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ARTICLE INFO ABSTRACT

Keywords: This study develops a combinatorial approach for nonparametric short-term queue length estimation in terms

Cycle-to-cycle of cycle-by-cycle partially observed queues from probe vehicles (PV). The method does not assume random

Short-term ) arrivals and does not assume any primary parameters or estimation of any parameters but uses simple algebraic

gom;:,metd vehicles expressions that only depend on signal timing. For an approach lane at a traffic intersection, the conditional
ombinatorics

queue lengths given probe vehicle location, count, time, and analysis interval (e.g., at the end of the red signal
phase) are represented by a Negative Hypergeometric distribution. The simple analytical estimators obtained
are compared with parametric methods from literature and highway capacity manual methods using field
test data and simulation data involving probe vehicles. The analysis indicates that the nonparametric models
presented in this paper match the accuracy of the parametric ones used in the field test and simulated data
for estimating queue lengths.

Dynamic queue length estimation
Negative hypergeometric distribution

1. Introduction time to probe vehicle arrival times (e.g., relative to the beginning of

red duration at a signal independent of signal control type), and (3) we

Probe vehicles (PV) or Lagrangian sensors can be considered as
tracking-device-equipped vehicles that can report critical informa-
tion (Hans, Chiabaut, & Leclercq, 2015) as they traverse transportation
networks. Commercial taxis, volunteers, transit buses, maintenance
vehicles, commercial trucks, etc., can report their location and times-
tamps through cellphones and GPS devices for improved traffic oper-
ations or better planning. The collected data can be used to estimate
traffic parameters (e.g., flow, density, speed, queue lengths, and de-
lays). The accuracy of these estimates depends on the quality of
reported sensor data and the penetration of the number of data received
from the vehicles. Regardless, observing mobile data from transporta-
tion networks gives critical coverage for dynamic traffic behavior. This
study presents a method for estimating queue length given that (1)
probe vehicles can be observed on a lane accurately and infer the order
of vehicles in a queue, (2) we can deduce the beginning of queue start

can track the number of probe vehicles in the queue. Assuming these
data are available, using the combinatorics approach, we develop cycle-
to-cycle (dynamic) queue length estimators that can be used for any
cyclic queues (e.g., signalized intersections) without requiring primary
arrival rate or probe vehicle market penetration rate (or percentage)
parameters.

In the previous related research, Herrera and Bayen developed
improved traffic (i.e., flow and density) estimation models using cell
phone-based probe vehicle data (Herrera & Bayen, 2010). The au-
thors compared traffic flow theory and Kalman filter-based approaches.
Ramezani and Geroliminis used high-resolution probe vehicle data to
estimate travel time distribution after allocation and decomposition.
The distribution could be used for reliability and report travel time
from uncovered roadways (Ramezani & Geroliminis, 2012). Jenelius
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and Koutsopoulos utilized low-frequency probe vehicles and spatial
and temporal link features (more than 50 features) to estimate travel
times (Jenelius & Koutsopoulos, 2013). The authors also show the
effectiveness of low-frequency probe vehicle data estimating travel time
distributions. The authors used theoretical travel time distributions
used in the literature. Zheng et al. developed a stochastic model based
on covariance dynamics for speed and density estimations and reported
promising results after 20% probe vehicle proportions (Zheng, Jabari,
Liu, & Lin, 2018). Duret and Yuan compared Eulerian (fixed loop
detector) and Lagrangian (probe) and combined them for travel time
estimation (Duret & Yuan, 2017). Authors reported that the above
10% probe proportion is needed for accurate estimations. Seo et al.
estimated the fundamental diagram (flow-speed-density) behavior from
probe vehicles, which can be used for planning or operations (Seo,
Kawasaki, Kusakabe, & Asakura, 2019). Florin and Olariu also esti-
mated density from probe vehicles using vehicles tracking the other
passing vehicles (Florin & Olariu, 2020). Wang et al. estimated the
queue profiles at signalized intersections using optimization and spa-
tiotemporal shockwaves (Wang, Zhu, Ran, & Jiang, 2020). The study
reported that 10%—-20% probe proportion and 20-30 s sampling inter-
vals would provide acceptable accuracy. In a similar study, the back of
the freeway queue was estimated (Bae, Liu, Han, & Bozdogan, 2019).

Researchers have extensively studied the queue length estimation
problem by proposing parametric (Zhao, Shen, & Liu, 2021; Zhao,
Wong, Zheng & Liu, 2021; Zhao et al., 2019) and nonparametric meth-
ods. In this paper, we focused on the review of nonparametric ones.
Jin and Ma presented a study on a nonparametric Bayesian method for
traffic state estimation (Jin & Ma, 2019). In their study, they developed
a generalized modeling framework for estimating traffic states at sig-
nalized intersections. The framework is nonparametric and data-driven,
and no explicit traffic flow modeling is required. Wong et al. estimated
the market penetration rate (probe proportion or percentage) (Wong,
Shen, Zhao, & Liu, 2019). Based on probe vehicle data alone, they
proposed a simple, analytical, nonparametric, and unbiased approach
to estimate the penetration rate. The method fuses two estimation
methods. One is from probabilistic estimation and the second is from
samples of probe vehicles which is not affected by arrival patterns. It
uses PVs and all vehicles ahead of the last PV in the queue.

