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Abstract

Topological deep learning (TDL) is a rapidly

evolving field that uses topological features to un-

derstand and design deep learning models. This

paper posits that TDL is the new frontier for rela-

tional learning. TDL may complement graph rep-

resentation learning and geometric deep learning

by incorporating topological concepts, and can

thus provide a natural choice for various machine

learning settings. To this end, this paper discusses

open problems in TDL, ranging from practical

benefits to theoretical foundations. For each prob-

lem, it outlines potential solutions and future re-

search opportunities. At the same time, this paper

serves as an invitation to the scientific community

to actively participate in TDL research to unlock

the potential of this emerging field.
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1. Introduction

Traditional machine learning often assumes that the ob-

served data of interest are supported on a linear vector space

and can be described by a set of feature vectors. However,

there is growing awareness that, in many cases, this view-

point is insufficient to describe several data within the real

world. For example, molecules may be described more ap-

propriately by graphs than feature vectors. Other examples

include three-dimensional objects represented by meshes,

as encountered in computer graphics and geometry process-

ing, or data supported on top of a complex social network

of interrelated actors. Hence, there has been an increased

interest in importing concepts from geometry and topology

into the usual machine learning pipelines to gain further

insights into such types of data in a systematic way.

One of the most prominent examples of this research di-

rection is geometric deep learning (GDL); see (Bronstein

et al., 2021; Zhou et al., 2020; Wu et al., 2020; Nguyen &

Wei, 2019). GDL aims to generalize neural networks to

non-Euclidean domains, including manifolds and graphs.

Graph neural networks (GNNs) form a central pillar within

GDL (Wu et al., 2020; Zhou et al., 2020).

Topology is concerned with the study of properties that re-

main invariant under continuous deformations, and affords

a powerful lens through which the global structure of data

can be discerned. By characterizing topological features

(including connected components, loops, and voids across

multiple scales), topological tools such as persistent homol-

ogy (Carlsson, 2009; Edelsbrunner & Harer, 2010) have

become powerful methods to capture essential structures

and patterns that elude conventional methods. The ability to

quantify the topological signatures of data can enhance the

robustness of traditional machine learning models, enabling

them to discern a greater variety of meaningful structures

in diverse and complex datasets. This use of topological

ideas, which often runs under the umbrella of topological

data analysis (TDA), is by now a well-established field of

research. For example, persistent homology has led to vic-

tories in the D3R Grand Challenges, a worldwide annual

competition series in computer-aided drug design (Nguyen
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Figure 1. Topological spaces enrich deep learning methods from a variety of perspectives. (a): A topological space, modeled as a cell

complex, enables a flexible molecular representation. This representation can improve the performance of a deep learning model supported

on this space (Bodnar et al., 2021a). (b): Topological neural networks enable the processing of data, for example via higher-order

message-passing schemes on a topological space. These networks find a wide range of applications, from computer graphics to drug

discovery (Hajij et al., 2023b). (c): Topological spaces allow hierarchical representations of the underlying data that naturally correspond

to pooling operations in deep learning (Hajij et al., 2023b). (d): The topological characteristics of the underlying data are crucial when

selecting a neural network architecture. Data from a knotted structure in R
3, such as the one shown, cannot be embedded in R

2 with a

single layer multilayer perceptron (MLP) from R
3 to R

2 (Olah, 2014).

et al., 2019; 2020). Moreover, topological descriptors such

as contour trees, merge trees, Reeb graphs, mapper, Morse

and Morse-Smale complexes are established tools in scien-

tific data analysis and visualization (Banerjee et al., 2020;

Hu et al., 2021b).

Various topological structures have been used as models

to describe data in terms of its higher order relations, in-

cluding cell complexes (Hajij et al., 2020), simplicial com-

plexes (Schaub et al., 2022), sheaves (Hansen & Ghrist,

2019), and combinatorial complexes (Hajij et al., 2023b).

Machine learning models have recently been designed to

learn from data that are supported on these topological do-

mains (Billings et al., 2019; Bunch et al., 2020; Hajij et al.,

2020; Schaub et al., 2020; Roddenberry et al., 2021; 2022;

Schaub et al., 2021; Giusti et al., 2023; Yang & Isufi, 2023).

Beyond using topological features to describe data, it is also

possible to leverage topological features to understand and

control computational models. In other words, one may use

topological methods to understand the flow of information

within computational models, such as neural networks, to

gain insight about the models’ functional behavior. Further-

more, one may design deep learning architectures according

to certain topological notions to enhance or constrain the

type of computations that can be performed, for example,

by enforcing message-passing schemes that are compliant

with certain topological invariants or promoting desirable

topological properties of learned representations.

Although there is an overlap between the three ways de-

scribed above to incorporate topological notions into ma-

chine learning, this paper focuses primarily on the latter

two points of view, which hold great potential for machine

learning applications and are not yet well established, in

contrast to ‘traditional’ TDA (Edelsbrunner & Harer, 2010;

Carlsson, 2009; Dey & Wang, 2022; Ghrist, 2014). The dis-

cussion is particularly concerned with deep learning models,

due to their broad real-world adoption. So, the scope of this

paper is dedicated to the nascent field of topological deep

learning (TDL), highlighting open problems and identifying

opportunities for future research. In this way, the paper

invites the scientific community to contribute to research in

TDL.

Why TDL? To articulate why TDL plays a critical role in

the encoding, modeling and analysis of relational data, four

practical advantages of TDL are presented. First, the topol-

ogy of the underlying data space determines the choice of

possible neural network architectures. Second, topological

domains enable the modeling of data containing multi-way

interactions (also known as higher-order relations). Third,

TDL captures regularities inherent to manifolds, such as

‘remeshing symmetry’. Fourth, TDL captures topological

equivariances in the data. In summary, TDL takes into ac-

count topological characteristics that appear in relational

data, and therefore is a natural choice for various machine

learning problems. Figure 1 shows a range of examples in

which topological approaches to deep learning are useful

and sometimes crucial.

Choice of neural network architecture. Olah (2014) con-

tributed one of the first works on TDL, showing that the

topology of the underlying space must be considered when

choosing a neural network architecture. In the early stages,

the term ‘TDL’ was often used to refer to the incorporation

of features generated by persistent homology within the

input pipeline of a deep neural network (DNN; Cang & Wei,

2017; Hofer et al., 2017). However, this paper uses the term

‘TDL’ to refer to the collection of ideas and methods related

to the use of topological concepts in deep learning. Follow-

ing Hensel et al. (2021), TDL methods can be used in an ob-

servational fashion, improving the understanding of existing

deep learning models and their topological formulations, or

in an interventional fashion, allowing deep learning architec-

tures to treat data supported on higher-order domains, such

as cell complexes (Hajij et al., 2020; Bodnar et al., 2022;

Giusti et al., 2023), simplicial complexes (Bodnar, 2022;

Schaub et al., 2022; Mitchell et al., 2024), sheaves (Hansen
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& Ghrist, 2019; Bodnar et al., 2021b), combinatorial com-

plexes (Hajij et al., 2023b), and hypergraphs (Feng et al.,

2019; Kim et al., 2020; Bai et al., 2021b; Behrouz et al.,

2023).

Multi-way interactions. In TDL, multi-way interactions

between entities constitute useful features capable of em-

bedding topological structure via deep learning algorithms.

Higher-order relations capture long-distance or seemingly

disparate connections in a system, providing scope for effec-

tive or robust message-passing schemes (Hajij et al., 2020;

Roddenberry et al., 2021; Bodnar, 2022; Hajij et al., 2023b;

Yang & Isufi, 2023). While graph-based equivariant neu-

ral networks have been developed to incorporate certain

multi-way interactions (Batatia et al., 2022; Musaelian et al.,

2023), many types of multi-way interactions can arise in

practice. TDL operates on various topological domains,

such as simplicial and cellular complexes, and therefore pro-

vides a framework to model a multitude of possible types of

multi-way interactions appearing in relational data.

Regularities inherent to manifolds. Beyond higher-order

relations, the topological view may also capture the regular-

ities inherent to manifolds. Examples include ‘remeshing

symmetry’ over manifolds, such as being invariant to differ-

ent triangulations of a sphere or inducing similar behaviors

at different meshing resolutions. These regularities would

be perhaps not impossible, but quite challenging, to express

using purely combinatorial constructs offered by graph rep-

resentation learning (GRL), while TDL is a natural domain

to think about such effects.

Topological equivariances. TDL is a natural approach

to capture ‘topological equivariances’. For example, if a

classification algorithm is meant to identify different knots,

then it is useful to understand the stabilizer group involv-

ing isotopies of the complement. In general, GNNs and

GDL are based on ‘standard groups’. For instance, GNNs

adopt the permutation group, and applications of GDL in

molecular modeling use subgroups of the Euclidean group,

such as the special Euclidean group SE(n) or the special

orthogonal group SO(n). TDL incoporates more complex

homeomorphism groups that act on a space, while trying

to preserve some embedding information. This embedding

information can include, for example, the arrangement of

critical points in Morse-Smale complexes (Catanzaro et al.,

2020) or the nesting of circles which leads to the concept of

‘tree of shapes’ in image processing (Caselles & Monasse,

2009). In particular, image segmentation provides an ex-

ample of a topological structure that needs to be preserved

under homeomorphisms of the domain.

