni, 2020; Prassas & Roess, 2020).

Another estimation approach adopted from Kyte, Tribelhorn, et al.

(2014) is used to calculate the cycle-to-cycle back of queues (see

Eq. (16)).

𝑄𝑏𝑎𝑐𝑘 = 𝑣̂(𝑅 + 𝑔𝑠) (16)

where 𝑄𝑏𝑎𝑐𝑘 is the back of the queue in vehicles, 𝑣 = 𝜆 is the arrival

rate in vehicles per second (𝑣𝑝𝑠), 𝑅 is the red duration in seconds 𝑠,

and 𝑔𝑠 is queue service time that is calculated 𝑣̂𝑅∕(𝑥 − 𝑣̂) with 𝑥 is the

saturation flow rate (i.e., assumed to be 0.286 𝑣𝑝𝑠). All the values 𝑅,

𝑔𝑠, and 𝑣̂ except 𝑥 are changing cycle-to-cycle.

Alternative estimators from Comert (2016) are denoted by Est.1 and

Est.2 in Eqs. (17) and (18), respectively. These queue length estimators

are in the form of 𝐸(𝑛|𝑙, 𝑚, 𝑡, 𝑅) = 𝑙 + (1 − 𝑝̂)𝜆̂(𝑅 − 𝑡) with two different
primary parameter estimator combinations: {𝜆̂1 = 𝑙

𝑅
, 𝑝̂1 = 𝑚

𝑙
} and

{𝜆̂2 = (𝑙−𝑚)
𝑡

+ 𝑚

𝑅
, 𝑝̂2 = 𝑚𝑡

𝑚𝑡+(𝑙−𝑚)𝑅 }. All compared cycle-to-cycle queue
length estimators are given in Table 1.

𝐸(𝑁1|𝑙, 𝑚, 𝑡, 𝑅) = 𝐼(𝑚 > 0)[𝑙 + (𝑙 − 𝑚)(1 − 𝑡

𝑅
)]+

𝐼(𝑚 = 0)[(1 − 𝑚̄

𝑙
)(𝑙 + (𝑙 − 𝑚̄)(1 − 𝑡

𝑅
))] (17)

𝐸(𝑁2|𝑙, 𝑚, 𝑡, 𝑅) = 𝐼(𝑚 > 0)[𝑚 + 𝑅(𝑙 − 𝑚)
𝑡

]+

𝐼(𝑚 = 0)[(1 − 𝑚̄𝑡

𝑚̄𝑡 + (𝑙 − 𝑚̄)𝑅
)(𝑚̄ + 𝑅(𝑙 − 𝑚̄)

𝑡
)]

= 𝐼(𝑚 > 0)[𝑚 + (𝑙 − 𝑚)𝑅
𝑡

] + 𝐼(𝑚 = 0)[𝑚̄ + (𝑙 − 𝑚̄)𝑅
𝑡

] (18)

where 𝐼(.) is the indicator function. When there is no probe vehicle
in the queue (i.e., 𝐼(𝑚 = 0)), we use the average of previous probe
vehicles’ information as we need to estimate arrival rate (𝜆) and probe

percentage (𝑝). Notation 𝑀1∶𝑖 represents values from cycle 1 to 𝑖 and

𝑚̄1∶𝑖 =
∑𝑖

𝑗=1
𝑚𝑗

𝑖
, 𝑙1∶𝑖 =

∑𝑖

𝑗=1
𝑙𝑗

𝑖
, and 𝑡1∶𝑖 =

∑𝑖

𝑗=1
𝑡𝑗

𝑖
. Average error values

are given in Table 2 for 𝑇 ∼ 𝑎(𝑙, 𝐶

2𝑛 ). Fig. 7(b) is given to demonstrate
if assumed interarrivals are impacting the accuracy of the estimators.

In Table 2, a summary of average queue length (𝑄𝐿) estimation

errors in the root mean square is provided (RMSE=

√∑𝑛

𝑖=1
(𝑄𝐿𝑖−𝑄𝐿𝑖)2

𝑛
).