Gao et al. presented queue length estimations (QLEs) based on
shockwaves and backpropagation neural network (NN) sensing (Gao,
Han, Dong, Xiong, & Du, 2019). The approach uses PV data and
queue formation dynamics. It uses the shockwave velocity to predict
the queue length of the non-probe vehicles. The NN is trained with
historical PV data. The queue lengths at the intersection are obtained by
combining the shockwave and NN-based estimates by variable weight.
Tan et al. introduced License Plate Recognition (LPR) data in their
study to fuse with the vehicle trajectory data and then developed a
lane-based queue length estimation method (Tan, Liu, Wu, Cao, & Tang,
2020). The authors matched the LPR with probe vehicle data. They
obtained the probability density function of the discharge headway
and the stop-line crossing time of vehicles. They presented the lane-
based queue lengths and overflow queues. Wang et al. proposed a
QLE method on street networks using occupancy data (Wang, Bengler,
Wets, & Niu, 2013). Their key idea is to use the speed decrease as the
queue increase downstream of the loop detector. This would result in
higher occupancy at constant volume-to-capacity ratios. Using VISSIM
simulation, they generated data for various link lengths, lane numbers,
and bus ratios. They fit a logistic model for the queue length and occu-
pancy relationship. Then, queue lengths were estimated using multiple
regression models. Van Phu et al. developed parametric estimators for
the intersections with multiple lanes and showed effectiveness using
microsimulations (Van Phu & Farhi, 2020). Then, the authors showed
two two-stage models with estimators for primary parameters, arrival
rate, and probe proportions (Van Phu & Farhi, 2022).
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Contributions of this study

This paper aims to model cycle-to-cycle (i.e., dynamic) queue
lengths at intersections generally without assuming random arrivals or
any primary parameters (i.e., market penetration rate, arrival rate) or
estimating these parameters.

1. Unlike fundamental non-parametric queue length estimations
from arrival and service distributions (Goldenshluger, 2016;
Goldenshluger & Koops, 2019; Schweer & Wichelhaus, 2015;
Singh, Acharya, Cruz, & Quinino, 2021), our method uses math-
ematical techniques from combinatorics to derive discrete condi-
tional probability mass functions of observed information about
the queue and derive moments of the distributions without de-
pending on probe vehicle proportion (i.e., the number of probe
vehicle divided by all vehicles or also called market penetration
rate), arrival, or service distributions. Thus, estimators derived
can be used to calculate cycle-to-cycle queue length/delay values
for signal timing or optimization.

2. As the title suggests, the paper builds on the authors’ previous
work. However, the approach presented in this study signifi-
cantly extends the results from Comert (2013a), Comert and
Cetin (2009) where Comert and Cetin (2009) presented a condi-
tional probability mass function for probe location information
and Comert (2013a) provided closed-form dynamic queue length
estimators given probe vehicle location and time information.
Both studies assumed Poisson arrivals. In this study, formulas
do not assume any arrival distribution.

3. In this paper, derived estimators are the results of investigating
the experiments, finding arrival distribution-free probability dis-
tributions, and obtaining mean and variance, which are direct
estimators and errors. The results are simple and easy to use
in any control framework. They can be used if queue start and
end times are known or tracked (e.g., incident start and end, red
signal start and end).

4. Proposed estimators do not consider random overflow queues,
i.e., remaining queues from previous cycles, which can happen
during random high arrival rates as volume-to-capacity ratio gets
closer to 1.0.

5. Proposed estimators are valid for low to medium volume-to-
capacity ratios (less than 0.80); thus, undersaturated conditions,
meaning the queue is not building up after each cycle.

The paper is organized as follows: In Section 2, the approach is
defined to set up derivations. In Section 3, we use combinatorial
arguments and present a closed form of the sum of the probabilities in
Egs. (3) and (4). The result obtained in Section 3 enables us to define a
probability mass function. We show that this probability distribution is
Negative Hypergeometric. We use the results for the mean and variance
of the distribution to derive formulas for the queue length estimators. In
Section 4, we present numerical examples of the behavior of the derived
estimators and show the performance of the estimators using field
data. We summarize our findings and discuss possible future research
directions in Section 5.

2. Problem definition

Probe vehicles (PVs) and partially observed systems through in-
expensive sensors are facilitating real-time queue length estimations.
Our goal in this paper is to model queue lengths (N) at intersections
without assuming random arrivals or any primary parameters or esti-
mating such parameters (i.e., arrival rate (1) and probe vehicle market
penetration rate (p)). In Fig. 1, a snapshot of an example queue (e.g., the
waiting vehicles at the end of the red signal phase) is shown. Suppose
that solid vehicles are observed. The total queue length N is written as
a sum of two queues: the total number of vehicles up to the last probe



G. Comert et al.
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Fig. 1. Snapshot of an intersection at the end of a red phase.

N; and the number of vehicles after the last probe N,. The estimator
for the total queue length (N) given the location (L), the number of
PVs (M) in the queue, the time of the last probe (T), and the signal
timing (or time interval of interest (R)) can be expressed as follows.

