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Abstract

The use of large-scale vision-language datasets
is limited for object detection due to the neg-
ative impact of label noise on localization.
Prior methods have shown how such large-scale
datasets can be used for pretraining, which can
provide initial signal for localization, but is
insufficient without clean bounding-box data
for at least some categories. We propose a
technique to “vet” labels extracted from noisy
captions, and use them for weakly-supervised
object detection (WSOD), without any bound-
ing boxes. We analyze and annotate the types
of label noise in captions in our Caption Label
Noise dataset, and train a classifier that pre-
dicts if an extracted label is actually present
in the image or not. Our classifier general-
izes across dataset boundaries and across cate-
gories. We compare the classifier to nine base-
lines on five datasets, and demonstrate that
it can improve WSOD without label vetting
by 30% (31.2 to 40.5 mAP when evaluated
on PASCAL VOC). See dataset at: https:
//github.com/arushirail/CLaNDataset.

1 Introduction

Freely available vision-language (VL) data has
shown great promise in advancing vision tasks
(Radford et al., 2021; Mahajan et al., 2018; Jia et al.,
2021). Unlike smaller, curated vision-language
datasets like COCO (Lin et al., 2014), captions on
the web (Ordonez et al., 2011; Desai et al., 2021;
Changpinyo et al., 2021) only partially describe the
corresponding image, and often describe the con-
text, which could include objects that do not appear
in the image. We hypothesize this poses a greater
challenge for weakly-supervised object detection
(WSOD) than learning cross-modal representations
for image recognition (e.g. as in CLIP). WSOD
involves learning to localize objects, i.e. predict
bounding box coordinates along with the corre-
sponding semantic label, from image-level labels
only (i.e. using weaker supervision than the outputs
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Figure 1: Examples of noisy extracted labels (under-
lined) from our Caption Label Noise dataset. We cat-
egorize types of similar context present instead of the
underlined object, as well as types of visual defects and
linguistic indicators that are useful for detecting noise.

expected at test time). So, noise could compound
the challenge of implicitly learning localization.
WSOD has primarily been applied (Ye et al., 2019a;
Fang et al., 2022) to smaller, relatively cleaner,
paid-for crowdsourced vision-language datasets
like COCO (Lin et al., 2014) and Flickr30K (Young
etal., 2014).

We argue that extending WSOD from paid-for
captions to large-scale, in-the-wild captions is not
trivial. Annotators write captions that faithfully de-
scribe an image, however, web captions go beyond
a descriptive relationship with their corresponding
image. For example, a word can be used literally
or metaphorically (“that was a piece of cake”) or
have multiple senses, of which only one sense is
relevant to the object detection vocabulary. A cap-
tion could also share a story and include context
that goes beyond the visual contents of the image;
this context could mention an object name within
location names or describe occluded or unpictured
interactions with objects as shown in Figure 1. This
richness of language is relevant as narration for
the image but not as supervision for the precise
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localization of objects. On the visual side, user-
uploaded content frequently features diverse object
presentations, including intriguing atypical objects,
hand-drawn objects, or photos taken from within
vehicles (“in my car”).

We refer to image-level labels extracted from
captions, that are incorrect (object not present in the
corresponding image), as visually absent extracted
labels (VAELs). We show VAELSs pose a challenge
for weakly-supervised object detection.

To cope with this challenge, we propose VEIL,
short for Vetting Extracted Image Labels, to di-
rectly learn whether a label is clean or not from
caption context. We first extract potential labels
from each caption using substring matching or ex-
act match (Ye et al., 2019b; Fang et al., 2022). We
then use a transformer to predict whether each ex-
tracted label is visually present. We refer to this
prediction fask as extracted label vetting. We boot-
strap pseudo-ground-truth visual presence labels
for each extracted label or object mention using
an ensemble of two pretrained object recognition
models (Jocher et al., 2021; Zhang et al., 2021),
for a variety of large-scale, noisy datasets: Con-
ceptual Captions (Sharma et al., 2018), RedCaps
(Desai et al., 2021), and SBUCaps (Ordonez et al.,
2011). While these models are trained on COCO
and similar datasets, they generalize well to estimat-
ing extracted label visual presence on in-the-wild
VL datasets; however, their predictions are better
used as targets for VEIL, rather than directly for
vetting. Once we vet the extracted labels, we use
them to train a weakly-supervised object detector.

We collect and release the Caption Label Noise
(CLaN) dataset with annotations on object visibility
(label noise) and object appearance defects (visual
noise such as atypical appearance) over three in-the-
wild datasets. To support using language context
to filter object labels, we annotate linguistic indica-
tors of noise that explain why an object is absent
from the image but mentioned in the caption. Our
label vetting method outperforms nine diverse base-
lines, including standard cross-modal alignment
prediction methods (CLIP), adaptive noise reduc-
tion methods, pseudo-label prediction, simple rule-
based methods, and no vetting. This means VEIL
produces cleaner WSOD training data which leads
to an improvement of +10 mAP over data cleaned
using Large Loss Matters (Kim et al., 2022) and +3
mAP improvement over using CLIP (Radford et al.,
2021) for filtering. Our findings reveal that naively
combining noisy SBUCaps supervision with clean

labels from Pascal VOC-07 degrades performance
(42.06 mAP) versus using only clean labels (43.48
mAP); however, vetting with VEIL improves per-
formance to 51.31 mAP. Lastly, VEIL’s gains per-
sist across datasets, object vocabulary, and scale.

To summarize, our contributions are:

1. VEIL, a transformer-based extracted label, vi-
sual presence classifier, and

2. constructing the Caption Label Noise dataset.

We find that:

1. VEIL outperforms language-conditioned,
visual-conditioned, and language-agnostic la-
bel noise correction approaches in vetting la-
bels from a wide set of in-the-wild datasets
for weakly-supervised object detection.

2. VEIL enables effective combination of ex-
tracted noisy and clean labels.

3. Even when VEIL is trained on one dataset/-
category, but applied to another, it shows ad-
vantages over baselines.

2 Related Work

Vision-language datasets include crowdsourced
captions (Young et al., 2014; Lin et al., 2014;
Huang et al., 2016; Krishna et al., 2016) and alt-
text written by users to aid visually impaired read-
ers (Sharma et al., 2018; Changpinyo et al., 2021;
Radford et al., 2021; Schuhmann et al., 2021) are
widely used for vision-language grounding due to
abundance and high visual-text alignment. There
are also large in-the-wild datasets sourced from so-
cial media like Reddit (Desai et al., 2021) and user-
uploaded captions for photos shared on Flickr (Or-
donez et al., 2011). We show the narrative element
found in these in-the-wild datasets, captured by the
linguistic cues we investigate, impact the ability to
successfully train an object detection model.
Weakly-supervised object detection (WSOD)
is a multiple-instance learning problem to train a
model to localize and classify objects from image-
level labels (Bilen and Vedaldi, 2016; Tang et al.,
2017a; Wan et al., 2019; Gao et al., 2019; Ren et al.,
2020; Shao et al., 2022). Cap2Det was the first
work to leverage unstructured text accompanying
an image for WSOD by predicting pseudo image-
level labels from captions (Ye et al., 2019b; Unal
et al., 2022). However, Cap2Det cannot operate
across novel categories as it directly predicts image-
level labels and aims to correct false negatives, not
visually absent extracted labels. Detic (Zhou et al.,
2022) uses weak supervision from ImageNet (Deng
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et al., 2009) and extracts labels from Conceptual
Captions (CC) to pretrain an open vocabulary ob-
ject detection model with a CLIP classifier head.
While these approaches succeed in leveraging rel-
atively clean, crowdsourced datasets like COCO,
Flickr30K and ImageNet, both see lower perfor-
mance in training with CC (Unal et al., 2022; Zhou
et al., 2022). Other prior work (Gao et al., 2022)
uses a pretrained vision-language model to gener-
ate pseudo-bounding box annotations, but always
requires clean data (COCO), and does not explicitly
study the contribution of in-the-wild datasets.