Position. This position paper argues that TDL is the

new frontier for relational learning. Relational data con-

stitute a main modality of data emerging from natural

and artificial systems (Veličković, 2023). In such systems,

sets of of objects are interconnected via binary or higher-

order relations, and relational data encode features of

these interconnections. TDL provides a framework for

learning from binary or higher-order relational data.

While TDL is pivotal in relational learning, it is more gen-

erally a valuable framework with many functions in the

contemporary AI landscape. TDL informs the choice of

neural network architecture subject to the topology of the

underlying data space, captures regularities inherent to man-

ifolds, and captures topological equivariances.

Topological concepts are expected to play a crucial role in

articulating the position of TDL in relation to overlapping

fields, such as GRL or GDL. Finding the conditions un-

der which TDL becomes the go-to machine learning tool

for practitioners is one of the main research problems in

TDL. This paper builds on the engineering and mathematical

knowledge of the community to identify possible research

directions to solve this problem.

Paper structure. The remainder of the paper is organized

into several sections, each of which raises specific open

problems and research directions for TDL. The ordering of

the sections starts with more concrete application-centric

topics and ends with issues related to the theoretical founda-

tions of TDL, before concluding with some final remarks.

An extensive literature review of TDL is provided for the

interested reader in appendix A.

2. Examples, Datasets and Benchmarks

This section highlights compelling applications and success

stories of TDL in machine learning challenges to corrobo-

rate the advantages of TDL in various settings. In addition,

it proposes ways to enrich the range of datasets and bench-

marks that can facilitate the evaluation of TDL methods.

2.1. Examples

A natural use case of TDL involves attributed graphs, which

combine structural information with feature information.

Such graphs arise in numerous domains, for example, in-

volving protein structures (Xia & Wei, 2014; Sverrisson

et al., 2021), drug design (Cang & Wei, 2017), virus anal-

ysis (Chen et al., 2022), or structural representations of

molecules (Jiang et al., 2021) and materials (Reiser et al.,

2022; Townsend et al., 2020). However, applications that

require higher-order topological structures have been lim-

ited to intrinsically complex data, such as those arising

in biological sciences (Cang et al., 2018). Perhaps the

most compelling examples and applications of TDL which

consistently demonstrate the relevant advantages of TDL

over existing methods are the victories of TDL in the D3R

Grand Challenges (Nguyen et al., 2019; 2020), the dis-

covery of SARS-CoV-2 evolution mechanisms (Chen et al.,
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2020; Wang et al., 2021), and the successful forecasting

of SARS-CoV-2 variants BA.2 (Chen & Wei, 2022), BA.4

and BA.5 (Chen et al., 2022) about two months in advance.

More broadly, beyond graph-centric applications, other ap-

plications have benefited from a topological perspective of

machine learning, including 2D shape analysis, unsuper-

vised learning (Hofer et al., 2019), and classification (Chen

et al., 2019; Hofer et al., 2020a; Curry et al., 2023).

Open problem 1. Compelling applications of TDL have

been developed, in which the topological properties of the

data empirically demonstrate a competitive edge. How-

ever, a broader adaptation of TDL, which can revolutionize

relational learning, has not yet taken place in real-world

applications.

Several application areas are plausible candidates for TDL to

shine, since their underlying domains give rise to topological

structures. To encourage the development and adaptation

of TDL in practice, the presence or emergence of TDL

applications in numerous scientific disciplines is elaborated

further in appendix B.

Research direction 1. Topological structures emerge in

several scientific areas, including data compression, natural

language processing (NLP), computer vision and computer

graphics, chemistry, biological imaging, virus evolution,

drug design, neuroscience, protein engineering, chip design,

semantic communications, satellite imagery, and materials

science. Synergies with researchers from these scientific dis-

ciplines are encouraged to develop real-world or impactful

applications of TDL.

2.2. Datasets

In addition to showcasing the practical benefits of TDL,

applications can play an important role in the development

and deployment of TDL models. In particular, standard-

ized datasets derived from applications are instrumental

in driving TDL research. The Open Graph Benchmark, a

set of benchmark datasets, has been developed to facilitate

reproducible graph machine learning research (Hu et al.,

2020; 2021a). However, the community has not yet invested

in resources to construct higher-order data and associated

benchmarks because many graph methods do not take ad-

vantage of this information.

Open problem 2. There is a scarcity of higher-order data.

One of the major milestones for the advancement of TDL is

the prolific generation of public higher-order datasets.

Higher-order data can be collected or synthesized. The

TDL application areas of subsection 2.1 are potential candi-

dates to collect higher-order data. Conversely, a graph can

be lifted to a higher-order domain (Papillon et al., 2023a).

Lifting procedures for graphs supply mechanisms for the

generation of synthetic topological data. This is why a sur-

vey of lifting procedures and associated message-passing

schemes would be useful for TDL. Moreover, a generaliza-

tion of graph-rewiring approaches and analyses to higher-

order topological structures would be a fruitful direction.

Research direction 2. Developing applications of TDL

can produce higher-order datasets that naturally arise from

the underlying domain. A systematic assessment and gen-

eralization of graph-lifting and rewiring algorithms is a

plausible path towards synthetic higher-order datasets.

2.3. Benchmarks

The curation of a collection of higher-order datasets can

pave the way for TDL benchmarks. Benchmarking is nec-

essary for the comparative assessment and development of

novel TDL architectures and associated learning algorithms.

Open problem 3. Benchmark suites are needed to enable

efficient and objective evaluation of novel TDL research.

The design of open source and reproducible benchmark

suites for TDL requires a minimal collection of higher-order

benchmark datasets, as well as implementations of graph-

lifting algorithms for generating synthetic datasets in higher-

order domains. To ease user experience, a taxonomy of

higher-order datasets is a recommended feature, organizing

benchmarks, for example, by dataset size and type of learn-

ing task. Benchmark suites for TDL are expected to have a

comprehensive set of performance metrics that extend be-

yond predictive performance. For example, stability metrics

are relevant to TDL, since it is anticipated that exploita-

tion of topological structure in data can improve stability

comparably to GNNs.

Research direction 3. The basic components of TDL bench-

mark suites include higher-order datasets, graph-lifting al-

gorithms, and predictive and stability metrics.

3. Software

There are several graph-based learning software pack-

ages, such as NetworkX (Hagberg et al., 2008),

KarateClub (Rozemberczki et al., 2020), PyG (Fey &

Lenssen, 2019), and DGL (Wang et al., 2019). NetworkX

facilitates computations on graphs, and KarateClub im-

plements algorithms for unsupervised learning on graph-

structured data. PyG and DGL are two geometric deep learn-

ing packages for graphs.

To the best of the authors’ knowledge, four software

packages provide functionality on higher-order structures,

namely HyperNetX (Liu et al., 2021), XGI (Landry et al.,

2023), DHG (Feng et al., 2019), and TopoX (Hajij et al.,

2024). HyperNetX enables computations on hypergraphs,

while XGI provides similar functionality on hypegraphs and

simplicial complexes. DHG is a deep learning package for

4



Position: Topological Deep Learning is the New Frontier for Relational Learning

graphs and hypergraphs. TopoX is a suite of Python pack-

ages designed to compute and learn with topological neural

networks. The suite consists of three packages, TopoNetX,

TopoEmbedX and TopoModelX. TopoNetX supports

computations on graphs and higher-order domains, in-

cluding colored hypergraphs, simplicial complexes, cell

complexes, path complexes and combinatorial complexes.

TopoEmbedX provides methods to embed higher-order do-

mains into Euclidean domains. TopoModelX implements

the majority of topological neural networks surveyed in Pa-

pillon et al. (2023a).

pytorch-topological combines several state-of-the-

art packages for TDA, including giotto-tda (Tauzin

et al., 2021) and Ripser (Bauer, 2021), thus en-

abling the creation of topology-driven algorithms that

work on point clouds or structured data such as im-

ages. Similarly, torch-ph (Pérez et al., 2021) and

TopologyLayer (Gabrielsson et al., 2020) support per-

sistent homology computations, as well as differentiating

through these computations to facilitate the development

of topology-informed loss functions. GUDHI (Maria et al.,

2014) provides a wider range of methods, including the

optimization of functions based on persistent homology.

However, despite numerous theoretical advances in TDL,

practical implementations are scarce due to the limited avail-

ability of easy-to-use software packages for deep learning on

higher-order structures. TDL is a broad research area, so the

contemporary TDL software landscape needs to be enriched

with more functionality to cover additional higher-order do-

mains (including domains related to higher-order multiplex

networks, and dynamic versions of existing higher-order do-

mains), graph-lifting and rewiring algorithms, TDL models,

and learning algorithms (Alain et al., 2023).

Open problem 4. Research experimentation and deploy-

ment of TDL models are often hindered by the limited avail-

ability of software. Software development for TDL is one

of the most pressing open problems in accelerating the

progress of theoretical and engineering research in TDL.

To accelerate the development of TDL software, more hu-

man capital and financial investment are required. Since the

currently available TDL software packages are open source,

there are software engineers and researchers who volunteer

to improve these packages. Coding challenges (Papillon

et al., 2023a) help in this direction. However, more pro-

grammers are needed. Academic research grants are one

funding avenue for computer scientists to contribute to the

development of TDL software. To attract financial resources

from investors, it is expected to demonstrate the value of

TDL. In other words, solving open problem 1 (compelling

examples of TDL) creates conditions to address open prob-

lem 4 (resources for the development of TDL software).

