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Abstract. We outline a strategy for prototyping computational mod-
els for complex applications on domains with disparate volumes. While
mixed dimensional approaches can be exploited for these, we exploit the
idea of overlapping continua and Cartesian grids. This strategy allows
to build prototypes and explore model sensitivities in a robust simula-
tion framework. As specific examples we consider on thermal conduction
in human tissue and hypothermia, Richards-Darcy coupled system for
soil-root flow, and mixed use traffic simulation on and off paved paths in
urban environment.

1 Introduction

In this paper we outline a strategy for rapid construction of prototype compu-
tational schemes for complex physical problems. We work with an algorithmic
framework based on Cartesian grids and semi-implicit iterative schemes: this
common and well studied framework is robust and simple to use, while it allows
to focus on application-specific modeling challenges of prototype models for com-
plicated physical applications, for which body fitting and unstructured grids are
frequently replaced with immersed boundary and fictitious domain techniques
[19, 13]. These features have been successfully used for multiphysics applications
and frameworks, see e.g., in [3, 1].

Our focus in this paper is on systems which involve some form of mixed-size
domain and couplings for models involving some discretizations of PDEs. Re-
cently, there is abundance of theoretical and applications oriented work on mixed
dimensional setting for a variety of applications: blood flow, hydro–mechanical
coupling in fracture networks, and more. The theoretical basis: detailed delicate
functional analytic setting of the PDEs and of the underlying finite element
approximations, is delicate since it involves distributed line sources or hybrid
coupled continua–network models; see, e.g., [29, 12, 16] following earlier model-
ing and applications oriented work including [7, 9, 11].

Our approach here is to start from images which define the geometry of (a
portion of) the computational domain Ω ⊂ Rd which we project on a Cartesian
grid; we represent the lower dimensional domains by unions of the grid/voxel
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cells embedded within the original Ω; see Figure 1 for an illustration. Next we
take advantage of the concept of overlapping continua [28, 6], asymptotically cor-
rect in domains separated by low-conducting interface, or of the homogenized
models [15, 10] to handle the mixed dimensional coupling, while working with the
original continuum models. For discretization, we use the well known practical
computational framework of lowest order mixed finite element methods imple-
mented as cell centered finite differences (CCFD), and we develop some model
approximations and enhancements suitable for the selected phenomena.

This strategy allows to build prototype models, propose their extensions and
enhancements, and investigate their robustness, flexibility, and sensitivity with
case studies which guide how to extend, modify, and interpret the models, while
paying attention to numerical discretization (h, τ), and implementation (solver).
This paper illustrates the simplicity and potential of this methodology which
we recommend as a stepping stone towards refinement strategies beyond the
applications we discuss.

We select three disparate applications dubbed H, RS, and T which involve
coupled variables defined on model- and variable-specific domains which may
overlap, with mixed dimensional setting; see Figure 1. The computational models
solved on these domains are discretizations of PDEs which communicate on the
intersection of the domains, or are “aware” of the variables defined on these other
domains. The models H, RS and T are on modeling hypothermia problems in
tissue, water uptake in large root-soil systems, and mixed-use traffic flow on a
campus domain. From solver point of view, case H is semilinear, and case RS
and T require care in the treatment of advective terms.

(a) (b) (c)

Fig. 1. Cartoons of three domains considered in this paper for the applications to (a)
hypothermia modeling [2], (b) vegetation-soil systems [23] (c) mixed-use traffic network
along some paths (in black) and off-path (white).

The outline of this paper is as follows. In Section 2 we recall the basic algo-
rithm for a scalar parabolic–hyperbolic PDE implemented as CCFD. In Section 3
we introduce the H (hypothermia) model, an extension of the linear bioheat flow
model [20, 10, 15] for which we exploit fictitious domain approach as well as in-
troduce the nonlinear feature of vasoconstriction. In Section 4 we employ an
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extension of d = 1 Richards-Darcy models for RS (root-soil) systems from [4, 27]
to mixed dimensional setting in d ≥ 2. In Section 5 we develop a T model for
mixed-species traffic flow on a campus network involving several species whose
trajectories may or may not be confined to pathways, and which may or may
not be aware of other traffic participants.

While due to the scope we cannot cover all the details, the models H, RS, and
T can help in further construction of more refined models, also for other com-
plex applications. Such refined models can take advantage of sensitivity studies
carried out with the prototype models.

2 Notation and flow models

In the paper we apply the following common notation. First, χS denotes the
characteristic function of a set S, |S| its measure, and S its closure. For a function
f on S, ⟨f⟩S denotes its average on S. We work in spatial domains which are
open bounded sets Ω ⊂ Rd, d = 1, 2, 3, possibly partitioned into some material
subdomains, open sets Ωm. The case d ≤ 2 is natural for Section 5, and the
problems in Sections 3 and 4 work with d ≤ 3. For the boundary ∂Ω or that of
any of the subdomains ∂Ωm, η is a unit normal vector pointing outward, and we
assume that these boundaries are sufficiently smooth. We will consider Dirichlet
conditions on ∂ΩD and flux conditions on ∂ΩN .

