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A B S T R A C T

Background and Objectives: Sepsis is a leading cause of mortality in intensive care units (ICUs). The

development of a robust prognostic model utilizing patients’ clinical data could significantly enhance clinicians’

ability to make informed treatment decisions, potentially improving outcomes for septic patients. This study

aims to create a novel machine-learning framework for constructing prognostic tools capable of predicting

patient survival or mortality outcome.

Methods: A novel dataset is created using concatenated triples of static data, temporal data, and clinical

outcomes to expand data size. This structured input trains five machine learning classifiers (KNN, Logistic Re-

gression, SVM, RF, and XGBoost) with advanced feature engineering. Models are evaluated on an independent

cohort using AUROC and a new metric, 𝛾, which incorporates the F1 score, to assess discriminative power and

generalizability.

Results: We developed five prognostic models using the concatenated triple dataset with 10 dynamic features

from patient medical records. Our analysis shows that the Extreme Gradient Boosting (XGBoost) model (AUROC

= 0.777, F1 score = 0.694) and the Random Forest (RF) model (AUROC = 0.769, F1 score = 0.647), when

paired with an ensemble under-sampling strategy, outperform other models. The RF model improves AUROC

by 6.66% and reduces overfitting by 54.96%, while the XGBoost model shows a 0.52% increase in AUROC

and a 77.72% reduction in overfitting. These results highlight our framework’s ability to enhance predictive

accuracy and generalizability, particularly in sepsis prognosis.

Conclusion: This study presents a novel modeling framework for predicting treatment outcomes in septic

patients, designed for small, imbalanced, and high-dimensional datasets. By using temporal feature encoding,

advanced sampling, and dimension reduction techniques, our approach enhances standard classifier perfor-

mance. The resulting models show improved accuracy with limited data, offering valuable prognostic tools for

sepsis management. This framework demonstrates the potential of machine learning in small medical datasets.

1. Introduction

Sepsis is one of the biggest threats of death for critically ill pa-

tients in the intensive care unit (ICU) [1]. Traditionally, the prognosis

of sepsis relies on the personal judgment of clinicians based on the

longitudinal monitoring of a set of indicators. In 2016, the latest

guideline (Sepsis 3.0) updated the definition of sepsis and defined it as a
complex disease involving severe inflammatory responses and multiple

organ failures; and it also pointed out that it would be difficult to

obtain a positive prognosis via traditional statistical methods based
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on the patient’s cross-sectional data at admission or at a few selected

cross-sectional moments during the treatment [2]. Hence, the patient’s

longitudinal data, with hidden temporal features, should be exploited to
provide ‘‘insightful dynamical’’ information for making more accurate,

data-driven, intelligent, and reliable prognoses for septic patients.

Artificial intelligence (AI) fueled by the latest development in ma-

chine learning (ML) has shown great promise in medicine and health

care in general. Some ML tools have been developed based on cross-

sectional data in the study of sepsis so far. However, meta-analyses
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showed that most of these studies aimed at early diagnosis while

some of them made less reliable clinical prognoses for sepsis, unfor-

tunately [3]. Given that data acquired from septic patients are often

represented by a large number of static and dynamic indicators, de-

scribing the long course of the disease with a dynamically changing

complex context becomes necessary. This often makes the dimension

of the variable space relative to the number of data points very high. It
would require a virtually impossibly large sample size to obtain positive

results with the existing prognostic models.

At the ICU, the electric data collection system is not well-tuned, nor

data collection protocol unified such that the quality of the collected

data is often difficult to control when used in AI/ML tools directly [4].

The amount of effective data per dimension in the data space must

be increased to obtain clinically usable prognostic tools via existing

methodologies. In reality, it is clinically prohibitive to collect a large

set of data for a septic patient at the ICU anywhere. So, one must

innovate in AI/ML methodologies to account for the clinically avail-

able, invaluable small datasets, where the ratio of data size to the

indicator’s dimension is relatively small, to build the prognostic tool.

This motivates the current study.

Small dataset problems are often compounded by challenges such as

class imbalance and high dimensionality, which have long posed diffi-

culties for the machine learning community. The first paper on machine

learning with small datasets was published in 1995 [5]. However, other

studies on this topic did not emerge until 2016, when researchers began

exploring the applications of machine learning across various fields [6].

Today, while there have been a few studies addressing small dataset

problems in the medical field [7], most have focused on small-sized,

high-dimensional, and class-balanced datasets [8].

In real-world scenarios, datasets often exhibit class imbalance,

where certain classes are significantly underrepresented compared to
the others. This imbalance leads to the ‘‘class imbalance’’ problem,

also known as the ‘‘curse of imbalanced datasets’’, which refers to the

difficulty of learning from classes with a limited number of samples [9].

Imbalanced data can significantly compromise the learning process, as

most standard machine learning algorithms assume a balanced class

distribution or equal misclassification costs [10]. The class imbalance

problem is frequently encountered in medical diagnosis and has been

recognized as one of the top 10 challenges in data mining and pattern

recognition [11,12].

In this study, we address the small dataset problem in the context of

sepsis, focusing on high-dimensional and imbalanced datasets. Our goal

is to establish a modeling framework capable of handling such datasets,

enabling the development of a reliable AI-enabled prognostic tool for

predicting patient outcomes based on clinically collected longitudinal

data from septic patients.

2. Materials and methods

2.1. Data acquisition

The data were collected from qualified septic patients admitted to
the ICU over a period of four years. The inclusion criteria of the patients

are defined as follows:

1. adult patients (age ≥ 18),

2. patients with the APACHE II score ≥ 10 on admission.

The exclusion criteria are given as follows:

1. underage patients (age < 18 years old),

2. patients with extracorporeal membrane oxygenation or renal

replacement therapy during the hospitalization,

3. patients were pregnant or breastfeeding,

4. patients were participating in other clinical trials.

The dataset incorporates relevant indicators and features of sepsis

for each patient, encompassing both static and dynamic variables.

Static variables include basic patient biometrics, while dynamic vari-

ables consist of physiological and biochemical indicators collected daily

from various clinical information systems, such as Electronic Medical

Records (EMR), Hospital Information Systems (HIS), and Laboratory

Information Systems (LIS).