Vision-language pre-training for object detec-
tion. Image-text grounding has been leveraged
as a pretraining task for open vocabulary object
detection (Rahman et al., 2020a,b; Zareian et al.,
2021; Gu et al., 2022; Zhong et al., 2022; Du
etal., 2022; Wu et al., 2023), followed by bounding
box supervision from base classes. Some methods
distill knowledge from existing pretrained vision-
language grounding models like CLIP and ALIGN
(Jiaet al., 2021) to get proposals (Shi et al., 2022)
and supervision for object detection (Du et al.,
2022; Zhong et al., 2022); however, these do not
study the effect of noisy supervision in a setting
without bounding box supervision. In contrast,
we perform weakly-supervised object detection
(WSOD) using noisy image-level labels from cap-
tions only. WSOD is a distinct task from open-
vocabulary detection and has the advantage of not
requiring expensive bounding boxes. We focus on
rejecting labels harmful for localization.

Adaptive label noise reduction in classifica-
tion. Adaptive methods reject or correct noisy la-
bels ad-hoc during training. These methods exploit
a network’s ability to learn representations of clean
labels earlier in training. This assumes there are
no clear visual patterns in the noisy samples corre-
sponding to a particular corrupted label, leading to
their memorization later in training (Zhang et al.,
2017). We instead show diverse real-world datasets
contain naturally occurring structured noise, where
in many cases there are visual patterns to the cor-
rupted label. Large Loss Matters (Kim et al., 2022)
is representative of such adaptive noise reduction
methods and we find that it struggles with noisy
labels extracted from in-the-wild captions.

3 Label Noise Analysis and Dataset

We analyze what makes large in-the-wild datasets
a challenging source of labels for object detection.

Datasets analyzed. RedCaps (Desai et al.,
2021) consists of 12M Reddit image-text pairs col-
lected from a curated set of subreddits with heavy
visual content. SBUCaps (Ordonez et al., 2011)
consists of 1 million Flickr photos with text de-
scriptions written by their owners. Captions were
selected if at least one prepositional phrase and 2
matches with a predefined vocabulary were found.
Conceptual Captions (CC) (Sharma et al., 2018)
contains 3M image-alt-text pairs after heavy post-
processing: named entities in captions were hy-
pernymized and image-text pairs were accepted if
there was an overlap between Google Cloud Vision
API class predictions and the caption.

Extracted object labels. Given a vocabulary of
object classes, we extract a label for an image if
there is an exact match between the object name
and the corresponding caption ignoring punctua-
tion. While this strategy will result in some noisy
labels, it represents how labels are extracted in prior
work (Ye et al., 2019b; Fang et al., 2022) due to the
absence of clean annotations. Using gold standard
labels (defined next), we calculate the precision of
the extracted labels. In-the-wild datasets exhibit
much lower extracted label precision, with SBU-
Caps at 0.463, RedCaps at 0.596, and CC at 0.737,
in stark contrast to COCO’s 0.948 (refer to Tab. 12
for no-vetting precision).

Gold standard object labels. We use image-
level predictions from a pretrained image recogni-
tion model to estimate visual presence gold stan-
dard labels (pseudo-ground-truth) because in-the-
wild datasets do not have object annotations. We
use an object recognition ensemble with the X152-
C4 object-attribute model (Zhang et al., 2021) and
Ultralytic YOLOvS5-XL (Jocher et al., 2021). This
ensemble achieves strong accuracy, 82.2% on SBU-
Caps, 85.6% on RedCaps, and 86.8% on CC (see
Appendix Sec. A.1: we annotate a subset to esti-
mate accuracy). For our analysis of visually absent
extracted labels (VAEL), we sample image-caption
pairs where the extracted label and gold standard
label disagree. Note we never use bounding-box
pseudo labels, only image-level ones.

Caption Label Noise (CLaN) dataset annota-
tions collected. To understand the label noise dis-
tribution, we select 100 VAEL examples per dataset
(RedCaps, SBUCaps, CC) and annotate four types
of information (abbreviations are underlined):

¢ (Q1: Label Noise) How much of the VAEL ob-

ject is present (visible, partially visible, com-
pletely absent); o
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Label noise Similar context

Visual defects

Linguistic indicators

Dataset %Vis YoPart % Abs %Co-occ %oSim %0ccl YoParts
S 21.5 | 20.0 | 58.5 | 425 13.2 | 61.6 | 46.3
R 29.2 | 12.8 | 57.5 | 15.0 4.0 21.8 | 22.2

CC | 328 |16.6 | 50.5 | 309 12.8 | 36.3 | 242

%Atyp | %Beyond | %Past | %Prep | %Non-lit | %Mod | %Sense | %Named
446 | 260 | 3.0 | 405 | 11.0 | 320 | 120 5.0
49.0 | 19.8 | 3.1 | 5.7 93 | 266 | 182 | 109
573 | 276 | 26 | 313 | 57 |250| 83 2.1

Table 1: Label noise distributions; “other”/uncommon categories skipped. Similar context is only annotated
for absent objects agreed by both annotators. Visual defects are annotated over examples with full or partial
visibility. Linguistic indicators are annotated over examples with visual defects or partial/no visibility. Annotation
abbreviations, Q1: Label noise as [Vis = Visible, Part = Partially visible, Abs = Absent], Q2: Similar context as
[Co-occ = Co-occurring context, Sim = Semantically similar object], Q3: Visual defects as [Occl = Occlusion, Parts
= Key parts missing, Atyp = Atypical], Q4: Linguistic indicators as [Beyond = Beyond the image, Past = Describes
the past, Prep = Prepositional phrase, Non-lit = Non-literal use, Mod = Noun modifier, Sense = Different word
sense, Named = Named entity]. Datasets abbreviations: [S = SBUCaps, R = RedCaps, CC = Conceptual Captions].

* (Q2: Similar Context) If the VAEL object
is completely absent, is there traditionally
co-occurring context (“boat” and “water”) or
a semantically similar object (e.g. “cake” and
“bread”, “car” and “truck”) is present instead;

* (Q3: Visual Defects) If the VAEL object is
visible/partially visible, is the object occluded,
have key parts missing, or have an atypical
appearance (e.g. knitted animal); and

* (Q4: Linguistic Indicators) What linguistic
cues explain why the VAEL object is men-
tioned but absent, e.g. the caption discusses
events or information beyond what the image
shows (see Fig. 1), describes the past (“ear-
lier that day, my dog peed on a flower”) or
the VAEL is: within a prepositional phrase
and likely to describe the setting not objects
(e.g. “on a train”), used in a non-literal way
(“elephant in the room”), a noun modifying
another noun (“car park”), a different word
sense (e.g. “bed” vs “river bed”), or part of
a named entity (see Fig. 1). Note multiple
linguistic indicators could be used to detect
the absent object.

Two authors provide the annotations, with Co-
hen’s Kappa agreements of 0.76 for Q1, 0.33 for
Q2, 0.45 for Q3, and 0.58 for Q4. We calculate
Cohen’s Kappa for each option and compute a
weighted average for each question, with weights
derived from average option counts across annota-
tors and the three datasets. We compute the average
disagreement as the number of disagreements di-
vided by the number of samples annotated for each
question per dataset, averaged over all datasets.
The average disagreement is 25.1% for Q2, 25.3%
for Q3, 14.6% for Q4. When comparing similar
context (“‘co-occ” or “sim”) vs “no similar context”

for Q2 and any defects (“occl”, “parts”, “atyp”) vs

“no defects” for Q3, disagreement is 28.7% for Q2,
17.0% for Q3. The disagreements are fairly low.