Transformers are popular due to their easy implementation

in graphics processing units. As existing TDL methods

might be more challenging to implement than transform-

ers, software users might resort to transformers equipped

with some topological encoding. This latter possibility pro-

vides an alternative direction for TDL research. It becomes

apparent that understanding computational trade-offs and

hardware friendliness of TDL algorithms is essential for

the development and broad adaptation of TDL software.

Advances towards hardware-friendly TDL implementations

may include, for example, graph rewiring (Topping et al.,

2022; Nguyen et al., 2023) and positional encoding (Wang

et al., 2022).

Research direction 4. The acquisition of more resources

is required to advance TDL software development. Fur-

thermore, research on the computational trade-offs and

hardware friendliness of TDL algorithms might yield more

accessible TDL software implementations.

4. Complexity and Scalability

While the development of software for TDL is one prob-

lem, another imminent question is whether the benefits of

TDL outweigh the resulting costs. The innovative design

of TDL architectures can make a difference in practical

applications. In the context of such applications, computa-

tional complexity and scalability are major challenges that

become particularly prominent in TDL due to the inclusion

of higher-order data. This section discusses the complexity

and scalability implications of TDL.

4.1. Complexity

TDL models increase space and time complexity in compar-

ison to GNNs, since the former operate on domains with

supplementary higher-order structure. Thus, the question

becomes whether the increased complexity of TDL is worth-

while.

Open problem 5. A cost-benefit analysis framework for

TDL has not been formalized. The increased time and space

complexity of TDL relatively to GDL and GRL (due to the

inclusion of higher-order data) must be systematically fac-

tored in to enable informed decision-making when it comes

to choosing between TDL, GDL or GRL.

An approach to understanding the role of complexity in TDL

is to analyze the trade-off between complexity and perfor-

mance as a function of higher-order structure. For example,

the efficiency of a TDL algorithm may be evaluated by con-

necting the increase in predictive performance through the

inclusion of higher-order features with the increase in the

computational cost of neural network training.

Another approach to dissecting the notion of complexity in

TDL is to study the propagation of topological information

through neural network layers. For example, Naitzat et al.

5



Position: Topological Deep Learning is the New Frontier for Relational Learning

(2020) have demonstrated that neural networks transform

topologically complicated input data into topologically sim-

pler forms as they pass through the layers. Petri & Leitão

(2020) have expanded the work of Naitzat et al. (2020) by

showing that it is not necessarily the topology of the data

that is simplified, but the topology of the decision bound-

ary. Wheeler et al. (2021) have studied how the persistence

homology of data transforms as the data pass through suc-

cessive layers of a deep neural network. While Naitzat et al.

(2020), Petri & Leitão (2020) and Wheeler et al. (2021)

do not focus on input data supported on higher-order struc-

tures, such works provide plausible ways of characterizing

topological complexity, for instance, via layer-wise transfor-

mations of the underlying topology of the data.

Research direction 5. Complexity in TDL may be formal-

ized in terms of performance-complexity trade-offs depen-

dent on higher-order (algebraic) structure or from the angle

of propagation of topological information through neural

network layers.

4.2. Scalability

Limited software availability (open problem 4) is not the

only challenge in the development of TDL. Lack of scala-

bility impedes progress in TDL. Besides, the multitude of

higher-order domains confines the interoperability of scal-

able TDL models and learning algorithms. For instance, if a

scalable TDL model is developed for simplicial complexes,

it would not be applicable to other higher-order domains,

such as cell complexes, hypergraphs or path complexes.

Open problem 6. Building scalable TDL models, which

work across multiple higher-order domains, remains an

open problem.

One way of building resource-efficient TDL models might

be to leverage more information from fewer data points or

to develop optimization algorithms that converge provably

faster on higher-order domains. Another direction, which

has seen improved performance in TDA applications, in-

volves subsampling (Moor et al., 2020; Wagner et al., 2021).

Distributed training emerges as another plausible path to

scalable TDL. Message-passing schemes on graphs natu-

rally lead to distributed learning algorithms by letting ‘mes-

sages’ travel through separate nodes. For example, Scar-

dapane et al. (2021) have introduced a framework for dis-

tributed GNN training. One possibility is to extend the work

of Scardapane et al. (2021) toward distributed TDL.

Research direction 6. Extending existing results in dis-

tributed GNN training may pave the way to scalable training

of TDL models.

5. Explainability, Generalization and Fairness

This section focuses on the problems of explainability, gen-

eralization, and fairness. Such problems are common in

machine learning and have been explored in other contexts,

but how these can get translated in the context of TDL is

largely unexplored. This section discusses how TDL can

play an important role in solving these problems.

5.1. Explainability and Generalization

Understanding deep learning is a remarkably difficult task

and is one of the main concerns of the community. One

question is how topology can contribute to the understand-

ing of deep learning, including explainability for neural

network weights, decisions, training mechanisms, and char-

acterization of generalization error.

Open problem 7. Harnessing topology to address ques-

tions related to explainability and generalization in deep

learning delineates a family of open problems.

Recent results have demonstrated that the topology of data,

training trajectories, neural network weights and internal

representations are related to generalization error in deep

learning (Rieck et al., 2019b; Hofer et al., 2020a; Birdal

et al., 2021; Andreeva et al., 2023; Dupuis et al., 2023).

Along these lines, a feasible research endeavor to predict

the generalization error may involve training of TDL models

on the computational graph, training trajectories of neural

networks, or promoting desirable topological properties of

internal representations that are linked to generalization.

The upshot of any advances along these directions would be

to draw greater attention to TDL, given the potential impact

of TDL on fundamental deep learning research.

Research direction 7. Training TDL models on the compu-

tational graph, controlling topological properties of weight

trajectories traced out during stochastic optimization of

neural networks, or appropriately enforcing desirable topo-

logical properties of a network’s internal representation

of the data may hold the keys to understand the puzzling

generalization behavior in deep learning and to move a step

closer to explainable AI.

5.2. Fairness

In addition to explainability and generalization, there are

other topics in GDL that have not yet been extended to TDL,

such as model fairness (Spinelli et al., 2022) and adversarial

attacks (Zheng et al., 2021; Zhou et al., 2023). To this

end, at least two issues need to be addressed, namely the

definition of valid fairness metrics and the development of

graph sampling or rewiring algorithms.

Open problem 8. TDL model fairness has not been ade-

quately studied.
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In a graph, fairness can be quantified, for example, using

homophily, which counts the ratio of inter-class edges ver-

sus intra-class edges. Telyatnikov et al. (2023) have pro-

posed a way to extend homophily measures to hypergraphs.

By adapting the work of Telyatnikov et al. (2023), the no-

tion of homophily can be extended to higher-order features

other than hyperedges. Bias in higher-order structures can

be assessed by generalizing the assortative mixing coeffi-

cient (Newman, 2003) beyond graphs. Furthermore, dyadic

fairness metrics for graphs, such as disparate impact (Laclau

et al., 2021) and statistical parity (Rahman et al., 2019), may

be extended to polyadic fairness metrics for higher-order

structures.

Research direction 8. To build fair TDL models, existing

notions of fairness for graphs, such as homophily, assor-

tative mixing and dyadic fairness, can be generalized for

higher-order structures.

6. Theoretical Foundations

This section is dedicated to the theoretical foundations of

TDL. It focuses on open problems and associated research

directions regarding the advantages of TDL, topological

representation learning (TRL), and transformers in TDL.

6.1. Advantages of Topological Deep Learning

Why is topology relevant in deep learning? A first step

in answering this question has been taken by developing

empirically verifiable examples in which TDL outperforms

traditional learning methods in some respect (see also open

problem 1). Validating such possible empirical findings

requires the establishment of theoretical answers. How can

theory justify the relevance of topology in deep learning?

Can theory prove (or disprove) that higher-order domains

provide a richer representation than vector spaces?

When do higher-order relations become useful? Higher-

order relations may not benefit every application. Is it possi-

ble to discover the context in which higher-order relations

become useful (Battiston et al., 2020; Benson et al., 2021;

Bick et al., 2023)? Is it possible to pinpoint higher-order

relations that lead to improved downstream performance?

Once discovered, can these relations be certified as seman-

tically meaningful? Can physical or biological relevance

be drawn from higher-order relations with visual tools or

semantic metrics? Can higher-order relations help scientists

understand phenomena that are currently obscure?

What are the advantages of TDL over GRL? One ques-

tion is whether in certain cases higher-order relations are

not required and the same performance might be achieved

by stacking more layers in regular GNNs or by using graph

transformer networks (Yun et al., 2019). This can poten-

tially happen, but it is known that neural architecture design

matters (especially in the low-data regime) with respect to

capturing higher-order relations. For example, the work

of Sanford et al. (2023) implies that existing transformers

are efficient in modeling pairwise relations, but not three-

way relations. Furthermore, TDL may help avoid some of

the common pathologies that arise with deeper GNNs, such

as vanishing gradients and degradation.

Open problem 9. Theoretical foundations have not yet

been adequately laid to consolidate the relative advantages

of TDL. More theoretical research is needed to shed light

on the relevance of topology in deep learning and contex-

tual understanding of downstream performance gained by

higher-order relations.