Based on specific inclusion and exclusion criteria, the study in-

corporated 174 septic patients admitted between January 2018 and

December 2021 (as illustrated in Fig. 1). The cohort was divided into

two groups based on 28-day clinical outcomes: 84 patients in the

mortality group and 90 in the survival group. For external valida-

tion purposes, data from an additional 21 patients, admitted between

January 2021 and May 2022, were collected as a new dataset for

testing.

This study has been reviewed by the Medical Ethics Committee of

Sichuan Provincial People’s Hospital (No. 266 in 2021) and registered

in the China Clinical Trial Registration Center (Clinical Registration

No.: ChiCTR2200056316). Since it was an observational study on

historical data and would not interfere with the treatment plan of the

patients, the ethics committee agreed to waive the informed consent.

2.2. Data preprocessing

The collected time series samples in the dataset with more than 30%

missing entries are deleted to ensure the authenticity of the data. If a
patient has multiple admission records, only the first is used. In the

remaining, accepted dataset, the missing data of static variables are

filled by mean values and those of dynamical variables are interpolated

using cubic splines in time.

Notice that most data do not follow the normal distribution. Hence,

we conduct the correlation analysis for the data using the Spearman

method to select 17 dynamic indicators/features and 9 static ones (see

A.1) in the dataset to train the models, in which a strong correlation

between the variables is assumed if the correlation coefficient ≥ 0.7
over all 14 days. To prepare the data for classifiers, categorical features

are represented by one-hot encoding, non-categorical discrete static

features are normalized by the maximum and minimum of the dataset

in 14 days, and dynamic features are standardized by the mean and

standard deviation of the data in 14 days.

2.3. Performance assessment

The area under the receiver operating characteristic curve (AUROC)

and the F1 score are proper metrics for assessing the models with

respect to imbalanced data while the F1 score is more sensitive to gauge

overfitting [13]. Hence, we use AUROC and the F1 score to assess the

accuracy and the generalization ability of the classifiers, respectively.

We use a metric, 𝛾, defined below, to evaluate improvement in over-

fitting based on F1 scores. The first term in 𝛾 assesses how much the

degree of overfitting is reduced compared to the original data without

using feature engineering. The second and third term measure how

much the F1 score is improved compared to the original case in internal

and external validations, respectively.

𝛾 =

(
𝛿 𝐹1𝑂 𝑂 − 𝛿 𝐹1𝑖𝑗

𝛿 𝐹1𝑂 𝑂
+
𝐹1𝑖𝑗

𝑖𝑛
− 𝐹1𝑂 𝑂

𝑖𝑛

𝐹1𝑂 𝑂
𝑖𝑛

+
𝐹1𝑖𝑗𝑒𝑥 − 𝐹1𝑂 𝑂𝑒𝑥

𝐹1𝑂 𝑂
𝑒𝑥

)
× 100%, (1)

where 𝛿 𝐹1𝑖𝑗 = 𝐹1𝑖𝑗
𝑖𝑛
− 𝐹1𝑖𝑗𝑒𝑥 is the F1 score difference between internal

and external validations, 𝑖 ∈ {𝑂 , 𝑈 , 𝑂 𝑣𝑒𝑟, 𝐸} is the index for the cho-

sen sampling strategy including the original data without a sampling

strategy (O), under-sampling (U), over-sampling (Over) and ensemble

method (E), respectively; 𝑗 ∈ {𝐷 𝑅, 𝑂} indicates if the dimensional

reduction technique is used (DR) or not (O).



C. Li et al.

Fig. 1. Comprehensive flowchart illustrating the data acquisition pipeline and subsequent statistical analysis processes.

2.4. ML-input data engineering

2.4.1. Concatenated-triplet data structures for ML-input
To encode the temporal feature of the longitudinal dataset, we use

concatenated triplets to create the ML-ready input data for machine

learning in our modeling approach. Let 𝐱𝑖 denote the standardized

dynamic indicators of a patient at the 𝑖th day, and 𝑦 the correspond-

ing clinical outcome (survival or mortality/deceased) on the 14th

day. The ML-ready data vector is engineered by concatenating three

components, normalized static indicators 𝐱𝑠𝑡𝑎𝑡𝑖𝑐 , consecutive dynamic

features of 𝑘 days 𝐱𝑑 𝑦𝑛𝑎𝑚𝑖𝑐 = (𝐱𝑖, 𝐱𝑖+1..., 𝐱𝑖+𝑘−1), and the label 𝑦. We

call this a ‘‘concatenated triplet’’ and denote it as (𝐱𝑠𝑡𝑎𝑡𝑖𝑐 , 𝐱𝑑 𝑦𝑛𝑎𝑚𝑖𝑐 , 𝑦). By

concatenating dynamical features in k consecutive days, we effectively

encode the temporal feature in the longitudinal data into the ML-ready

dataset. From the longitudinal record of one patient in 𝑇 days, we can

generate 𝑇 − 𝑘 + 1 concatenated triplets by sliding the window with

width 𝑘 over the dynamic features of 𝑇 -day’s data as shown in Fig. 2.

This allows us to greatly increase the size of the patients’ dataset by at

least 𝑇 − 𝑘 + 1 folds (see A.2).

In our dataset, there are 117 surviving subjects (negative class)

and 57 deceased subjects (positive class), as shown in A.2. The ratio

of the positive to negative class is approximately 0.5, indicating a

class imbalance in the classification problem. The standard classifiers

designed for balanced datasets always have a bias on the majority

class of imbalanced datasets, which can lead to less reliable results

when applied to imbalanced datasets [9,10]. Meanwhile, for a given

high-dimensional dataset, the higher the dimension is, the sparser the

data points are, which may prevent standard classifiers designed for

low-dimensional spaces from correctly classifying the points in high

dimensional spaces [14]. It is therefore crucial to remove the effect

of class imbalance and to mitigate the issue of high dimensionality.

Sampling strategies and dimension-reduction techniques are powerful

tools to tackle these problems.