In Table 1, we show what fraction of samples fall
into each annotated category, excluding “Other”,
“Unclear” and uncommon categories. We average
the distribution between the two annotators.

Statistics: Label noise. We first characterize
the visibility of objects flagged as VAELSs by the
recognition ensemble. SBUCaps has the highest
rate of completely absent images (58.5%), followed
closely by RedCaps. SBUCaps also has the highest
rate of partially visible objects (20%). CC has the
highest full visibility (32.8%), defined as the object
having 75% or more visibility from a given view-
point. Samples with absent and partially-visible
objects constitute poor training data for WSOD,
and their high rate motivates our VEIL approach.

Statistics: Similar context. Certain images
with absent objects may be more harmful than
others. Prior work shows that models exploit co-
occurrences between an object and its context to do
recognition, but when this context is absent, perfor-
mance drops (Singh et al., 2020). We hypothesize
that including images without the actual object and
with this contextual bias could hurt localization
when supervising detection implicitly. Addition-
ally, semantically similar objects may blur decision
boundaries. Different annotators may have differ-
ent references for similarity or co-occurrence fre-
quency, but our annotators achieve fair agreement
(k = 0.33). In Table 1, we find high rates of co-
occurring contexts in samples with completely ab-
sent VAELs for SBUCaps (42.5%) and CC (30.9%).
SBUCaps and CC also have a 12-14% rate of simi-
lar objects present instead of the VAEL.

Statistics: Visual defects. We hypothesize there
may be visual defects that caused the recognition
ensemble to miss fully visible objects. Here, we
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Figure 2: VEIL architecture. In this example, only “dog”
is an extracted label and it fails the vetting process. The
masking layer masks visual presence predictions for text
tokens not corresponding to an extracted label.

compute the percent of at least one visual defect in
fully or partially visible samples: 79% for CC, 87%
for SBUCaps, and 69% for RedCaps. Tab. 1 has the
distribution by visual defect type; this shows that
atypical appearance is the most common defect
for RedCaps and CC (49% and 57.3%). We ar-
gue atypical examples constitute poor training data
for WSOD, especially when learning from scratch.
The caption context (e.g. “acrylic illustration of
the funny mouse”) may indicate the possibility of a
visual defect, further motivating the VEIL design.

Statistics: Linguistic indicators. Noun mod-
ifiers are frequently occurring indicators over all
datasets. Prepositional phrases are significant in
SBUCaps (40.5%) and CC (31.3%). Need for cap-
tion context in vetting is motivated by many VAELs
being mentioned in contexts going beyond the im-
age, e.g.: “just got back from the river. friend sank
his truck pulling his boat out. long story short,
rip this beast” (RedCaps). We find prevalent struc-
tured noise (pattern to the images associated with
a particular noisy label) for indicators like “noun
modifier” and “prepositional phrase” due to high
levels of occlusion and similar contexts.

4 Method

Vetting labels (VEIL). The extracted label vetting
task aims to predict binary visual presence targets
(present/absent) for each extracted label in the cap-
tion using only the caption context, not the corre-
sponding image. We hypothesize there is enough
signal in the caption to vet the most harmful la-
bel noise. This reduces the model complexity and
prevents distractions from the visual modality (sim-
ilar context). The method is overviewed in Fig. 2.
Given a caption, WordPiece (Wu et al., 2016) pro-
duces a sequence of subword tokens C'; each token
is mapped to corresponding embeddings, result-
ing in e € R¥C. These embeddings are passed

through a pretrained language model (BERT (De-
vlin et al., 2019)), h, which includes multiple lay-
ers of multi-head self-attention over tokens in the
caption to compute token-level output embeddings
v € R An MLP is applied to these embed-
dings and the output is a sequence of visual pres-
ence predictions per token, 7 € [0, 1]¢.

v = h(e) (D
r = o(Wa(tanh(Wyv)) (2)

where W, € R%*4 and Wy € R1*4,

Not all predictions in r correspond to an ex-
tracted label, so we use a mask, M € [0, 1]¢, such
that binary cross entropy loss is only applied to pre-
dictions/targets associated with the extracted labels.
To train this network, the pseudo-label targets are
present, y; = 1, if a pretrained image-level object
recognition model also predicts the extracted label.

Li=M,; [yz log7; + (1 — y;) log(1 — rz)] ®)

1 C
L= g 20 @

While using pretrained object recognition models
may appear unfair, bootstrapping this knowledge to
train a language model to predict token-level binary
visual presence has efficiency benefits (no image
input required), can generalize to extracted labels
outside of the recognition model’s vocabulary (see
Sec. 5 for generalization experiments), and is re-
alistic for WSOD, since detection labels are more
limited, whereas many recognition labels exist.
During inference, if an extracted label was
mapped to multiple tokens (e.g. “teddy bear”), the
predicted scores are averaged to a single prediction.
Weakly-supervised object detection. To test
the ability of extracted label filtering or correction
methods for weakly-supervised object detection,
we train MIST (Ren et al., 2020). MIST extends
WSDDN (Bilen and Vedaldi, 2016) and OICR
(Tang et al., 2017b) which combine class scores
for a large number of regions in the image to com-
pute an image-level prediction (used for training).
VEIL uses image-level pseudo-visual presence la-
bels from the in-the-wild datasets to train the vet-
ting model, and we want to see how its ability to vet
labels for WSOD generalizes to unseen data. Thus,
we use the test splits of the in-the-wild datasets to
train MIST, as they are unseen by all vetting meth-
ods. We do not evaluate the WSOD model on these
in-the-wild datasets, but on disjoint datasets which
have bounding boxes (PASCAL VOC and COCO).
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5 Experiments

We show the ability of VEIL to vet noisy extracted
labels, remove structured noise, and outperform
language-agnostic filtering and image-based filter-
ing methods. We test generalization ability in VEIL
through cross-dataset and cross-category experi-
ments. Lastly, we evaluate weakly-supervised ob-
ject detection settings using only noisy supervision
and a combination of noisy and clean supervision.

5.1 Experiment Details

We use three in-the-wild image-caption datasets:
SBUCaps (Ordonez et al., 2011), RedCaps (Desai
et al., 2021), Conceptual Captions (Sharma et al.,
2018); and three crowdsourced datasets that fall
into descriptive: COCO (Lin et al., 2014), VIST-
DII (Huang et al., 2016)) and narrative: VIST-SIS
(Huang et al., 2016). In-the-wild and VIST cap-
tions are filtered using substring matching against
COCO categories; this creates a subset of image-
caption pairs where there is at least one match. This
subset is split into 80%-20% train-test; see Ap-
pendix Sec. A.2 for image-caption counts. See Sec.
3 for details on how pseudo-ground truth visual
presence is produced for all datasets except COCO
which has object annotations. The WSOD models
are trained on SBUCaps with labels vetted by dif-
ferent methods, and evaluated on PASCAL VOC
2007 test (Everingham et al., 2010) and COCO val
2014 (Lin et al., 2014).

5.2 Methods Compared

Since we train and test VEIL on various datasets,
we use the convention VEIL-X to signify that
VEIL is trained on the train-split of X where X
is the dataset name. We group the methods we
compare against into language-based, visual-based,
and visual-language methods. They are category-
agnostic, except for Cap2Det (Ye et al., 2019b) and
Large Loss Matters (LLM) (Kim et al., 2022), both
of which must be applied on closed vocabulary.