EN|IL=I.M=mT=t,R)=EWN||L=I,M =m,T =t,R)+
EN|IL=I,M =m,T =1t,R) (€D)]

Now, the first part of the queue is trivial and equals the last
probe vehicle location (order in the queue) N, = / and the variance
of the N, is V(N,|[L=I1,M =m,T =t,R) = 0. After the last probe
vehicle, N, contains uncertainty. If we simply assume Poisson arrivals
E(N;|L=1,M =m,T =t,R) = (1 — p)A(R —1). And, if no initial queue
(or overflow queue from the previous signal cycle) is assumed, the
estimator becomes E(N|L=I,M =m,T=t,R) = [ + (1 — ppA(R —
). The essential information needed for the estimation is primary
parameters such as flow rate (1) and percent of probe vehicles (or
market penetration rate p). However, both parameters are dynamic.
Especially in real-time applications, like cycle-to-cycle or shorter-term
queue lengths at signalized intersections, one would need to collect
data for a few cycles to estimate these parameters. The parameters
can then be updated and used in such applications. Assuming random
arrivals, in Comert (2016), Comert and Begashaw (2022), it is shown
that at least 10 cycles of PV data would be needed to start using queue
length estimators.

If Poisson distribution is too restrictive, one can attempt to model
the estimator as E(N|L,M,T) = Y, np(N =n|L,M,T). This can be
direct or using known or easier to identify simpler conditional distribu-
tions, e.g., Eq. (2). Please note that this approach would need to result
in a simple algebraic form of estimators. Otherwise, calculations would
be tedious.

p(T =t|l,m,n)p(L = I|m,n)p(M = m|n)P(N = n)
Zn p(T =t|l,m,n)p(L = [|m,n)p(M = m|n)P(N = n)

@

For instance, the conditional probability of the location (order) of
the last probe vehicle can be calculated by p(L = I[|M = m,N = n) =
(,’n__ll)/ (1) given the number of probe vehicles and the total number
of vehicles in the queue. In this probability mass function, L is the
location of the last probe vehicle, M is the number of probe vehicles
in the queue, and N is the total queue. In Fig. 1, L is 6, M is 2,
and N is 8 vehicles. We can see that this approach does not assume
any arrival pattern or parameter and only depends on probe vehicle
data. Certainly, it is not taking advantage of queue joining time T
of PVs with respect to signal timing. Note that T is assumed integer
representing whole seconds or fine discrete sub-second time intervals.
For signal timing, whole or half-second precision is commonly used in
calculations (Urbanik et al., 2015). There is also the physical constraint
of the vehicle following, which can be 0.5-2 s s even if vehicles arrive
in a very closely following group.

This problem (i.e., derivation of conditional probability distribution
given probe vehicle information) described as a single lane of approach
can equivalently be expressed as Fig. 2 drawing balls labeled as arrival
as a probe vehicle, arrival as a non-probe vehicle, or no arrival. Con-
sider the approach lane queue formed in 2R (i.e., R is the red phase)
time intervals where in a unit time interval, there can be, at most, one
arrival. So, in this setup, there can be at most one arrival per 0.5 s. This

p(N = n|l,m,1) =

can be thought of as the minimum possible time gap and can be updated
in the formulations derived. For example, in Fig. 2, we have / arrivals
within 27 discrete unit time intervals. Among these time intervals, 27— 1
contain m — 1 PVs, 2R — 2¢ contain n — [ arrivals. Now, the problem is a
negative inference, meaning » is changing as in Negative Binomial, so
we are interested in p(N = n|L =I,M =m,T =1, R), i.e., probability of
having N = n arrivals within R time interval given L = [,T =t, M = m.
Calculating this probability, we obtain Eq. (3) or equivalently Eq. (4).

(.5 ()
(220
() o)
()
We can then calculate expected values to get the mean (E(N =

n|l,t,m, R) or the queue length estimator) and the variance (V(N =
n|l,t,m, R)) of the estimator. However, we first need to

p(N =nl|l,m,t,R) = 3)

p(N =nl|l,m,t,R) = 4

i. verify if this is a valid probability mass function,

ii. find the normalizing denominator for a valid probability mass
function,

iii. simplify to forms that can be used as input-output models like,
E(N =n|l,t,m,R) =1+ (1 — p)A(R — 1) in Comert (2013b).

iv. show if this approach leads to one of the known negative proba-
bility mass functions (e.g., Negative Hypergeometric). This could
facilitate (iii).

The above formulation approach would hold under certain condi-
tions. Without claiming all, the following can be noted as some of the
limitations of the study:

1. The paper models the cycle-to-cycle queue lengths at the end
of red duration which is the maximum queue for deterministic
queues. In real traffic signal queues when the signal turns green,
there is a short loss time due to vehicle acceleration and reaction
times. During this time, more vehicles can join the queue. Thus,
we only estimate the total queue at the end of the red duration,
not the maximum queue. They might slightly differ. Regardless,
the formulations are valid if the start and end time of the analysis
interval is known, e.g., the start and end times of red duration.

2. Undersaturated conditions are assumed, meaning, the queue is
not building up after each cycle. In fact, the signal queue is
cleared after each cycle, and sometimes overflow queues (re-
maining queues) are observed. Note that since the presence of
PV in the queue is tracked, the estimators can show slightly
overestimated results as overflow queue PVs are not from the
same cycle arrivals. If the volume-to-capacity ratio gets higher
(> 0.80), the expected queue length would have a significant
overflow queue presence, thus, a long queue is expected. With
more PVs present in the queue, estimators would show better
results with M = m and L = | getting higher. The time infor-
mation should be revised as it would be from a previous cycle.
Overall, this can be corrected via scenario analysis (Comert,
2013b). However, it is not within the scope of this paper. For
oversaturated conditions, the queue would grow steadily. In
such cases, relative referencing of the probe vehicle information
would be changed. The rate of queue growth could be estimated,
and the unknown queue length after the last probe vehicle can
be scaled accordingly.
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Fig. 2. Example queue with queue length, PV data, and arrival-no arrival spots.