Table 2

Estimation results with RMSE errors in [vehs/cycle] with 𝑇 ∼ 𝑎(𝑙,C∕(2𝑛)).
Lane Avg. 𝑝 Est.1 Est.2 NP.Est.1 NP.Est.2 Delay Q back

Sep08

L 13% 1.09 1.01 1.01 1.01 1.37 1.25

C 21% 0.72 0.78 0.69 0.70 1.33 1.26

R 7% 0.56 0.55 0.60 0.60 0.66 0.64

Sep09

L 10% 1.22 1.05 0.99 0.99 1.38 1.13

C 26% 1.14 0.96 1.09 1.09 1.81 1.38

R 2% 0.34 0.35 0.54 0.54 0.39 0.41

Sep10

L 7% 2.68 2.43 2.48 2.48 2.81 2.52

C 18% 1.48 1.32 1.73 1.73 2.28 1.63

R 1% 0.84 0.77 0.77 0.77 1.06 1.26

Average 𝑝 values are calculated from
∑𝑛

𝑖=1
𝑚

𝑛𝑄𝐿𝑖
for each lane. Since true

maximum queues are not known, 𝑝 and 𝜆 are estimated. HCM’s control

delay-based model and back of queue are denoted by𝐻𝐶𝑀𝑑 and 𝑄𝑏𝑎𝑐𝑘,

respectively. The accuracy of the estimators is reported when probe

vehicles are present in the queue (𝑝 = {10%, 13%, 18%, 21%, 26%}).
Example performances with 21% penetration rates are given in

Fig. 7(a). When there are probe vehicles in the queue, we can see that

the proposed methods can follow the true maximum queue lengths

closely. In Fig. 7(b), boxplots for overall errors are given. We can

see that the model with new estimators provides slightly lower errors.

However, errors are lower than delay-based𝐻𝐶𝑀𝑑 and 𝑄𝑏𝑎𝑐𝑘 methods.

Our methods can estimate more accurately compared to 𝑄𝑏𝑎𝑐𝑘.

4.1. Evaluation with simulated queue length data

In addition, the estimators are evaluated using Vissim microsimula-

tions. The data from an isolated intersection is generated at five arrival

rate levels 𝜆 = {7.34, 8.55, 9.81, 10.76, 12.02} vehicles per 45 s red phase.
For this intersection, capacity is 12.24 vehicles per 45 s and volume-

to-capacity ratios are 𝜌 = {0.60, 0.70, 0.80, 0.88, 0.98}. The cycle times
are fixed at 90 s. There are no yellow or all-red phases. The probe

proportion is changed between 𝑝 = {0.001, 0.05, 0.10, .., 0.80, 0.999} (i.e.,
11 probe proportions). The simulation is run 1000 cycles for each probe
proportion and arrival rate for three different random seeds (i.e., a total

of 165,000 cycles of simulations).

Additional alternative estimators from Gao et al. (2019), Zhao et al.

(2019) are denoted by 𝐸𝑠𝑡.3 and 𝐸𝑠𝑡.4 in Eqs. (19) and (20), respec-
tively. These queue length estimators are in the form of 𝐸(𝑛|𝑙, 𝑡, 𝑅) = 𝑙+
𝑙

𝑡1∶𝑖
(𝑅−𝑡) and 𝐸(𝑛|𝑚, 𝑡) = 𝑡(𝑚+1)

𝑚
−1. There are many other approaches; for

simple comparison, the methods use the last probe vehicle’s location,

count, and time of arrival information are selected. With speed, density,

and other probe information, and tracking all probe vehicles in the

queue, additional estimators (Cheng, Qin, Jin, Ran, & Anderson, 2011;

Luo, Deng, Chen, et al., 2023; Tiaprasert, Zhang, Wang, & Zeng, 2015)

would also be compared.

𝐸(𝑁3|𝑙, 𝑡, 𝑅) = 𝐼(𝑚 > 0)[𝑙+ 𝑙

𝑡1∶𝑖
(𝑅−𝑡)]+𝐼(𝑚 = 0)[𝑙1∶𝑖+

𝑙1∶𝑖
𝑡1∶𝑖

(𝑅− 𝑡1∶𝑖)] (19)

𝐸(𝑁4|𝑚, 𝑡) = 𝐼(𝑚 > 0)[ 𝑡(𝑚 + 1)
𝑚

− 1] + 𝐼(𝑚 = 0)[
𝑡1∶𝑖(𝑚̄1∶𝑖 + 1)

𝑚̄1∶𝑖
− 1] (20)

where 𝐼(.) is the indicator function. When there is no probe vehicle
in the queue (i.e., 𝐼(𝑚 = 0)), we use the average of previous probe
vehicles’ information as at least one probe vehicle needed in the queue.

Notation 𝑚1∶𝑖 represents values from cycle 1 to 𝑖 and 𝑚̄1∶𝑖 =
∑𝑖

𝑗=1
𝑚𝑗

𝑖
,

𝑙1∶𝑖 =
∑𝑖

𝑗=1
𝑙𝑗

𝑖
, and 𝑡1∶𝑖 =

∑𝑖

𝑗=1
𝑡𝑗

𝑖
.