We will denote by 0 ≤ t ≤ T the time variable, with T the final time of the
simulation. In time–discrete models, tn is the time step, and t0 = 0 denotes the
initial time. With uniform time stepping we have tn = nτ .

2.1 CCFD as the P0-RT[0] mixed finite element scheme

We consider first a generic scalar parabolic quasi-linear homogeneous PDE

c∂tu−∇ · (D∇u) +∇ · (f(u)) + C(u) = 0, x ∈ Ω, t > 0 (1)

which is supplemented by some boundary and initial conditions. Assume D is
a symmetric uniformly positive definite tensor, c is uniformly nonnegative, f
is sufficiently smooth, and C(u) = cb(x, u, t)u is the Helmholtz term. (See (H)
model below). For nonlinear implicit parabolic problem, D = D(u), and c∂tu
derives from some ∂tC(u) (See (RS) model below). When c = 0, C = 0, (1) is a
steady flow problem, an elliptic PDE (See (T) model below).

For spatial discretization, we assume that Ω = Ωh =
⋃

(ij)∈Th
ωij on some

underlying background Cartesian grid of rectangular cells ωij of center xij whose
edges Eh align with ∂Ω and with the material interfaces, with maxij |ωij | = h2.
The cells are identified with voxels (image pixels); some ωij ̸∈ Ω are “key-outs”
outside the union Th of indices as in Figure 1. The unknown u is approximated by
piecewise constants uij ≈ u(xij); we collect uh = (uij)(ij)∈Th

. The flux compo-
nents qh defined over the edges Eh are from the mixed finite element RT[0] space.
This discretization is well known [21, 18] for its locally conservative properties
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and easiness for modeling nonlinear multi-physics applications. Since Dirichlet
conditions are satisfied weakly [21], fictitious domain strategies [13] are their
natural extension.

Applying implicit-explicit time stepping, we seek unh which solves

M(unh) = (Mh + τnAh)u
n
h + τC(unh) + τ∇h · Fh(u

n−1
h ) =Mun−1

h . (2)

Here Mh is the mass matrix, and Ah is the stiffness matrix incorporating the
boundary conditions; C applies pointwise to each degree of freedom of unh. Fur-
ther, Fh is the numerical flux defined based on f , and ∇h· is the discrete coun-
terpart of ∇· on the grid Th. For scalar problems we use Godunov flux; when
u is a vector, we require a Riemann solver [8, 17]. For nontrivial Fh, we apply
operator splitting: we solve the advection portion c∂tu+∇ · f(u) = 0 explicitly,
followed by an implicit diffusion-reaction step solved directly or by iteration,
time-lagging the nonlinearity and/or the coupling. After unh is found, we retrieve
the fluxes qnh . In what follows we drop the reference to h, n.

2.2 Coupled overlapping continua models

We consider next a system based on (1)

c1∂tu1 −∇ · (D1∇u1) + c(u1 − u2) = f1, x ∈ Ω1, t > 0 (3a)

c2∂tu2 −∇ · (D2∇u2) + c(u2 − u1) = f2, x ∈ Ω2, t > 0 (3b)

The model (3) when Ω1 = Ω2 is known as the Barenblatt model for multiscale
flow in porous media [6, 28] postulated for the flow dynamics in composite multi-
scale media with vastly different storage cj , Dj . In this paper Ω1 is a continuum,
and Ω2 is “almost” one-dimensional, Ω2 ⊂ Ω1 with 0 < |Ω2| << |Ω1| in the same
Rd measure, and c = c(x) = CχΩ1∩Ω2

(x), C ≥ 0, only active on Ω1 ∩ Ω2. Our
scheme for (3) extends directly those in Section 2.1, and the coupling can be
resolved by iteration or directly. This alternative to mixed dimensional setting
allows an easy proof–of– concept complex nonlinear dynamics.

We consider three models which we call in shorthand by H, RS, and T. In
H model of hypothermia we have constant coefficients except possibly nonlinear
cb to model vasoconstriction. For the root-soil problem RS, c2 = 0, and the
model for u1 is the nonlinear Richards equation, where D1 = D1(u1) and c1 =
c1(u1) feature degenerate behavior. We also consider a model T of overlapping
continua involving mixed traffic participants utilizing different trajectories. In
that model f(x, u) = v(x, u)f̄(u), and v(x, u) is computed solving an auxiliary
elliptic problem similar to (1) with c = 0, C = 0.

