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Sepsis Background and Objectives: Sepsis is a leading cause of mortality in intensive care units (ICUs). The
Classifiers development of a robust prognostic model utilizing patients’ clinical data could significantly enhance clinicians’

ability to make informed treatment decisions, potentially improving outcomes for septic patients. This study
aims to create a novel machine-learning framework for constructing prognostic tools capable of predicting
patient survival or mortality outcome.

Methods: A novel dataset is created using concatenated triples of static data, temporal data, and clinical
outcomes to expand data size. This structured input trains five machine learning classifiers (KNN, Logistic Re-
gression, SVM, RF, and XGBoost) with advanced feature engineering. Models are evaluated on an independent
cohort using AUROC and a new metric, y, which incorporates the F1 score, to assess discriminative power and
generalizability.

Results: We developed five prognostic models using the concatenated triple dataset with 10 dynamic features
from patient medical records. Our analysis shows that the Extreme Gradient Boosting (XGBoost) model (AUROC
= 0.777, F1 score = 0.694) and the Random Forest (RF) model (AUROC = 0.769, F1 score = 0.647), when
paired with an ensemble under-sampling strategy, outperform other models. The RF model improves AUROC
by 6.66% and reduces overfitting by 54.96%, while the XGBoost model shows a 0.52% increase in AUROC
and a 77.72% reduction in overfitting. These results highlight our framework’s ability to enhance predictive
accuracy and generalizability, particularly in sepsis prognosis.

Conclusion: This study presents a novel modeling framework for predicting treatment outcomes in septic
patients, designed for small, imbalanced, and high-dimensional datasets. By using temporal feature encoding,
advanced sampling, and dimension reduction techniques, our approach enhances standard classifier perfor-
mance. The resulting models show improved accuracy with limited data, offering valuable prognostic tools for
sepsis management. This framework demonstrates the potential of machine learning in small medical datasets.

Class-imbalance data
Dimension reduction
Sampling strategies
Small dataset

1. Introduction on the patient’s cross-sectional data at admission or at a few selected
cross-sectional moments during the treatment [2]. Hence, the patient’s

Sepsis is one of the biggest threats of death for critically ill pa- longitudinal data, with hidden temporal features, should be exploited to

tients in the intensive care unit (ICU) [1]. Traditionally, the prognosis
of sepsis relies on the personal judgment of clinicians based on the
longitudinal monitoring of a set of indicators. In 2016, the latest
guideline (Sepsis 3.0) updated the definition of sepsis and defined it as a
complex disease involving severe inflammatory responses and multiple
organ failures; and it also pointed out that it would be difficult to
obtain a positive prognosis via traditional statistical methods based
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provide “insightful dynamical” information for making more accurate,
data-driven, intelligent, and reliable prognoses for septic patients.
Artificial intelligence (AI) fueled by the latest development in ma-
chine learning (ML) has shown great promise in medicine and health
care in general. Some ML tools have been developed based on cross-
sectional data in the study of sepsis so far. However, meta-analyses
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showed that most of these studies aimed at early diagnosis while
some of them made less reliable clinical prognoses for sepsis, unfor-
tunately [3]. Given that data acquired from septic patients are often
represented by a large number of static and dynamic indicators, de-
scribing the long course of the disease with a dynamically changing
complex context becomes necessary. This often makes the dimension
of the variable space relative to the number of data points very high. It
would require a virtually impossibly large sample size to obtain positive
results with the existing prognostic models.

At the ICU, the electric data collection system is not well-tuned, nor
data collection protocol unified such that the quality of the collected
data is often difficult to control when used in AI/ML tools directly [4].
The amount of effective data per dimension in the data space must
be increased to obtain clinically usable prognostic tools via existing
methodologies. In reality, it is clinically prohibitive to collect a large
set of data for a septic patient at the ICU anywhere. So, one must
innovate in AI/ML methodologies to account for the clinically avail-
able, invaluable small datasets, where the ratio of data size to the
indicator’s dimension is relatively small, to build the prognostic tool.
This motivates the current study.

Small dataset problems are often compounded by challenges such as
class imbalance and high dimensionality, which have long posed diffi-
culties for the machine learning community. The first paper on machine
learning with small datasets was published in 1995 [5]. However, other
studies on this topic did not emerge until 2016, when researchers began
exploring the applications of machine learning across various fields [6].
Today, while there have been a few studies addressing small dataset
problems in the medical field [7], most have focused on small-sized,
high-dimensional, and class-balanced datasets [8].

In real-world scenarios, datasets often exhibit class imbalance,
where certain classes are significantly underrepresented compared to
the others. This imbalance leads to the “class imbalance” problem,
also known as the “curse of imbalanced datasets”, which refers to the
difficulty of learning from classes with a limited number of samples [9].
Imbalanced data can significantly compromise the learning process, as
most standard machine learning algorithms assume a balanced class
distribution or equal misclassification costs [10]. The class imbalance
problem is frequently encountered in medical diagnosis and has been
recognized as one of the top 10 challenges in data mining and pattern
recognition [11,12].