Expressivity proofs for TDL. For some GNNs and datasets,

it is known both theoretically and empirically that persistent

homology outperforms GNNs (Horn et al., 2022). There are

graphs with two connected components or two cycles that

cannot be distinguished by the ordinary Weisfeiler-Lehman

test for graph isomorphism and, thus, also not by message-

passing GNNs. Furthermore, the increased expressivity

of higher-order message passing has been proven (Bodnar

et al., 2021a). Expressivity proofs provide a mechanism

to unravel the relevance of topology in deep learning. For

example, conditions may be sought under which DNNs or

GNNs can or cannot learn certain topological invariants.

Studying properties of TDL. One way to evaluate the rele-

vance of the topology in TDL is to study the properties of

TDL. This raises the question of which properties of TDL

to focus on. For instance, investigating over-smoothing and

over-squashing in deep TDL models may provide useful

insights for the relative advantages of TDL over GNNs. In-

terpreting the spectral properties of Hodge Laplacians may

illuminate how message passing benefits from topological

structures. It is also worth examining whether neural net-

work parameter priors based on higher-order structures yield

any gains in reliability or uncertainty quantification.

Generative TDL. Generative modeling aims to learn the

distribution of training samples by generating new instances.

While image generation is now well-studied (Rombach

et al., 2022), generating real-world data supported on non-

Euclidean or mixed domains presents an unresolved chal-

lenge. This has led to research on the generation of 3D point

clouds (Zhao et al., 2019; Zeng et al., 2022), meshes (Liu

et al., 2023b; Poole et al., 2022), and graphs (Guo & Zhao,

2022; Vignac et al., 2023). Yet, there is no unifying rep-

resentation that can generate all these 3D representations.

This is one of the premises of TDL. In the field of structural

biology, the generation of molecules and proteins is cur-

rently approached as graph generation (Vignac et al., 2023;

Hoogeboom et al., 2022; Ingraham et al., 2019; Zhang et al.,

2023) or by generative modeling on 3D rigid bodies (Yim

et al., 2023). Generative modeling for graphs generally
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involves creating new graphs from scratch. However, for

many applications where data have inherent geometric struc-

tures, relying solely on graphs, as done in Veličković (2023),

can potentially omit useful higher-order information. Re-

cent studies have shown that considering higher-order re-

lations yields more accurate representations of both scene

graphs and molecular structures (Zhan et al., 2022; Watson

et al., 2023). In addition to 2D and 3D computer vision,

diffusion models have become the state-of-the-art in graph-

based molecular generation (Xu et al., 2022; Vignac et al.,

2023; Haefeli et al., 2022; Jing et al., 2023). In particu-

lar, Jing et al. (2023) have introduced torsional diffusion,

a hybrid method that uses topological principles to diffuse

in a toroidal space, narrowing the search space and improv-

ing both model performance and inference speed. This

approach demonstrates how topology can enhance existing

generative methods. Despite these advances, the develop-

ment of topological diffusion and flow-matching models

remains an uncharted territory. Data characterized by higher-

order structures align naturally with TDL. In some cases,

such structures are not inherently present, but can be in-

ferred (Tang et al., 2023a;b), raising questions about the

nature and implications of generating higher-order features

absent from the original data. The assignment of specific

semantic meanings and structures to these generated forms

is an ongoing research challenge, paving the way for more

interpretable TDL. This area of research, both recent and

progressive, holds the potential to advance generative TDL.

Sheaf theory for TDL. There has been some work on cate-

gorical machine learning (Fong et al., 2021), as well as TDA

to study activation layers (Naitzat et al., 2020), but there has

not been much work connecting the two. Category theory

offers rich structures for knowledge representation, but these

structures are typically quite rigid. Persistent homology is

less committal and allows algebraic structure to come into

existence as a function of some metrized parameter space.

Sheaf theory can serve as a bridge between category theory

and persistent homology in the context of TDL. For exam-

ple, a combination of applied category theory and TDA may

lead to algorithms that automatically summarize how neural

networks produce their output, making deep learning more

understandable to humans. Moreover, Fong et al. (2021)

have introduced a theoretical sheaf approach to detect local

merging relations in digital images, and Bodnar et al. (2022)

have developed neural sheaf diffusions to identify topologi-

cal data features that are important for real-world problems.

Persistent sheaf Laplacians allow the incorporation of phys-

ical laws in the topological representation of data (Wei &

Wei, 2021). The neural sheaf diffusion models of Bodnar

et al. (2022) address some limitations of classical graph

diffusion equations and the corresponding GNNs, providing

ideas that can be extended to push the limits of TDL through

algebraic topology.

Research direction 9. Expressivity proofs may offer a com-

parative characterization of topological invariance in GNNs

and TDL models. Properties of TDL models, such as over-

smoothing and over-squashing, and spectral properties of

Hodge Laplacians may help demystify the relevance of topol-

ogy in TDL. Sheaf theory for generative TDL is a plausible

research avenue to demonstrate how twisting of feature

spaces in a GNN affects expressivity and detects inconsis-

tent logic present in large language models.

6.2. Topological Representation Learning

There are several possible interpretations of the umbrella

term TRL. As a high-level definition, TRL is concerned with

automatically learning and exploiting multiscale topological

descriptions of the data and of the neural network’s internal

embeddings, which scale efficiently to larger dimensions

and which provide benefits in efficiency and transparency

compared to the equivalent graph-based representations.

One question in TRL is how to develop training strategies

that enable a neural network to elicit higher-order infor-

mation from the data for the task at hand. An immediate

follow-up question in this context is whether this uncovered

higher-order structure is meaningful in any semantically

valid sense. In the context of GNNs, it is, for example,

unclear whether such an uncovered higher-order structure

might not be equivalent to the message-propagation phase

in the spirit of Veličković (2022). However, even if this is

true, it might still be possible to analyze these structures

to improve the explainability and transparency of a neural

network.

Another question in TRL is how to develop methods that

promote or penalize certain topological properties of a neu-

ral network’s internal representation of the data or its out-

put. On the one hand, such properties could be informed

by a priori knowledge or corresponding properties in the

input domain, as successfully demonstrated in image seg-

mentation problems (Hu et al., 2021b; Gupta et al., 2023),

learning representations to synthesize new shapes (Waibel

et al., 2022), using random walks on complexes to obtain

cell embeddings (Billings et al., 2019; Schaub et al., 2020),

or preserving topological properties while training autoen-

coders (Moor et al., 2020; Hajij et al., 2020; Trofimov et al.,

2023). On the other hand, topological characteristics of rep-

resentations can be guided by establishing provably benefi-

cial properties for generalization (Hofer et al., 2019; 2020a)

or can be used for comparing neural network representa-

tions (Barannikov et al., 2022). Another facet of this inter-

pretation of representation learning involves the analysis

and modification of the decision boundaries of classifiers.

Here, Chen et al. (2019) have shown that regularizers based

on persistent homology lead to better generalization and

higher predictive performance.
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Open problem 10. It remains unclear how to automate

the learning of topological representations in TDL, that is,

how to obtain semantically meaningful topological infor-

mation from the data during neural network training. It is

an open problem as to what properties of representations

to promote or penalize when interested in generalization

questions in TDL. Further, it is often far from straightfor-

ward how to appropriately encode desirable properties of

the input space, not least due to the complexity and possibly

high-dimensionality of the data.

The explainability of predictions made by GNNs (Luo et al.,

2020; Lucic et al., 2022) is complicated by the fact that even

a small subgraph is difficult for a human to visualize and

grasp quickly. Such complications are amplified in TDL,

since visualization and human apprehension of higher-order

domains is virtually nonexistent to date. Nevertheless, infor-

mation in a higher-order domain can be summarized more

flexibly by a smaller set of cells or hyperedges, leading

to potentially interpretable structure. In other words, the

richer structure attained by higher-order relations may en-

able more effective representation learning. For example,

the work of Battiloro et al. (2023b) on latent topological

inference (LTI) has introduced a trainable method to identify

higher-order interactions between entities, combining ad-

vances in TDL and differentiable sampling. Building upon

LTI might lead to a general framework for TRL on arbi-

trary higher-order domains. Building on the graph-based

representation learning approach of Hamilton et al. (2017),

the work of Hajij et al. (2022b; 2023b) has introduced a

TRL framework for neighbourhood-based methods, which

provides scope for topological neural network architecture

search.

Research direction 10. Higher-order relations, encoded

by cells or hyperdeges, offer candidate components for ef-

fective TRL. Latent topological inference outlines a tenta-

tive methodological path toward generalized representation

learning for TDL. Existing work on TRL provides a means

to develop topological neural network architecture search

algorithms.

6.3. Transformers in Topological Deep Learning

Looking for a ‘transformer architecture’ for graphs has led to

graph transformer models (Dwivedi & Bresson, 2020; Min

et al., 2022), along with the first ‘foundation models’ for

graph datasets (Liu et al., 2023a), which can be transferred

(either in a zero-shot fashion or with fine-tuning) to smaller

tasks. It is not yet known what the ‘transformer architecture’

of TDL models is, if it exists. It is expected that over the

next years new transformer models for topological domains

may be defined, along with algorithms such as diffusion

generative algorithms or structured state-space models for

cell and simplicial complexes.