3 Hypothermia model: perfusion and vasoconstriction

We aim to build a qualitatively realistic model for the temperature in the com-
plex tissue domain Ω such as in Figure 1 (a) connected to the rest of the body
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Ωbody (not shown). When exposed to low external temperatures, the body ther-
moregulation system attempts various strategies to prevent hypothermia and
tissue damage. While these mechanisms are complex and not completely un-
derstood by physiologists, our prototype model based on overlapping continua
and fictitious domain concepts could eventually aid, e.g., in developing patient-
specific hypothermia therapy or cryo–preservation strategies which require rapid
turnaround time from an image to simulation.

3.1 Blood perfusion model

The body is composed of Ωvessel, Ωcapillaries, Ωtissue. Heat transport is by convec-
tion in Ωvessel, Ωcapillaries and by conduction in Ωtissue. Metabolic sources and
products and energy are exchanged between Ωcapillaries and Ωtissue; the latter
process, called perfusion, makes heat conduction in Ωcapillaries and Ωtissue simi-
lar to flow in porous medium; see, e.g., recent developments in [24].

Literature offers various models for thermal perfusion that simplify or en-
hance the overlapping continua model (3) on Ω = Ωtissue, with the blood tem-
perature approximated as θ∗ = const, the arterial temperature. In particular,
the so-called Pennes model from [20] postulates C(θ) = cb(θ − θ∗) in

c∂tθ −∇ · (k∇θ) + C(θ) = 0, x ∈ Ω, t > 0. (4)

Here c and k are the volumetric heat capacity and thermal conductivity, and
cb = cbhvb = const, where cbh and vb are blood volumetric heat capacity and
perfusion rate. Here and below we ignore heat sources. In [10], cb(θ−θ∗) is derived
by homogenization techniques in Ωcapillaries, Ωtissue made of ϵ-size unit cells Y
with a Robin boundary condition imposed on the interface Γ = Y ∩∂Ωcapillaries∩
∂Ωtissue, and vb is shown to be proportional to |Γ |. In [7], Ωvessel is treated as a
1D domain, with convection in Ωvessel coupled to that in Ωcapillaries∪Ωtissue ⊂ R3,
and several multi-equation models use a similar approach, e.g. [14, 26].

3.2 Fictitious domain and immersed boundary approaches

Now we aim to apply (4) in a realistic setting involving Ωvessel and a complicated
external boundary ∂Ω. For the former, we include a penalty term cvessel(θ− θ∗)
on Ωvessel to enforce θ|Ωvessel

≈ θ∗; for the latter, we proceed similarly on some
Ω̃ \Ω with Ω̃ of simpler shape than Ω. These treatments resemble the Immersed
Boundary [19] and fictitious domain [13] approaches, respectively. We define
now C(θ) = C(x)(θ − θ∗), with C equal cb, cvessel, cD on each x ∈ Ω \ Ωvessel,
Ωvessel, Ω̃ \ Ω, respectively. Similarly, we set θ∗ = θ∗(x) equal θbody, θvessel, θD,

respectively, and postulate an extension of (4) to Ω̃ as follows

c̃∂tθ̃ −∇ · (k̃∇θ̃) + C(θ̃) = 0, x ∈ Ω̃, t > 0, (5)

The coefficients c, k can be extended to Ω̃ in any convenient way as long as
(5) is well-posed. The model (5) is next approximated by the mixed finite ele-
ments/CCFD setting as described in Section 2.1.
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3.3 Examples: model adaptivity for hypothermia

We illustrate the effect of the blood perfusion term cb(θ − θ∗) and fictitious
domain term cD(θ − θ∗) in a hypothermia example based on geometry in Fig-
ure 1 (a) aiming for a physically motivated scenario to simulate the onset of
frostbite in the human hand exposed to cold air over t ≤ T = 1200 s. We extend
Ω = Ωhand ⊂ Ω̃ by Ωair so that Ω̃ is a large enough rectangular domain. The
tissue in Ωhand has heterogeneous properties including large blood vessels. We
identify ∂Ωwrist = ∂Ω∩{x : x2 = 0} as part of ∂ΩD made of ∂Ωwrist∪∂Ωnonwrist.

We start with a d = 1 slice of the 2d domain where the effect of cb, cD is easily
quantified. Convergence studies (not shown) show expected order O(τ + h2).

Example 1. Consider Ω = (0, L), L = 0.15 m, and Ω ⊂ Ω̃ = (−0.5, 0.15) with
Ωvessel = ∅. Let c = 3 × 106, k = 0.3, θ∗ = 37. Set ∂Ωnonwrist = {0}, ∂Ωwrist =
{0.15} and θnonwrist = −40, θwrist = 37. Let θ(x, 0) = θinit(x) = −40χ[−0.05,0] +

( 15403 x− 40)χ[0,0.15] = limt→∞ θ(x, t). To simulate, we let τ = 1, and h = 10−4,
withM = 2000 cells. We try cb ∈ {0, 10, 102, 103} and cD ∈ {0, 100, 101, · · · , 108}.