No Vetting accepts all extracted labels (recall=1).
Global CLIP and CLIP-E use the ViT-B/32 pre-
trained CLIP (Radford et al., 2021) model. To
enhance alignment (Hessel et al., 2021), we add
the prompt “A photo depicts” to the caption and
calculate the cosine similarity between the image
and text embeddings generated by CLIP. We train
a Gaussian Mixture Model with two components
on dataset-specific cosine similarity distributions.
During inference, we accept image-text pairs with

predicted components aligned with higher visual-
caption cosine similarity. For the ensemble variant
(CLIP-E), we prepend multiple prompts to the cap-
tion and use maximum cosine similarity.

Local CLIP and CLIP-E use cosine similarity be-
tween the image and the prompt “this is a photo of
a” followed by the extracted label. This method di-
rectly vets the extracted label compared to Global-
CLIP which filters the entire caption. Since the cap-
tion context is ignored, this is image-conditioned.
Local CLIP-E ensembles prompts.

Reject Large Loss. LLM (Kim et al., 2022) is
a language-agnostic adaptive noise rejection and
correction method. To test its vetting ability, we
simulate five epochs of WSOD training (Bilen and
Vedaldi, 2016) and consider label targets with a loss
exceeding the large loss threshold as “predicted to
be visually absent” after the first epoch. LLM con-
trols the strength of the rejection rate using the
relative delta hyperparameter (0.002 in (Kim et al.,
2022)); we use 0.01 and show our ablations in Ap-
pendix Sec. A.5.

Accept Descriptive. We use a descriptiveness clas-
sifier (Rai and Kovashka, 2023) trained to predict
whether a VIST (Huang et al., 2016) caption comes
from the DII (descriptive) or SIS (narrative) split.
The input is a multi-label binary vector represent-
ing part of speech tags (e.g. proper noun, adjective,
verb - past tense, etc) present. We accept extracted
labels from captions with descriptiveness over 0.5.
Reject Noun Mod. Since an extracted label could
be modifying another noun (“car park™), a simple
baseline is to reject an extracted label if the POS
label is an adjective or is followed by a noun.
Cap2Det. We reject a label if it is not predicted by
the Cap2Det (Ye et al., 2019b) classifier.

5.3 Extracted Label Vetting Evaluation

VEIL selects cleaner labels compared to no vet-
ting and other methods, even when evaluated
on datasets differing from the training dataset
(e.g. trained on Redcaps-Train and evaluated
on SBUCaps-Test). Tab. 2 shows the F1 score
which is the harmonic mean of the vetting pre-
cision and recall (shown separately in Appendix
Sec. A.3). Most language-based methods, except
Accept Descriptive, improve or maintain the F1
score of No Vetting, even though it has perfect re-
call. Rule-based methods and Cap2Det perform
strongly but are outperformed by both VEIL-Same
Dataset (trained and tested on the same dataset)
and VEIL-Cross Dataset (trained on a different
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Method S R CC VIST | VIST- | VIST- | COCO | AVG
DII SIS

No Vetting 0.633 0.747 0.849 0.853 0.876 0.820 0.973 0.822

VL Global CLIP (Radford et al., 2021) 0.604 0.583 0.569 0.668 0.625 0.683 0.662 0.628
Global CLIP - E (Radford etal., 2021) | 0.594 0.569 0.534 0.654 0.613 0.660 0.640 0.609

Local CLIP (Radford et al., 2021) 0.347 0.651 0.363 0.427 0.476 0.418 0.464 0.449

\Y Local CLIP - E (Radford etal., 2021) | 0.760 0.840 0.597 0.759 0.695 0.812 0.788 0.750
Reject Large Loss (Kimetal,, 2022) | 0.667 0.790 0.831 0.782 0.794 0.743 0.896 0.786
Accept Descriptive 0.491 0.413 0.740 0.687 0.844 0.264 0.935 0.625

L Reject Noun Mod. 0.618 0.703 0.814 0.823 0.847 0.788 0.906 0.786
Cap2Det (Ye et al., 2019b) 0.639 0.758 0.846 0.826 0.854 0.774 0.964 0.809
VEIL-Same Dataset 0.809 0.890 0.909 0.871 0.892 0.816 0.973 0.884
VEIL-Cross Dataset 0.716 0.793 0.850 0.875 0.892 0.830 0.958 0.842

Table 2: Extracted label vetting F1 Performance. S=SBUCaps, R=RedCaps. Bold indicates best performance in
each column, and underlined second-best. (V) signifies method uses the visual modality and (L) uses language.

Data Vetting Method Label noise | Similar context Visual defects Linguistic indicators
YePart % Abs %Co-occ %Sim 9%Occl %oParts P Atyp %Mod %Prep 9%Non-lit %Sense %Named %Beyond
SBUCaps VEIL-Same Dataset | 85.0 | 94.7 87.0 80.0 | 81.1 90.6 87.2 952 | 939 90.6 100.0 100.0 88.8
LocalCLIP-E 51.5 | 80.7 71.3 70.0 | 52.7 52.1 65.6 63.8 | 70.6 82.9 96.2 62.5 82.4
RedCaps VEIL-Same Dataset | 91.7 | 74.1 714 85.7 | 833 89.0 68.3 748 | 90.0 66.7 88.9 80.9 76.3
LocalCLIP-E 52.8 | 78.4 40.0 38.1 | 47.0 | 45.0 232 68.4 | 633 70.8 70.6 90.0 76.7
cc VEIL-Same Dataset | 60.6 | 83.0 81.2 550 | 549 53.6 56.3 642 | 73.7 81.7 100.0 - 77.4
LocalCLIP-E 45.0 | 89.1 74.9 57.5 | 499 50.0 24.1 733 | 639 91.7 100.0 - 86.8

Table 3: VAEL recall on CLaN. Bold indicates best performance per column/dataset. We omit named entity results
for CC as it substitutes them with predefined categories (e.g. person, org.).

dataset than that shown in the column; we show
the best cross-dataset result in this table; see Ap-
pendix Sec. A.4 for all cross-dataset results). VEIL-
Cross Dataset outperforms other language-based
approaches, showing VEIL’s generalization po-
tential, except on COCO where Cap2Det does
slightly better. Image-and-language-conditioned
approaches (Global CLIP/CLIP-E) make label de-
cisions based on the overall caption, so if part of
the caption is visually absent, the alignment could
be low. Among image-based approaches for label
vetting, Local CLIP benefits significantly from us-
ing an ensemble of prompts compared to Global
CLIP; ensembling prompts improves zero-shot im-
age recognition in prior work (Radford et al., 2021).
Reject Large Loss has the strongest F1 score among
the image-based methods, but is worse than VEIL.

Using CLaN, we find that VEIL is stronger
than CLIP-based vetting at rejecting different
forms of label noise. Captions alone contain
cues about noise. We hypothesize that Local CLIP-
E would do well at vetting VAELs explained by
linguistic cues like “non-literal” and “beyond the
image” as they are likely to have low image-
caption cosine similarity. We also hypothesize that
VEIL would do better than LocalCLIP-E at vetting
VAELSs that are noun modifiers or in prepositional
phrases, which can be easily picked up from the
caption. Further, visual noise in the form of similar

context but absent/partially visible object (Q2 in
CLaN), could be detected by VEIL from linguis-
tic cues like noun modifiers, prepositional phrases,
or caption context implying different word sense.
However, LocalCLIP-E may be oblivious to the
context differing from the VAEL category. We
evaluate these hypotheses on the CLaN dataset in
Tab. 3. We omit “visible” VAEL samples as these
may be pseudo-label errors and the “past” linguis-
tic indicator due to too few samples. We find VEIL
vets truly absent objects for SBUCaps much better
than LocalCLIP-E, and comparably for RedCaps
or CC. It vets partially visible objects better than
LocalCLIP-E by a significant margin; these can
be harmful in WSOD which is already prone to
part domination (Ren et al., 2020). VEIL also rec-
ognizes that similar context rather than the actual
VAEL category, are present. VEIL performs better
at vetting visible objects that have visual defects
which can be mentioned in caption context (“acryl-
lic illustration of dog”). As expected, we find that
for all datasets, VEIL vets VAELs from preposi-
tional phrases better than Local CLIP-E, and noun
modifiers for SBUCaps and RedCaps. LocalCLIP-
E does better on “beyond the image” and non-literal
VAELSs except on SBUCaps where VEIL excels.