3. How vehicles can be identified on a lane or limitations of GPS or
tracking technology is not discussed. One can approach similarly
to identify probe vehicles in a lane.

3. Probability mass function, expected value, and variance

We first provide combinatorial arguments and derive a closed form
for the sum of the function in Eq. (4). Let Z, ¢, R, and m be as defined
in the preceding section. Then

R (o) Glomt) 2R 41

"Z:; (2‘21;) T+

The complete derivation of Eq. (5) is provided in the Appendix
under Theorem 1. We can see that the identity proved in the above
theorem enables us to revise Eq. (4) and define a probability mass
function. We can divide both sides of the identity by the expression
on the right-hand side of the identity to get one on the right-hand
side (i.e., the right-hand side of the identity is the normalizer of the
probability distribution, which we explain below). Note that additional
results from combinatorics and discussions are presented in Appendix.

In Negative Hypergeometric distribution (Johnson, Kemp, & Kotz,
2005), the probability of having k successes up to the rth failure given
sample size of .S and maximum possible queued vehicles K is given by

)

ktr=1y (S—r—k
()G
S
()
where S is the sample size (time capacity for arrivals and non-arrivals),
K is the total number of successes (arrivals) in .S, r is the number of
failures (non-arrivals), and k is the number of successes (realizations
of arrivals). The probabilities sum to 1. For the Negative Hypergeo-
metric distribution, the expected value E(k|r,K,S) and the variance
V(k|r,K,.S) are given by Egs. (7) and (8).

_rKk
S—-K+1
rK(S+1)(S-K-r+1)
(S—K+D2(S-K+2)

In the probability mass function of the Negative Hypergeometric
distribution (Eq. (6)), let S = 2R+ 1, K = 2R-2t, r =l —m+ 1,
and k = n — [. Then the result proved in the theorem above gives
the following probability mass function, which is a Negative Hyper-
geometric distribution since Y 2R 2* (n7m)(2Rmom (2R CNotice

K K ‘n=l I—m/ \ 2t4m—I 2i+1
that with these assignments arrivals and non-arrivals are fixed, and the

pk|r, K, S) = (6)

E(k|r,K,S) = ()]

Vk|r,K,S) = 8

probability of the total queue N = n is calculated with known /,m, 1, R.

(o) oot
(2R+1)
2t+1

From the formulas for the expected value and variance of the
Negative Hypergeometric distribution, we get the following formulas
for the expected value (Eq. (7)) and variance (Eq. (8)) of this probability
distribution in Eq. (9). Note that L = LM = m,T = t,R are basic
information from PVs, not primary parameters (arrival or penetration
rate of probe vehicle in the traffic stream). We also do not require
steady-state behavior if this Probe vehicle information is available. The
expected queue length and its variance are short-term (R seconds or
time interval) estimators.

The expected value E(n|l,t,m, R) can be determined by

p(N =n|l,m,t,R) = 9

2R-21+1 1) (Remon
E(N=n|l,m,t,R) = Z n2R+1) (I—m)(21+m—l)
4 @+n (R
2+1
It -
R wer+n () Gatacy)
Z e

where n’ =n—1,1" =1 —m, and % is the normalizer.

By Egs. (7) and (8), simplified expected value or the queue length
estimation 1 and the variance can be obtained as in Egs. (10) and (11).

I—m+1)QR -2t
E(N, = |lmt,R) = 1+ L=mFTDER=20)

2t 4+2
o (I=m+1D)(R-1)
_l+—t+1 (10)
VN, = ny|lm.t. R) = (I—m+1)(2R+2)(2R—2t)[1_ [=m+ 1, ()
(2t +2)(21 + 3) 2t +2

Alternatively, from Eq. (12), we can get the following equivalent
estimator without PV time (7') information (Eq. (13)) and its variance
in (Eq. (14)).

C—n+m\ (n—m
( C—n ) (n—l )
C
()
where C is capacity or maximum possible arrivals (e.g., 2R with 0.5 s
headways), / =C—-2l,r=1-m+1, K =C -1, and k = n— [. Note

that, with time discretization, we can infer ¢ from /. The expected value
E(n|l,m, R) is given by

p(N =n|l,m,C) = 12

C+l C—n+m\ (n—m
a+1n M0
E(N =nll.m,C) = ¥ =
ZCc+ ©)



G. Comert et al.

Expert Systems With Applications 252 (2024) 124076

L=2 —&— |=5 % L=10 ®
pa —— =4 —— L=7 - L=15 /
®
o |
a o
n
£
n
T o /V‘v
z ° v
g o \
X’X X\
v X v
- _a-a%a
o 7| _o-X:A'°/ - /A~ \x
-9 - X (-
S0z, A % o.Ma \
.o P 4 N K
07 A7 X v / B
o .o A _X v ry o~a
S {0800 093 9-9:80-0-6"
T T T T
5 10 15 20

N=n [veh]

() p(N =n|L =1,M =2, R = 45) in Eq. (12)

Fig. 3. Example behavior of conditional probabilities.

w
o~
o _|
o~
=
[3
=
— v _|
E -
i
=
T
-
T 24
1
£
fin]
w -
o -
T I T T
5 10 15 20
L=l [veh]

(b) E(N|L, M, R = 45) in Eq. (13)

Fig. 4. Example behavior of conditional expectations.