Conversely, it is interesting to explore whether higher-order

variants of transformers can be used to improve tasks in

mainstream domains, if computational bottlenecks can be

solved. For example, is there any meaningful latent infor-

mation embedded in text or images that can be learned and

leveraged by a higher-order transformer?

Open problem 11. Developing a transformer architecture

for TDL models would lay a unified foundation for TDL

across different higher-order domains. A follow-up ques-

tion would be the applicability of such a ‘topological trans-

former’ to text, audio, or imaging data.

Advective diffusion transformers have been introduced

by Wu et al. (2023) to generalize GNNs in the presence of

varying graph topologies. A first step in extending the work

of Wu et al. (2023) might be to consider diffusion transform-

ers inspired by diffusions on hypergraphs (Prokopchik et al.,

2022; Wang et al., 2023) or heat diffusion on simplicial

complexes (Aktas & Akbas, 2021).

Research direction 11. A first milestone for a transformer

architecture for TDL might be a transformer architecture

that is specific to a given higher-order domain. For instance,

a transformer might be inspired by existing diffusions on

hypergraphs or simplicial complexes.

7. Final Remarks

To accelerate the transition of TDL from theoretical con-

structs to real-world applications, the research community

is invited to adopt a multidisciplinary approach rooted in

innovation, collaboration, and open science. Such an ap-

proach necessitates the convergence of diverse fields, bring-

ing together experts in mathematics, computer science, and

machine learning, to foster a rich cross-pollinating environ-

ment. By encouraging open dialogue and the exchange of

ideas, TDL can evolve rapidly, breaking through current

barriers, and sparking groundbreaking advancements.

One way to facilitate this interdisciplinary approach is

through the organization of TDL workshops and confer-

ences. These gatherings are the key to creating platforms

for knowledge sharing, discussion, and the initiation of col-

laborative ventures for TDL. In these events, it is important

to adopt open science principles.

This paper can help guide collaborative efforts and research

discussions on TDL. It highlights key challenges and out-

lines actionable research strategies that can pave the way

for concerted and effective efforts in the field. By openly

sharing ideas and research directions in this paper, the goal

is to support collaborative efforts, promote transparency,

and accelerate innovation in TDL. This culture of open-

ness allows researchers from various fields to contribute and

benefit from the advances in TDL.

9



Position: Topological Deep Learning is the New Frontier for Relational Learning

Acknowledgements

This work is partially supported by DOE grant DE-

SC0023157 (BW), NIH grants R01AI164266 (GWW)

and R35GM148196 (GWW), and NSF grants 2134241

(NM, MH), DMS-2134223 (BW), IIS-2205418 (BW),

CCF-2112665 (YW), CCF-2310411 (YW), DMS2052983

(GWW) and IIS-1900473 (GWW). This work was par-

tially funded by the Italian NRRP (PE00000001 - program

‘RESTART’), and by the 6G-GOALS project under the 6G

SNS-JU Horizon program, n.101139232 (PDL). VM is par-

tially funded by NSF DMS No 2012609, US Army Re-

search Lab Contract No W911NF-21-2-0186, US Army

Research Lab Contract No W911NF-22-2-0143, US Army

Research Office No W911NF-21-1-0094, and The Univer-

sity of Tennessee Materials Research Science & Engineering

Center – The Center for Advanced Materials and Manufac-

turing – NSF DMR No. 2309083. BR is supported by

the Bavarian state government with funds from the High-

tech Agenda Bavaria. SS is partly funded by the Sapienza

grant RM1221816BD028D6 (DESMOS). MTS acknowl-

edges funding by the European Union (ERC, HIGH-HOPeS,

101039827). Views and opinions expressed are however

those of the author(s) only and do not necessarily reflect

those of the European Union or the European Research

Council Executive Agency. Neither the European Union nor

the granting authority can be held responsible for them.

The authors thank Cristian Bodnar for his input on the

theoretical foundations of TDL, and the ICML reviewers,

Thomas Kipf and Charles Blundell for their reviews and

feedback.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of this work, none of which the authors feel

must be specifically highlighted here.

References

Acosta, F., Sanborn, S., Duc, K. D., Madhav, M., and Mi-

olane, N. Quantifying extrinsic curvature in neural man-

ifolds. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pp. 610–619,

2023.

Ahmed, E., Saint, A., Shabayek, A. E. R., Cherenkova, K.,

Das, R., Gusev, G., Aouada, D., and Ottersten, B. A

survey on deep learning advances on different 3D data

representations. arXiv preprint arXiv:1808.01462, 2018.

Aktas, M. E. and Akbas, E. Graph classification via heat

diffusion on simplicial complexes. IEEE Access, 9:12291–

12300, 2021.

Alain, M., Takao, S., Paige, B., and Deisenroth, M. P. Gaus-

sian processes on cellular complexes. arXiv preprint

arXiv:2311.01198, 2023.

Ameneyro, B., Maroulas, V., and Siopsis, G. Quantum

persistent homology. arXiv:2202.12965, 2022a.

Ameneyro, B., Siopsis, G., and Maroulas, V. Quantum

persistent homology for time series. In 2022 IEEE/ACM

7th Symposium on Edge Computing (SEC), pp. 387–392,

2022b.

Andreeva, R., Limbeck, K., Rieck, B., and Sarkar, R. Metric

space magnitude and generalisation in neural networks.

In Proceedings of the 2nd Annual Workshop on Topology,

Algebra, and Geometry in Machine Learning (TAG-ML),

number 221 in Proceedings of Machine Learning Re-

search, pp. 242–253. PMLR, 2023.

Arya, D. and Worring, M. Exploiting relational informa-

tion in social networks using geometric deep learning

on hypergraphs. In Proceedings of the 2018 ACM on

International Conference on Multimedia Retrieval, pp.

117–125, 2018.

Attene, M., Biasotti, S., and Spagnuolo, M. Shape under-

standing by contour-driven retiling. The Visual Computer,

19(2):127–138, 2003.

Bai, J., Gong, B., Zhao, Y., Lei, F., Yan, C., and Gao, Y.

Multi-scale representation learning on hypergraph for 3D

shape retrieval and recognition. IEEE Transactions on

Image Processing, 30:5327–5338, 2021a.

Bai, S., Zhang, F., and Torr, P. H. S. Hypergraph convolu-

tion and hypergraph attention. Pattern Recognition, 110:

107637, 2021b.

Bajaj, C. L., Pascucci, V., and Schikore, D. R. The contour

spectrum. In Proceedings of the 8th Conference on Visu-

alization ’97, pp. 167–ff. IEEE Computer Society Press,

1997.

Banerjee, S., Magee, L., Wang, D., Li, X., Huo, B., Jayaku-

mar, J., Matho, K., Lin, M., Ram, K., Sivaprakasam, M.,

Huang, J., Wang, Y., and Mitra, P. Semantic segmenta-

tion of microscopic neuroanatomical data by combining

topological priors with encoder-decoder deep networks.

Nature Machine Intelligence, 2:585–594, 2020.

Barannikov, S., Trofimov, I., Balabin, N., and Burnaev,

E. Representation topology divergence: a method for

comparing neural network representations. In ICML,

2022.

Barbarossa, S. and Sardellitti, S. Topological signal pro-

cessing over simplicial complexes. IEEE Transactions

on Signal Processing, 68:2992–3007, 2020a.

10



Position: Topological Deep Learning is the New Frontier for Relational Learning

Barbarossa, S. and Sardellitti, S. Topological signal pro-

cessing: making sense of data building on multiway rela-

tions. IEEE Signal Processing Magazine, 37(6):174–183,

2020b.

Barbarossa, S., Sardellitti, S., and Ceci, E. Learning from

signals defined over simplicial complexes. In 2018 IEEE

Data Science Workshop (DSW), pp. 51–55. IEEE, 2018.

Barbarossa, S., Comminiello, D., Grassucci, E., Pezone, F.,

Sardellitti, S., and Di Lorenzo, P. Semantic communi-

cations based on adaptive generative models and infor-

mation bottleneck. IEEE Communications Magazine, 61

(11):36–41, 2023.

Batatia, I., Kovacs, D. P., Simm, G., Ortner, C., and Csanyi,

G. MACE: higher order equivariant message passing

neural networks for fast and accurate force fields. In

NeurIPS, volume 35, pp. 11423–11436, 2022.

Battiloro, C., Di Lorenzo, P., and Ribeiro, A. Parametric

dictionary learning for topological signal representation.

In 2023 31st European Signal Processing Conference

(EUSIPCO), pp. 1958–1962. IEEE, 2023a.

Battiloro, C., Spinelli, I., Telyatnikov, L., Bronstein, M.,

Scardapane, S., and Di Lorenzo, P. From latent graph

to latent topology inference: differentiable cell complex

module. arXiv preprint arXiv:2305.16174, 2023b.

Battiloro, C., Testa, L., Giusti, L., Sardellitti, S., Di Lorenzo,

P., and Barbarossa, S. Generalized simplicial atten-

tion neural networks. arXiv preprint arXiv:2309.02138,

2023c.

Battiloro, C., Wang, Z., Riess, H., Di Lorenzo, P., and

Ribeiro, A. Tangent bundle convolutional learning: from

manifolds to cellular sheaves and back. arXiv preprint

arXiv:2303.11323, 2023d.

