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Abstract In this paper we consider a nonlinear heat equation describing thawing
and freezing of permafrost soils with the time varying surface boundary condition.
We compare two schemes for time discretization: a conservative fully implicit one
and a non-conservative sequential approach which uses the so called apparent heat
capacity. We show that the differences between the schemes can be significant if
the time step is large and when the inputs to the problem change abruptly. We also
show that a simple variant of sequential scheme with arithmetic average and an
extra iteration does not give consistency but gives better agreement with the implicit
approach.

1 Introduction

In this paper we discuss two time-stepping schemes denoted by (IMP) and (SEQ)
for a model of thawing/freezing of soils in permafrost regions (e.g., in the Arctic);
we follow the physical models and scenarios known from geophysical literature
[4,17,12]. In particular, we are interested in realistic scenarios when the soils respond
to the daily, seasonal, and long-term variation of the temperature at the ground
surface, and these variations depend on the atmospheric temperature and other
physical parameters [2]. We use our earlier work on conservative spatial discretization
combined with implicit time stepping (IMP) described in [1, 10, 16]. In this paper we
also consider a different non-conservative time stepping scheme (SEQ) which is easy
to implement and is quite popular in the geophysical literature. We compare these
two algorithms (IMP) and (SEQ) and discuss their pros and cons for the scenarios
involving highly variable boundary conditions.
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Specifically, we consider a doubly nonlinear heat equation posed in a soil region
Q c R? solved for the enthalpy w, temperature u, and liquid fraction y

0y (w) = V- (k(u)Vu) =0, x € Q,1 > 0. (1a)
w=a(u)=C(u)+ Lny(u), (1b)

where the constitutive empirical relationships for the heat enthalpy a (u), its capacity
portion C(u), liquid fraction y (u), and heat conductivity k (u), respectively, will be
given below. Also, L, iy are positive parameters denoting the latent heat and porosity.
The model is completed with the time-dependent Dirichlet boundary conditions on
the Dirichlet portion I'p of the boundary 9€, and with Neumann conditions on its
complement, and initial conditions

ulr, =up; kVu-vlga\r, = gn;t >0, (lc)
u(x,0) = Uinir (x), x € Q. (1d)

The primary difficulty is the double nonlinearity of the model and the lack of
smoothness of C(u), x(u) and k(u) at u = 0. (Other difficulties arise when the soil
is heterogeneous [16]). In general, C(-) is continuous monotone strictly increasing
and Lipschitz on R and differentiable except at u = 0. Also, y(u) is a continuous
monotone nondecreasing Lipschitz function with values in [0, 1] and is smooth
except at u = O with a large gradient as u — 0~. These properties make a(u)
a monotone increasing piecewise smooth function, with an inverse a~! featuring
similar properties. In turn, k() is bounded, uniformly positive and continuous.

In consequence, the model (1) has to be understood in terms of distributions, and
its weak solutions to (1) feature a free boundary S = {(x, 7) : u(x, tr) = 0}. Generally,
the solutions to (1) are smoother than those to Stefan problem [14] where y may be
discontinuous or multivalued at u = 0; see the simulations in the supplement to [10].

Remark 1 In some applications focused literature [4] y () is considered discontinu-
ous or multi-valued similarly to Stefan problem, and a/(-) and k(-) follow suit. The
(IMP) scheme works well with these as we show in [1], but the consideration of
(SEQ) raises questions; a discussion of these is left for future work.

The numerical schemes for (1) present challenges well documented in our work
[1, 10, 16] on conservative discretizations involving spatial discretization with low-
est order mixed finite elements on rectangular grid implemented as CCFD (cell-
centered finite differences), combined with fully implicit approaches using w or u
as the primary unknowns. The mentioned conservation properties are essential in
heterogeneous soils [16] as well as when the thermal model is extended to be a part
of coupled thermal-flow (TpH) model presented in [8] or thermal-flow-mechanical
model (TpHM) in [17, 15].

However, the fully implicit approach is complicated, because an explicit closed
form of a(u) and of @ '(x) may not be available or might be computationally
expensive to evaluate. These difficulties are likely the reason why the schemes
reported in most of the applications literature including [12, 2] apply the chain rule
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to write d;w = cqpp(u)0;u, with the “apparent heat capacity” cp, () so that

da dC dy
Capp(u) =—=—+Ln—

u
du _ du du’“ #0; a(u) :/0 Capp(0)dv. ?)