In this study, we address the small dataset problem in the context of
sepsis, focusing on high-dimensional and imbalanced datasets. Our goal
is to establish a modeling framework capable of handling such datasets,
enabling the development of a reliable Al-enabled prognostic tool for
predicting patient outcomes based on clinically collected longitudinal
data from septic patients.

2. Materials and methods
2.1. Data acquisition

The data were collected from qualified septic patients admitted to
the ICU over a period of four years. The inclusion criteria of the patients
are defined as follows:

1. adult patients (age > 18),
2. patients with the APACHE II score > 10 on admission.

The exclusion criteria are given as follows:

1. underage patients (age < 18 years old),

2. patients with extracorporeal membrane oxygenation or renal
replacement therapy during the hospitalization,

3. patients were pregnant or breastfeeding,

4. patients were participating in other clinical trials.
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The dataset incorporates relevant indicators and features of sepsis
for each patient, encompassing both static and dynamic variables.
Static variables include basic patient biometrics, while dynamic vari-
ables consist of physiological and biochemical indicators collected daily
from various clinical information systems, such as Electronic Medical
Records (EMR), Hospital Information Systems (HIS), and Laboratory
Information Systems (LIS).

Based on specific inclusion and exclusion criteria, the study in-
corporated 174 septic patients admitted between January 2018 and
December 2021 (as illustrated in Fig. 1). The cohort was divided into
two groups based on 28-day clinical outcomes: 84 patients in the
mortality group and 90 in the survival group. For external valida-
tion purposes, data from an additional 21 patients, admitted between
January 2021 and May 2022, were collected as a new dataset for
testing.

This study has been reviewed by the Medical Ethics Committee of
Sichuan Provincial People’s Hospital (No. 266 in 2021) and registered
in the China Clinical Trial Registration Center (Clinical Registration
No.: ChiCTR2200056316). Since it was an observational study on
historical data and would not interfere with the treatment plan of the
patients, the ethics committee agreed to waive the informed consent.

2.2. Data preprocessing

The collected time series samples in the dataset with more than 30%
missing entries are deleted to ensure the authenticity of the data. If a
patient has multiple admission records, only the first is used. In the
remaining, accepted dataset, the missing data of static variables are
filled by mean values and those of dynamical variables are interpolated
using cubic splines in time.

Notice that most data do not follow the normal distribution. Hence,
we conduct the correlation analysis for the data using the Spearman
method to select 17 dynamic indicators/features and 9 static ones (see
A.1) in the dataset to train the models, in which a strong correlation
between the variables is assumed if the correlation coefficient > 0.7
over all 14 days. To prepare the data for classifiers, categorical features
are represented by one-hot encoding, non-categorical discrete static
features are normalized by the maximum and minimum of the dataset
in 14 days, and dynamic features are standardized by the mean and
standard deviation of the data in 14 days.

2.3. Performance assessment

The area under the receiver operating characteristic curve (AUROC)
and the F1 score are proper metrics for assessing the models with
respect to imbalanced data while the F1 score is more sensitive to gauge
overfitting [13]. Hence, we use AUROC and the F1 score to assess the
accuracy and the generalization ability of the classifiers, respectively.
We use a metric, y, defined below, to evaluate improvement in over-
fitting based on F1 scores. The first term in y assesses how much the
degree of overfitting is reduced compared to the original data without
using feature engineering. The second and third term measure how
much the F1 score is improved compared to the original case in internal
and external validations, respectively.

_((5F190 —sF1i  F1) = F100
- 5F100 F 130

F1J - F19°
100 x 100%, )]
ex

where §F17 = F 1:{1 — F17_ is the F1 score difference between internal
and external validations, i € {O,U, Over, E} is the index for the cho-
sen sampling strategy including the original data without a sampling
strategy (O), under-sampling (U), over-sampling (Over) and ensemble
method (E), respectively; j € {DR,O} indicates if the dimensional
reduction technique is used (DR) or not (O).
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Inclusion criteria:

1)Age 2 18 years (adult patients):
2)APACHE Il score z 10 on admission;
Exclusion cniteria:

1)Age <18 years old ;

2)Patients who have used extracorporeal
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213 hospital patients suffered
from sepsis in intensive care
unit(ICU)

)

membrane oxygenation (ECMO) or renal [
replacement therapy in the treatment;
3)Women who are pregnant or breastfeeding
4) Patients participating in other clinical trials
174 samples

were included
in intermal validation.

21 samples
were included
in extermal validation.
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Fig. 1. Comprehensive flowchart illustrating the data acquisition pipeline and subsequent statistical analysis processes.

2.4. ML-input data engineering

2.4.1. Concatenated-triplet data structures for ML-input

To encode the temporal feature of the longitudinal dataset, we use
concatenated triplets to create the ML-ready input data for machine
learning in our modeling approach. Let x; denote the standardized
dynamic indicators of a patient at the ith day, and y the correspond-
ing clinical outcome (survival or mortality/deceased) on the 14th
day. The ML-ready data vector is engineered by concatenating three
components, normalized static indicators x,,,., consecutive dynamic
features of k days X;juumc = (X;»Xpy1-Xi4k—1), and the label y. We
call this a “concatenated triplet” and denote it as (Xy/uic» Xgynamics ¥)- BY
concatenating dynamical features in k consecutive days, we effectively
encode the temporal feature in the longitudinal data into the ML-ready
dataset. From the longitudinal record of one patient in 7' days, we can
generate T — k + 1 concatenated triplets by sliding the window with
width k over the dynamic features of T-day’s data as shown in Fig. 2.
This allows us to greatly increase the size of the patients’ dataset by at
least T — k + 1 folds (see A.2).