Figure 2 illustrates how cb and cD work together. Large cb drives θ|Ω towards
θ∗, and θ|Ω is essentially steady state at t = T . In turn, a large cD more strictly
enforces θ|Ω̃\Ω = θD, though one must keep the condition number κ(Mh) of (2)

reasonable. For example, cb = 103, cD = 107, gives θ(0, tN ) = −39.42, which
reasonably approximates the Dirichlet condition at ∂Ωnonwrist.

Fig. 2. Simulation results for Example 1. Left: near steady-state solutions (t = 1200);
various cb and cD = 107. Right: near steady-state solutions; cb = 103 and various cD.

We consider next the 2d example, where the hand is protected by mitten
material in Ωmitten, case (M), or not, case (N). Other notation is adapted easily.

Example 2. We use a uniform grid 100 × 133 over Ω̃ shown in Figure 3. The
coefficients c, k, cb, θ

∗ are given in Table 1. We use θ|∂Ωnonwrist
= θ∗air = −40 ◦C,

θ|∂Ωwrist = θ∗body = 37 ◦C, and let θ(x, 0) = χΩθbody + χΩ̃\Ωθair.

The model exhibits qualitatively intuitive behavior, as shown in Figure 3.
Next we post-process the results to analyze the extent of hypothermia and pos-
sible frostbite, i.e. θ(x, t) < 0 ◦C. Frostbite is avoided in case (M) at least until
t = 1200, but occurs in case (N), affecting about 11% of cells in Ωhand.

Next we address the quality of model adaptation. The term C(θ) simulates
perfusion in Ωhand \ Ωvessels and acts as a penalty term in Ωvessels and Ω̃ \ Ω.
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While cb has physiological meaning, cvessel and cD are chosen somewhat ad-hoc
to ensure, respectively, θ|Ωvessel

≈ θ∗|Ωvessel
and θ|∂Ωnonwrist

≈ θ∗|Ωair
. We test the

quality of the adapted model by checking if this first condition holds. We record
θmax = maxij θ

n
ij at tn = T . When cvessel = 105, case (N) has θmax = 35.7.

However, when cvessel = 1, case (N) has θmax = 9.8. Case (M) is similar.

Domain Material c (J K−1 m−3) k (W m−1 K−1) cb (W m−3) θ∗ (◦C)

Ω1 Bone 2.7× 106 0.31 10−3 37
Ω2 Muscle 3.7× 106 0.49 10−3 37
Ω3 Nerve 4.1× 106 0.49 10−3 37
Ω4 Skin 3.7× 106 0.37 10−3 37
Ω5 Tendon 3.8× 106 0.47 10−3 37
Ωvessels Blood 3.8× 106 0.52 105 or 1 37
Ωmitten Goose Down 1512 0.16 0 37

Ω̃ \Ω Air 858 0.024 105 -40
Table 1. Material parameters for Examples 2 and 4.

Fig. 3. Simulation results for Examples 2 and 4. Cases are denoted by superscripts.

3.4 Hypothermia with vasoconstriction

With model sensitivity to cb, cD, cvessel reasonably understood, we extend (4) to
account for defense against hypothermia with vasoconstriction, wherein body
temperature information captured by thermoreceptor neurons induces arterial
smooth muscle constriction, reducing blood flow in extremeties and retaining
heat near the core body. Such action can prevent core hypothermia, but may
cause permanent morphological changes, e.g. frostbite, in extremeties.

To model vasoconstriction, we recall cb depends on Γ . Thus a natural step
is to include in (4) some nonlinear dependence of cb on θ|Ω . We hypothesize
that cb decreases when a decrease in θ is detected through sensory data S(θ),
e.g. S(θ) = ⟨θ⟩Ω . Our simulations suggest that when cb decreases, so will S(θ),
affecting the venous blood temperature ≈ S(θ) returning to the body. Therefore,
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without increased metabolism, the body core temperature θbody may decrease,
further decreasing S(θ), cb, and θ∂Ωwrist

. We postulate the following simple model

θ∂Ωwrist
= θ∗ = θbody, cb = cb(θbody);

dθbody
dt

+ cB(θbody − S(θ))+ + λ = µ, (6)

with µ ≥ 0 representing metabolism and λ a Lagrange multiplier ensuring
θbody ≤ 37, mimicking thermoregulation. We solve (6) coupled to (4) semi-
implicitly, requiring some cB ≥ 0, µ ≥ 0, and some model for cb = cb(θbody).