The issue is that ¢4 is discontinuous at u = 0; it also features a sharp gradient
as u — 07; see Figure 1. The associated numerical difficulties have not been well
studied in the applications literature with a notable exception of [4] who write
qw = %6,u + Lnd; y and treat g,y implicitly. However, perhaps partly due to
their non-conservative choice of spatial discretization (nodal finite elements), the
results in [4] still feature some oscillations seemingly related to the mass lumping
combined with the use of ‘é—g and the associated lack of maximum principle. In turn,
the presentation of the numerical schemes in other applications papers is either absent
or is somewhat obscured by the use of field-specific vocabulary and notation specific
to each paper and their objectives, and is missing details on the discretization; only
[4] presents results corresponding to more than one scheme.

It is the purpose of this paper to compare the implicit (IMP) and the sequential
scheme (SEQ) with ¢,p,, on simple examples for which we demonstrate the simi-
larity and differences and advantages and disadvantages, while we keep the spatial
discretization conservative.

Outline. In Section 2 we provide details of the model (1) and its numerical
discretization. In Section 3 we compare the implicit and sequential schemes. In
Section 4 we conclude and present future and current work.

2 Details of Model (1) and Numerical Discretization

We now make precise the data a/(-), k(+) in (1), which completes the presentation of
the model. We also define the numerical schemes. In Section 2.4 we also define an
algorithm to determine the surface boundary conditions depending on the terrain.

2.1 Constitutive Data

We define y(-) first. We adopt the choice from [17], and refer to [11] for a compre-
hensive list of other y(-) called SFC. Given some b > 0, we set

y(@) =1,u>0, and y(u) = e, u < 0. 3)

Next we use thermal soil data from [4, 2, 1, 10, 16] and use volumetric SI units; see
[8] for a detailed comparison and a discussion of assumptions and physical units.
We assume the soil porosity 7 = 0.32 is fixed and let L ~ 3.3 x 108 so L ~ 108.
The volume fractions of rock and water components are denoted by v, = 1 — 5 and
n=n(1-x+x1) = vi+v; where v; = n(1 — x;) is the frozen volume fraction,
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Fig. 1 Plot of a(u), capp(u) = % (left axis, scaled by 10%) and k(u) (right axis, scaled by
10~2) from Section 2.1.

and v, = ny; is the unfrozen volume fraction. We apply arithmetic weighting to the
heat capacities building from the thermal properties of rock, ice, and water [2, 4, 10]
with C(u) = fou c(v)dv, where cy = nc; + (1 —=n)cy, ¢y =nc; + (1 = n)c, and

cu)=cr+xu)(cu —cy); c1=4.19x 10%, ¢; = 1.94 x 10%, ¢, = 2.36 x 10°,
The heat conductivities are weighted similarly
k(u) = kyve + kpvi(u) + kivi(u); k; =0.58, k; =2.30,k, = 1.95.

Next we multiply (1) by g, rescale ¢, = ;—‘l, and set the time unit 1 to correspond
to 10%[sec] ~ 11.57 [day] which fits the characteristic time of freezing/thawing.
(We keep the same notation 7). We also set 12,, = 10° :;’i for every p = r,i,l. We

have now é; =221 x 10726, =2.94 x 1072, ky = 2.06 X 1072, k,, = 1.51 X 1072,

u 6 ~ -~ ~
2 = (6 - ¢p) / x(@)dv+Eput x(u); S = Kyt (ky = kp)x(u). (4)

We illustrate in Figure 1: y(u), k(u), a(u) are continuous, but a(u) is not differ-
entiable at u = 0, and features a large gradient as ¥ — 0~ with a discontinuous
Capp(u). In turn, k(u) is nonnegative and bounded.

2.2 Fully Implicit Conservative Scheme (IMP) for (1)

We consider a rectangular grid covering Q, with midpoints (x j)/!:l’ with uniform

spacing with parameter 4 for simplicity. We note the region need not be rectangular,
and the numbering j = 1,...J need not be of consecutive cells. We also use fully
implicit backward Euler scheme at 2. t", ..., with time step 7 considered
uniform for simplicity of presentation, © = 0 and "+ = ¢ + 7. We approximate the
solutions u(x;, ") = U;‘, and similarly W'.’ ~ w(xj,t"), Y;’ ~ x(x;,t"). These are
collected in U" = (U7);, W" = (W});, Y" = (Y7);.
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The fully implicit formulation reads: at every time step ¢, solve

Lowr —wrh +AUmu =G 5)
Wi =a(U}), Y;=x(U}), j=1...J.

Here A(U) is a symmetric positive definite matrix and A(U)U approximates
—V - k(u)Vu with the boundary condition (1c) included in the term G"; see [1, 16]
for details. We also note that the mass matrix in (5) is the rescaled identity matrix
which is formally absorbed under A. For n = 0 we discretize (1d).