In this paper, we propose a framework to deal with the challenge

by organically combining sampling strategies and dimension-reduction

techniques with standard classifiers. In the framework shown in Fig. 3,

we first select the important dynamic features by dimension reduction

method and then generate the concatenated triplets. Afterward, ML-

ready dataset containing all concatenated triplets is randomly split into

the training set and test set for machine learning. An additional dataset

is used for external validation to assess the clinical performance of the

classifiers.
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Fig. 2. Schematic representation of the concatenated triplet generation process. This diagram illustrates the method of generating T-k+1 concatenated triplets from a patient’s

longitudinal record spanning 𝑇 days. A sliding window of width k=5 is employed to process the temporal data. Each triplet encapsulates a distinct 5-day period, with successive

triplets overlapping by 4 days. The label 𝑦 represents the patient’s clinical outcome on the 14th day post-admission, serving as the target variable for predictive modeling. Key

elements: (a) T: Total number of days in the patient’s record; (b) k: Width of the sliding window (set to 5 days); (c) T-k+1: Total number of generated triplets; (d) y: Binary

outcome label (e.g., survival status) at day 14. This data structuring approach enables the capture of temporal patterns while significantly augmenting the dataset size, facilitating

more robust machine learning model training.

Fig. 3. Comprehensive diagram of the proposed machine learning framework for small dataset challenges in clinical prognosis. This schematic illustrates our novel approach to
handling small, high-dimensional clinical datasets: (1) Dimension Reduction: Standardized high-dimensional dynamic features undergo dimension reduction to mitigate the curse of

dimensionality. (2) Concatenated Triplet Generation: The reduced-dimension data is used to create concatenated triplets, encoding temporal patterns and augmenting the dataset.

(3) ML-Ready Dataset: All concatenated triplets from patient records are compiled into an ML-ready dataset. (4) Data Splitting: The dataset is randomly partitioned into training

and test sets. (5) Model Training: Classifiers are trained on the training set using appropriate sampling strategies to address class imbalance. (6) Validation: Well-trained classifiers

undergo validation on both the held-out test set and new, unseen data to assess generalizability. This framework addresses key challenges in clinical machine learning, including

high dimensionality, temporal dependencies, and limited sample sizes, while ensuring robust model performance and generalizability.

2.4.2. Sampling strategies
To address the class imbalance issue, one commonly adopts two

approaches: one at the data level while the other at the algorithmic

level, leading to specialized classifiers [10]. We adopt the former in
this study encompassing the four strategies listed below.

1. Original case (O): No sampling strategy is applied which is

treated as the baseline.

2. Random under-sampling strategy (U): randomly under-sample

strategy is applied to the majority class to match the size of the

minority class.

3. Synthetic Minority Over-sampling Technique-Nominal Continu-

ous (SMOTE-NC): the minority class is over-sampled to match

the majority class using k nearest neighbors A.1 [15].

4. Ensemble under-sampling strategy (E): One splits the majority

class into smaller groups and trains multiple classifiers for each
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Fig. 4. Multi-panel analysis of feature importance and selection across different methods. This figure presents a comprehensive analysis of feature importance and selection using

multiple approaches: (a) Top left: Feature importance ranking derived from XGBoost. (b) Top right: Feature importance ranking derived from Random Forest (RF). (c) Bottom

left: Mean change ratio of features. (d) Bottom right: Venn diagram illustrating the relationships among top-ranked features. The key elements include: (1) Cumulative scores: The

right-side numbers in panels (a), (b), and (c) represent the cumulative importance scores for features, listed from top to bottom. (2) Feature selection criteria: The Venn diagram

displays the overlap among feature sets with cumulative scores exceeding 75% from XGBoost, RF, and mean change ratio analyses. (3) Final feature set: The top 10 features

common to both XGBoost and RF results are selected as the final feature set. (4) Abbreviations: A comprehensive table of indicator abbreviations is provided in Appendix A.1.

This multi-method approach ensures robust feature selection by leveraging the strengths of different machine learning algorithms and statistical measures.

set consisting of a group of majority class and the whole minority

class to get a final ensemble model using the majority voting

A.2 [16].

2.4.3. Dimension reduction techniques
Dimension reduction can be accomplished by either the feature

selection or feature extraction method [17]. To keep the model in-

terpretable, we use the feature selection method. Before applying the

method, the under-sampling strategy is applied to 17 dynamic features

on the 14th day to eliminate the effect of class imbalance and avoid

introducing artificial noises. To ensure the quality and robustness of the

selected features, two methods, RF and XGBoost, for selecting features

based on different criteria A.5, are used to identify important features.

The common features of two sets of top features obtained separately

from RF and XGBoost with cumulative contributions of ≥ 75% are

selected as the final features to represent the longitudinal data. To

further check the quality of the selected features, we define a metric

called the mean change ratio, based on the severity of the indicator

changes as follows

mean change ratio =
|𝜇2 − 𝜇1|

𝜇2
+

|𝜇2 − 𝜇1|
𝜇1

, (2)

where 𝜇1, 𝜇2 are the means of the features of dead and alive samples,

respectively. Intuitively, the larger the mean change ratio is, the more

important the feature should be.

Ranking the feature importance as shown in Fig. 4 by three meth-

ods: RF, XGBoost, and mean change ratio, in which 11 top features

ranked by each of the three methods are displayed. There are 8 common

features among the feature selection results based on RF, XGBoost,

and the mean change ratio as the Venn diagram shows in Fig. 4. As

Albumin and MAP have relatively high contributions in XGBost and

RF, we choose the 8 common features augmented by Albumin and

MAP to arrive at the 10 final features with a cumulative contribution

exceeding 75%. They are Urea, WBC, hs-CRP, PLT, SI, Creatinine, Lac,

ALT, Albumin, and MAP, respectively.

3. Results and discussion

3.1. Results

The ML-ready dataset is randomly split into a training set and a test

set with a ratio of 8:2 for training and testing (or internal validation) in
machine learning, respectively. We implement five classifiers: K Nearest

Neighbors (KNN), Logistic Regression (LR), Random Forest (RF), Sup-

port Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost).

XGBoost is implemented using the XGBoost package (version 1.6.) [18].