Example 3. We consider data as in Example 1, and consider (4), (6) first with
(a) constant fixed θbody = 37, θ∗ = 37, cb = 103. Next we set up the variable
nonlinear model with cB = 10. We also consider two vasoconstriction model
variants (b) cb(θ) = 103χθ>10, and (c) cb(θ) = 103

θbody

37 χθ>10 TF NOTE: This
used to read uB

37 . I assume uB is θbody?. For dramatic effects, we consider µ = 0.
We study the value θbody(t) and retrieve the position x∗ ∈ Ω : θ(x∗, t) = 0 which
indicates the extent of frostbite.

Simulations for Example 3 confirm intuition. Upon vasoconstriction (b-c),
frostbite is more extensive than in (a), but not dramatically. There is not much
difference in θ between (b) and (c), but there is difference in θbody between (b-c).

Example 4. We consider data as in Example 2, but with cb = 10−3. We repeat
the experiments for t ≤ T = 120 s, varying cb, cD and the vasoconstriction model,
with S(θ) = ⟨θ⟩. We set cb = const (vaso model off), or variable cb(θ) ∼ χθ>10

(vaso model on) to model an instantaneous response to θ.

The results in Table 2 demonstrate some model sensitivity to the parameters.
There is little dependence on cb if it remains below 104, perhaps because cvessel
is fixed. As expected, higher temperatures and less frostbite occur when vaso-
constriction is not active; see also Figure 3 for comparison of θvaso and θno vaso.

Summary: Based on the computational experiments, we believe the CCFD
implementation of the H model is robust to model variants, including the use
of fictitious domain. The results agree qualitatively with the intuition; the most
crucial parameters are cb and cvessel.

4 Root–soil flow model in d ≥ 2

Consider a complex domain shown in Figure 1 (b) representing a plant root
embedded in soil, adapted from [23]. Our long-term goal is to simulate water
flow in this root-soil system combined with other coupled phenomena including
surface and above-surface models plus energy equation. Therefore, even though
roots have a much smaller volume than reasonable soil volumes, we aim to build
a general flexible physically meaningful RS model in d ≥ 1.

Our RS model extends the d = 1 overlapping continua root-soil models from
[27, 4], a nonlinear Richards-Darcy generalization of (3). We consider Ωr ⊂ Ωs ⊂
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cD cb vaso #frostbite #off θmin θmax θave
106 10−3 yes 42 165 -16.03 36.99 27.28
106 10−3 no 42 165 -16.03 36.99 27.28
106 102 yes 42 163 -16.04 36.99 27.29
106 102 no 42 163 -15.98 36.99 27.29

106 104 yes 32 131 -15.37 36.99 28.18
106 104 no 22 124 -11.81 36.99 28.28
106 105 yes 1 3 -0.02 36.98 32.76
106 105 no 0 2 8.38 36.98 32.78

107 104 yes 6 40 -9.03 36.99 32.66
107 104 no 5 39 -6.65 36.99 32.70
107 105 yes 0 2 0.87 37 34.46
107 105 no 0 2 8.70 37 34.47

Table 2. Sensitivity of the solutions to the H model with vasoconstriction in Example 4
(2D) at t = T = 120 s to cb, cD and to the choice of vasoconstriction model (vaso or
off). We define #frostbite as the number of the cells ωij where θij |t=T < 0, and #off

those with θij |t=T < 10.

Rd, with d ≥ 1, both with positive Rd measures |Ωr| << |Ωs|, maintain the
overlapping continua feature and do not resolve the root’s micro-structure.

Richards equation in unsaturated soil domain Ωs models (incompressible)
water flow in Ωs coupled to saturated flow in Ωr as follows

ϕs
∂Ss

∂t
+∇ · qs = −c(Ps − Pr), x ∈ Ωs, t > 0, (7a)

∇ · qr = c(Ps − Pr), x ∈ Ωr, t > 0, (7b)

qs = −Ks

µ
k(Ss) (∇Ps − ρg∇D) , qr = −Kr

µ
(∇Pr − ρg∇D) , (7c)

where we denote the soil/root domain by subscripts s/r, the saturation (volume
fraction) of water in the soil by Ss, the pressure of the fluid in Ωm by Pm. In
soil we have Ps = −Pc(Ss), where Pc is capillary pressure. In addition, q is flux
of the fluid, ϕ and K are porosity and permeability of the medium, k(S) is the
relative permeability, µ and ρ are viscosity and density of the fluid, g is the
gravitational acceleration, D is the depth under the soil’s surface, and c ∼ χΩr

is the coefficient of the exchange term between root and soil. Of main interest is
the nonnegative exchange coefficient c = c(x) with supp c = Ωr.