In our dataset, there are 117 surviving subjects (negative class)
and 57 deceased subjects (positive class), as shown in A.2. The ratio

of the positive to negative class is approximately 0.5, indicating a
class imbalance in the classification problem. The standard classifiers
designed for balanced datasets always have a bias on the majority
class of imbalanced datasets, which can lead to less reliable results
when applied to imbalanced datasets [9,10]. Meanwhile, for a given
high-dimensional dataset, the higher the dimension is, the sparser the
data points are, which may prevent standard classifiers designed for
low-dimensional spaces from correctly classifying the points in high
dimensional spaces [14]. It is therefore crucial to remove the effect
of class imbalance and to mitigate the issue of high dimensionality.
Sampling strategies and dimension-reduction techniques are powerful
tools to tackle these problems.

In this paper, we propose a framework to deal with the challenge
by organically combining sampling strategies and dimension-reduction
techniques with standard classifiers. In the framework shown in Fig. 3,
we first select the important dynamic features by dimension reduction
method and then generate the concatenated triplets. Afterward, ML-
ready dataset containing all concatenated triplets is randomly split into
the training set and test set for machine learning. An additional dataset
is used for external validation to assess the clinical performance of the
classifiers.
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Fig. 2. Schematic representation of the concatenated triplet generation process. This diagram illustrates the method of generating T-k+1 concatenated triplets from a patient’s
longitudinal record spanning 7' days. A sliding window of width k=5 is employed to process the temporal data. Each triplet encapsulates a distinct 5-day period, with successive
triplets overlapping by 4 days. The label y represents the patient’s clinical outcome on the 14th day post-admission, serving as the target variable for predictive modeling. Key
elements: (a) T: Total number of days in the patient’s record; (b) k: Width of the sliding window (set to 5 days); (c) T-k+1: Total number of generated triplets; (d) y: Binary
outcome label (e.g., survival status) at day 14. This data structuring approach enables the capture of temporal patterns while significantly augmenting the dataset size, facilitating
more robust machine learning model training.

: : Validation/Evaluation Process
Standardization of ____, Dimension e e i i e

dynamic features Sl

Data }

One-hot encoding of
categorical features &
normalization of
discrete features

Generation of
concatenated
triplets

|
|
|
|
|
|
1 Internal Generation of
i validation set

|
|
|
|
|
|
|
L concatenated triplets J I

|

Training (external validation)

1 - 1
set Internal vilidation e

1 ( 27 |
27 \\"a 1
Trainiry s 11\8‘(\ 1
Proceﬁs 1
Sampling =Pt  Classifier Prediction !
Strategy 1 I
| |
L I /1

Fig. 3. Comprehensive diagram of the proposed machine learning framework for small dataset challenges in clinical prognosis. This schematic illustrates our novel approach to
handling small, high-dimensional clinical datasets: (1) Dimension Reduction: Standardized high-dimensional dynamic features undergo dimension reduction to mitigate the curse of
dimensionality. (2) Concatenated Triplet Generation: The reduced-dimension data is used to create concatenated triplets, encoding temporal patterns and augmenting the dataset.
(3) ML-Ready Dataset: All concatenated triplets from patient records are compiled into an ML-ready dataset. (4) Data Splitting: The dataset is randomly partitioned into training
and test sets. (5) Model Training: Classifiers are trained on the training set using appropriate sampling strategies to address class imbalance. (6) Validation: Well-trained classifiers
undergo validation on both the held-out test set and new, unseen data to assess generalizability. This framework addresses key challenges in clinical machine learning, including
high dimensionality, temporal dependencies, and limited sample sizes, while ensuring robust model performance and generalizability.

2.4.2. Sampling strategies 2. Random under-sampling strategy (U): randomly under-sample

To address the class imbalance issue, one commonly adopts two strategy is applied to the majority class to match the size of the
approaches: one at the data level while the other at the algorithmic minority class.

level, leading to specialized classifiers [10]. We adopt the former in 3. Synthetic Minority Over-sampling Technique-Nominal Continu-

this study encompassing the four strategies listed below. ous (SMOTE-NC): the minority class is over-sampled to match

the majority class using k nearest neighbors A.1 [15].
1. Original case (0O): No sampling strategy is applied which is 4. Ensemble under-sampling strategy (E): One splits the majority
treated as the baseline. class into smaller groups and trains multiple classifiers for each
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Feature importance using XGBoost + Undersampling
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Feature importance using RF + Undersampling