KNN, LR, RF, and SVM are implemented using scikit-learn (version

1.1.1). Three different sampling strategies are applied to the training

set using the imbalanced-learn package (version 0.7.0) [19]. The hy-

perparameters of the classifiers are selected using a grid search method

with 5-fold cross-validation on the training set, given in Appendix A.
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Fig. 5. Baseline performance of five classifiers, without feature engineering, is presented in terms of AUROC (top row) and F1 score (bottom row). The term ‘‘baseline’’ refers to
the use of the original dataset without applying any sampling strategies or dimensionality reduction techniques, across various 𝑘 values, for training the classifiers. This comparison

underscores the critical role of feature engineering in mitigating the risk of overfitting and enhancing model accuracy. The first row displays AUROC values, while the second row

illustrates F1 scores for both internal validation (left) and external validation (right). The classifiers are represented as follows: KNN with stars (blue), LR with circles (orange), RF

with triangles (green), SVM with crosses (red), and XGBoost with squares (purple). Notably, LR demonstrates the most consistent F1 scores in both internal and external validations,

indicating a low risk of overfitting. In contrast, the inconsistency in F1 scores between internal and external validations for the remaining four classifiers suggests a higher risk of

overfitting. Specifically, the larger the difference in F1 scores between internal and external validations, the higher the likelihood that the model is overfitting to the training data

and failing to generalize to new, unseen data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We first present the baseline results of the models without feature

engineering in terms of the AUROC and F1 score in Fig. 5. We observe

that (a) as validated both internally and externally, the smaller the 𝑘

value is, the higher the value of AUROC for all classifiers except KNN.

It indicates that all classifiers except KNN perform better for small 𝑘;

(b) based on AUROC, XGBoost and RF outperform the others in both

the internal and external validation; (c) XGBoost (AUROC = 0.773, F1

score = 0.513 at 𝑘 = 2, AUROC = 0.685, F1 score = 0.462 at 𝑘 = 5)

outperforms RF (AUROC = 0.721, F1 score = 0.528 at 𝑘 = 2, AUROC

= 0.639, F1 score = 0.432 at 𝑘 = 5) in the external validation; (d) all

classifiers except for LR are at a high risk of overfitting after comparing

the internal with the external validation results in both the AUROC and

F1 score.

We then examine the efficacy of the sampling strategies and plot the

AUROC for the external validation with 3 different sampling strategies

and k values in Fig. 6. Comparing the results of the three sampling

strategies with the baseline cases, we find that AUROC values are not

altered much (a decrease at most 0.126 and an increase at most 0.058

with under-sampling, a decrease at most 0.068 and an increase at most

0.119 with over-sampling, a decrease at most 0.041 and an increase at

most 0.033 with the ensemble method). This indicates that the AUROC

is not sensitive to various sampling strategies at all.

We then examine the degree of improvement in overfitting 𝛾 in

Fig. 7. Among the sampling strategies, the ensemble method works the

best for the classifiers in most cases except for KNN at 𝑘 = 5, SVM is

the most sensitive to various sampling strategies while RF is the least

sensitive. For KNN, the over-sampling strategy always works for all 𝑘

values. This might be because the over-sampling algorithm SMOTE-NC

uses a randomly selected k nearest neighbor of an original sample to
generate a new sample. For RF, the ensemble under-sampling works for

all 𝑘 values. For SVM, over-sampling never works while, for XGBoost,

ensemble under-sampling always works the best for most 𝑘 values.

Analysis of Fig. 7 reveals several key observations:

(1) At k=5, there are 6 bars with negative values and 5 with positive

values.

(2) As k decreases to 2, the number of bars with negative values

progressively diminishes.

(3) Specifically, k=3 and k=2 yield one and two negative values,

respectively.

(4) Across all k values and classifiers, at least one bar consistently

displays a positive value.

These observations suggest that the degree of overfitting for all clas-

sifiers can be mitigated at any k value through the application of

appropriate sampling strategies. Consequently, we conclude that judi-

ciously chosen sampling strategies, when combined with standard clas-

sifiers, can enhance the models’ generalizability without significantly

compromising accuracy (as measured by AUROC).

Dimension reduction techniques combined with various sampling

strategies are implemented for 𝑘 = 2 since most models perform better
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Fig. 6. AUROC values from the external validation results for three different sampling strategies, compared with the baseline (original data) across various 𝑘 values. The plots

are organized as follows: top left for under-sampling, top right for oversampling, bottom left for ensemble under-sampling, and bottom right for the baseline. The classifiers are

represented as follows: KNN with stars (blue), LR with circles (orange), RF with triangles (green), SVM with crosses (red), and XGBoost with squares (purple). By comparing

these results with the baseline, it becomes apparent that the AUROC metric exhibits minimal sensitivity to the different sampling strategies, as the AUROC values remain largely

consistent with the baseline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on the short-term stacked concatenated triplets. The results in the

external validation are shown in Fig. 8 and Appendix A. Comparing

the results among the classifiers built on selected features (O+DR)

and the original features (O+O) as shown in Fig. 8, we find that the

AUROC values are improved for all classifiers, while the F1 scores

are reduced in most cases. More precisely, the improvement in the

AUROC value is 0.226 (KNN), 0.075 (LR), 0.081 (RF), 0.086 (SVM), and

0.030 (XGBoost), respectively. Similarly, the improvement in the F1

score is 0.286 (KNN), 0.057 (LR), −0.003 (RF), −0.391 (SVM), −0.056

(XGBoost), respectively. So, dimensionality reduction techniques can

improve model accuracy, but the resulting models may be more prone

to overfitting, suggesting that sampling strategies need to be used.

Considering different classifiers, we find that XGBoost and RF out-

perform their peers in all cases and XGBoost works better than RF

except for the under-sampling case (U+DR) in the external validation.

Comparing 3 sampling strategies, XGBoost (AUROC = 0.777, F1 score

= 0.694) and RF (AUROC = 0.769, F1 score = 0.647) achieve the best

performance in the E+DR case. However, both XGBoost (AUROC =
0.803, F1 score = 0.457) and RF (AUROC = 0.802, F1 score = 0.525)

achieve better AUROC values but lower F1 scores in the baseline case

(O+DR), indicating that there is a trade-off between the accuracy and

generalization error in the models when the F1 score is used as a metric

for the generalization error.

To show the effectiveness of the proposed modeling framework, we

compare the improvement in overfitting and performance metrics in
the three cases with the baseline case as shown in Fig. 9. Based on

the F1 score, we find that when only dimension reduction techniques

are used for the class imbalanced data, the degree of overfitting is

improved only in KNN since all other diamonds lie below the baseline

(zero) in Fig. 9(a). However, when one combines dimension reduction

techniques with sampling strategies, overfitting in all trained classifiers

except for SVM is greatly improved, which demonstrates the impor-

tance of proper sampling strategies on the class-imbalanced problem.