VEIL generalizes across training sources and
is complementary to CLIP-based vetting. We
train VEIL on one dataset (or multiple) and eval-
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Method Train Dataset Prec/Rec F1

No Vetting - 0.463/1.000 | 0.633
VEIL SBUCaps 0.828/0.791 | 0.809
VEIL RedCaps (R) 0.668/0.759 | 0.710
VEIL CC 0.585/0.846 | 0.692
VEIL R, CC 0.689/0.722 | 0.705
LCLIP-E WIT 0.708 /0.820 | 0.760
VEIL+LCLIP-E | R,CC,WIT 0.733/0.848 | 0.786

Table 4: Source generalization of VEIL; vet on SBU-
Caps. LCLIP-E is Local CLIP-E. CLIP trained on WIT.

Method Prec/Rec F1
No Vetting | 0.323/1.000 | 0.488
1D 0.651/0.656 | 0.654
OOD 0.585/0.556 | 0.570

Table 5: VEIL category generalization on SBUCaps.

uate on an unseen target. We find that combining
multiple sources improves precision (Tab. 4). We
also try ensembling by averaging predictions be-
tween Local CLIP-E and VEIL-Cross Dataset and
find that both are complementary; that is, the en-
semble has better precision and recall compared
to VEIL-Cross Dataset or LocalCLIP-E alone.
There is still a significant gap between VEIL-Same
Dataset and even the ensembled model in terms
of precision and F1. We leave improving source
generalizability to future research.

VEIL produces cleaner labels even on unseen
object categories. We define an in-domain cate-
gory set (ID) of 20 randomly picked categories
from COCO (Lin et al., 2014), and an out-of-
domain category set (OOD) consisting of the 60
remaining categories. We restrict the labels using
these limited category sets and create two train sub-
sets, ID and OOD from SBUCaps train and one ID
test subset from SBUCaps test. We find that trans-
ferring VEIL-OOD to unseen categories improves
F1 score compared to no vetting as shown in Table
5. Additionally, VEIL-OOD has higher precision
(0.59) compared to LocalCLIP-E (0.53) which was
trained on millions of image-captions. This indi-
cates an ability to reject false positive labels from
unseen classes. We hypothesize training on more
categories could improve category generalization,
but leave further experiments to future research.

Why can VEIL generalize? We hypothesize
that linguistic indicators explaining the visually ab-
sent label can be found in captions across datasets
and can be independent of the object category: past
tense, prepositional phrase, noun modifier, and
named entities are all represented within BERT
(Devlin et al., 2019), which we finetune in VEIL.

Method vOoC vVOC COCO
Det. Rec. Det
mAP59| mAP mAPs5¢0

GT* (upper bound) 40.0 | 69.0 | 9.2

No Vetting 312 | 653 | 7.7

Large Loss (Kim et al., 2022) 309 | 653 | 7.5

LocalCLIP-E (Radford et al., 2021) | 37.1 | 70.7 | 7.9

VEIL-R,CC 378 | 7114 | 8.6

VEIL-SBUCaps 40.5 | 743 | 104

Table 6: Impact of vetting on WSOD performance on
VOC-07 and COCO-14. (GT*) directly vets labels using
the pretrained recognition models used to train VEIL.

To evaluate the effect of linguistic indicators in gen-
eralization, we compute the distance between the
linguistic indicator distributions for each dataset
pair in CLaN. We compute the correlation between
the distance and cross-dataset performance. We
observe a moderately strong negative Pearson cor-
relation (p = —0.62). This indicates that VEIL
implicitly learns associations between linguistic
indicators and VAELSs which can help in generaliz-
ing.

5.4 TImpact on Weakly-Sup. Object Detection

We select the most promising vetting methods from
the previous section and use them to vet labels from
an in-the-wild dataset’s, SBUCaps, unseen (fest)
split and then train WSOD models using the vetted
labels. Then, these WSOD models are evaluated on
detection benchmarks like VOC-07 and COCO-14.
We evaluate two different VEIL methods, VEIL-
SBUCaps and VEIL-RedCaps,CC to demonstrate
the generalizability of VEIL on WSOD. Note that
we relax Large Loss Matters (Kim et al., 2022)
to correct visually absent extracted labels, in ad-
dition to unmentioned but present objects (false
negatives). After vetting, we remove any images
without labels and since category distribution fol-
lows a long-tail distribution, we apply weighted
sampling (Mikolov et al., 2013). We train MIST
(Ren et al., 2020) for 50K iter. with batch size 8.
VEIL vetting leads to better detection and
recognition capabilities than vetting through
CLIP, or an adaptive label noise correction
method (Large Loss Matters). We find that VEIL-
SBUCaps performs the best as shown in Tab. 6. In
particular, it boosts the detection performance of
No Vetting by 9.3% absolute and 29.8% relative
gain (40.5/31.2% mAP) on VOC-07 and by 35%
relative gain (10.4/7.7% mAP) on COCO. Inter-
estingly, VEIL-SBUCaps and VEIL-Redcaps,CC
have a similar performance improvement, despite
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Clean Labels | Noisy Labels | WS | Vetting | mAPsg
v n/a 43.48
v v 42.06
v v v 51.31
v v v v 54.76

Table 7: Mixed supervision from clean (VOC-07 train-
val) and noisy labels (SBUCaps). Eval on VOC-07 test.

VEIL-Redcaps,CC (best VEIL cross-dataset result
on SBUCaps) having poorer performance than Lo-
cal CLIP-E in Tab. 4.

VEIL generalizes from its bootstrapped data.
Directly using predictions from the pretrained ob-
ject recognition model (used to produce visual pres-
ence targets for VEIL at the image level) to vet
(GT* method in Tab. 6) performs worse than VEIL
as shown by 40.5 mAP vs 40.0 mAP on VOC and
10.4 mAP vs 9.2 mAP on COCO. We speculate that
learning to identify label noise is an easier task than
categorizing different objects; furthermore, image
recognition models could still select samples that
might be harmful for learning localization (similar
contexts, occlusion, etc). The image recognition
model may also wrongly reject clean labels. We
leave further exploration to future research.

Structured noise negatively impacts localiza-
tion. Using the CLaN dataset, we observe one type
of structured noise found from extracting labels
from prepositional phrases, specifically where im-
ages were taken inside vehicles. We hypothesize
such structured noise would have significant impact
on localization for the vehicle objects. We use Cor-
Loc to estimate the localization ability on vehicles
in VOC-07 (“aeroplane”, “bicycle”, “boat”, “car”,
“bus”, “motorbike”, “train”’). We observe a Cor-
Loc of 60.2% and 54.1% for VEIL-SBUCaps and
LocalCLIP-E, respectively. This shows structured
noise can have a strong impact on localization.

Naively mixing clean and noisy samples with-
out vetting for WSOD leads to worse perfor-
mance than only using clean samples. Vetting
in-the-wild samples (noisy) with VEIL is essen-
tial to improving performance. We study how
vetting impacts a setting where labels are drawn
from both annotated image-level labels from 5K
VOC-07 train-val (Everingham et al., 2010) (clean)
and 50K in-the-wild SBUCaps (Ordonez et al.,
2011) captions (noisy). In Tab. 7 we observe that
naively adding noisy supervision to clean supervi-
sion actually hurts performance compared to only
using clean supervision. After vetting the labels
extracted from SBUCaps (Ordonez et al., 2011)

using VEIL-SBUCaps, we observe that the model
sees a 17.9% relative improvement (51.31/43.48%
mAP) compared to using only clean supervision
from VOC-07. We see further improvements when
applying weighted sampling (WS) to the added,
class-imbalanced data (54.76/51.31% mAP).