Creatinine 14.71
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Fig. 4. Multi-panel analysis of feature importance and selection across different methods. This figure presents a comprehensive analysis of feature importance and selection using
multiple approaches: (a) Top left: Feature importance ranking derived from XGBoost. (b) Top right: Feature importance ranking derived from Random Forest (RF). (c) Bottom
left: Mean change ratio of features. (d) Bottom right: Venn diagram illustrating the relationships among top-ranked features. The key elements include: (1) Cumulative scores: The
right-side numbers in panels (a), (b), and (c) represent the cumulative importance scores for features, listed from top to bottom. (2) Feature selection criteria: The Venn diagram
displays the overlap among feature sets with cumulative scores exceeding 75% from XGBoost, RF, and mean change ratio analyses. (3) Final feature set: The top 10 features
common to both XGBoost and RF results are selected as the final feature set. (4) Abbreviations: A comprehensive table of indicator abbreviations is provided in Appendix A.1.
This multi-method approach ensures robust feature selection by leveraging the strengths of different machine learning algorithms and statistical measures.

set consisting of a group of majority class and the whole minority
class to get a final ensemble model using the majority voting
A.2 [16].

2.4.3. Dimension reduction techniques

Dimension reduction can be accomplished by either the feature
selection or feature extraction method [17]. To keep the model in-
terpretable, we use the feature selection method. Before applying the
method, the under-sampling strategy is applied to 17 dynamic features
on the 14th day to eliminate the effect of class imbalance and avoid
introducing artificial noises. To ensure the quality and robustness of the
selected features, two methods, RF and XGBoost, for selecting features
based on different criteria A.5, are used to identify important features.
The common features of two sets of top features obtained separately
from RF and XGBoost with cumulative contributions of > 75% are
selected as the final features to represent the longitudinal data. To
further check the quality of the selected features, we define a metric
called the mean change ratio, based on the severity of the indicator
changes as follows
[y — pyl + [y — py

Ha Hi

, @

mean change ratio =

where p,, y, are the means of the features of dead and alive samples,
respectively. Intuitively, the larger the mean change ratio is, the more
important the feature should be.

Ranking the feature importance as shown in Fig. 4 by three meth-
ods: RF, XGBoost, and mean change ratio, in which 11 top features
ranked by each of the three methods are displayed. There are 8 common
features among the feature selection results based on RF, XGBoost,
and the mean change ratio as the Venn diagram shows in Fig. 4. As
Albumin and MAP have relatively high contributions in XGBost and
RF, we choose the 8 common features augmented by Albumin and
MAP to arrive at the 10 final features with a cumulative contribution
exceeding 75%. They are Urea, WBC, hs-CRP, PLT, SI, Creatinine, Lac,
ALT, Albumin, and MAP, respectively.

3. Results and discussion
3.1. Results

The ML-ready dataset is randomly split into a training set and a test
set with a ratio of 8:2 for training and testing (or internal validation) in
machine learning, respectively. We implement five classifiers: K Nearest
Neighbors (KNN), Logistic Regression (LR), Random Forest (RF), Sup-
port Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost).
XGBoost is implemented using the XGBoost package (version 1.6.) [18].
KNN, LR, RF, and SVM are implemented using scikit-learn (version
1.1.1). Three different sampling strategies are applied to the training
set using the imbalanced-learn package (version 0.7.0) [19]. The hy-
perparameters of the classifiers are selected using a grid search method
with 5-fold cross-validation on the training set, given in Appendix A.
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Fig. 5. Baseline performance of five classifiers, without feature engineering, is presented in terms of AUROC (top row) and F1 score (bottom row). The term “baseline” refers to
the use of the original dataset without applying any sampling strategies or dimensionality reduction techniques, across various k values, for training the classifiers. This comparison
underscores the critical role of feature engineering in mitigating the risk of overfitting and enhancing model accuracy. The first row displays AUROC values, while the second row
illustrates F1 scores for both internal validation (left) and external validation (right). The classifiers are represented as follows: KNN with stars (blue), LR with circles (orange), RF
with triangles (green), SVM with crosses (red), and XGBoost with squares (purple). Notably, LR demonstrates the most consistent F1 scores in both internal and external validations,
indicating a low risk of overfitting. In contrast, the inconsistency in F1 scores between internal and external validations for the remaining four classifiers suggests a higher risk of
overfitting. Specifically, the larger the difference in F1 scores between internal and external validations, the higher the likelihood that the model is overfitting to the training data
and failing to generalize to new, unseen data. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We first present the baseline results of the models without feature
engineering in terms of the AUROC and F1 score in Fig. 5. We observe
that (a) as validated both internally and externally, the smaller the k
value is, the higher the value of AUROC for all classifiers except KNN.
It indicates that all classifiers except KNN perform better for small k;
(b) based on AUROC, XGBoost and RF outperform the others in both
the internal and external validation; (¢) XGBoost (AUROC = 0.773, F1
score = 0.513 at k = 2, AUROC = 0.685, F1 score = 0.462 at k = 5)
outperforms RF (AUROC = 0.721, F1 score = 0.528 at k = 2, AUROC
= 0.639, F1 score = 0.432 at k = 5) in the external validation; (d) all
classifiers except for LR are at a high risk of overfitting after comparing
the internal with the external validation results in both the AUROC and
F1 score.