Moreover, the results show that different sampling strategies have

different effects on different classifiers. The ensemble under-sampling

strategy (E) is the best strategy for KNN, RF and XGBoost compared

to their counterparts with the improvement in overfitting (314.75%,

54.96% and 77.72%, respectively). The least improvement shown in
KNN, LR, RF, XGBoost is 176.48% (Over), 102.63% (U), 25.30% (Over)

and 17.29% (Over).

An analysis of AUROC shows that the highest and lowest improve-

ment of AUROC are 53.46% (E) and 27.46% (Over) for KNN, 11.55%

(O) and 5.78% (U) for LR, 11.23% (O) and 1.25% (Over) for RF,

18.20 (Over) and −2.95% (U) for SVM, and 3.88% (O) and −7.76%

(U) for XGBoost, respectively. From Fig. 9(b), we notice that the

proposed framework can greatly improve the AUROC value. But the
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Fig. 7. Improvement in overfitting, measured by 𝛾, for four classifiers across four 𝑘 values. In each subplot, the bars represent different sampling strategies: the left (blue) bar for

under-sampling, the middle (orange) bar for oversampling, and the right (green) bar for ensemble under-sampling. Bars above the zero line indicate an improvement in overfitting

compared to the baseline (original data without sampling). The higher the bar above the zero line, the greater the improvement in overfitting. Notably, for each classifier and

across all 𝑘 values, there is always at least one bar above the zero line, suggesting that there is always a suitable sampling strategy to mitigate overfitting for each classifier. Since

LR demonstrated the most consistent F1 scores in both internal and external validations (as shown in Fig. 5), indicating a low risk of overfitting, it has been excluded from these

plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. The AUROC values (left) and F1 scores (right) from the external validation of dimensional reduced models, combined with three different sampling strategies and the

baseline, are presented for five classifiers to highlight the effectiveness of feature engineering. Each line, distinguished by color and marker, represents a well-trained classifier:

KNN is marked by stars (blue), LR by circles (orange), RF by triangles (green), SVM by crosses (red), and XGBoost by squares (purple). The 𝑥-axis labels are as follows: ‘‘O’’

denotes the original data without any sampling or dimensionality reduction, with ‘‘O+O’’ representing the baseline; ‘‘DR’’ stands for Dimensionality Reduction; ‘‘U’’ for random

under-sampling; ‘‘Over’’ for oversampling (SMOTE-NC); and ‘‘E’’ for Ensemble under-sampling. The notation ‘A+B’ is used to indicate the combination of a sampling strategy

with dimensionality reduction. For example, ‘‘O+DR’’ represents the original data combined with dimensionality reduction, and ‘‘U+DR’’ denotes under-sampling combined with

dimensionality reduction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. A comparative analysis of feature engineering, combining dimensionality reduction with sampling strategies, against the baseline. The upper panel illustrates the improvement

in mitigating overfitting, quantified by the percentage of improvement. The lower panel demonstrates the enhancement in model performance, measured by the Area Under the

Receiver Operating Characteristic (AUROC) curve. This dual representation provides a comprehensive assessment of how dimensionality reduction techniques and sampling strategies

impact both the model’s generalizability (improvement in overfitting) and its predictive accuracy (improvement in AUROC).

under-sampling strategy slightly reduces the AUROC value to −2.95%,

−7.76% for SVM and XGBoost, respectively.

When examining Fig. 9(a) and (b) together, we notice that KNN

benefits the most, and XGBoost and RF benefit the least from feature

engineering compared to others. This is because KNN is more prone to
overfitting while XGBoost and RF have several mechanisms to prevent

overfitting. SVM is a special case in the sense that the accuracy is

improved but the overfitting is aggravated. This suggests that other

techniques at the algorithm level can be beneficial for SVM.

In summary, the proposed modeling framework works well for the

small data problem with high dimensional data and imbalanced classes;

the sampling strategy can mitigate overfitting while slightly sacrificing

the accuracy of some classifiers. Hence, to achieve the accuracy and

generalizability of the model, one needs to carefully choose the appro-

priate classifier and sampling strategy combo and be fully aware of the

trade-off between accuracy and generalizability.

3.2. Discussion

The challenge of working with small datasets is a persistent issue

in data science, particularly in medical research [7]. While previ-

ous studies in this field have primarily focused on small-sized, high-

dimensional, but class-balanced datasets [8], our study breaks new

ground. To the best of our knowledge, this is the first successful

attempt to construct prognostic models based entirely on small-sized

longitudinal data that simultaneously exhibits class imbalance and high

dimensionality in clinical medicine research.

Our proposed modeling framework demonstrates its effectiveness by

developing prognostic models for sepsis that combine advanced classi-

fiers with sophisticated feature engineering techniques. The results are

promising: XGBoost, when coupled with an ensemble under-sampling

strategy and carefully selected important features, achieves the best

performance with an AUROC of 0.777, an F1 score of 0.694, and a low

generalization error.
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A key innovation in this study is the introduction of a novel input

data structure, which we term the ‘‘concatenated triplet.’’ This structure

serves a dual purpose:

• It effectively encodes the temporal characteristics of the longitu-

dinal data.

• It augments the size of the input dataset, addressing the small data

challenge.

The efficacy of this ML-ready dataset structure is corroborated by our

results, underscoring its potential for similar applications in medical

data analysis.

Class imbalance in datasets significantly impedes the performance

of standard learning algorithms, often leading to their failure in gen-

eralizing inductive rules across the sample space and resulting in

overfitting [10]. Overfitting has been a source of serious errors in model

predictions and remains one of the principal challenges in machine

learning [20–22]. However, this issue is not always apparent from

commonly used performance metrics, and the bias towards the majority

class is frequently overlooked.

To address this, we introduce a new metric, 𝛾, derived from the

F1 score, to quantify improvements in mitigating overfitting. While

previous studies in 2019 and 2021 explored class imbalance in sepsis

data [23,24], they primarily focused on assigning weights to important

features—an approach that has shown limited potential for substantial

performance improvements.

Our study takes a different approach, employing three distinct

sampling strategies to tackle the class imbalance issue:

• Random under-sampling

• SMOTE-NC over-sampling

• Ensemble under-sampling

Our findings demonstrate that pairing an appropriate classifier with a
suitable sampling strategy can significantly mitigate overfitting. Specif-

ically, we observed improvements of 54.96% with XGBoost and 77.72%

with Random Forest (RF).

