
Data-Efficient Learning with Neural Programs

Alaia Solko-Breslin, Seewon Choi, Ziyang Li, Neelay Velingker,
Rajeev Alur, Mayur Naik, Eric Wong

University of Pennsylvania
{alaia,seewon,liby99,neelay,alur,mhnaik,exwong}@seas.upenn.edu

Abstract

Many computational tasks can be naturally expressed as a composition of a DNN
followed by a program written in a traditional programming language or an API
call to an LLM. We call such composites “neural programs” and focus on the prob-
lem of learning the DNN parameters when the training data consist of end-to-end
input-output labels for the composite. When the program is written in a differen-
tiable logic programming language, techniques from neurosymbolic learning are
applicable, but in general, the learning for neural programs requires estimating
the gradients of black-box components. We present an algorithm for learning neu-
ral programs, called ISED, that only relies on input-output samples of black-box
components. For evaluation, we introduce new benchmarks that involve calls to
modern LLMs such as GPT-4 and also consider benchmarks from the neurosym-
bolic learning literature. Our evaluation shows that for the latter benchmarks, ISED
has comparable performance to state-of-the-art neurosymbolic frameworks. For the
former, we use adaptations of prior work on gradient approximations of black-box
components as a baseline, and show that ISED achieves comparable accuracy but
in a more data- and sample-efficient manner. 1

1 Introduction

Many computational tasks cannot be solved by neural perception alone but can be naturally expressed
as a composition of a neural model Mθ followed by a program P written in a traditional programming
language or an API call to a large language model (LLM). We call such composites “neural programs”
and study the problem of learning neural programs in an end-to-end manner with a focus on data and
sample efficiency. One problem that is naturally expressed as a neural program is scene recognition
[29], where Mθ classifies objects in an image and P prompts GPT-4 to identify the room type given
these objects (Fig. 1).

Neurosymbolic learning [2] is one instance of neural program learning in which P takes the form of
a logic program. DeepProbLog (DPL) [14] and Scallop [13] are frameworks that extend ProbLog and
Datalog, respectively, to ensure that the symbolic component P is differentiable. This differentiability
requirement is what facilitates learning in many neurosymbolic learning frameworks. There are also
abductive learning frameworks that do not explicitly differentiate programs. Instead, they require that
the symbolic component expose a method for abducing the function’s inputs for a given output, often
using Prolog for the symbolic component as a result [6, 23]. While logic programming languages are
expressive enough for these frameworks to solve tasks such as sorting [14], visual question answering
[13], and path planning [23], they offer restricted features and a narrow range of libraries, making
them incompatible with calls to arbitrary APIs or to modern LLMs.

Learning neural programs when P is not expressed as a logic program is a difficult problem because
gradients across black-box programs cannot be computed explicitly. One possible solution is to use
REINFORCE [26] to sample symbols from distributions predicted by Mθ and compute the expected

1Code is available at https://github.com/alaiasolkobreslin/ISED

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

40
6.

06
24

6v
2

 [c
s.L

G
]

31
 O

ct
 2

02
4

https://github.com/alaiasolkobreslin/ISED

Figure 1: Neural program decomposition for scene recognition.

reward using the output label. However, REINFORCE is not sample-efficient as it produces a weak
learning signal, especially when applied to programs with a large number of inputs. There are other
REINFORCE-based methods that can be applied to the neural program learning setting, namely
IndeCateR [21] and Neural Attention for Symbolic Reasoning (NASR) [5]. However, IndeCateR
struggles with sample efficiency despite providing lower variance than REINFORCE, and NASR
performs poorly when intermediate labels are unavailable for pretraining. Another possible solution
is Approximate Neurosymbolic Inference (A-NeSI) [24], which trains a neural network to estimate
the gradient of P , but learning the surrogate neural network becomes more difficult as the complexity
of P increases. Moreover, the additional neural models in the learning framework in A-NeSI results
in data inefficiency.

In this paper, we propose an algorithm for learning neural programs, based on reinforcement learning,
which is compatible with arbitrary programs. Our approach, called ISED (Infer-Sample-Estimate-
Descend), yields a framework that expands the applicability of neural program learning frameworks
by providing a data- and sample-efficient method of training neural models with randomly initialized
weights. ISED uses outputs of Mθ as a probability distribution over inputs of P and samples
representative symbols u from this distribution. ISED then computes outputs v of P corresponding
to these symbols. The resulting symbol-output pairs can be viewed as a symbolic program consisting
of clauses of the form if symbol = u then output = v summarizing P . The final step is
to estimate the gradient across this symbolic summary, inspired by ideas from the neurosymbolic
learning literature, to propagate loss across the composite model.