Suppose now that the initial and general boundary conditions are

Ps(x, 0) = Ps,init, x ∈ Ωs,

Ps(x, t) = −Pc(Ss,D), x ∈ ∂Ωs,D; qs · η = qs,N , x ∈ ∂Ωs,N ,

Pr(x, t) = Pr,D, x ∈ ∂Ωr,D; qr · η = qr,N , x ∈ ∂Ωr,N .

When d = 1, the model (7) is derived from first principles in [4] and inde-
pendently in [27], making several modeling assumptions, and sharing principles.
Model in [4] emphasizes the geometrical complexity of the root-soil exchange,



10 Peszynska, Fara, Phelps and Zhang

and works in potentials Ps

g as variables. The idea is to set up the fluid exchange
between root and soil in a simple manner and avoid discretization at the scale of
individual xylems through which the actual water transport takes place. To this
end, the radial character of the flow to the roots, the low conductivity of the in-
ner portion of the roots (endodermis), along with high permeability of epidermis
and medium permeability of cortex, are assumed. The models are of overlapping
continua type (3) but nonlinear and without the overall periodic assumption. In
[27] this model is extended to allow subroots and root network with stochastic
updates to this d = 1 model, and predict that dry and wet zones will develop in
the soil as a result of water uptake by plant roots.

In our approach we work directly with a complex root geometry within a
d ≥ 1 domain.

4.1 Computational model specifics and challenges

First we consider c = 0. The main well known difficulty when working with
Richards equation in any dimension is the nonlinear degenerate parabolic char-
acter of the problem due to the behavior of k(S), Pc(S). We illustrate this be-
havior using the well known algebraic model based on experimental data known
as van-Genuchten-Mualem model

Pc(S) =
1

α
(S− 1

m − 1)
1
ν , , k(S) = Sϵ

[
1−

(
1− S

1
m

)m]2
. (8)

The set of parameters ϵ = 1
2 , m = 1− 1

ν , α = 10−4, and ν = 2.237 characterizes
fine soil; see this and others collected in [22]. A change of variables in (7a) reveals
that an equivalent model reads

∂tS −∇ · (Ds(S)∇S) +∇ ·As(S) = 0.

Here Ds(S) ≥ 0 but degenerates to 0 when S ↓ 0. Thus the model features a
degenerate behavior, while the nonlinear advective term A(S) when D ̸= const
requires careful treatment of this hyperbolic term. Due to these difficulties, the
use of lower order numerical scheme such as that in Section 2.1 is appropriate,
and so is the use of upwinding. Furthermore, the choice of primary unknowns is
delicate, since Pc(S) is unbounded near S ↓ 0, but P−1

c (p) is unbounded when p ↓
0. These features prompted various analyses of numerical schemes and delicate
discussion of nonlinear solvers; see, e.g., [5, 25, 21, 22]. In particular, [5, 25] prove
O(h + τ) error estimates to the mixed finite element method, but some of this
work requires regularization and strong assumptions on smoothness. In turn, [22]
evaluates the fully implicit CCFD schemes for nontransformed, nonregularized
models with strong heterogeneities and locally large fluxes, and test variants of
averaging, implicit or semi-implicit solutions, and different choices of primary
unknowns.

When c > 0, the computational model for RS system features an additional
difficulty, since most likely |Ωr| << |Ωs|. With the approach we outlined in
Section 2.1, this is, however, not an issue. We are able to simulate successfully
the flow of water in the overlapping continua system; this is illustrated by our
examples below.
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4.2 Examples for RS model

Parameter ϕs Ks Kr µ ρ g c τ h
[m2] [m2] [Pa · s] [kg/m3] [m/s2] [s] [m]

Value 0.4 10−11 5× 10−12 10−3 103 9.8066 10−10 600 1/50
Table 3. Parameter values for Example 5.

Example 5. We consider Ωr = Ωs = (0, L) and L = 1 m, other data in Table 3,
and k(S), Pc(S) given by (8). To model evaporation and precipitation at the
surface of the ground, we impose Neumann boundary conditions at x = 0, and
at x = L:

qs(0, t) = qs,top, qr(0, t) = qr,top, qs(1, t) = 0, qr(1, t) = 0, (9)

qs,top =

− 4× 10−7, if t ∈ (0, 1.2] ∪ (3.5, 4] [days],
2× 10−7, if t ∈ (1.5, 2] [days],
0, otherwise,

qr,top =

{
− 10−8, if t ∈ (0, 1.2] ∪ (1.5, 2] ∪ (3.5, 4] [days],

0, otherwise.

The simulation results in Figure 4 show response of the system to the infil-
tration through boundary (9).

Fig. 4. Numerical solutions in Example 5 of Ps, Ss, and Pr over 4 days. The saturation
Ss and pressure Ps in soil rise when there is precipitation, and drop due to the root’s
absorption of water from the soil under dry weather.