Several studies have explored sampling strategies to mitigate the

effects of imbalanced datasets in sepsis research. Adam Karlsson et al.

(2021) employed an under-sampling strategy [25], achieving AUROC

values of 0.83 and 0.80 for 7-day and 30-day predictions, respec-

tively, in internal validation. However, their study lacked external

validation and F1 score reporting, limiting comprehensive performance

assessment.

Recent literature suggests under-sampling as a superior strategy [26,

27], as demonstrated in a sepsis prognostic study [28]. Our research

advances this understanding by showing that ensemble under-sampling

is most effective. This approach inherits under-sampling’s advantages

while preserving all original dataset information, making it particularly

adept at addressing class imbalance. We found that different sampling

strategies impact classifiers variably, potentially explaining why a 2021

study [24] reached no firm conclusions. Our results demonstrate that

appropriate classifier-sampling strategy pairing significantly reduces

overfitting caused by class imbalance. Thus, our proposed modeling ap-

proach (combining standard classifiers with proper sampling strategies)

effectively addresses imbalanced data issues.

Septic patient data in high-dimensional space is typically sparse

and edge-distributed [14], potentially hindering standard classifiers.

Selected low-dimensional data representations can effectively denoise

while retaining crucial features, enabling simpler, more comprehensible

models [17,29]. Dimension reduction thus serves as an effective means

of denoising, feature selection, and simplification, particularly useful

for biological datasets [30].

In our study, XGBoost and Random Forest, combined with under-

sampling, address issues caused by high-dimensional, imbalanced data.

We enhance feature selection credibility using mean change ratios of

dynamic features. Our results show that feature selection effectively

improves clinical prognosis accuracy (AUROC) for septic patients [17,

29,31]. Moreover, properly combining sampling strategies with dimen-

sion reduction techniques significantly enhances both accuracy and

generalizability of standard classifiers.

In summary, our proposed modeling framework performs well on

small datasets, such as sepsis prognosis. Optimal performance and

generalizability require careful selection of classifier-sampling strat-

egy pairs and balancing accuracy against generalizability (overfitting).

However, limitations exist: this framework may not suit all standard

classifiers (e.g., SVM), and other algorithmic-level techniques could

further improve the model. The approach’s effectiveness requires veri-

fication on additional clinical medicine problems.

4. Conclusion

In this study, we have successfully developed an innovative ma-

chine learning framework for creating prognostic tools for septic pa-

tient’s outcomes in a given temporal window, effectively addressing

the challenges posed by clinically available datasets that are small,

high-dimensional, and imbalanced. Our approach introduces several

key advancements:

• Data Augmentation: We engineered a novel data structure, the

‘‘concatenated triplet’’, which significantly expands the effective

size of the dataset while encoding crucial temporal features of the

longitudinal data.

• Superior Performance: Our best models demonstrate performance

that surpasses externally validated machine learning models de-

veloped on substantially larger datasets, underscoring the efficacy

of our approach.

• Feature Engineering: By combining standard classifiers with so-

phisticated feature engineering techniques, our modeling frame-

work showcases its power in developing robust prognostic tools

for clinical applications.

• Generalizability: The success of this framework in handling small,

complex datasets opens new avenues for machine learning appli-

cations in the medical field, where large, well-balanced datasets

are often unavailable.

• Clinical Relevance: Our approach bridges the gap between ad-

vanced machine learning techniques and practical clinical needs,

offering a viable solution for developing accurate prognostic tools

with limited data resources.

This framework not only addresses the immediate challenge of

sepsis prognosis but also provides a blueprint for tackling similar

issues across various medical domains. By demonstrating that sophisti-

cated machine learning approaches can yield high-performance models

even with limited data, we pave the way for broader adoption of AI-

driven decision support tools in clinical settings where data scarcity has

traditionally been a barrier.

Future research directions may include: (1). extending this frame-

work to other medical conditions with similar data challenges, (2).

exploring the integration of this approach with existing clinical de-

cision support systems, (3). investigating the potential for real-time

application of these models in clinical settings. Our study represents

a significant step forward in applying machine learning to complex

medical problems, offering a promising pathway for developing ac-

curate, clinically relevant prognostic tools even in data-constrained

environments.
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Appendix A

A.1. List of dynamic indicators and abbreviations

In Table 1, we list the 17 dynamic indicators and their abbrevia-

tions, among which the top 10 (starred ones) are eventually selected as

important features to be used in the classification tasks. In Table 2, we

list all the static indicators used in the study.

A.2. Augmentation of the dataset by concatenated triplets

We have 174 patients’ records in 14 days in total. The number of

deceased patients each day within 2 weeks is listed in Table 3. Since

we have smaller deceased samples, so we call deceased samples positive

samples and label them by 1. Then, we have 117 negative samples and

57 positive samples. The numbers of structured concatenated triples

with respect to k=2,3,4,5 are shown in Table 4.

A.3. SMOTE-NC

The pseudocode of synthetic minority over-sampling technique

which is designed for continuous features is summarized in Algorithm A.1.

SMOTE-NC slightly changes the way a new sample is generated by

performing something specifically for the categorical features. In fact,

the categories of a newly generated sample are decided by picking

the most frequent category of the nearest neighbors present during the

generation.

Algorithm A.1 (Algorithm of Synthetic Minority over-sampling Technique).

Input: positive samples 𝑃 , negative samples 𝑁 , |𝑃 | < |𝑁|, number of
nearest neighbours 𝑘. Output: Synthetic Minority class samples.
1: for 𝑖← 1, ..., |𝑃 | do
2: Compute 𝑘 nearest neighbours for 𝑥𝑖.
3: end for
4: Randomly choose 𝑘 nearest neighbours of 𝑥𝑖, call it 𝑥𝑧𝑖.
5: Compute the new synthetic sample 𝑥𝑛𝑒𝑤 = 𝑥𝑖 + 𝜆(𝑥𝑖 − 𝑥𝑧𝑖) with 𝜆 being
a random number in [0, 1].

Table 1
List of total 17 dynamic indicators and abbreviations and the top 10 chosen ones

(*).