VEIL improves WSOD performance even at
scale. We sampled the held-out RedCaps dataset
in increments of 50K samples up to a total of 200K
samples. For each scale, we train two WSOD mod-
els with weighted sampling using the unfiltered
samples and those vetted with VEIL-SBUCaps,CC.
The mAP at S0K, 100K, 150K, and 200K samples
is 4.2, 10.7, 12.0, 12.9 with vetting and 1.9, 8.2,
10.6, 10.4 without vetting. The non-vetted model’s
performance declines after 150K samples. This
trend suggests that vetting will continue outper-
forming no-vetting when dataset sizes increase.

6 Conclusion

We released the Caption Label Noise (CLaN)
dataset where we annotated types of visually absent
extracted labels and linguistic indicators of noise
in 300 image-caption pairs from three in-the-wild
datasets. Using CLaN, we find that caption context
can be used to vet (filter) extracted labels from cap-
tion context. We proposed VEIL, a lightweight text
model which is trained to predict visual presence
using pseudo labels sourced from two pretrained
models for recognition. VEIL outperformed nine
baselines representative of current noise filtering
techniques that could be adapted for captions.

We demonstrate three key findings specific to
vetting for WSOD: (1) there is a distinct advan-
tage in learning to filter as opposed to filtering
using pseudo-ground truth visual presence labels;
(2) vetting noisy labels is necessary to improve per-
formance when combined with a clean data source
(existing image recognition and detection datasets);
(3) structured noise such as noun modifiers and
prepositional phrases (e.g. “car window”, “on a
boat”) has a disproportionate impact on localiza-
tion and was difficult to detect using visual-based
methods like CLIP and Large Loss Matters. This
last finding implies that not all noise is equal in
impact. CLaN is a starting point for this type of
analysis and further research is needed to expand
noise categories and measure the impact of the dif-
ferent types of noise.
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Limitations

We identify the following limitations of our work.
First, we assume that captions from SBUCaps, Red-
Caps, CC cover most in-the-wild caption types.
Second, while VEIL shows promise in generaliz-
ing across datasets, there is a performance drop
due to label noise distribution differences between
datasets. For example, Table 1 shows differences
in linguistic indicator distributions across datasets.
Since VEIL relies on caption context, it will be sen-
sitive to such changes as shown by our generaliza-
tion analysis in Sec. 5. Third, VEIL also shows that
it can filter unseen object categories (Table 5), how-
ever, its performance is noticeably below VEIL-
ID which was trained on those object categories.
This would be an interesting future direction for
research. Fourth, we noticed that MIST (WSOD
method) was highly sensitive to learning rate and
that Large Loss Matters was highly sensitive to hy-
perparameters. We have included these results in
A 4. Fifth, VEIL is sensitive to the gold labels used
for training. We found that using weaker models
(VinVL) to produce labels for VEIL will lead to
suboptimal vetting and WSOD results compared to
using a stronger model (YOLOVS).

Lastly, generative vision-language models such
as GPT4-V (Achiam et al., 2023) open an oppor-
tunity to reject noisy labels as well. We think
our work would be useful in aiding GPT4-V; a
prompt defining noisy samples could use criteria
from CLaN (e.g. types of object visibility, visual
defects, and linguistic indicators categories). We
believe VEIL still serves as a lightweight method
to vet labels and could be trained using pseudo-
visual presence labels from any source, including
generative vision-language models.
Acknowledgement. This work was supported by
National Science Foundation Grants No. 2006885
and 2046853, and University of Pittsburgh Momen-
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A Appendix

In Section A.1, we evaluate the quality of the pre-
trained image recognition ensemble and in Sec-
tion A.2, we present additional dataset details such
as counts. In Section 5 from the main text, we
provided only vetting F1 scores in Table 2 over
multiple methods, so in Section A.3 we provide a
detailed table of the vetting precision and recall for
the same methods. Furthermore in Section A.4, we
show more comprehensive cross-dataset ablations,
such as adding more training datasets and training
with a special token.

We discuss our hyperparameter selection for
WSOD in further detail in Section A.5 and show
additional metrics of the WSOD models on the
COCO-14 benchmark presented in the main text in
Section A.6.

Finally in Section A.7, we showcase the vetting
ability of VEIL in comparison to other approaches
through qualitative results, along with additional
examples from the WSOD models trained using
vetted training data.

Method Precision | Recall
VinVL Detector 0.725 0.356
YOLOV5 0.874 0.910
Ensemble 0.803 0917

Table 8: Precision and recall of image recognition mod-
els on COCO-14 (Lin et al., 2014).

Method RedCaps | CC | SBUCaps
VinVL detector 0.764 0.572 0.688
YOLOVS 0.848 0.848 0.824
Ensemble 0.856 0.868 0.822

Table 9: Visual presence accuracy of in-the-wild
datasets using annotated examples as ground truth.

A.1 Quality of Pretrained Image Recognition
Ensemble

Since we used vision-language datasets without
any object annotations, we have no way of know-
ing whether an object mentioned in the caption is
present in the image. To keep our method scalable
and datasets large, we used object predictions from
pretrained image recognition models to produce
visual presence pseudo labels for extracted labels.
We test the VinVL detector (Zhang et al., 2021) and
YOLOVS detector (Jocher et al., 2021), and their
ensemble (aggregating predictions) on COCO-14
Image Recognition in Table 8 and a visual pres-
ence annotated subset in Table 9. For the latter,
per dataset we annotated the visual presence of 50
extracted labels from unique images for each cat-
egory. We used the following randomly selected
VOC (Everingham et al., 2010) categories: ele-
phant, truck, cake, bus, and cow. We found that
while the ensemble variant and the VinVL detector
are worse than YOLOVS in image recognition on
a common benchmark, COCO-14, the ensemble
performs better than the single models on visual
presence. Since this is the task we aim to do, we
select the ensemble model to generate visual pres-
ence targets. Additionally, these results indicate
there is still significant noise in using these models
to generate pseudo labels, so using these pretrained
image recognition models is not the same quality
as human annotations. Despite this, VEIL still suc-
cessfully harnesses these noisy targets to reason
about visual presence from captions.

A.2 Vetting Dataset Details

While the overall image-text pairs are 12M pairs
for RedCaps, 3M pairs for CC, 1M for SBUCaps,
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Dataset Train Test
VIST 20339 5086
VIST-DII 12106 3028
VIST-SIS 8233 2060
COCO 216096 | 94004
SBUCaps | 166986 | 41747
RedCaps | 845333 | 211334
CC 350043 | 87511

Table 10: The number of samples per split and dataset
after filtering captions based on exact match with COCO
objects. Note VIST and COCO have multiple captions
per image; for the sake of vetting, we evaluate on ex-
tracted labels from all captions.

Relative Delta | Pascal VOC-07 mAP5

0.002 28.25
0.01 30.93
0.05 28.11

Table 11: Relative delta hyperparameter ablation

500K pairs for COCO, 40K and 60K pairs for VIST-
DII and VIST-SIS, respectively, after extracting
labels using exact match with COCO categories,
there are a number of captions which don’t have
any matches. We filter out those captions. In Table
10 we provide counts after filtering for both vetting
train and test splits of each dataset.

A.3 Vetting Precision/Recall

Table 2 in the main text showed the F1 on the ex-
tracted label vetting task, from twelve methods. In
Table 12 here, we separately show Precision and
Recall on the same task.