The results, including all errors in RMSE and an example cycle-

to-cycle queue length estimations, are given in Fig. 8. The results

are consistent with the field test data. Note that field data is from a

multi-lane intersection; the simulation data is from a single lane. The

advantage of simulation is that 𝑝 and 𝜆 are controlled. In this setup,

compared estimators 𝐸𝑠𝑡.1 and 𝐸𝑠𝑡.2 have the advantage of finding
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Fig. 7. Performance of the proposed estimators 𝑁𝑃 .𝐸𝑠𝑡.1 and 𝑁𝑃 .𝐸𝑠𝑡.2.

Fig. 8. Performance of the proposed estimators using simulated data.

true 𝜆 and 𝑝 after a few cycles. When there is no probe vehicle at the

intersection, they can use historical data. For proposed estimators and

𝐸𝑠𝑡.3 and 𝐸𝑠𝑡.4, they do not need 𝜆 or 𝑝. From the figure, it can be

seen that the performance of 𝐸𝑠𝑡.2 is approximately matched. Although
they still produce larger estimation errors, the performance of 𝐸𝑠𝑡.3
and 𝐸𝑠𝑡.4 improves if average values are used instead of cycle-to-cycle
probe vehicle information. We kept cycle-to-cycle estimation results in

Fig. 8-b to compare them to proposed estimators.

Readers should note that the analysis and estimators in this paper do

not consider overflow queues that can occur as the volume-to-capacity

ratio gets higher 𝜌 > 0.80. The outliers in Fig. 8-b may also directly
result from the higher arrival rates and the overflow queues. Fig. 9

shows the increase in estimation errors from medium level 𝜌 = 0.70
to 𝜌 = 0.98. One can add simple corrections to the proposed estimators
when preparing the data input, considering the following scenarios to

elevate the impact.

a. If the last probe vehicle is in the overflow (remaining) queue,

the signal cycle number can be tracked, and the first arrival

to the queue can be noted. In this scenario, we can estimate

overflow queue length and add another estimated queue for the

new arrivals with no probe vehicle in them.

b. If the last probe vehicle is in the new arrivals, then the location

information and number of probe vehicles would contain the

overflow queue information. The estimators can be used as in

Eqs. (10) and (13).

c. If no probe vehicle is in the queue, we can use values from

previous cycles. These average probe information would contain

the overflow queues’ average impact depending on the number

of times scenarios a and b were encountered.

5. Conclusions

In this study, we derived two new nonparametric cycle-to-cycle

(i.e., dynamic) queue length estimation models for traffic signal-

induced queues. Contributions can be summarized as follows:

i. Derived estimators only depend on signal phasing and timing

information. The derivations involved fundamental analysis of

the experiment.
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Fig. 9. Performance of the proposed estimators for medium and high 𝜌 levels.

ii. One of the estimators (𝑁𝑃 .𝐸𝑠𝑡.2, 𝐸(𝑁|𝑙, 𝑚,𝑅)) does not re-
quire time information of the last probe vehicle in the queue

and matches the accuracy of the one with time information

(𝑁𝑃 .𝐸𝑠𝑡.1, 𝐸(𝑁|𝑙, 𝑚, 𝑡, 𝑅)).
iii. Resulting estimators are simple algebraic expressions. We do

not assume independent arrivals at the intersection. The only

assumption is a discrete time interval, which is reasonable as

signal timing involves whole seconds. However, sub-second or

finer discrete time intervals can also be utilized.

iv. For independent approach lanes at traffic intersections, it is

shown that conditional queue lengths given probe vehicle loca-

tion, count, time, and analysis interval can be represented by a

Negative Hypergeometric distribution.

v. Performance of the estimators derived was compared with para-

metric and simple highway capacity manual methods that use

field test and simulated data involving probe vehicles. The re-

sults obtained from the comparisons show that the nonpara-

metric models presented in this paper match the accuracy of

parametric models. Compared parametric models assume known

cycle-to-cycle (dynamic) arrival and market penetration rates.

vi. Methods developed do not assume random arrivals of vehicles at

the intersection or any primary parameters or involve parameter

estimations.

Developed methods in this study estimate the queue lengths at intersec-

tion approaches using probe vehicle data. These probe vehicles could

be traditional probe vehicles or connected vehicles that generate basic

safety messages. Apart from improving the limitations listed under the

problem statement, future research could apply and expand the models

presented in this paper using a more complex intersection and a series

of adjacent intersections with higher traffic demand volumes.
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Appendix

Theorem 1. Let 𝓁, 𝑡, 𝑅, and 𝑚 be as defined in the preceding section.