Indicators Abbreviations

Urea (mmol/L) Urea*

White blood cell count (×109/L) WBC*

High-sensitivity C-reactive protein (mg/L) hs-CRP*

Platelet Count (×109/L) PLT*

Shock Index (bmp/mmHg) SI*

Creatinine (μmol/L) Creatinine*

Lactic acid (mmol/L) Lac*

Alanine aminotransferase (U/L) ALT*

Albumin (g/L) Albumin*

Mean arterial pressure (mmHg) MAP*

Total bilirubin (μmol/L) TB

Temperature (𝐶) Temperture

Respiratory rate (bmp) Respiratory rate

Blood glucose (mmol/L) Glu

Aspartate aminotransferase (U/L) AST

Neutrophil count (×109/L) NEUT

Oxygen saturation (%) SaO2

Table 2
The list of 9 static indicators.

Indicators Feature Type

Age Categorical variable

Gender Categorical variable

Diagnosis Categorical variable

Mental status at admission Categorical variable

Admitted for sepsis or not Categorical variable

PN+EN or not Categorical variable

APACAE II Score Non-categorical discrete variable

SOFA Score Non-categorical discrete variable

BMI Non-categorical discrete variable

Table 3
Number of deceased patients in each day.

Day 5 6 7 8 9 10 11 12 13 14 Total

# of deceased patients 1 1 5 5 6 6 3 13 4 13 57

Table 4
Number of ML-ready data with the structured concatenated triplets for various 𝑘

values generated from 174 patients consisting of 117 survival patients and 57 deceased

patients at the end of the 14th day. The last column is the ratio of total number of

ML-ready data to total number of patients.

Survival (negative

samples)

Deceased (positive

samples)

Total samples Ratio

𝑘 = 5 1170 395 1565 8.99

𝑘 = 4 1287 452 1739 9.99

𝑘 = 3 1404 509 1913 10.99

𝑘 = 2 1521 566 2087 11.99

A.4. Ensemble under-sampling technique

The pseudocode of the ensemble under-sampling technique can be

summarized in Algorithm A.2. One can split the negative samples into

subsets such that |𝑁𝑖| ∼ |𝑃 | (almost the same size) or strictly |𝑁1| <|𝑃 | so that the negative class will be the minority class and might

impact the model performance. It is hard to say which one works

better, depending on the applications. In our case, after several test

experiments, we choose 𝑇 = 2 such that |𝑁𝑖| ∼ |𝑃 |.
Algorithm A.2 (Algorithm of Ensemble under-sampling Technique). Input:
All positive samples 𝑃 , all negative samples𝑁 , |𝑃 | < |𝑁|, number of subsets
of negative samples 𝑇 . Output: prediction result
1: Randomly split 𝑁 into 𝑇 subsets {𝑁1, 𝑁2, ..., 𝑁𝑇 }.
2: for 𝑖← 1, ..., 𝑇 do

3: Train classifier 𝑋 using the combined dataset {𝑁𝑖, 𝑃 } to obtain
prediction result 𝑅𝑖.
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4: end for
5: Integrate 𝑇 results {𝑅1, 𝑅2..., 𝑅𝑇 } by majority voting to obtain the final
result.

A.5. Computation of feature scores

RF and XGBoost are two feature selection methods that rank the

features using two different metrics.

To compute the importance score of each feature in RF, we assume

there are totally 𝑛𝑚 samples at node 𝑚, 𝑦 is the label of the data, and

𝐼(𝑦 = 𝑘) is the number of data belonging to class 𝑘 in node or leaf 𝑚.

Then,

𝑝𝑚𝑘 =
𝐼(𝑦 = 𝑘)
𝑛𝑚

(3)

is the approximation of the probability of class 𝑘 ∈ 0, 1 observations in
node 𝑚. Then, the Gini impurity of node 𝑚 is defined by

𝐻𝑚 =
∑
𝑘

𝑝𝑚𝑘(1 − 𝑝𝑚𝑘). (4)

The reduction of impurity of a node 𝑚 is given by

𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦𝑚 =
𝑁𝑡

𝑁

(
𝐻𝑚 −

𝑁𝑡𝑅

𝑁𝑡

𝐻𝑅 −
𝑁𝑡𝐿

𝑁𝑡

𝐻𝐿

)
, (5)

where 𝑁 is the total number of samples, 𝑁𝑡 is the number of samples at

the current node 𝑚, 𝑁𝑡𝐿 is the number of samples in the left child, and

𝑁𝑡𝑅 is the number of samples in the right child. 𝐻𝑚 is the impurity

of the current node, 𝐻𝑅 is the impurity of the right child, 𝐻𝐿 is the

impurity of the left child. Therefore, the score of a feature 𝑓 in RF is
defined as follows:

𝑠𝑐 𝑜𝑟𝑒𝑓 = 1
𝑇

𝑇∑
𝑡=1

⎛⎜⎜⎜⎝
∑
𝑚∈𝑀 (𝑡)

𝑓

𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦
(𝑡)
𝑚∑

𝑓

∑
𝑚∈𝑀 (𝑡)

𝑓

𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦
(𝑡)
𝑚

⎞⎟⎟⎟⎠ , (6)

where 𝑇 is the total number of trees in RF, 𝑀
(𝑡)
𝑓

is the collection of

nodes that split on feature 𝑓 in the 𝑡th tree.

The importance score of a feature 𝑓 in XGBoost is defined by

𝑠𝑐 𝑜𝑟𝑒𝑓 =
𝑇∑
𝑡=1

𝑛
(𝑡)
𝑓
, (7)

where 𝑇 is the total number of trees in XGBoost, 𝑛
(𝑡)
𝑓

is the number of

times each feature 𝑓 is used to split the data in the 𝑡th tree.

To visualize and analyze the feature importance obtained from these

two methods in the same scale, we normalize the feature score as

follows:

normalized score𝑓 =
𝑠𝑐 𝑜𝑟𝑒𝑓∑
𝑓 𝑠𝑐 𝑜𝑟𝑒𝑓

. (8)

References

[1] Rudd Kristina E, Johnson Sarah Charlotte, Agesa Kareha M, Shack-

elford Katya Anne, Tsoi Derrick, Kievlan Daniel Rhodes, et al. Global, regional,

and national sepsis incidence and mortality, 1990–2017: analysis for the Global

Burden of Disease Study. Lancet 2020;395(10219):200–11.