A.4 Cross-Dataset Ablations

We show results over all the cross-dataset settings
we evaluated in Table 13. Notably, this shows that
precision in the cross-dataset setting is always bet-
ter than no vetting except on COCO which already
has high precision and differs in composition (more
descriptive) compared to the other datasets.

Combining multiple datasets. We find that
VEIL is able to leverage additional datasets to an
extent. For example, combining SBUCaps and
CC leads to significant improvements (7-16% rel-
ative) in F1 as shown in Table 14 and, combining
SBUCaps and Redcaps in training improves perfor-
mance on both validation sets. When combining
all datasets, only the non-in-the-wild datasets see
an improved performance.

Using special token. We test VEILgt which
inserts a special token [EM_LABEL ] before each ex-

Non-Literal:

did a wen trim for the first
time and it was a piece of
orangeoil onitforgood  cake

larity:

Took this on a boat the [...] put a few drops of
other day.

Extracted Labels from {boat}

Each Image

{orange} {cake}

No Vetting (Same as {boat}
Above)

Reject Noun Modifier {boat} i} {cake}
LocalCLIP-E {boat} {orange} {
VEIL-SBUCapsCC { { {
VEIL-RedCaps { { {

{orange} {cake}

Figure 3: Qualitative examples of extracted labels after
vetting on RedCaps-Test. These are additional com-
pletely absent VAEL examples from CLaN with their
linguistic indicators and similar context annotations, and
only VEIL-based methods are able to overcome these
three noise types.

tracted label in the caption to reduce the model’s re-
liance on category-specific cues and improve gener-
alization to other datasets. We find that using VEIL
w/ ST on average improves F1 by 1 pt compared to
just VEIL when transferring to other datasets. This
comes at a tradeoff to the performance on the same
dataset; however, CC w/ ST improves performance
on all datasets.

A.5 WSOD Implementation Details

We used 4 RTX A5000 GPUs and trained for 50k
iterations with a batch size of 8, or 100k iterations
on 4 Quadro RTX 5000 GPUs with a batch size of
4 and gradient accumulation (parameters updated
every two iterations to simulate a batch size of 8).

Learning Rates. We trained four models with-
out vetting on SBUCaps with learning rates from
‘le-5’ till ‘1e-2’, for each order of magnitude, and
observed that the model trained with a learning rate
of ‘le-2’ had substantially better Pascal VOC-07
detection performance. We used this learning rate
for all the WSOD models trained on SBUCaps. We
applied a similar learning rate selection method
for WSOD models trained on RedCaps, except we
tested over every half order of magnitude and found
that ‘Se-5 was optimal when training on RedCaps.

Relative Delta. In Large Loss Matters (LLM)
(Kim et al., 2022), relative delta controls how fast
the rejection rate will increase over training. To
find the best relative delta, we tested over three ini-
tializations, with rel_delta = 0.002 as the setting
recommended in (Kim et al., 2022). We used the
best result in Table 11 when reporting results in the
main paper.
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SBUCaps RedCaps Conceptual Captions
Method PREC/REC F1 PREC/REC F1 PREC/REC F1
No Vetting 0.463/1.000 | 0.633 | 0.596/1.000 | 0.747 | 0.737/1.000 | 0.849
VL Global CLIP 0.531/0.700 | 0.604 | 0.618/0.551 | 0.583 | 0.753/0.458 | 0.569
Global CLIP - E 0.526/0.683 | 0.594 | 0.625/0.522 | 0.569 | 0.745/0.417 | 0.534
Local CLIP 0.588/0.246 | 0.347 | 0.723/0.591 | 0.651 | 0.750/0.240 | 0.363
v | Local CLIP - E 0.708/0.820 | 0.760 | 0.770/0.924 | 0.840 | 0.842/0.462 | 0.597
Reject Large Loss 0.530/0.898 | 0.667 | 0.700/0.908 | 0.790 | 0.806/0.858 | 0.831
Accept Descriptive 0.449/0.542 | 0.491 | 0.561/0.326 | 0.413 | 0.739/0.741 | 0.740
L | Reject Noun Mod. 0.517/0.769 | 0.618 | 0.644/0.776 | 0.703 | 0.765/0.870 | 0.814
Cap2Det 0.500/0.884 | 0.639 | 0.633/0.945 | 0.758 | 0.758/0.956 | 0.846
VEIL-Same Dataset | 0.828/0.791 | 0.809 | 0.855/0.929 | 0.890 | 0.884/0.935 | 0.909
VEIL-Cross Dataset | 0.636/0.811 | 0.713 | 0.747/0.847 | 0.793 | 0.834/0.866 | 0.850
VIST VIST-DII VIST-SIS
Method PREC/REC F1 PREC/REC F1 PREC/REC F1
No Vetting 0.744/1.000 | 0.853 | 0.779/1.000 | 0.876 | 0.695/1.000 | 0.820
VL Global CLIP 0.77270.589 | 0.668 | 0.788/0.518 | 0.625 | 0.754/0.624 | 0.683
Global CLIP - E 0.769/0.569 | 0.654 | 0.785/0.504 | 0.613 | 0.741/0.595 | 0.660
Local CLIP 0.752/0.298 | 0.427 | 0.787/0.341 | 0.476 | 0.738/0.292 | 0.418
v | Local CLIP - E 0.874/0.671 | 0.759 | 0.886/0.572 | 0.695 | 0.833/0.793 | 0.812
Reject Large Loss 0.755/0.811 | 0.782 | 0.792/0.796 | 0.794 | 0.700/0.791 | 0.743
Accept Descriptive 0.75570.631 | 0.687 | 0.784/0913 | 0.844 | 0.686/0.163 | 0.264
L | Reject Noun Mod. 0.775/0.879 | 0.823 | 0.813/0.883 | 0.847 | 0.716/0.875 | 0.788
Cap2Det 0.781/0.877 | 0.826 | 0.823/0.887 | 0.854 | 0.704/0.859 | 0.774
VEIL-Same Dataset | 0.789/0.971 | 0.871 | 0.819/0.992 | 0.892 | 0.690/0.998 | 0.816
VEIL-Cross Dataset | 0.835/0.920 | 0.875 | 0.870/0.915 | 0.892 | 0.765/0.920 | 0.830
COCO
Method PREC/REC F1
No Vetting 0.948/1.000 | 0.973
VL Global CLIP 0.94570.509 | 0.662
Global CLIP - E 0.931/0.487 | 0.640
Local CLIP 0.951/0.307 | 0.464
v | Local CLIP - E 0.972/0.663 | 0.788
Reject Large Loss 0.963/0.837 | 0.896
Accept Descriptive 0.948/0.923 | 0.935
Accept Narrative 0.942/0.077 | 0.143
L | Reject Noun Mod. 0.958/0.859 | 0.906
Cap2Det 0.978/0.950 | 0.964
VEIL-Same Dataset | 0.948/1.000 | 0.973
VEIL-Cross Dataset | 0.975/0.942 | 0.958

Table 12: Extracted label vetting evaluation metrics. Bold indicates best result in column, and in the recall columns

No Vetting is excluded as it always has perfect recall.

A.6 'WSOD Benchmarking on Additional
COCO Metrics

In our main text, we compared the average preci-
sion of the model across all the classes and all the
IoU (Intersection over Union) thresholds from 0.5
to 0.95. We show mAP at specific thresholds 0.5
and 0.75 in Table 15. We see that cross-dataset
VEIL vetting performs relatively 32% better than
no vetting in a stricter IoU (0.75). The mAP met-
ric can be further broken down by area sizes of
ground truth bounding boxes, which is denoted
by S, M, and L. VEIL-based vetting outperforms
the rest in Medium (6% better than best non-VEIL
vetting) and Large objects (5% better than best non-
VEIL vetting); while VEIL-Same Dataset still per-
forms best on small objects, VEIL-Cross Dataset
performs slightly worse than no vetting.