L=2 -4 |=5 -%- L=10
S 1 —— L=4 — L=7 —& L=15
£
=1
o
o
" o~
E o 7
[
1]
<
Q
i
o 2
o
T T T T
10 20 30 40
N=n [veh]
(@ p(N =n|T =20,L,M =2, R = 45) in Eq. (9)
w |
o~
—— |=4M=1 -%- L=10,M=10
—&— | =5M=2 ~&- L=15M=15
° - L=6M=5
9
=3
2
E w | 90900000000006666666
1 g - A d
2
W
-1
Lo
E <
n
<
w
w -
o
T T T T T T T T
10 15 20 25 30 35 40 45
T=t[s]
(a) E(N|T, L, M = 2, R = 45) in Eq. (10)
! ! ! !
C n'+1"\ (C=l"+n
_ z n(+1) ( o )(C—I’—n’)
- [§
im0 €D (1)

(I+1)

is the normalizer for valid
(C+1)

where W = n—-1, 1" = | — m, and
probability mass function.
(I=m+1)C -1

E(N, = nmy|l,m,C) =1+ T3 (13)
B _U=m+D)C+C=D  [-m+]1
V(N, = m|l,m,C) = 112013 [1 ) ] 14

One of the advantages of the derived estimators in Egs. (10) and
(13) is that the denominators are nonzero since L > 0. This enables us
to estimate queues even if there is no probe vehicle in the queue. The
behavior of conditional probabilities, expected values, and variances
are shown in Figs. 3-5. We can see in Fig. 3 that the likelihoods are
right to the N = [/ values. In Fig. 4, as the queue time joining of the
last probe vehicle increases, the expected queue length gets closer to
L = [ for both models. The variance of the conditional distributions is
high. However, for these examples, M = 2. The variance will decrease
when the number of PVs increases in the queue. Similarly, in Fig. 5,
the variance of the estimated queue length reduces as / and 7 increase.
Having time information also shows smoother behavior compared to
having only location information.

Fig. 6 shows the percent coefficient of variation (CoV) with respect
to T or L to understand errors relative to true average queue lengths.
Suppose the maximum queue length is 20 vehicles per red duration
(on average, the unconditional queue length is 16.52 vehicles), then,
depending on the information M, L, the error is within 30% of the av-
erage queue length for the estimator with time information. Similarly,
given information M, the error for the estimator without T is within
40% of the average queue length and decreases to zero as the location
of the last probe increases. Note that the figures show the behavior of
the conditional CoVs where M, L, T values are selected for illustrations.
For other values, CoV values are going to change.

4. Evaluation with field queue length data

To show the effectiveness of the estimators developed, we used
2014 ITS World Congress Connected Vehicle Demonstration Data (CV
Dataset, 2014). The authors’ previous works used this field data for
evaluating range sensor inclusion and filtering for queue length esti-
mation (Comert & Begashaw, 2022; Comert & Cetin, 2021). The results
of this study are new. For completeness, assumptions and setup are
reported again. The dataset contains manually collected queue lengths
at the intersection of Larned and Shelby streets in Detroit, Michigan,
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between September 8 and 10, 2014. The number of observations per
day is 98, 254, and 135, respectively. During data collection, probe
vehicles were identified with the blue Xs. Each row of data includes
the hour, minute, and second of observation, the maximum queue
lengths, and the number of probe vehicles in these queues (i.e., M in
the formulations above) from the left, center, and right lanes of the
Larned street approach.

The dataset provides M = m and C cycle time values but not the
information of L and T from PVs. Hence, we generated random variates
of this information from Uniform distribution (L = [ location [/ ~
U(m, n)) and Gamma distribution (T = ¢ queue joining time 7 ~ Ga(l, %))
distributions for all lanes independently and repeated for 1000 random
seeds. Note that, integer values are used for L, M, and T. The overall
average of estimation errors is reported to compare models. In addition,
the followings are assumed related to the traffic signal and the dataset:

1. Back-of-queue observations are obtained at the end of red phases
(vary cycle-by-cycle). The time between two observations is
assumed to be the cycle length (C), and red phases are assumed
to be half (R = C/2).

2. There is no steady growth of queue and many zero queue values.
Thus, the overflow queues are omitted. The data was collected
during low to medium p (i.e., volume-to-capacity ratio= 0.50

assumed for HCM models). Please note this is real-life demo data
from an urban arterial and is used to show the performance of
the models against known parameters ones. Regardless, p’s are
also calculated using estimated arrival rates and used in relevant
models.

3. The capacity of the approach was approximated by the observed
overall maximum queue value of 10 vehicles within 70 s (10 x
3600/35 = 1029 vehicles per hour or 0.286 vehicles per second
(vps) saturation flow rate). These values are used essentially in
the Highway Capacity Manual (HCM) from manual and back-
of-queue calculations. Note that the values may not reflect the
actual capacity and phase splits; however, we compare and
report true queue lengths. This would provide insights into the
accuracy of our approach.

Compared HCM delay (i.e., Delay time difference between ideal
versus actual conditions (or simply waiting time)) and back of the
queue (i.e., Qback) models are given in Egs. (15) and (16). These
models are approximations for given time intervals (e.g., 15 min) and
fully observed traffic.