Our evaluation considers 16 neural program benchmark tasks. Our results show that ISED outperforms
purely neural networks and CLIP [19] on neural program tasks involving GPT-4 calls. Additionally,
ISED outperforms neurosymbolic methods on 9 of the 14 benchmarks tasks that can be encoded in
logic programming languages. ISED is also the top performer on 8 out of the 16 benchmark tasks
when compared to REINFORCE-based and black-box gradient estimation baselines. Furthermore,
we show that ISED is more data- and sample-efficient than baseline methods.

In summary, the main contributions of this paper are as follows: 1) we introduce neural programs as
a generalization of neurosymbolic programs, 2) we introduce new tasks involving neural programs
that use Python and calls to GPT-4 called neuroPython and neuroGPT programs, respectively, 3) we
present ISED, a general algorithm for data- and sample-efficient learning with neural programs, and
4) we conduct a thorough evaluation using existing techniques against a diverse set of benchmarks.

2 Neural Programs

Problem Statement. In the neural program learning setting, we attempt to optimize model parameters
Mθ which are being supervised by a fixed program P . Specifically, we are given a training dataset
D of length N containing input-output pairs, i.e., D = {(x1, y1), . . . (xN , yN)}. Each xi represents
unstructured data (e.g., image data) whose corresponding structured data (intermediate labels) are
not given. Each yi is the result of applying P to the structured data corresponding to xi. Given
a loss function L, we want to minimize the loss of L(P (Mθ(xi)), yi) for each (xi, yi) pair in
order to optimize θ. Loss minimization is straightforward when there is some mechanism for
automatically differentiating programs, but we focus on the setting of optimizing θ without assuming
the differentiability of P . We now introduce three motivating applications that can be framed in this

2

Figure 2: Illustration of our inference pipeline for the leaf classification task. leaf_id can be written
with a decision tree (top program) or with a call to GPT-4 (bottom program).

setting, namely classifying images of leaves [9], scene recognition [29], and hand-written formula
evaluation (HWF) [12].

Leaf Classification. We consider a real-world example that deals with the problem of classifying
leaf images. Traditional neural methods predict the species directly, without explicit notion of leaf
features such as margin, shape, and texture, resulting in solutions that are data-inefficient, inaccurate,
and harder to understand.

We instead present a neural programming solution, making use of leaf classification decision trees
[22]. These decision trees allow identifying plant species based on the visible characteristics of their
leaves. Here, the neural model takes a leaf image and predicts its shape, margin, and texture. The
program can then be written in two ways: one implementation involves encoding the decision tree in
Python; another involves constructing a prompt using the predicted leaf features and calling GPT-4
(see Fig. 2). The latter is possible because ISED allows the use of black-box programs, so programs
can also use state-of-the-art foundation models such as GPT-4 for computation.

Scene Recognition. The goal of this task is to classify images according to their room types. The
model receives an image from a scene dataset [16] and predicts among the 9 different room types:
bedroom, bathroom, dining room, living room, kitchen, lab, office, house lobby, and basement.

The traditional neural solution trains a convolutional neural network that directly predicts the room
type. On the other hand, the neural program solution decomposes the task into detecting objects
in the scene and identifying the room type based on those objects. We use an off-the-shelf object
detection model YOLOv8 [20] and finetune it with a custom convolutional neural network to output
labels related to scene recognition. We then make a GPT-4 call to predict the most likely room type
given the list of detected objects.

Hand-written Formula. In this task, a model is given a list of hand-written symbols containing digits
(0-9) and operators (+, −, ×, and ÷) [12]. The dataset contains length 1-7 formulas free of syntax or
divide-by-zero errors. The model is trained with supervision on the evaluated floating-point result
without the label of each symbol. Since inputs are combinatorial and results are rational numbers,
end-to-end neural methods struggle with accuracy. Meanwhile, neurosymbolic methods for this task
either use specialized algorithms [12] or handcrafted differentiable programs [13].

With ISED, the program can be written in just a few lines of Python. It takes in a list of characters
representing symbols, and simply invokes the Python eval function on the joined expression string.
The hwf evaluation function can be used just like any other PyTorch [17] module since ISED internally
performs sampling and probability estimation to estimate the gradient.

3 Learning Neural Programs

In this section, we present the intuition behind ISED and the values it approximates. Next, we
introduce the programming interface for ISED, which lays the groundwork for presenting the
algorithm. We then formally describe the steps of ISED.