[2] Singer Mervyn, Deutschman Clifford S, Seymour Christopher Warren, Shankar-

Hari Manu, Annane Djillali, Bauer Michael, et al. The third interna-

tional consensus definitions for sepsis and septic shock (Sepsis-3). Jama

2016;315(8):801–10.

[3] , 2005.

[4] Skyttberg Niclas, Chen Rong, Blomqvist Hans, Koch Sabine. Exploring vital sign

data quality in electronic health records with focus on emergency care warning

scores. Appl Clin Inf 2017;8(03):880–92.

[5] Forsström JJ, Irjala K, Selén Gustaf, Nyström Mats, Eiuund P. Using data

preprocessing and single layer perceptron to analyze laboratory data. Scand J

Clin Lab Invest 1995;55(sup222):75–81.

[6] Kokol Peter, Kokol Marko, Zagoranski Sašo. Machine learning on

small size samples: A synthetic knowledge synthesis. Sci Prog

2022;105(1):00368504211029777.

[7] Vabalas Andrius, Gowen Emma, Poliakoff Ellen, Casson Alexander J. Ma-

chine learning algorithm validation with a limited sample size. PLoS One

2019;14(11):e0224365.

[8] Spiga Ottavia, Cicaloni Vittoria, Fiorini Cosimo, Trezza Alfonso, Visibelli Anna,

Millucci Lia, et al. Machine learning application for development of a data-driven

predictive model able to investigate quality of life scores in a rare disease.

Orphanet J Rare Dis 2020;15(1):1–10.

[9] Prati Ronaldo C, Batista Gustavo EAPA, Monard Maria Carolina. Data mining

with imbalanced class distributions: concepts and methods. In: IICAI. 2009, p.

359–76.

[10] He Haibo, Garcia Edwardo A. Learning from imbalanced data. IEEE Trans Knowl

Data Eng 2009;21(9):1263–84.

[11] Yang Qiang, Wu Xindong. 10 challenging problems in data mining research. Int

J Inf Technol Decis Mak 2006;5(04):597–604.

[12] Rastgoo Mojdeh, Lemaitre Guillaume, Massich Joan, Morel Olivier,

Marzani Franck, Garcia Rafael, et al. Tackling the problem of data imbalancing

for melanoma classification. In: Bioimaging. 2016.

[13] Van Rijsbergen C. Information retrieval. Dept. Computer Science, Univ. of

Glasgow; 1979.

[14] Hastie Trevor, Tibshirani Robert, Friedman Jerome H, Friedman Jerome H. The

elements of statistical learning: data mining, inference, and prediction, vol. 2,

Springer; 2009.

[15] Chawla Nitesh V, Bowyer Kevin W, Hall Lawrence O, Kegelmeyer W Philip.

SMOTE: synthetic minority over-sampling technique. J Artif Intell Res

2002;16:321–57.

[16] Liu Xu-Ying, Wu Jianxin, Zhou Zhi-Hua. Exploratory undersampling for

class-imbalance learning. IEEE Trans Syst Man Cybern B 2008;39(2):539–50.

[17] Li Jundong, Cheng Kewei, Wang Suhang, Morstatter Fred, Trevino Robert P,

Tang Jiliang, et al. Feature selection: A data perspective. ACM Comput Surv

2017;50(6):1–45.

[18] Chen Tianqi, Guestrin Carlos. Xgboost: A scalable tree boosting system. In:

Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining. 2016, p. 785–94.

[19] Lemaître Guillaume, Nogueira Fernando, Aridas Christos K. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning.

J Mach Learn Res 2017;18(1):559–63.

[20] Simon Richard, Radmacher Michael D, Dobbin Kevin, McShane Lisa M. Pitfalls

in the use of DNA microarray data for diagnostic and prognostic classification.

J Natl Cancer Inst 2003;95(1):14–8.

[21] Domingos Pedro. A few useful things to know about machine learning. Commun

ACM 2012;55(10):78–87.

[22] Chicco Davide. Ten quick tips for machine learning in computational biology.

BioData Min 2017;10(1):1–17.

[23] Reyna Matthew A, Josef Chris, Seyedi Salman, Jeter Russell, Shashiku-

mar Supreeth P, Westover M Brandon, et al. Early prediction of sepsis from

clinical data: the PhysioNet/Computing in Cardiology Challenge 2019. In: 2019

computing in cardiology. IEEE; 2019, p. 1.

[24] Misra Debdipto, Avula Venkatesh, Wolk Donna M, Farag Hosam A, Li Jiang,

Mehta Yatin B, et al. Early detection of septic shock onset using interpretable

machine learners. Jf Clin Med 2021;10(2):301.

[25] Karlsson Adam, Stassen Willem, Loutfi Amy, Wallgren Ulrika, Larsson Eric,

Kurland Lisa. Predicting mortality among septic patients presenting to the

emergency department–a cross sectional analysis using machine learning. BMC

Emerg Med 2021;21(1):1–8.

[26] Mountassir Asmaa, Benbrahim Houda, Berrada Ilham. An empirical study to

address the problem of unbalanced data sets in sentiment classification. In: 2012

IEEE international conference on systems, man, and cybernetics. IEEE; 2012, p.

3298–303.

[27] Nieto-del Amor Félix, Prats-Boluda Gema, Garcia-Casado Javier, Diaz-

Martinez Alba, Diago-Almela Vicente Jose, Monfort-Ortiz Rogelio, et al.

Combination of feature selection and resampling methods to predict preterm

birth based on electrohysterographic signals from imbalance data. Sensors

2022;22(14):5098.

[28] Su Longxiang, Xu Zheng, Chang Fengxiang, Ma Yingying, Liu Shengjun,

Jiang Huizhen, et al. Early prediction of mortality, severity, and length of stay in
the intensive care unit of sepsis patients based on sepsis 3.0 by machine learning

models. Front Med 2021;8:883.

[29] Nguyen Lan Huong, Holmes Susan. Ten quick tips for effective dimensionality

reduction. PLoS Comput Biol 2019;15(6):e1006907.

[30] Vogelstein Joshua T, Bridgeford Eric W, Tang Minh, Zheng Da, Douville Christo-

pher, Burns Randal, et al. Supervised dimensionality reduction for big data. Nat

Commun 2021;12(1):1–9.

[31] Jain Divya, Singh Vijendra. Feature selection and classification systems for

chronic disease prediction: A review. Egypt Inform J 2018;19(3):179–89.