Example 6. We continue with the physical data from Example 5 but in Ωs =
[0, 1] × [0, 1] and grid 120 × 80 over t ≤ T = 3600 s. We simulate infiltration
with the Richards–Darcy model, starting from initial (pressure-saturation) equi-
librium (by setting qs = qr = 0, Ps = Pr, and Ps,top = Pr,top = 0), adding
water only from left top portion of the domain, and no flux boundary conditions
elsewhere. We use the coupling coefficient c = 10−8.
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The simulations results plotted in Figure 5 confirm that the pressure in root is
well equilibrated with Ps. The water from the left boundary eventually reaches
the root. The structure of the solutions features sharp fronts and, as usual for
Richards equation, is very rich. The system strongly depends on c.

Pr|t=2400 Ps|t=2400 Ss|t=2400

Fig. 5. Numerical solution for Pr, Ps, and Ss, from Example 6. For Ps, Ss, the contour
∂Ωr is superimposed over Ωs to guide the eye. Vertical axis is aligned with gravity.

Summary: We find the RS model based on Richards-Darcy equations quite
complex. As long as its Richards equation is well calibrated, the model is robust.
In the coupled system, there is high sensitivity to the coefficient c.

5 Mixed-use traffic flow on campus

Traffic flow models can have continuum (PDE) or discrete (individual based
model) form. The former have gained interest since the LWR models [17] and
present interesting hyperbolic structure of the underlying PDE, the (macro-
scopic) transport model ut + ∇ · f(u) = 0 (supplemented by inflow boundary
conditions) for the average density u (of cars) with flux function f(u), e.g.,
f(u) = (1 − u

umax
)uv. However, these traffic models for cars are inherently

one-dimensional, since the vehicles can only travel along trajectories confined
to paved roadways. In addition, the spatial scale is much larger than the av-
erage length of of car, individualistic behavior is not preserved. In contrast,
microsopic models do account for individualistic behavior, but come with a high
computational cost and complexity. Individual based models are important for
emergency scenarios such as during tsunami or wildfires as well as for urban and
architectural design, to determine possible congestion patterns. Large network
traffic models can become unmanageable in its complexity, and efforts to manage
involve upscaling to a model resembling “Darcy flow” [9].

Computational models of traffic scenarios start with an image such as in Fig-
ure 1 (c) which describes the network subset of a domain Ω ⊂ R2. One possible
model for traffic on this network augments the LWR flux with −K∇u, where
K is a diffusion tensor and v captures the preferred direction of motion; both
are based on the mean value and standard deviation of transition probabilities
between sites at each time step [9]. However, this approach does not include
coupling between the different species nor allow travel off the network.
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The model we build accounts for the traffic on and off the network ΩP as well
as nonlinear interactions between the species. Our simulations might aid in the
optimal design and control of robot trajectories as well as of campus pathway
design and monitoring.

5.1 Background and model development

We consider a traffic problem involving several species numbered m = 1, 2, . . .M .
We let u = (u1, . . . uM ) and f(u) = (f1(u), . . . fM (u)), where u is the vector of
average densities of each species and f is the flux function. The M = 3 species
are human pedestrians, humans on bicycles, and autonomous delivery robots.
We set fm(x, t;u) = vm(x, t;u)f̄m(u). to separate the trajectories vm(x, t;u)
from traffic awareness modelled by f̄m(u). While robots or humans on bicycles
can only travel on paved paths within some ΩP ⊂ Ω, others can alter their
trajectory and veer off ΩP when they are aware that the current traffic situation
leads to a (possible) congestion.

Flow and trajectories: Each species m has a well defined fixed trajectory
given by the velocity field vm = vm(x), x ∈ Ω. Most can only move on the paved
paths, i.e. so that supp vm ⊂ ΩP . Typically most species are aware of others and
may alter their speed locally in time, but most cannot alter their trajectories.
For some species, say m′, we allow v′m = v′m(x, t, (um)m) with supp vm′ \ΩP ̸= ∅
depending on the current conditions.

To determine a trajectory vm, assume that species m intends to get from
some inlet point xinm ∈ ∂Ω to some outlet point xoutm ∈ ∂Ω. We solve a pseudo-
potential problem ∇ · vm = 0 for ψm so that vm = −Km∇ψm. We set ∂ΩD =
Γin∪Γout where each Γin, Γout is a small region of ∂Ω around the inlet and outlet,
respectively, and require the Dirichlet condition ψ|Γin = 1, and ψ|Γout = 0, and
we require Neumann condition vm ·n|∂ΩN

= 0 on ∂ΩN = ∂Ω \ ∂ΩD. Solving for
vm is a well-posed problem with a scheme for “flow” from Section 2.1.