L _C__(-G/cy
"2 min(1, X)G/C]
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Table 1 Table 2
Estimators given for the queue lengths. Estimation results with RMSE errors in [vehs/cycle] with T ~ Ga(l,C/(2n)).
Estimator E(n|l,m,1,R) Lane Avg. p Estl Est.2 NP.Est.l1 NP.Est2 Delay Q back
Est.1 I(m > O)I + (I = m)(1 — L)] +I(m=0)(1 — ﬂ)(7+ T—m) - Ly L 13% 1.09 1.01 1.01 1.01 1.37 1.25
R Sep08 C 21% 0.72 078  0.69 0.70 1.33 1.26
Est.2 I(m > 0)[m + (¢ —mR 1+ I(m = O)[i + a tm)R] R 7% 0.56 0.55 0.60 0.60 0.66 0.64
(U—m+ 1)(R—t) L 10% 1.22  1.05 0.99 0.99 1.38 1.13
NP.Est.1 I+ T Sep09 C 26% 1.14 0.96 1.09 1.09 1.81 1.38
_ _ R 2% 0.34 035 054 0.54 0.39 0.41
NP.Est.2 j4 Lomr DC=D
[+2 L 7% 2.68 2.43 2.48 2.48 2.81 2.52
Sepl0 C 18% 1.48 132 173 1.73 2.28 1.63
R 1% 0.84 077 077 0.77 1.06 1.26

8kIX

dy =900T[(X = 1)+ /(X = )2+ 1 (15)

where d = d; X PF + d, + d3 is control delay seconds per vehicle,
d, is uniform delay, PF is progression factor due to arrival types, d,
is random delay component, and d; is delay due to initial queue. In
this study, only d, + d, are considered with d; = 0 since no overflow
queue is assumed. PF = 1.0 is used for random arrivals. Volume-to-
capacity is X = p = 02 . Green time G is in seconds s, C is cycle
time in s. T is the analy51s period in hours where in cycle-to-cycle
estimations 7; = C;/3600 is assumed where i denotes cycle number.
k is incremental delay factor, and 0.5 is assumed for fixed time like
movement. / = 1 upstream filtering is assumed for no interaction
with nearby intersections, and capacity is ¢ = 1029 vph. Note that in
our calculations, the uniform delay is the main component updated by
changing G and C values. Queue lengths are approximated by Little’s
formula d4 where d and 4 are both calculated at each cycle using M
number of probe vehicles in the queue. This method is based on HCM
2000 (Ni, 2020; Prassas & Roess, 2020).

Another estimation approach adopted from Kyte, Tribelhorn, et al.
(2014) is used to calculate the cycle-to-cycle back of queues (see
Eq. (16)).

Qback = ﬁ(R + gs) (16)

where Q,,. is the back of the queue in vehicles, v = A is the arrival
rate in vehicles per second (vps), R is the red duration in seconds s,
and g, is queue service time that is calculated 0R/(x — 0) with x is the
saturation flow rate (i.e., assumed to be 0.286 vps). All the values R,
g, and 0 except x are changing cycle-to-cycle.

Alternative estimators from Comert (2016) are denoted by Est.1 and
Est.2 in Egs. (17) and (18), respectively. These queue length estimators
are in the form of E(n|l,m,1, R) = | + (1 — p)A(R — 1) with two different
primary parameter estimator combinations: {4, = lle, P = ﬂ} and
(1, = Em '") R 2.h = m} All compared cycle-to-cycle queue
length estlmators are given in Table 1.

E(N,|l.m,t, Ry = I(m > O)[] + (I — m)(1 — %)H

1m=0)(1 = 50+ T = (1 = )] a”
E(N,|l,m,t, R) = I(m > 0)[m + M]"’
1 =0)[(1 — mi _ R(l_—rﬁ)
(=01 = B+ =)
:I(m>o)[m+w]”(f"=0>[rh+@] 18)

where I(.) is the indicator function. When there is no probe vehicle
in the queue (i.e., I(m = 0)), we use the average of previous probe
vehicles’ information as we need to estimate arrival rate (1) and probe
percentage (p) Notation M ; represents values from cycle 1 to i and
my.; = ZJ L7 LT Z/ | %, and tl i = Z;zl tT’ Average error values
are given in Table 2 for T ~ Ga(l, Z)' Fig. 7(b) is given to demonstrate
if assumed interarrivals are impacting the accuracy of the estimators.
In Table 2, a summary of average queue length (QL) estimation
T, Qusoury

errors in the root mean square is provided (RMSE= -

Average p values are calculated from Y| — for each lane. Since true
maximum queues are not known, p and 1 are estlmated HCM'’s control
delay-based model and back of queue are denoted by HC M, and Q.
respectively. The accuracy of the estimators is reported when probe
vehicles are present in the queue (p = {10%, 13%, 18%,21%, 26%}).