Battiston, F., Cencetti, G., Iacopini, I., Latora, V., Lucas, M.,

Patania, A., Young, J.-G., and Petri, G. Networks beyond

pairwise interactions: structure and dynamics. Physics

Reports, 874:1–92, 2020.

Bauer, U. Ripser: efficient computation of Vietoris–Rips

persistence barcodes. Journal of Applied and Computa-

tional Topology, 5(3):391–423, 2021.

Bazi, Y., Bashmal, L., Rahhal, M. M. A., Dayil, R. A.,

and Ajlan, N. A. Vision transformers for remote sensing

image classification. Remote Sensing, 13(3), 2021.

Behrouz, A., Hashemi, F., Sadeghian, S., and Seltzer, M.

CAT-Walk: inductive hypergraph learning via set walks.

In NeurIPS, 2023.

Bengio, Y., Courville, A., and Vincent, P. Representation

learning: a review and new perspectives. IEEE transac-

tions on pattern analysis and machine intelligence, 35(8):

1798–1828, 2013.

Benson, A. R., Gleich, D. F., and Higham, D. J. Higher-

order network analysis takes off, fueled by classical ideas

and new data. arXiv preprint arXiv:2103.05031, 2021.

Bernárdez, G., Telyatnikov, L., Alarcón, E., Cabellos-

Aparicio, A., Barlet-Ros, P., and Liò, P. Topological
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A. Literature Review

This appendix provides a brief literature review focused on TDL, while also broadly discussing the role of topology in

machine learning. Three main themes are considered, namely higher-order deep learning models, research at the intersection

of the topology of data and neural networks, and research that connects TDA with neural networks.

A.1. Higher-Order Deep Learning Models

Recent years have witnessed a growing interest in higher-order networks (Mendel, 1991; Battiston et al., 2020; Bick et al.,

2023) due to their effective ability to capture higher-order interactions. In signal processing and deep learning, various

approaches, such as Hodge-theoretic methods, message-passing schemes, and skip connections, have been developed for

higher-order deep learning models.

The use of Hodge Laplacians for data analysis has been investigated by Jiang et al. (2011); Lim (2020) and has been

extended to a signal processing context, for example, in Schaub et al. (2021); Sardellitti et al. (2021); Roddenberry et al.

(2022) for simplicial and cellular complexes. Also, edge-centric convolutional neural networks (CNNs) leveraging the

1-Hodge Laplacian operator for linear filtering have been defined (Roddenberry & Segarra, 2019; Barbarossa et al., 2018;

Schaub & Segarra, 2018; Barbarossa & Sardellitti, 2020a;b; Schaub et al., 2021).

Convolutional operators and message-passing algorithms for higher-order neural networks have been developed. For

hypergraphs, a convolutional operator has been proposed (Jiang et al., 2019b; Feng et al., 2019; Arya & Worring, 2018),

and has been further investigated in Wu & Ng (2022); Bai et al. (2021a); Jiang et al. (2019b); Bai et al. (2021b); Gao et al.

(2020); Giusti et al. (2023); Gong et al. (2023). In addition, a unified framework for learning on graphs and hypergraphs has

been developed (Huang & Yang, 2021), and general hypergraph neural networks have been introduced (Gao et al., 2022).

In the context of message passing on complexes, a general message-passing scheme on topological spaces has been

developed by Hajij et al. (2020), encompassing previous proposals (Gilmer et al., 2017; Ebli et al., 2020; Bunch et al.,

2020; Hayhoe et al., 2022) and employing various topological neighborhood aggregation schemes. The expressive power

of simplicial and cellular message passing neural networks has been studied by Bodnar (2022) and Bodnar et al. (2022),

respectively. The work of Hajij et al. (2023b) provides the mathematical blueprint of topological deep learning, unifying

existing deep learning architectures with a common mathematical language. Papillon et al. (2023b) has conducted a review

of message-passing topological neural network architectures, employing foundational concepts from Hajij et al. (2023b).

This survey highlights key challenges and promising directions for future research in the field. Zia et al. (2024) have carried

out a review of TDL, focusing primarily on how the use of TDA techniques has evolved over time to support deep learning

frameworks. Recurrent simplicial neural networks for trajectory prediction have been introduced (Mitchell et al., 2024), and

a multi-signal approach on higher-order networks utilizing the Dirac operator has been developed (Calmon et al., 2022;

Hajij et al., 2023a).

While the dominant trend of topological neural networks represents a special case of higher-order message passing (Hajij

et al., 2023b), recently, several notable topological neural network methods have been introduced that do not rely on this

paradigm. For example, Maggs et al. (2023) have introduced neural k-forms, providing a novel approach to operate on

geometric simplicial complexes and graphs without relying on traditional message passing. In addition, Ramamurthy et al.

(2023) have introduced an MLP-based simplicial neural network algorithm to learn the representation of elements in a

simplicial complex without explicitly relying on message passing, ensuring fast inference time and high robustness against

the lack of connectivity information during inference.

To facilitate the training of higher-order DNNs, a generalization of skip connections to simplicial complexes has been

proposed (Hajij et al., 2022a). Additionally, a higher-order GNN considering higher-order graph structures at multiple scales

has been presented (Morris et al., 2019).

Most attention-based models are designed primarily for graphs, with some recent exceptions that have been introduced in

higher-order domains (Bai et al., 2021b; Kim et al., 2020; Georgiev et al., 2022; Giusti et al., 2022; Goh et al., 2022; Giusti

et al., 2023). For instance, Goh et al. (2022) have proposed a generalization of the graph attention model of Veličković

et al. (2018), while Giusti et al. (2022) have introduced an attention model for simplicial complexes based on Hodge

decomposition, similar to Roddenberry et al. (2021). Furthermore, Giusti et al. (2022) have introduced a simplicial network

architecture leveraging masked self-attention layers. Expanding this work, Battiloro et al. (2023c) have introduced a

generalized attention architecture that integrates the interplay among simplices of different orders through the Dirac operator

and its Dirac decomposition, adding a layer of complexity and depth to the understanding of attention mechanisms. Attention
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on cell complexes has been introduced by Giusti et al. (2023) exploiting higher-order topological information through

feature lifting and attention mechanisms over lower and upper neighborhoods. In a related work, a generalized attention

mechanism on combinatorial complexes has been introduced by Hajij et al. (2023b). Hypergraph attention models in Bai

et al. (2021b); Kim et al. (2020) provide alternative generalizations of the graph attention model by Veličković et al. (2018).

These models collectively represent a generalization of the traditional graph-based attention framework to more complex

and higher-dimensional structures.

Finally, tangent neural networks that operate over the tangent bundle of Riemann manifolds have recently been introduced

by Battiloro et al. (2023d). Battiloro et al. (2023b) have extracted meaningful latent topology information tailored to specific

tasks, providing a versatile approach for topology-aware neural networks.

A.2. Topology of Data and Neural Networks

Interpreting Euclidean data as a sample set from a topological space has a long history (Carlsson, 2009). Some early points

on the interplay between topology and neural networks appeared in a blog of Olah (2014). In particular, Olah (2014) has

performed topological experiments that illustrate the importance of considering the topology of the underlying data when

choosing a neural network. Approximately at the same time, Bianchini & Scarselli (2014) have published their seminal work

related to the expressivity of DNNs, later extended by Sun et al. (2016). In Naitzat et al. (2020), the activations of a binary

classification neural network have been considered as point clouds on which the layer functions of the neural network act.

The topologies of these activations have been studied using homological tools such as persistent homology (Edelsbrunner &

Harer, 2010). Rieck et al. (2019b) have studied the topology of individual layers in MLPs, developing neural persistence as

a way to describe deep learning phenomena based on topological concepts. Some caveats of this approach have recently

been observed and rectified by Girrbach et al. (2023), leaving the open question of how to effectively use topology to

describe neural network training. Hajij et al. (2021a) have used topological notions to provide insights into the supervised

classification problem in the context of neural networks. Similarly, Oballe et al. (2022a); Love et al. (2023) have used

topological properties of data to infer deep learning architectures.

A.3. Topological Data Analysis and Neural Networks

Although an old field, algebraic topology (Hatcher, 2005) has only recently begun to solve problems in various domains.

For example, persistent homology (Edelsbrunner & Harer, 2010) succeeded in solving complex data problems (Attene

et al., 2003; Bajaj et al., 1997; Boyell & Ruston, 1963; Carr et al., 2004; Curto, 2017; Dabaghian et al., 2012; Giusti

et al., 2016; Kweon & Kanade, 1994; Lee et al., 2011; Lum et al., 2013; Nicolau et al., 2011; Rosen et al., 2017). Deep

learning models rooted in topology have left their imprint in various domains, including topological data signatures (Biasotti

et al., 2008; Carlsson et al., 2005; Rieck & Leitte, 2015), neuroscience (Curto, 2017), bioscience (Topaz et al., 2015)

time series forecasting (Zeng et al., 2021), Trojan detection (Hu et al., 2022), image segmentation (Hu et al., 2019), 3D

reconstruction (Waibel et al., 2022), and time-varying setups (Rieck et al., 2020). TDA (Edelsbrunner & Harer, 2010;

Carlsson, 2009; Ghrist, 2014; Dey & Wang, 2022; Love et al., 2023) has relied on topological tools to analyze data and

generate machine learning algorithms.