It remains to set up the species specific “mask” K to determine these paths
preferentially and allow, e.g., to set up alternative pathways to stairs, or set
up ad-hoc detours. In the simplest scenarios we simply set K|ΩP = κm and
K|Ω\ΩP = 0, and κm can be calibrated to an average speed of species m. Also,
the species “aware” of traffic are allowed to alter their trajectory with Km =
Km(x, y, (um)m) built heuristically. For example, if at some point (x, y) ∈ ΩP

we have a traffic congestion in some area ΩC , we would set Km|ΩC = 0 and
Km|Ω\ΩC = κm, and recalculate vm to avoid ΩC .

The transport model: With fm = vmf̄m and a given vm, f̄m(u) can be a
linear or nonlinear flux function, e.g., the LWR model.

Scheme: To approximate the flow and transport solutions, we follow Sec-
tion 2.1 and [8, 17] and apply Godunov’s method, under CFL condition. For
M > 1 the situation is more complicated but for the simple case studies we
develop the Godunov method suffices. For the simulations in d = 1, we report
grid refinement studies; we also confirm grid error for the nonlinear problems to
be O(

√
h) (not shown).
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5.2 Examples of simulations with T model

To build up our intuition, we illustrate the coupled dynamics of the M = 2
species with Ω = (0, 2), assuming they travel in the same direction. The pedes-
trian density is u1, and that of robots is u2. We construct the flux functions
heuristically to model the interaction between the species, and in particular
“traffic awareness”. Species 1 (humans) do not feature awareness of other species
and f̄1(u) = u1(1 − u1) (LWR model), but f̄2(u) = v2(u1)u2 where the robots
slow down considerably when they notice humans, with

v2(u1) =

 0.5, u1 < 0.5
−4u1 + 2.5, 0.5 ≤ u1 ≤ 0.6

0.1, u1 > 0.6.
(10)

Fig. 6. Illustration for Example 7: plots at at time t = 0.75 including grid refinement
for u2 with h2,1 = 5 · 10−3, h2,2 = 1.25 · 10−3, and h2,3 = 3.125 · 10−4 with finest grid
hi,f = 7.8125 · 10−5 for i = 1, 2.

Example 7. We prescribe uinit1 (x) = χ[0.6,0.7](x) and u
init
2 (x) = 0.1χ[0.4,0.8] to il-

lustrate the traffic flow and “traffic awareness”: the robots start ahead, alongside
and behind human pedestrians on the 1d network; see Figure 6.

We see that u1 feature a rarefaction typical in LWR traffic flow models [17].
Also, the robots follow linear advection away from pedestrians, but develop two
traveling waves for robots ahead and behind the humans according to (10). The
snapshot at t = 0.75 shows that u2|[0.5,0.65] matches linear advection, but when
u1 > 0.6, the robots slow down to v2(u1) = 0.1 causing a large spike.

Example 8. Now we consider the campus network with ΩP shown in Figure 1 (c).
We simulate mixed dimensional network traffic on ΩP with the occasional traffic
off ΩP . We design trajectories of the species as shown in Figure 7, and we
simulate the transport as shown in Figure 8. In one variant, (a) humans stay on
pavement. In another, (b) humans venture off the path to avoid congestion.
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(v3(x)) (v2(x)) (v1(x),(a)) (v1(x),(b))

Fig. 7. Trajectories vm in Example 8 for u3 (bicycles), u2 (robots) and u1 (humans)
on (a) paved paths and (b) on the grass due to congestion.

(a) (b)

Fig. 8. Results of Example 8 at time t = 0.5 show the average human concentration
u1 in case (a). In case (b) due to congestion by u2 and u3 the pedestrians alter v1 off
the network ΩP to avoid the bottleneck.

Summary: The computational framework of overlapping continua allows to
simulate complex traffic patterns involving species of very different trajectories.
More work is needed to identify the data for such simulations and applications
to the design of campus network and of, e.g., robot software.

6 Summary and outlook

The implementation for each of the applications H, RS, and T is efficient and
based on a common robust CCFD framework which allows for approximate en-
forcement of Dirichlet conditions and easy accounting for complex domains. The
model approximations and enhancements were easily introduced; we also identi-
fied critical model components and parameters. For H, it is the cb coefficient, and
its role in the vasoconstriction. For RS, it is by far also the exchange coefficient
c. For T, it is the local velocity, the mask K, and the interaction models between
the species. These elements should be validated with data.

However, while parameter identification based on experimental or imaging
data is fairly easy for models involving scalar unknowns, it remains quite chal-
lenging for coupled systems, where identifying proper relationships and models
can be difficult. The prototype models that we presented can serve as useful
proof-of-concept first steps to identify the main features of dynamics.
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