Example performances with 21% penetration rates are given in
Fig. 7(a). When there are probe vehicles in the queue, we can see that
the proposed methods can follow the true maximum queue lengths
closely. In Fig. 7(b), boxplots for overall errors are given. We can
see that the model with new estimators provides slightly lower errors.
However, errors are lower than delay-based HC M, and Q,,., methods.
Our methods can estimate more accurately compared to Q.-

4.1. Evaluation with simulated queue length data

In addition, the estimators are evaluated using Vissim microsimula-
tions. The data from an isolated intersection is generated at five arrival
rate levels 4 = {7.34,8.55,9.81,10.76, 12.02} vehicles per 45 s red phase.
For this intersection, capacity is 12.24 vehicles per 45 s and volume-
to-capacity ratios are p = {0.60,0.70,0.80,0.88,0.98}. The cycle times
are fixed at 90 s. There are no yellow or all-red phases. The probe
proportion is changed between p = {0.001, 0.05,0.10, .., 0.80,0.999} (i.e.,
11 probe proportions). The simulation is run 1000 cycles for each probe
proportion and arrival rate for three different random seeds (i.e., a total
of 165,000 cycles of simulations).

Additional alternative estimators from Gao et al. (2019), Zhao et al.
(2019) are denoted by Est.3 and Est.4 in Egs. (19) and (20), respec-
tively These queue length estimators are in the form of E(n|/,t, R) = [+
—(R t)and E(n|m,t) = ’('",:1) 1. There are many other approaches; for
51mple comparison, the methods use the last probe vehicle’s location,
count, and time of arrival information are selected. With speed, density,
and other probe information, and tracking all probe vehicles in the
queue, additional estimators (Cheng, Qin, Jin, Ran, & Anderson, 2011;
Luo, Deng, Chen, et al., 2023; Tiaprasert, Zhang, Wang, & Zeng, 2015)
would also be compared.

_ I
E(N;|l,t,R) = I(m > 0)[1+I_L(R—z)]+1(m =0+ I_l—"(R—t'l;,»)] (19)
1:i

1

— 1]+ I(m= 0)[—””'(';_'1” Dy o

1

t 1
E(Nym, 1) = I(m > o) D)
m
where I(.) is the indicator function. When there is no probe vehicle
in the queue (i.e., I(m = 0)), we use the average of previous probe
vehicles’ information as at least one probe vehicle needed in the queue.

. . R
Notation m, ;; represents values from cycle 1 to i and m,; = X,_, -,
1
J

L= Z;=1 /T{! and f|; = Z}:l T

The results, including all errors in RMSE and an example cycle-
to-cycle queue length estimations, are given in Fig. 8. The results
are consistent with the field test data. Note that field data is from a
multi-lane intersection; the simulation data is from a single lane. The
advantage of simulation is that p and A are controlled. In this setup,
compared estimators Est.1 and Est.2 have the advantage of finding
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Fig. 8. Performance of the proposed estimators using simulated data.

true 4 and p after a few cycles. When there is no probe vehicle at the
intersection, they can use historical data. For proposed estimators and
Est.3 and Est.4, they do not need 4 or p. From the figure, it can be
seen that the performance of Est.2 is approximately matched. Although
they still produce larger estimation errors, the performance of Est.3
and Est.4 improves if average values are used instead of cycle-to-cycle
probe vehicle information. We kept cycle-to-cycle estimation results in
Fig. 8-b to compare them to proposed estimators.

Readers should note that the analysis and estimators in this paper do
not consider overflow queues that can occur as the volume-to-capacity
ratio gets higher p > 0.80. The outliers in Fig. 8-b may also directly
result from the higher arrival rates and the overflow queues. Fig. 9
shows the increase in estimation errors from medium level p = 0.70
to p = 0.98. One can add simple corrections to the proposed estimators
when preparing the data input, considering the following scenarios to
elevate the impact.

a. If the last probe vehicle is in the overflow (remaining) queue,
the signal cycle number can be tracked, and the first arrival
to the queue can be noted. In this scenario, we can estimate

overflow queue length and add another estimated queue for the
new arrivals with no probe vehicle in them.

b. If the last probe vehicle is in the new arrivals, then the location
information and number of probe vehicles would contain the
overflow queue information. The estimators can be used as in
Egs. (10) and (13).

c. If no probe vehicle is in the queue, we can use values from
previous cycles. These average probe information would contain
the overflow queues’ average impact depending on the number
of times scenarios a and b were encountered.

5. Conclusions

In this study, we derived two new nonparametric cycle-to-cycle
(i.e., dynamic) queue length estimation models for traffic signal-
induced queues. Contributions can be summarized as follows:

i. Derived estimators only depend on signal phasing and timing
information. The derivations involved fundamental analysis of
the experiment.
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Fig. 9. Performance of the proposed estimators for medium and high p levels.

ii. One of the estimators (N P.Est.2, E(N|/,m,R)) does not re-
quire time information of the last probe vehicle in the queue
and matches the accuracy of the one with time information
(NP.Est.1, E(N|l,m,t, R)).

iii. Resulting estimators are simple algebraic expressions. We do
not assume independent arrivals at the intersection. The only
assumption is a discrete time interval, which is reasonable as
signal timing involves whole seconds. However, sub-second or
finer discrete time intervals can also be utilized.

iv. For independent approach lanes at traffic intersections, it is
shown that conditional queue lengths given probe vehicle loca-
tion, count, time, and analysis interval can be represented by a
Negative Hypergeometric distribution.

v. Performance of the estimators derived was compared with para-
metric and simple highway capacity manual methods that use
field test and simulated data involving probe vehicles. The re-
sults obtained from the comparisons show that the nonpara-
metric models presented in this paper match the accuracy of
parametric models. Compared parametric models assume known
cycle-to-cycle (dynamic) arrival and market penetration rates.

vi. Methods developed do not assume random arrivals of vehicles at
the intersection or any primary parameters or involve parameter
estimations.