In Rieck et al. (2019b), the analysis of neural networks and their generalization performance has been approached through

persistent homology, providing valuable observational insights. Building on this work, Hofer et al. (2020b) have introduced

a topology-based graph and simplicial complex readout function, paving the way for a deeper understanding of data

representations. In pursuit of efficient representation learning, Moor et al. (2020) have focused on topology-based methods,

particularly emphasizing the use of the 1-skeleton for performance reasons while actively working to improve the speed of

simplicial complexes. Horoi et al. (2022) have adopted topological concepts to analyze neural network behaviors, providing

observational insights into the learning process. Moving toward end-to-end learning, Horn et al. (2022) have introduced a

novel perspective, incorporating topological information into graph and simplicial complex learning. The work of Horn

et al. (2022) breaks free from the confines of traditional graph isomorphism tests, enhancing the understanding of complex

learning structures. In the context of 2D-to-3D image reconstruction, Waibel et al. (2022) have demonstrated how topological

information, specifically cubical complexes in 3D, leads to more efficient models and higher quality reconstruction results.

Exploring has continued in Nadimpalli et al. (2023), focusing on quantized and approximated Euler characteristic transforms

for image reconstruction, contributing to the arsenal of tools to enhance reconstruction processes. Taking a singular

approach, von Rohrscheidt & Rieck (2023) have formulated a method for detecting multi-scale singularities in data using

local persistent homology. This observational study has linked singularity information with generalization performance,

adding depth to understanding the difficulty of classification tasks. In pursuit of high-performance representation learning,
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Roell & Rieck (2023) have introduced a fully differentiable variant of the Euler characteristic transform, facilitating tasks on

graphs and combinatorial complexes. The use of curvature-based topological information has been showcased by Southern

et al. (2023), offering a perspective on the evaluation of generative graph models. The interplay between probabilistic

machine learning and topology has recently been investigated in several works. Specifically, Maroulas et al. (2019; 2020);

Oballe et al. (2022b); Papamarkou et al. (2022) have developed sampling techniques for distributions of topological

summaries either in a non-parametric way or from a Bayesian perspective. Using variations of Cech and Vietoris-Rips, the

topology of decision boundaries of neural networks has been studied by Ramamurthy et al. (2019) to quantify the complexity

of DNNs and to enable the matching of datasets to pre-trained models.

B. Application Areas for TDL

This appendix highlights numerous domains of application in which TDL has shown or may show its potential. In particular,

TDL is a promising tool for data compression, NLP, computer vision and computer graphics, quantum TDL, chemistry,

biological imaging, virus evolution, drug design, neuroscience, protein engineering, chip design, semantic communications,

satellite imagery, and materials science.

Data compression. TDL has the potential to compress relational data by exploiting multi-way correlations between elements

to obtain effective lower-dimensional representations. As an example, Bernárdez et al. (2023) have proposed a TDL-based

approach for compressing graph signals, demonstrating superior performance compared to both GNNs and feed-forward

architectures when applied to two real-world internet datasets. Additionally, Battiloro et al. (2023a) have introduced a

topological dictionary learning algorithm for sparse signal representation over regular cell complexes. This method has

demonstrated advantages in edge flow compression tasks, further illustrating the potential of topological methods compared

to graph-based methods. These studies suggest that TDL holds great promise for advancing data compression techniques by

leveraging its ability to capture complex correlations in relational data.

Natural language processing. Deep learning has recently made impressive advances in the field of NLP, a rich and

less explored domain to apply TDL. Specifically, contextualized word embeddings from large language models have

revolutionized tasks such as text generation, sentiment analysis, and machine translation. Exploring the topological

structures of these general-purpose learned embeddings can help NLP practitioners unlock the hidden structures of their

models. TDL could be crucial to understanding how these models organize hierarchical class knowledge across neural

network layers (Purvine et al., 2023). TDL can also probe the lexical, syntactic and semantic regularities of the embedding

space (Hajij et al., 2021b; Rathore et al., 2023), and estimate its intrinsic dimensionality (Tulchinskii et al., 2023), thus

providing insights into model effectiveness. Additionally, the scope of TDL extends beyond word embeddings. It can be

used to compare sentence embeddings from language models (Meirom & Bobrowski, 2022), study the parameter space of

neural networks (Gabella et al., 2019), and investigate deep adversarial training (Perez & Reinauer, 2022; Zhou et al., 2023).

This can help NLP practitioners understand the complex structures of their models and further advance language processing

technologies.

Computer vision and computer graphics. Several recent TDL works focus on learning directly on topological spaces.

In the domains of vision and graphics, these spaces often manifest naturally as 3D point clouds, graphs, or meshes, either

acquired in the real world through 3D sensors or designed in computer-aided design software. To date, the field has distinctly

differentiated between these data representations, with the optimal choice often remaining elusive and highly dependent

on the specific application (Ahmed et al., 2018; Shi et al., 2022). The lack of a unifying representation has led vision and

graphics researchers to develop specialized architectures for different data types. Examples include PointNet for point

clouds (Qi et al., 2017), MeshCNN for meshes (Hanocka et al., 2019) and 3D GCNs for spatial graphs (Lin et al., 2020).

Limited efforts have been made to consider a unified domain approach. Jiang et al. (2019a) have attempted to bridge this gap

via simplex mesh-based geometry representations, achieving success in shape optimization and segmentation on real-world

datasets. Hajij et al. (2022b) have employed simplicial complexes in representation learning, although their evaluation has

been confined to meshes. The concept of combinatorial complexes (Hajij et al., 2023b) has offered a unifying view and has

been tested on mesh, point cloud and graph segmentation.

Quantum TDL. Quantum neural networks (QNNs) are promising architectures for handling various types of datasets, which

have the potential for exponential speed-up compared to classical neural network algorithms. Drawing inspiration from the

success of GDL, a QNN has been introduced by Verdon et al. (2019), allowing for both quantum inference and classical

probabilistic inference on data characterized by a graph-geometric structure. The computation of topological features often

presents a formidable challenge, necessitating the subsampling of underlying data. A breakthrough in this domain comes
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from the work of Ameneyro et al. (2022a), which has introduced an efficient quantum computation method for persistent

Betti numbers, using a persistent Dirac operator, whose square yields the persistent combinatorial Laplacian (Wang et al.,

2020). The approach of Ameneyro et al. (2022a) unveils the underlying persistent Betti numbers that capture the enduring

features of the data. To enhance its applicability to time series data, Ameneyro et al. (2022b) have introduced a quantum

Takens delay embedding algorithm, which transforms time series into point clouds within a quantum framework. The work

of Ameneyro et al. (2022b) broadens algorithmic utility and shows adaptability in various data structures. While existing

QNNs do not explicitly cater to data defined over topological spaces, and overall quantum topological methods are in their

infancy, the advent of TDL suggests a fertile research direction in this realm. Indeed, the emerging field of TDL may pave

the way for tailored QNNs designed to process data within topological spaces, or develop QNN architectures that embody

topological properties in their structures.

Chemistry. TDL can offer significant benefits to chemistry and molecular applications by providing a flexible framework

that can effectively capture complex molecular structures, long-range dependencies, and higher-order interactions. As

discussed in Jiang et al. (2021); Jones et al. (2023), capturing topological properties offers a promising way to understand

the underlying structure of a molecule. For example, Jiang et al. (2021) have demonstrated the power of methods based

on algebraic topology in constructing unique representations of crystalline compounds. These methods not only capture

intricate pairwise and many-body interactions, but also reveal the topological structure within groups of atoms at various

scales. This approach, which goes beyond a molecular graph representation, has been successfully applied in molecular

discovery, as presented in Townsend et al. (2020), helping to uncover novel molecular structures and properties. Furthermore,

TDL has been shown to be valuable for assessing and predicting the safety and potential risks associated with various

chemical compounds (Wu & Wei, 2018). Another molecular application of TDL has been explored by Bodnar et al. (2021a),

who have introduced a neural network based on a cell complex to predict molecular properties. The proposed network has

provided enhanced expressivity, principled modeling of higher-order signals, and improved distance compression, leading to

the achievement of state-of-the-art results in various synthetic and real-world molecular benchmarks. These studies suggest

that topology plays a crucial role in supramolecular chemistry, particularly in the study of spatially organized multimolecular

complexes characterized by diverse bonding patterns, such as mechanically interlocked and interpenetrated networks, thus

highlighting the growing significance of TDL in the advancement of molecular and chemistry-related research.

Biological imaging. Capturing 3D configurations of minuscule biological entities, such as proteins, presents a significant

imaging challenge. A pivotal advancement in this area has been made through cryo-electron microscopy (cryo-EM), which

has notably transformed structural biology. This technique enables the imaging of molecules within a solution, achieving

a level of detail that was previously unattainable. The primary purpose of using cryo-EM is to reconstruct the 3D shape

of biomolecules from the 2D images it produces. However, this reconstruction task is complex, as the initial images

obtained from cryo-EM are noisy 2D projections of the underlying 3D biomolecules. A promising approach to enhance

the accuracy of this reconstruction is the application of robust topological or geometric principles, acting as guides for

what the 3D structure of the biomolecule might plausibly be. For example, using a known 3D structure of the protein as a

reference, conceptualized as a cellular complex with nodes symbolizing the residues, edges representing covalent bonds,

and faces indicating the rings, can significantly aid in the reconstruction process. Any further analysis or processing of these

reconstructed structures can benefit from TDL, leveraging its capabilities to refine and understand complex biomolecular

shapes derived from cryo-EM (Xia & Wei, 2015; Biswas et al., 2016; Zhao et al., 2020). In addition, TDL has shown to

be useful in scenarios involving high intra-subject variance, such as in magnetic resonance imaging (MRI). It facilitates

the comparison and analysis of such complex datasets, thereby improving the effectiveness of learning tasks in these areas.