A.7 Additional Qualitative Results

Vetting Qualitative Examples. Using annotations
from CLaN, we provide qualitative examples com-
paring the vetting capability of methods on VAELs
with common linguistic indicators (prepositional
phrase, different word sense, non-literal) found in
RedCaps in Figure 3.

WSOD Qualitative Examples. In Figure 4, we
present further qualitative evidence on the impact
of different vetting methods on weakly supervised
object detection. There are varying degrees of part
and contextual bias from all methods; however,
No Vetting has the most pronounced part domi-
nation and context bias as shown by its detection
of bicycle wheels and car doors (top two rows),
and misidentifying a child as a chair (bottom row)
and detections covering both boat and water. Both
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Train Dataset(s) | ST | DII-VIST SIS-VIST CoCo VIST
No Vetting 0.779/1.000 | 0.695/1.000 | 0.948/1.000 | 0.741/1.000
SBUCaps 0.895/0.717 | 0.831/0.609 | 0.979/0.647 | 0.878/0.690
RedCaps (R) 0.865/0.794 | 0.787/0.752 | 0.975/0.824 | 0.839/0.785
CC 0.863/0.902 | 0.759/0.917 | 0.974/0.925 | 0.824/0.914
VIST 0.826/0.978 | 0.729/0.949 | 0.958/0.926 | 0.789/0.971
COCO 0.779/1.000 | 0.695/1.000 | 0.948/1.000 | 0.741/1.000
SBUCaps,CC 0.885/0.840 | 0.788/0.837 | 0.978/0.893 | 0.847 /0.838
R,CC 0.876/0.888 | 0.801/0.784 | 0.976/0.918 | 0.855/0.852
SBUCaps,R 0.876/0.779 | 0.789/0.697 | 0.976/0.791 | 0.849/0.758
SBUCaps v’ | 0.885/0.798 | 0.817/0.719 | 0.977/0.745 | 0.866/0.768
R v’ | 0.880/0.744 | 0.809/0.697 | 0.976/0.776 | 0.856/0.721
CC v’ | 0.868/0.913 | 0.765/0.920 | 0.975/0.942 | 0.835/0.920
SBUCaps,CC v’ |1 0.870/0.915 | 0.776/0.881 | 0.976/0.932 | 0.830/0.905
R,CC v 1 0.862/0.922 | 0.779/0.842 | 0.971/0.944 | 0.837/0.894
SBUCaps,R v’ | 0.877/0.807 | 0.805/0.712 | 0.973/0.856 | 0.844/0.828
ALL 0.860/0.969 | 0.779/0.903 | 0.973/0.990 | 0.832/0.947
Train Dataset(s) | ST | SBUCaps RedCaps CC
No Vetting 0.463/1.000 | 0.596/1.000 | 0.737/1.000
SBUCaps 0.828/0.791 | 0.808 /0.684 | 0.844/0.831
RedCaps (R) 0.668 /0.759 | 0.855/0.929 | 0.837/0.709
CcC 0.585/0.846 | 0.713/0.844 | 0.884 /0.935
VIST 0.518/0.939 | 0.658/0.883 | 0.771/0.981
COCO 0.463/1.000 | 0.599/1.000 | 0.739/1.000
SBUCaps,CC 0.923/0.950 | 0.762/0.822 | 0.965/0.978
R,CC 0.691/0.720 | 0.845/0.836 | 0.892/0.914
SBUCaps,R 0.892/0.940 | 0.923/0.958 | 0.846/0.785
SBUCaps v 1 0.790/0.814 | 0.782/0.754 | 0.834/0.866
R v’ | 0.686/0.724 | 0.843/0.901 | 0.831/0.526
CC v’ | 0.609/0.841 | 0.721/0.862 | 0.922/0.955
SBUCaps,CC v' | 0.754/0.821 | 0.747/0.847 | 0.891/0.943
R,CC v’ 1 0.649/0.797 | 0.793/0.887 | 0.868 /0.931
SBUCaps,R v | 0.826/0.724 | 0.804/0.905 | 0.839/0.771
ALL 0.713/70.829 | 0.803/0.898 | 0.874/0.941

Table 13: Precision and recall of cross-dataset vetting over visual presence validations sets from different sources

(DII-VIST...CC). All methods improve precision compared to no vetting.

VEIL methods outperform the rest of the models
in detecting smaller objects (see first two rows).
LocalCLIP-E misses smaller objects in the back-
ground (first two rows) and also has part domina-

tion (bicycle).
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Train Dataset | ST | DII-VIST | SIS-VIST | COCO | VIST S R CC
No Vetting 0.876 0.820 0.973 0.851 | 0.633 | 0.747 | 0.849
SBUCaps 0.796 0.703 0.779 | 0.773 | 0.809 | 0.741 | 0.837
R 0.828 0.769 0.893 0.811 | 0.710 | 0.890 | 0.768
CC 0.882 0.830 0.949 | 0.867 | 0.692 | 0.773 | 0.909
VIST 0.895 0.825 0.942 0.871 | 0.668 | 0.754 | 0.863
COCO 0.876 0.820 0973 | 0.851 | 0.633 | 0.749 | 0.850
SBUCaps,CC 0.862 0.812 0.933 0.843 | 0937 | 0.791 | 0.972
R,CC 0.882 0.793 0946 | 0.854 | 0.705 | 0.841 | 0.903
SBUCaps,R 0.825 0.741 0.874 | 0.801 0.915 | 0.940 | 0.810
SBUCaps v 0.839 0.765 0.846 | 0.814 | 0.802 | 0.767 | 0.850
R v 0.806 0.749 0.865 0.783 | 0.705 | 0.871 | 0.644
CC v 0.890 0.836 0.958 | 0.875 | 0.707 | 0.785 | 0.938
SBUCaps,CC | v 0.892 0.825 0954 | 0.866 | 0.786 | 0.793 | 0.916
R,CC v 0.891 0.809 0.957 | 0.865 | 0.716 | 0.837 | 0.899
SBUCaps,R v 0.841 0.756 0.911 0.836 | 0.772 | 0.851 | 0.803
ALL 0.911 0.836 0.981 0.886 | 0.767 | 0.848 | 0.906

Table 14: F1 scores of cross dataset vetting on visual presence validations sets from different sources (DII-
VIST...CC). Datasets abbreviated as S = SBUCaps, R = RedCaps, CC = Conceptual Captions. Bold indicates if
result is better than no vetting. Train data containing the same source as the validation is highlighted in yellow.

mAP, IoU mAP, Area

0.5:095 05 0.75 S M L
GT* 4.19 9.17 340 | 1.10 4.34 6.76
No Vetting 3.24 770 237 | 1.06 4.00 5.08
Large Loss (Kim et al., 2022) 3.11 754 2151092 380 4.88
LocalCLIP-E (Radford et al., 2021) 3.66 777 3.08 | 0.79 396 596
VEILs7T-R,CC 3.90 8.60 3.14 093 4.25 6.28
VEIL-SBUCaps 4.89 10.37 4.20 | 1.26 5.24 7.53

Table 15: COCO-14 benchmark for WSOD models trained with various vetting methods. (GT*) directly vets
labels using the pretrained object detectors which were used to train VEIL. Bold indicates best performance in each
column and underline indicates second best result in the column.
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No Vetting Large Loss cup VEIL-R,CC VEIL-SBUCaps

Figure 4: Detections (blue bounding box) from WSOD models trained with various vetting methods (top row)
indicate that training with either VEIL-based vetting method (two rightmost columns) leads to similar detection
capability on VOC-07 (Everingham et al., 2010). The categories shown by row (from top to bottom) are: horse, car,
boat, bicycle, chair.
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