Developed methods in this study estimate the queue lengths at intersec-
tion approaches using probe vehicle data. These probe vehicles could
be traditional probe vehicles or connected vehicles that generate basic
safety messages. Apart from improving the limitations listed under the
problem statement, future research could apply and expand the models
presented in this paper using a more complex intersection and a series
of adjacent intersections with higher traffic demand volumes.
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Appendix

Theorem 1.
Then

_ —m\ (2R+m—
ZRﬁ” () Giamet) _ 2R+1

~ (221[%) T2 +1

Let 7, t, R, and m be as defined in the preceding section.

2D

or equivalently

2R-2t+¢
n—m\[(2R+m—n 2R+1
> - e
C—m)\2t+m—1¢ 2t+1

n=¢
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2R+m—n

Proof. Observe (;:’;) = (") and (3% = (2R—2t—n+ p

n—¢ 2t4+m—¢
n' =n— ¢ so that Eq. (4) becomes

2122—21 n+¢—-m\(2R+m—-n"—-2¢\ _ (2R+1
“~ n 2R-2t—n' ) \2+1

Make another re-indexing ¢’ = # — m and hence Eq. (23) takes the
form

ZRZ_:Z’ W'\ (2R—¢ —n'\ _ (2R +1
n 2R=2t—n')  \2t+1

n'=0

) and replace

(23)

(24)

The “negativization” (reminiscent of the Euler’s gamma reflection
formula I'(z)I'(1 — z) = sinfﬂ) of binomial coefficients (_“b“’) =

(—l)b("zl) allows to convert ('f ;"/) = (-1 (_‘:,_]) and (i’;:i:::: ) =

2—¢"42R=2—n"\ _ o 1\2R-2t—n' [ £'=21—1
(ay ) =D " (s )- Therefore,
2R-2
Z' WAt (2R=¢ —n
=0 n 2R-2t—n
2R-2

' =1\ ¢ -2t-1
B n,Z::O < n ><2R—2t—n’> (25)
The well-known Vandermonde-Chu identity states Zi:o (z)(yfk) —
(xzz)_ Applying this to Eq. (25) and engaging (—ab+b) = (1) (a?) (one
more time) yields

ZRZ‘:Z’ —0 =1\ (¢ =2-1Y _

= n' 2R-2t—n'

~21-2\ _ _jpra(2R+1) _ (2R+1
2R -2 2R-21 241

a

The proof is complete.

Remark. The identity just proved shows that Eq. (3) or Eq. (4) is
independent of the parameters m and #. The results in Eq. 1 can be
extended to the short sum runs from n = # through n = 2R - 2z.

Theorem 2. Let #Z, m, n, R, and t be as defined in Theorem 1. Then there
is a recurrence formula for

2R-2t
Z n—m\({2R+m—n
£ —m 20+m—7¢

n=¢

(A5)

Proof. Denote the sum in (A5) by f(¢) and the summand by F(¢, n)
(after suppressing the remaining variables). Introduce the function

G(&.n)=—( )(21;;":"__";1). Then, it is routine to verify that

+1-m
F(&+1,n)—F(,n)=G{,n+1)—G(¢,n) (A6)

Sum both sides of (A6) for n = +1 to n = 2R — 2t (and telescoping on
the right-hand side) to obtain

fC+1D)—-fO)+ F(,0)=G(,2R=-2t+1)-G(,7 + 1).

Based on F(¢,¢) = (2R+m_f),G(f, 2R=2t+1)= _(2R—2t—m+l) (2t+m) and

22}+m—f £—m+1 £
G, 0+ 1) = —(221’{::__ i ), we infer the recursive relation
2R=2t—m+1\[2t+m
£+ 1) - f(&)=—- .
fC+1)—=f@) < femil >< p > Od

Corollary. From Theorem 2, we get the following identity
ZRE":Z’ 2R-2—m+1)(2+m) _ (2R+1
prd £ —m+1 ¢ 2t+1

Proof. This follows from the recurrence relation proved in Theorem 2
and the identity proved in Theorem 1. []

(A7)
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Theorem 3.
follows:

Z0)-()

Proof. We offer a combinatorial argument. Given natural numbers
¢ <t < R, and m, we may consider the class of those (¢ + 1)-subsets

The identity in (A7) can be re-indexed and formulated as

{x) < x; < - <x,}of {0,1,..., R} such that x, = m: these are exactly
(';f) (':__;") (indeed the # elements x, ...,x,_; can be chosen freely into
{0,...,m—1}, and so can the r—¢ elements x,,, ..., x, into {m+1,..., R}.

These classes, for # < m < R—t+¢ form a partition of all (1 + 1)-subsets
of [R+ 1], whence the sum of their cardinality is independent of # and
the identity. [J

Remark. The discrepancy in having a closed form and no closed form
can be understood as follows: we know that ¥;_ (V) = 2", however,

there is no “nice evaluation” for ;" (2) unless m = n. The bottom

line is the former is summed over the full compact support of (Z) (in

the sense, (Z) =0if k <0 or k > n. A similar analogy can be drawn with

having the closed form fj, e dx = \/; but nothing similar is available
if the limit is altered to be any smaller subset than the full range R,
except for [0, ).
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