The incorporation of topological structures as a means of regularizing various tasks has led to notable advances in areas

such as image segmentation (Hu et al., 2019; 2021b; Clough et al., 2022; Gupta et al., 2022) and image-based shape

reconstruction (Waibel et al., 2022). The application of topological concepts as a prior in these tasks has contributed to

improved inference. These studies highlight the potential of TDL in biomedical imaging applications.

Virus evolution. During the COVID-19 pandemic, understanding the evolutionary trend of the SARS-CoV-2 virus was

a great challenge. TDL has played a vital role in unraveling the evolutionary mechanisms of SARS-CoV-2, including

the natural selection process that strengthens the infectivity, as elucidated in Chen et al. (2020), and the development of

antibody-resistant spike mutations, as explained in Wang et al. (2021). This mechanistic understanding has been instrumental

in forecasting the emergence of dominant variants such as BA.2 (Chen & Wei, 2022) and BA.4, BA.5 (Chen et al., 2022)

approximately two months in advance. The contribution of TDL to understanding these mutations and their implications has

been indispensable to addressing the challenges posed by the rapidly evolving SARS-CoV-2 virus. It exemplifies how TDL

can be used effectively to analyze virus evolution and adapt to emerging threats.
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Drug design. In life sciences, the development of effective drugs to combat diseases is of utmost importance. The central

goals of molecular bioscience and biophysics are to decipher the molecular complexities of human diseases and to create

drugs that can mitigate these diseases without causing harmful side effects. A crucial aspect of drug design and discovery is

the ability to predict how a given molecule will interact with biomolecules such as proteins or DNA. This interaction is key

to determining whether a drug can activate or inhibit the function of a biomolecule, leading to therapeutic benefits. The

D3R Grand Challenges, an annual global competition in computer-aided drug design, served as a platform for testing and

evaluating various methodologies from physical, chemical, statistical, and computer science perspectives in terms of scoring,

ranking, and docking capabilities in drug design. In this challenge, TDL was a winner, outperforming other techniques in

accurately predicting molecular interactions (Nguyen et al., 2019; 2020). The effectiveness of TDL is particularly notable in

drug discovery and other applications involving molecular structures, given the intricate balance between geometry (the

physical space of molecules) and topology (the inherent connectivity of molecules). Benchmark studies have demonstrated

that both dynamic TDL methods (Horn et al., 2022) and static topological features (Rieck et al., 2019a) can result in

enhanced predictive performance. This positions TDL as a promising area for future research and development in drug

discovery.

Neuroscience. Exploring neuroscience through a topology-based lens proves instrumental in tackling the substantial

intra-subject variance inherent in brain imaging modalities. The work of Rieck et al. (2020) has showcased the efficacy of

static topological features in functional MRI (fMRI) data analysis and prediction tasks. The neural manifold hypothesis, as

stated in Bengio et al. (2013), posits that neuronal activity forms a low-dimensional manifold reflecting the structure of

encoded task variables. Notably, the topology of the neural manifold aligns intricately with the task’s topology. Examples

include the topological ring in neural circuits that encode the direction of an animal’s head and the torus in the grid cell

circuit for spatial navigation (Chaudhuri et al., 2019; Gardner et al., 2022). TDL, with its application to reveal the scientific

meaning behind neural code topology, emerges as a crucial tool. Learning the topology serves as a fundamental first step

for subsequent analysis, including geometric analysis (Acosta et al., 2023). An intriguing facet of spatial information

encoding involves grid cells, layered neurons facilitating environment-based navigation. Mitchell et al. (2024) have captured

the firing structure as simplicial complexes, decoding grid cell data by developing a recurrent neural network based on

simplicial complexes. Furthermore, studies by Nasrin et al. (2019) and Maroulas et al. (2019) have addressed brain wave

data stochasticity by detecting topological fingerprints in electroencephalograms and estimating the topological noise in such

fingerprints. The comprehension, representation, and decoding of neural structures benefit from models with higher-order

connectivity, making TDL integral to understanding intricate patterns in neuroscience.

Protein engineering. Protein engineering is at the forefront of biotechnology, presenting a transformative potential in

diverse domains such as antibody design, drug discovery, food security, ecology and beyond. Taking advantage of extensive

protein databases, machine learning models have significantly accelerated the pace of protein engineering and directed

evolution. Recently, TDA approaches have been used to dramatically reduce the structural complexity of mutant and

wide-type proteins (Qiu & Wei, 2023). TDL based on persistent homology has shown to be a top performer in an extensive

study involving 34 datasets, but a persistent Laplacian approach outperforms persistent homology in protein engineering

applications (Qiu & Wei, 2023). TDL has also facilitated deep mutational scanning (Chen et al., 2023).

Chip design. Chip design has been accelerated by the combination of machine learning with geometric and topological

methods. In this field, the central element is the so-called netlist, which is a network comprising cells (logic gates) and nets

(connections among cells). Netlists can be effectively modeled as (directed) hypergraphs, where nodes and hyperedges

represent cells and nets, respectively. A key goal in chip design is to efficiently lay out netlists within a specified 2D area.

The aim is to optimize several properties, such as minimizing total wire length and reducing congested areas known as

‘hotspots’. However, optimizing netlists, including their placement and routing, is a complex and time-consuming task. It

involves multiple steps (including placement, global routing, detailed routing) and repeated iterations. This complexity

requires data-driven methods that can speed up these processes (Kahng, 2023; Mirhoseini et al., 2021). For example, there is

growing interest in predicting the properties of a synthesized netlist without undergoing the lengthy placement and routing

process (Ghose et al., 2021; Xie et al., 2021; Yang et al., 2022). However, netlists pose several challenges for existing

graph learning models. Such models are often large, containing millions of nodes, and the long-range interactions and

path information are crucial for determining netlist properties, such as timing and routability. Moreover, various symmetry

structures in netlists must be considered. These complexities highlight the need to integrate topological and geometric

concepts into the learning process. Luo et al. (2024) have made a step towards this direction by integrating persistent

homology and spectral features within a carefully designed neural network based on directed hypergraphs to predict netlist

properties.

26



Position: Topological Deep Learning is the New Frontier for Relational Learning

Semantic communications. A key challenge in communication systems is balancing the complexity of data representation

with the significance of symbols transmitted to convey the intended meaning or semantics within an allowable margin of

error or distortion. Efficiently representing semantic knowledge involves mapping out the relations between the elements

of a language, broadly defined, by creating a corresponding topological space (Barbarossa et al., 2023). TDL can play a

crucial role in semantic communications, particularly in extracting relational semantic features from data. This is vital

for transmitting information that is strictly necessary to convey the desired meaning or to execute a specific task, such as

inference, control, or actuation, while meeting certain performance criteria, such as latency, energy efficiency, and accuracy.

The integration of TDL in this context has the potential to revolutionize the way of understanding and optimizing the

transmission of meaning in communication systems.

Satellite imagery. Satellite imagery, typically characterized by noise, sparsity, and a plethora of geophysical features

on different spatial scales, presents unique challenges for data analysis. Currently, CNNs are the preferred choice for

creating automated detection models that identify phenomena in satellite imagery. However, a CNN designed for a specific

spatial scale might not be effective for images of different scales. While there are several methods that address multiscale

processing, such as hierarchical CNNs (He et al., 2022) and vision transformers (Bazi et al., 2021), TDL offers an alternative

approach to multiscale modeling. The use of topological invariants in this context can be particularly beneficial for several

reasons. For example, topological invariants are not affected by geometric transformations such as translation, rotation,

scaling, or shearing, making them highly robust and reliable for satellite imagery analysis (Hoef et al., 2023). This attribute

of TDL can potentially enhance the accuracy and efficiency of analyzing complex satellite data. Dey et al. (2019) have used

topological techniques to extract and analyze features from satellite images, showcasing the practical effectiveness of TDL

in real-world scenarios.

Materials science. Using topological properties in experimental materials data analysis presents a useful approach to

streamline the complex processing-structure-property relation in materials, as highlighted by Na et al. (2022); Papamarkou

et al. (2022). Embedding material structure into topology-based supervised or unsupervised learning algorithms reveals

crucial features in intricate processing-structure-property relations, for example, in datasets such as those found in high-

entropy alloys (Spannaus et al., 2021). Taking advantage of topological crystallographic properties (Sunada, 2013),

atom-specific machine learning models based on persistent homology have been developed, demonstrating improved

accuracy in predicting the formation energy of crystalline compounds (Jiang et al., 2021). TDL may have the potential to

uncover latent properties in quantum or other materials because it takes into account the underlying topological properties,

such as symmetry, in the structure of the materials.
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