Then

2𝑅−2𝑡+𝓁∑
𝑛=𝓁

(𝑛−𝑚
𝓁−𝑚

)(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝓁

)
(2𝑅
2𝑡

) = 2𝑅 + 1
2𝑡 + 1

(21)

or equivalently

2𝑅−2𝑡+𝓁∑
𝑛=𝓁

(
𝑛 − 𝑚

𝓁 − 𝑚

)(
2𝑅 + 𝑚 − 𝑛

2𝑡 + 𝑚 − 𝓁

)
=
(
2𝑅 + 1
2𝑡 + 1

)
(22)
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Proof. Observe
(𝑛−𝑚
𝓁−𝑚

)
=

(𝑛−𝑚
𝑛−𝓁

)
and

(2𝑅+𝑚−𝑛
2𝑡+𝑚−𝓁

)
=

( 2𝑅+𝑚−𝑛
2𝑅−2𝑡−𝑛+𝓁

)
and replace

𝑛′ = 𝑛 − 𝓁 so that Eq. (4) becomes

2𝑅−2𝑡∑
𝑛′=0

(
𝑛′ + 𝓁 − 𝑚

𝑛′

)(
2𝑅 + 𝑚 − 𝑛′ − 𝓁
2𝑅 − 2𝑡 − 𝑛′

)
=
(
2𝑅 + 1
2𝑡 + 1

)
(23)

Make another re-indexing 𝓁′ = 𝓁 − 𝑚 and hence Eq. (23) takes the

form

2𝑅−2𝑡∑
𝑛′=0

(
𝑛′ + 𝓁′

𝑛′

)(
2𝑅 − 𝓁′ − 𝑛′

2𝑅 − 2𝑡 − 𝑛′

)
=
(
2𝑅 + 1
2𝑡 + 1

)
(24)

The ‘‘negativization’’ (reminiscent of the Euler’s gamma reflection

formula 𝛤 (𝑧)𝛤 (1 − 𝑧) = 𝜋

sin(𝜋𝑧) ) of binomial coefficients
(−𝑎+𝑏

𝑏

)
=

(−1)𝑏
(𝑎−1

𝑏

)
allows to convert

(𝓁′+𝑛′
𝑛′

)
= (−1)𝑛′

(−𝓁′−1
𝑛′

)
and

(2𝑅−𝓁′−𝑛′
2𝑅−2𝑡−𝑛′

)
=(2𝑡−𝓁′+2𝑅−2𝑡−𝑛′

2𝑅−2𝑡−𝑛′
)
= (−1)2𝑅−2𝑡−𝑛′

( 𝓁′−2𝑡−1
2𝑅−2𝑡−𝑛′

)
. Therefore,

2𝑅−2𝑡∑
𝑛′=0

(
𝑛′ + 𝓁′

𝑛′

)(
2𝑅 − 𝓁′ − 𝑛′

2𝑅 − 2𝑡 − 𝑛′

)

=
2𝑅−2𝑡∑
𝑛′=0

(
−𝓁′ − 1

𝑛′

)(
𝓁′ − 2𝑡 − 1
2𝑅 − 2𝑡 − 𝑛′

)
(25)

The well-known Vandermonde-Chu identity states
∑𝑦

𝑘=0
(𝑥
𝑘

)( 𝑧

𝑦−𝑘

)
=(𝑥+𝑧

𝑦

)
. Applying this to Eq. (25) and engaging

(−𝑎+𝑏
𝑏

)
= (−1)𝑏

(𝑎−1
𝑏

)
(one

more time) yields

2𝑅−2𝑡∑
𝑛′=0

(
−𝓁′ − 1

𝑛′

)(
𝓁′ − 2𝑡 − 1
2𝑅 − 2𝑡 − 𝑛′

)
=

(
−2𝑡 − 2
2𝑅 − 2𝑡

)
= (−1)2𝑅−2𝑡

(
2𝑅 + 1
2𝑅 − 2𝑡

)
=
(
2𝑅 + 1
2𝑡 + 1

)

The proof is complete. □

Remark. The identity just proved shows that Eq. (3) or Eq. (4) is

independent of the parameters 𝑚 and 𝓁. The results in Eq. 1 can be
extended to the short sum runs from 𝑛 = 𝓁 through 𝑛 = 2𝑅 − 2𝑡.