The system (1) is nonlinear semi-smooth and must be solved by iteration, e.g.,
by semi-smooth Newton using either W or U as a primary unknown. We refer to
[16] for a discussion of advantages and disadvantages, and to [9] for analysis of a
more general model involving non-equilibria and hysteresis. In particular, resolving
WJ'.’ = oz(U;‘) or U;? = a‘l(W}‘) requires an explicit formula for a(u) or its inverse,
or a local nonlinear solver. This may be computationally expensive.

Remark 2 Obtaining closed form algebraic formulas for ! (w) and even for a(u)
may be unfeasible, e.g., if y(u) is given by e~buw? [3], or if there are further nonlin-
earities, e.g., when ¢; = ¢;(u) [7, 2]. Further difficulties arise when the soil is not
fully saturated and when the model accounts for the presence of air.

These difficulties motivate an alternative approach to (IMP) based on (2).

2.3 Sequential Formulation (SEQ) with c,p, in (2)

To use (2), we define the diagonal matrix Cyp,(U) With Cypp, i (U) = capp(Uj)
and replace (5) with a nonlinear problem solved by iterationm = 1,... M

%Capp(U*)(Un’m _ Un—l) + A(Un,m—l)Un,m — Gn. (6)

To choose U*, we can set U* = U"~! so that (6) is linear. Alternatively we can use
U* = U™ 1 anditeratem = 1,2, ... M, with U™? = U"~!, The choice of arithmetic

n,m-1 n-1 . .
average U™ = % with M = 2 works well as a predictor-corrector.

Remark 3 Integrating ft,t:l dw(-, s)ds ~ W* — W"~! explains why (5) is conser-
vative, but also reveals that (6) is inconsistent and not conservative. This follows
because there is no U* so that W" — W"~! equals c,p, (U)(U" = U™1), and no
specific choice of U* can make the solutions to (6) consistent with (5).
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2.4 Surface Boundary Condition

In our simulations we need to define up(x,1),x € I'p,t > 0 in (1c). Specifically,
we require the knowledge of the surface temperature us(x,t) = up(x,t)|r, where
I's ¢ 0Q represents the surface of the soil.

To this aim we follow closely [2] who postulate that at every point x,t,
Tso(x,1) [°K] = us(x,1) [°C] + 273.15 depends on the atmospheric temperature
T,(x,t) [°K] and on a variety of physical conditions including the air pressure
and the temperature dew point, the surface albedo @(x,t), and other parameters
X1, X2, ... X9 which we derive from the formulas in [2], and other physical data
in [5, 6]. Given a fixed «, T,;, we find the surface temperature 7, as the root to

Ta
2016
[, Ty, Tso) = (1 =) Xy + Xo(1 - e s )Ta4 + X4Ts04

+ g7y [X6(Ta = Tso) + X711 + X3(Tso = Xo) = 0, (7)
1+X5T—u

where X; = 1361, X, = 6.12x1078, X3 = 3.72, X4 = =5.10x1078, X5 = 39.24, X =
48.97, X7 = 16095.745, Xz = —1.02, X9 = 272.

The function f(a, T, Ty, ) is quite complicated and on a first glance it is not clear
whether it is even well defined, and if it has a root. Figure 2 shows its plot for three
choices of albedo parameter a corresponding to the snow covered land, vegetation
covered land, and water covered land, respectively. Next we collect atmospheric data
for T, (x, t) from [13]; for this paper we choose the data for October 2023 in Gulkana,
Alaska. Then, for each T, (x,t), a(x,t) we find the corresponding Ty, (x,?) as the
root of (7). In practice, we find Ty, (x, t) by interpolating a look-up table calculated
off-line for a collection of {7, a}.

Surface function
Ta=0 (circles), Ta=-11 (squares)

0 Solution to surface function equation

v snow a=0.9 e B

o1
2000 2 5H = veg. a=025 ot
® * water 2=0.08| L
o e 8 O [I—"reference
% 55
-2000 ~@-snow 0=0.9 |\ @
-o-veg. 0=025) & 10
- water «=0.08 E 5
_ 2.
4005 -10 5 0 5 15 -10 5 0 5
temperature [C] air temperature T&l [C]

Fig. 2 Illustration of Section 2.4, with all temperature given in [°C]. Left: plot of f(a, Ty, Tso)
given by (7) for T, = 0 (circles) and 7, = —11 (squares) and three choices of albedo, over a range
of Ts,,, with the roots for each @ and T, marked with red circles and squares. Right: a scatter plot
of Ty, corresponding to the three choices of albedo for a range of input air temperature 7, values
found from [13]. It appears that T,, for snow is close to T, but that for water and vegetation is
about 4 [°C] larger than T,.
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3 Simulation Results

Now we illustrate the difference between U/ * and USFC when these respond to
the varying surface boundary conditions.