We then examine the efficacy of the sampling strategies and plot the
AUROC for the external validation with 3 different sampling strategies
and k values in Fig. 6. Comparing the results of the three sampling
strategies with the baseline cases, we find that AUROC values are not
altered much (a decrease at most 0.126 and an increase at most 0.058
with under-sampling, a decrease at most 0.068 and an increase at most
0.119 with over-sampling, a decrease at most 0.041 and an increase at
most 0.033 with the ensemble method). This indicates that the AUROC
is not sensitive to various sampling strategies at all.

We then examine the degree of improvement in overfitting y in
Fig. 7. Among the sampling strategies, the ensemble method works the
best for the classifiers in most cases except for KNN at k = 5, SVM is

the most sensitive to various sampling strategies while RF is the least
sensitive. For KNN, the over-sampling strategy always works for all k
values. This might be because the over-sampling algorithm SMOTE-NC
uses a randomly selected k nearest neighbor of an original sample to
generate a new sample. For RF, the ensemble under-sampling works for
all k values. For SVM, over-sampling never works while, for XGBoost,
ensemble under-sampling always works the best for most k values.
Analysis of Fig. 7 reveals several key observations:

(1) At k=5, there are 6 bars with negative values and 5 with positive
values.

(2) As k decreases to 2, the number of bars with negative values
progressively diminishes.

(3) Specifically, k=3 and k=2 yield one and two negative values,
respectively.

(4) Across all k values and classifiers, at least one bar consistently
displays a positive value.

These observations suggest that the degree of overfitting for all clas-
sifiers can be mitigated at any k value through the application of
appropriate sampling strategies. Consequently, we conclude that judi-
ciously chosen sampling strategies, when combined with standard clas-
sifiers, can enhance the models’ generalizability without significantly
compromising accuracy (as measured by AUROC).

Dimension reduction techniques combined with various sampling
strategies are implemented for k = 2 since most models perform better
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Fig. 6. AUROC values from the external validation results for three different sampling strategies, compared with the baseline (original data) across various k values. The plots
are organized as follows: top left for under-sampling, top right for oversampling, bottom left for ensemble under-sampling, and bottom right for the baseline. The classifiers are
represented as follows: KNN with stars (blue), LR with circles (orange), RF with triangles (green), SVM with crosses (red), and XGBoost with squares (purple). By comparing
these results with the baseline, it becomes apparent that the AUROC metric exhibits minimal sensitivity to the different sampling strategies, as the AUROC values remain largely
consistent with the baseline. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on the short-term stacked concatenated triplets. The results in the
external validation are shown in Fig. 8 and Appendix A. Comparing
the results among the classifiers built on selected features (O+DR)
and the original features (O+0) as shown in Fig. 8, we find that the
AUROC values are improved for all classifiers, while the F1 scores
are reduced in most cases. More precisely, the improvement in the
AUROC value is 0.226 (KNN), 0.075 (LR), 0.081 (RF), 0.086 (SVM), and
0.030 (XGBoost), respectively. Similarly, the improvement in the F1
score is 0.286 (KNN), 0.057 (LR), —0.003 (RF), —0.391 (SVM), —0.056
(XGBoost), respectively. So, dimensionality reduction techniques can
improve model accuracy, but the resulting models may be more prone
to overfitting, suggesting that sampling strategies need to be used.

Considering different classifiers, we find that XGBoost and RF out-
perform their peers in all cases and XGBoost works better than RF
except for the under-sampling case (U+DR) in the external validation.
Comparing 3 sampling strategies, XGBoost (AUROC = 0.777, F1 score
= 0.694) and RF (AUROC = 0.769, F1 score = 0.647) achieve the best
performance in the E+DR case. However, both XGBoost (AUROC =
0.803, F1 score = 0.457) and RF (AUROC = 0.802, F1 score = 0.525)
achieve better AUROC values but lower F1 scores in the baseline case
(O+DR), indicating that there is a trade-off between the accuracy and
generalization error in the models when the F1 score is used as a metric
for the generalization error.

To show the effectiveness of the proposed modeling framework, we
compare the improvement in overfitting and performance metrics in
the three cases with the baseline case as shown in Fig. 9. Based on
the F1 score, we find that when only dimension reduction techniques
are used for the class imbalanced data, the degree of overfitting is
improved only in KNN since all other diamonds lie below the baseline
(zero) in Fig. 9(a). However, when one combines dimension reduction
techniques with sampling strategies, overfitting in all trained classifiers
except for SVM is greatly improved, which demonstrates the impor-
tance of proper sampling strategies on the class-imbalanced problem.
Moreover, the results show that different sampling strategies have
different effects on different classifiers. The ensemble under-sampling
strategy (E) is the best strategy for KNN, RF and XGBoost compared
to their counterparts with the improvement in overfitting (314.75%,
54.96% and 77.72%, respectively). The least improvement shown in
KNN, LR, RF, XGBoost is 176.48% (Over), 102.63% (U), 25.30% (Over)
and 17.29% (Over).