Theorem 2. Let 𝓁, 𝑚, 𝑛, 𝑅, and 𝑡 be as defined in Theorem 1. Then there

is a recurrence formula for

2𝑅−2𝑡∑
𝑛=𝓁

(
𝑛 − 𝑚

𝓁 − 𝑚

)(
2𝑅 + 𝑚 − 𝑛

2𝑡 + 𝑚 − 𝓁

)
(A5)

Proof. Denote the sum in (A5) by 𝑓 (𝓁) and the summand by 𝐹 (𝓁, 𝑛)
(after suppressing the remaining variables). Introduce the function

𝐺(𝓁, 𝑛) = −
( 𝑛−𝑚
𝓁+1−𝑚

)(2𝑅+𝑚−𝑛+1
2𝑡+𝑚−𝓁

)
. Then, it is routine to verify that

𝐹 (𝓁 + 1, 𝑛) − 𝐹 (𝓁, 𝑛) = 𝐺(𝓁, 𝑛 + 1) − 𝐺(𝓁, 𝑛) (A6)

Sum both sides of (A6) for 𝑛 = 𝓁 + 1 to 𝑛 = 2𝑅− 2𝑡 (and telescoping on
the right-hand side) to obtain

𝑓 (𝓁 + 1) − 𝑓 (𝓁) + 𝐹 (𝓁,𝓁) = 𝐺(𝓁, 2𝑅 − 2𝑡 + 1) − 𝐺(𝓁,𝓁 + 1).

Based on 𝐹 (𝓁,𝓁) =
(2𝑅+𝑚−𝓁
2𝑡+𝑚−𝓁

)
, 𝐺(𝓁, 2𝑅− 2𝑡+ 1) = −

(2𝑅−2𝑡−𝑚+1
𝓁−𝑚+1

)(2𝑡+𝑚
𝓁

)
and

𝐺(𝓁,𝓁 + 1) = −
(2𝑅+𝑚−𝓁
2𝑡+𝑚−𝓁

)
, we infer the recursive relation

𝑓 (𝓁 + 1) − 𝑓 (𝓁) = −
(
2𝑅 − 2𝑡 − 𝑚 + 1

𝓁 − 𝑚 + 1

)(
2𝑡 + 𝑚

𝓁

)
. □

Corollary. From Theorem 2, we get the following identity

2𝑅−2𝑡∑
𝓁=0

(
2𝑅 − 2𝑡 − 𝑚 + 1

𝓁 − 𝑚 + 1

)(
2𝑡 + 𝑚

𝓁

)
=
(
2𝑅 + 1
2𝑡 + 1

)
(A7)

Proof. This follows from the recurrence relation proved in Theorem 2

and the identity proved in Theorem 1. □

Theorem 3. The identity in (A7) can be re-indexed and formulated as

follows:

𝑅−𝑡+𝓁∑
𝑚=𝓁

(
𝑚

𝓁

)(
𝑅 − 𝑚

𝑡 − 𝓁

)
=
(
𝑅 + 1
𝑡 + 1

)
.

Proof. We offer a combinatorial argument. Given natural numbers

𝓁 ≤ 𝑡 ≤ 𝑅, and 𝑚, we may consider the class of those (𝑡 + 1)-subsets
{𝑥0 < 𝑥1 < ⋯ < 𝑥𝑡} of {0, 1,… , 𝑅} such that 𝑥𝓁 = 𝑚: these are exactly(𝑚
𝓁

)(𝑅−𝑚
𝑡−𝓁

)
(indeed the 𝓁 elements 𝑥0,… , 𝑥𝓁−1 can be chosen freely into

{0,… , 𝑚−1}, and so can the 𝑡−𝓁 elements 𝑥𝓁+1,… , 𝑥𝑡 into {𝑚+1,… , 𝑅}.
These classes, for 𝓁 ≤ 𝑚 ≤ 𝑅− 𝑡+𝓁 form a partition of all (𝑡+1)-subsets
of [𝑅+1], whence the sum of their cardinality is independent of 𝓁 and
the identity. □

Remark. The discrepancy in having a closed form and no closed form

can be understood as follows: we know that
∑𝑛

𝑘=0
(𝑛
𝑘

)
= 2𝑛, however,

there is no ‘‘nice evaluation’’ for
∑𝑚

𝑘=0
(𝑛
𝑘

)
unless 𝑚 = 𝑛. The bottom

line is the former is summed over the full compact support of
(𝑛
𝑘

)
(in

the sense,
(𝑛
𝑘

)
= 0 if 𝑘 < 0 or 𝑘 > 𝑛. A similar analogy can be drawn with

having the closed form ∫
R
𝑒−𝑥

2
𝑑𝑥 =

√
𝜋 but nothing similar is available

if the limit is altered to be any smaller subset than the full range R,

except for [0,∞).
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