3.1 Computational Results for 1D

Our first example in d=1 shows that the U SEQ YSEQ gre close to UIMP YIMP eyep
if the boundary condition is rough; the closeness improves as the time step 7 |. We
use Newton’s method for the IMP scheme (5) with absolute tolerance 1078, and the
simple iteration with M =2 and U* = Un‘“TU'H in the SEQ scheme (6).

Let Q= (0,1),J =50, and T = 3 (about 33 [days]), and consider

(ROUGH) ttjniy (x) = =5,u(0,7) =4 u(1,1) = -5. (8a)
-5+4 <1

(SMOOTH) umi,u):—s,u(o,r):{f A tl‘ 7 u(l) =5, (8b)
9 < ;

where up (t) in (8a) and (8b) feature a discontinuity at 7 = 0 and ¢ = 1, respectively.
We simulate the problem with (IMP) and (SEQ) schemes and plot the solutions in
Figure 3. We also study AU/, = [|[U™MP (-, 1) = USEC(-,1)||co-

For (8a) we see that the AU|, is small when 7 is small and M = 2. Specifically,
AU|;=1=0.74,0.35,0.06 for M = 2, and AU|;-;=1.12,0.62,0.33 for M = 1, and
T =0.,0.2,0.1, respectively. For (8a) we see negligible AU|,=; but a considerable
size of AU|;>1,m=1 even when 7 = 0.5.

3.2 Computational Results for 2D and Surface Boundary Conditions

In our next example we simulate the case when the top boundary ug(x, ) depends
on the topography of the surface. We consider Q = (0, 1)? and use homogeneous
Neumann boundary conditions everywhere except at the top of the domain so that
I'p =Ts =(0,1) x {1}. The grid over Q is 50 x 40, and the time step is 1 [day].

We study the IMP) and (SEQ) schemes when the boundary conditions depend
on the location due to the topography of the domain as in Section 2.4. In particular,
we assume that 'y = I's N {x : x > 0.5} is in a marshy region covered by water
with the albedo @ = 0.08. The other half I'y,,,, = I's N {x : x < 0.5} is covered
by the snow with the albedo equal @ = 0.9. We also assume that the atmospheric
temperature changes over t € (0,31) [day] from —12 to 0. Based on Section 2.4
we hypothesize that ug(x, t) changes from —12 to 0 on I'y,,,4, and from -8 to 4 for
Twarer- We assume also that u;,;, (x) = —12.
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Rough boundary conditions with (8a); different M and 7
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Fig. 3 Results of Section 3.1: in the top two rows we plot U, Y|,=; for (8a) with M = 2,1. In
bottom two rows we use (8b) and plot U, Y|;= 2,3 for large 7 = 0.5.

We apply the (IMP) and (SEQ) schemes and find that both are robust. The
solutions are plotted in Figure 4. Newton’s scheme for (IMP) converges robustly, and
requires at most 4 iterations with relative and absolute tolerance set up as 10-° and
10712, respectively. The difference between the solutions to (IMP) and (SEQ) is not
large as seen from the plots. In fact we find AU|;=3; = 0.23.

4 Summary

In this paper we compare two time-stepping schemes: an implicit scheme (IMP)
and (SEQ) based on chain rule. We find that both schemes are robust, and with
small enough time step, the (SEQ) with arithmetic average produces results close to
those for (IMP). The difference between (IMP) and (SEQ) can be significant if the
boundary conditions change abruptly, such as when using realistic surface boundary
conditions.

More work is needed, in particular, to study the sensitivity of the solutions to the
surface boundary equation, and to consider (SEQ) when y is discontinuous.
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Solutions to (IMP) scheme
t=14[day] nt=14 Newt=4 [max=4]

Temperature Water fraction
0
0.8 o, 08
_06 4 06
£
6
04 0.4
-8
0.2 40 02
-12
0.20.4060.8 0.20.4060.8
x[m] x[m]
t=31[day] nt=31 Newt=4 [max=4]
Temperature Water fraction
e —————— 1
0
0.8 5, 08 0.8
_06 4 _06 0.6
£
-6
0.4 0.4 0.4
-8
0.2 40 02 02
-12 0
02040608 0.20.4060.8
x [m] x [m]
Solution to (SEQ) scheme
t=31[day] nt=31 Newt=2 [max=2]
Temperature Water fraction
0.8
_06
E
204
0.2
2
0.20.4060.8 0.20.4060.8
x [m] x [m]

Fig. 4 Illustration of simulation from Section 3.2 with the (IMP) and (SEQ) schemes with surface
boundary conditions. We show contour plots of U, Y (left and right, respectively) at time ¢ = 14

and ¢ = 31 days. The temperature is higher and water fraction is larger in the right portion of Q due
to the top boundary condition on I'y,q¢e, higher than on I'g;64.
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