An analysis of AUROC shows that the highest and lowest improve-
ment of AUROC are 53.46% (E) and 27.46% (Over) for KNN, 11.55%
(0) and 5.78% (U) for LR, 11.23% (O) and 1.25% (Over) for RF,
18.20 (Over) and —2.95% (U) for SVM, and 3.88% (O) and -7.76%
(U) for XGBoost, respectively. From Fig. 9(b), we notice that the
proposed framework can greatly improve the AUROC value. But the
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Fig. 7. Improvement in overfitting, measured by y, for four classifiers across four k values. In each subplot, the bars represent different sampling strategies: the left (blue) bar for
under-sampling, the middle (orange) bar for oversampling, and the right (green) bar for ensemble under-sampling. Bars above the zero line indicate an improvement in overfitting
compared to the baseline (original data without sampling). The higher the bar above the zero line, the greater the improvement in overfitting. Notably, for each classifier and
across all k values, there is always at least one bar above the zero line, suggesting that there is always a suitable sampling strategy to mitigate overfitting for each classifier. Since
LR demonstrated the most consistent F1 scores in both internal and external validations (as shown in Fig. 5), indicating a low risk of overfitting, it has been excluded from these
plots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. The AUROC values (left) and F1 scores (right) from the external validation of dimensional reduced models, combined with three different sampling strategies and the
baseline, are presented for five classifiers to highlight the effectiveness of feature engineering. Each line, distinguished by color and marker, represents a well-trained classifier:
KNN is marked by stars (blue), LR by circles (orange), RF by triangles (green), SVM by crosses (red), and XGBoost by squares (purple). The x-axis labels are as follows: “O”
denotes the original data without any sampling or dimensionality reduction, with “O+O” representing the baseline; “DR” stands for Dimensionality Reduction; “U” for random
under-sampling; “Over” for oversampling (SMOTE-NC); and “E” for Ensemble under-sampling. The notation ‘A+B’ is used to indicate the combination of a sampling strategy
with dimensionality reduction. For example, “O+DR” represents the original data combined with dimensionality reduction, and “U+DR” denotes under-sampling combined with
dimensionality reduction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. A comparative analysis of feature engineering, combining dimensionality reduction with sampling strategies, against the baseline. The upper panel illustrates the improvement
in mitigating overfitting, quantified by the percentage of improvement. The lower panel demonstrates the enhancement in model performance, measured by the Area Under the
Receiver Operating Characteristic (AUROC) curve. This dual representation provides a comprehensive assessment of how dimensionality reduction techniques and sampling strategies
impact both the model’s generalizability (improvement in overfitting) and its predictive accuracy (improvement in AUROC).

under-sampling strategy slightly reduces the AUROC value to —2.95%,
—7.76% for SVM and XGBoost, respectively.

When examining Fig. 9(a) and (b) together, we notice that KNN
benefits the most, and XGBoost and RF benefit the least from feature
engineering compared to others. This is because KNN is more prone to
overfitting while XGBoost and RF have several mechanisms to prevent
overfitting. SVM is a special case in the sense that the accuracy is
improved but the overfitting is aggravated. This suggests that other
techniques at the algorithm level can be beneficial for SVM.

In summary, the proposed modeling framework works well for the
small data problem with high dimensional data and imbalanced classes;
the sampling strategy can mitigate overfitting while slightly sacrificing
the accuracy of some classifiers. Hence, to achieve the accuracy and
generalizability of the model, one needs to carefully choose the appro-
priate classifier and sampling strategy combo and be fully aware of the
trade-off between accuracy and generalizability.

3.2. Discussion

The challenge of working with small datasets is a persistent issue
in data science, particularly in medical research [7]. While previ-
ous studies in this field have primarily focused on small-sized, high-
dimensional, but class-balanced datasets [8], our study breaks new
ground. To the best of our knowledge, this is the first successful
attempt to construct prognostic models based entirely on small-sized
longitudinal data that simultaneously exhibits class imbalance and high
dimensionality in clinical medicine research.

Our proposed modeling framework demonstrates its effectiveness by
developing prognostic models for sepsis that combine advanced classi-
fiers with sophisticated feature engineering techniques. The results are
promising: XGBoost, when coupled with an ensemble under-sampling
strategy and carefully selected important features, achieves the best
performance with an AUROC of 0.777, an F1 score of 0.694, and a low
generalization error.
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A key innovation in this study is the introduction of a novel input
data structure, which we term the “concatenated triplet.” This structure
serves a dual purpose:

« It effectively encodes the temporal characteristics of the longitu-
dinal data.

« It augments the size of the input dataset, addressing the small data
challenge.

The efficacy of this ML-ready dataset structure is corroborated by our
results, underscoring its potential for similar applications in medical
data analysis.

Class imbalance in datasets significantly impedes the performance
of standard learning algorithms, often leading to their failure in gen-
eralizing inductive rules across the sample space and resulting in
overfitting [10]. Overfitting has been a source of serious errors in model
predictions and remains one of the principal challenges in machine
learning [20-22]. However, this issue is not always apparent from
commonly used performance metrics, and the bias towards the majority
class is frequently overlooked.

To address this, we introduce a new metric, y, derived from the
F1 score, to quantify improvements in mitigating overfitting. While
previous studies in 2019 and 2021 explored class imbalance in sepsis
data [23,24], they primarily focused on assigning weights to important
features—an approach that has shown limited potential for substantial
performance improvements.

Our study takes a different approach, employing three distinct
sampling strategies to tackle the class imbalance issue:

» Random under-sampling
» SMOTE-NC over-sampling
» Ensemble under-sampling

Our findings demonstrate that pairing an appropriate classifier with a
suitable sampling strategy can significantly mitigate overfitting. Specif-
ically, we observed improvements of 54.96% with XGBoost and 77.72%
with Random Forest (RF).

Several studies have explored sampling strategies to mitigate the
effects of imbalanced datasets in sepsis research. Adam Karlsson et al.
(2021) employed an under-sampling strategy [25], achieving AUROC
values of 0.83 and 0.80 for 7-day and 30-day predictions, respec-
tively, in internal validation. However, their study lacked external
validation and F1 score reporting, limiting comprehensive performance
assessment.

Recent literature suggests under-sampling as a superior strategy [26,
27], as demonstrated in a sepsis prognostic study [28]. Our research
advances this understanding by showing that ensemble under-sampling
is most effective. This approach inherits under-sampling’s advantages
while preserving all original dataset information, making it particularly
adept at addressing class imbalance. We found that different sampling
strategies impact classifiers variably, potentially explaining why a 2021
study [24] reached no firm conclusions. Our results demonstrate that
appropriate classifier-sampling strategy pairing significantly reduces
overfitting caused by class imbalance. Thus, our proposed modeling ap-
proach (combining standard classifiers with proper sampling strategies)
effectively addresses imbalanced data issues.

Septic patient data in high-dimensional space is typically sparse
and edge-distributed [14], potentially hindering standard classifiers.
Selected low-dimensional data representations can effectively denoise
while retaining crucial features, enabling simpler, more comprehensible
models [17,29]. Dimension reduction thus serves as an effective means
of denoising, feature selection, and simplification, particularly useful
for biological datasets [30].

In our study, XGBoost and Random Forest, combined with under-
sampling, address issues caused by high-dimensional, imbalanced data.
We enhance feature selection credibility using mean change ratios of
dynamic features. Our results show that feature selection effectively

10

Intelligence-Based Medicine 10 (2024) 100167

improves clinical prognosis accuracy (AUROC) for septic patients [17,
29,31]. Moreover, properly combining sampling strategies with dimen-
sion reduction techniques significantly enhances both accuracy and
generalizability of standard classifiers.

In summary, our proposed modeling framework performs well on
small datasets, such as sepsis prognosis. Optimal performance and
generalizability require careful selection of classifier-sampling strat-
egy pairs and balancing accuracy against generalizability (overfitting).
However, limitations exist: this framework may not suit all standard
classifiers (e.g., SVM), and other algorithmic-level techniques could
further improve the model. The approach’s effectiveness requires veri-
fication on additional clinical medicine problems.

4. Conclusion

In this study, we have successfully developed an innovative ma-
chine learning framework for creating prognostic tools for septic pa-
tient’s outcomes in a given temporal window, effectively addressing
the challenges posed by clinically available datasets that are small,
high-dimensional, and imbalanced. Our approach introduces several
key advancements:

Data Augmentation: We engineered a novel data structure, the
“concatenated triplet”, which significantly expands the effective
size of the dataset while encoding crucial temporal features of the
longitudinal data.

Superior Performance: Our best models demonstrate performance
that surpasses externally validated machine learning models de-
veloped on substantially larger datasets, underscoring the efficacy
of our approach.

Feature Engineering: By combining standard classifiers with so-
phisticated feature engineering techniques, our modeling frame-
work showcases its power in developing robust prognostic tools
for clinical applications.

Generalizability: The success of this framework in handling small,
complex datasets opens new avenues for machine learning appli-
cations in the medical field, where large, well-balanced datasets
are often unavailable.

Clinical Relevance: Our approach bridges the gap between ad-
vanced machine learning techniques and practical clinical needs,
offering a viable solution for developing accurate prognostic tools
with limited data resources.

This framework not only addresses the immediate challenge of
sepsis prognosis but also provides a blueprint for tackling similar
issues across various medical domains. By demonstrating that sophisti-
cated machine learning approaches can yield high-performance models
even with limited data, we pave the way for broader adoption of Al-
driven decision support tools in clinical settings where data scarcity has
traditionally been a barrier.

Future research directions may include: (1). extending this frame-
work to other medical conditions with similar data challenges, (2).
exploring the integration of this approach with existing clinical de-
cision support systems, (3). investigating the potential for real-time
application of these models in clinical settings. Our study represents
a significant step forward in applying machine learning to complex
medical problems, offering a promising pathway for developing ac-
curate, clinically relevant prognostic tools even in data-constrained
environments.
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Appendix A

A.1. List of dynamic indicators and abbreviations

In Table 1, we list the 17 dynamic indicators and their abbrevia-
tions, among which the top 10 (starred ones) are eventually selected as
important features to be used in the classification tasks. In Table 2, we
list all the static indicators used in the study.

A.2. Augmentation of the dataset by concatenated triplets

We have 174 patients’ records in 14 days in total. The number of
deceased patients each day within 2 weeks is listed in Table 3. Since
we have smaller deceased samples, so we call deceased samples positive
samples and label them by 1. Then, we have 117 negative samples and
57 positive samples. The numbers of structured concatenated triples
with respect to k=2,3,4,5 are shown in Table 4.

A.3. SMOTE-NC

The pseudocode of synthetic minority over-sampling technique
which is designed for continuous features is summarized in Algorithm A.1.
SMOTE-NC slightly changes the way a new sample is generated by
performing something specifically for the categorical features. In fact,
the categories of a newly generated sample are decided by picking
the most frequent category of the nearest neighbors present during the
generation.

Algorithm A.1 (Algorithm of Synthetic Minority over-sampling Technique).

Input: positive samples P, negative samples N, |P| < |N|, number of
nearest neighbours k. Output: Synthetic Minority class samples.
1: for i < 1,...,|P| do
2: Compute k nearest neighbours for x;.
3: end for
4: Randomly choose k nearest neighbours of x;, call it x;.
5: Compute the new synthetic sample x,,,, = x; + A(x; — x_;) with A being
a random number in [0, 1].
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Table 1
List of total 17 dynamic indicators and abbreviations and the top 10 chosen ones

).

Indicators Abbreviations
Urea (mmol/L) Urea*
White blood cell count (x10°/L) WBC*
High-sensitivity C-reactive protein (mg/L) hs-CRP*
Platelet Count (x10°/L) PLT*
Shock Index (bmp/mmHg) SI*
Creatinine (pmol/L) Creatinine*
Lactic acid (mmol/L) Lac*
Alanine aminotransferase (U/L) ALT*
Albumin (g/L) Albumin*
Mean arterial pressure (mmHg) MAP*

Total bilirubin (umol/L) TB

Temperature (C) Temperture
Respiratory rate (bmp) Respiratory rate
Blood glucose (mmol/L) Glu

Aspartate aminotransferase (U/L) AST

Neutrophil count (x10°/L) NEUT

Oxygen saturation (%) Sa0,

Table 2
The list of 9 static indicators.

Indicators Feature Type

Age Categorical variable
Gender Categorical variable
Diagnosis Categorical variable

Mental status at admission
Admitted for sepsis or not
PN+EN or not

APACAE II Score

Categorical variable
Categorical variable
Categorical variable
Non-categorical discrete variable

SOFA Score Non-categorical discrete variable
BMI Non-categorical discrete variable
Table 3
Number of deceased patients in each day.
Day 5 6 7 8 9 10 11 12 13 14 Total

# of deceased patients 1 1 5 5 6 6 3 13 4 13 57

Table 4

Number of ML-ready data with the structured concatenated triplets for various k
values generated from 174 patients consisting of 117 survival patients and 57 deceased
patients at the end of the 14th day. The last column is the ratio of total number of
ML-ready data to total number of patients.

Survival (negative Deceased (positive Total samples Ratio
samples) samples)
k=5 1170 395 1565 8.99
k=4 1287 452 1739 9.99
k=3 1404 509 1913 10.99
k=2 1521 566 2087 11.99

A.4. Ensemble under-sampling technique

The pseudocode of the ensemble under-sampling technique can be
summarized in Algorithm A.2. One can split the negative samples into
subsets such that |N;| ~ |P| (almost the same size) or strictly |N,| <
|P| so that the negative class will be the minority class and might
impact the model performance. It is hard to say which one works
better, depending on the applications. In our case, after several test
experiments, we choose T = 2 such that |N;| ~ |P]|.

Algorithm A.2 (Algorithm of Ensemble under-sampling Technique). Input:
All positive samples P, all negative samples N, | P| < |N |, number of subsets
of negative samples T. Output: prediction result
1: Randomly split N into T subsets { N, N, ..., Ny }.
2: for i< 1,..,T do
3: Train classifier X using the combined dataset {N;, P} to obtain
prediction result R;.
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4: end for
5: Integrate T results { R, R,..., Ry} by majority voting to obtain the final
result.

A.5. Computation of feature scores

RF and XGBoost are two feature selection methods that rank the
features using two different metrics.

To compute the importance score of each feature in RF, we assume
there are totally n,, samples at node m, y is the label of the data, and
I(y = k) is the number of data belonging to class k in node or leaf m.
Then,

p = 220 ®
nm

is the approximation of the probability of class k € 0, 1 observations in

node m. Then, the Gini impurity of node m is defined by

Hy = Y b (1= ). )
k

The reduction of impurity of a node m is given by

impurity, = N H, — MHR - hHL , )
m= N \"" N, N,

where N is the total number of samples, N, is the number of samples at
the current node m, N,; is the number of samples in the left child, and
N, is the number of samples in the right child. H,, is the impurity
of the current node, Hy is the impurity of the right child, H, is the
impurity of the left child. Therefore, the score of a feature f in RF is
defined as follows:

. .. (1)
T ZmeM(fO impurity,,

scoref = % Z

t=1

(6)
Iy ZmeM(f’) impurity)

where T is the total number of trees in RF, M}’) is the collection of
nodes that split on feature f in the tth tree.
The importance score of a feature f in XGBoost is defined by

T
— ()
score; = El ne
=

where T is the total number of trees in XGBoost, n" is the number of
times each feature f is used to split the data in the rth tree.

To visualize and analyze the feature importance obtained from these
two methods in the same scale, we normalize the feature score as
follows:

)

. scorey
normalized score E e (8)
2 Scorey
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