3

3.1 ISED Overview

Assuming P is a black-box, we can collect symbol-output samples (u, v) from P . Such collection of
samples can be viewed as a summary logic program consisting of rules of the form if r = u then
y = v. For instance, in the task of adding two digits r1 and r2, one rule of the logic program would
be r1 = 1 ∧ r2 = 2→ y = 3. Techniques from neurosymbolic literature via exact or approximate
weighted model counting (WMC) [10] can then be used for computing the gradient across such
a summary of P . However, having the complete summary of all combinations of symbols is not
feasible for a black-box P . ISED samples symbols from the probability distribution predicted by the
neural network Mθ, evaluates P on each sample, and takes the gradient across this partial summary
of P . This is a good approximation of the complete summary since it is likely to contain symbols
with high probability, which contribute the most in exact computation.

This approach differs from REINFORCE in how it differentiates through this summary of P . RE-
INFORCE rewards sampled symbols that resulted in the correct output through optimizing the log
probability of each symbol, weighted by reward values. This weighted-sum style estimation provides
a weaker learning signal compared to WMC used by ISED, making learning harder for REINFORCE
as the number of inputs to P increases. See Appendix A for further details.

3.2 Preliminaries and Programming Interface

ISED allows programmers to write black-box programs that operate on diverse structured inputs and
outputs. To allow such programs to interact with neural networks, we define an interface named
structural mapping. This interface serves to 1) define the data-types of black-box programs’ input and
output, 2) marshall and un-marshall data between neural networks and logical black-box functions,
and 3) define the loss. We define a structural mapping τ as either a discrete mapping (with Σ being
the set of all possible elements), a floating point, a permutation mapping with n possible elements, a
tuple of mappings, or a list of up to n elements. We define τ inductively as follows:

τ ::= DISCRETE(Σ) | FLOAT | PERMUTATIONn | TUPLE(τ1, . . . , τm) | LISTn(τ)

Using this, we may further define data-types such as INTEGERk
j = DISCRETE({j, . . . , k}), DIGIT =

INTEGER9
0, and BOOL = DISCRETE({true, false}). These types give ISED the flexibility learn

neural programs with diverse types of inputs and outputs, e.g., PERMUTATIONn input and output
types for integer list sorting and LIST9(LIST9(DIGIT)) for sudoku solving.

We also define a black-box program P as a function (τ1, . . . , τm) → τo, where τ1, . . . , τm are the
input types and τo is the output type. For example, the structural input mapping for the hand-written
formula task is LIST7(DISCRETE({0, . . . , 9,+,−,×,÷})), and the structural output mapping is
FLOAT. The mappings suggest that the program takes a list of length up to 7 as input, where each
element is a digit or an arithmetic operator, and returns a floating point number.

There are two interpretations of a structural mapping: the set interpretation SET(τ) represents a
mapping with defined values, e.g., a digit with value 8; the tensor interpretation DIST(τ) represents
a mapping where each value is associated with a probability distribution, e.g., a digit that is 1 with
probability 0.6 and 7 with probability 0.4. We use the set interpretation to represent structured
program inputs that can be passed to a black-box program and the tensor interpretation to represent
probability distributions for unstructured data and program outputs. These two interpretations are
defined for the different structural mappings in Table 1.

Table 1: Set and tensor interpretations of different structural mappings.

Mapping (τ) Set Interpretation (SET(τ)) Tensor Interpretation (DIST(τ))

DISCRETEΣ Σ {v⃗ | v⃗ ∈ R|Σ|, vi ∈ [0, 1], i ∈ 1 . . . |Σ|}
FLOAT R n/a

PERMUTATIONn {ρ | ρ is a permutation of [1, ..., n]} {[v⃗1, ..., v⃗n] | v⃗i ∈ Rn, vi,j ∈ [0, 1], i ∈ 1 . . . n}
TUPLE(τ1, . . . , τm) {(a1, ..., am) | ai ∈ SET(τi)} {(a1, .., am) | ai ∈ DIST(τi)}

LISTn(τ
′) {[a1, ..., aj] | j ≤ n, ai ∈ SET(τ ′)} {[a1, .., aj] | j ≤ n, ai ∈ DIST(τ ′)}

In order to represent the ground truth output as a distribution to be used in the loss computation,
there needs to be a mechanism for transforming SET(τ) mappings into DIST(τ) mappings. For

4

this purpose, we define a vectorize function δτ : (SET(τ), 2τ)→ DIST(τ) for the different output
mappings τ in Table 2. When considering a datapoint (x, y) during training, ISED samples many
symbols and obtains a list of outputs ŷ. The vectorizer then takes the ground truth y and the outputs
ŷ as input and returns the equivalent distribution interpretation of y. While ŷ is not used by δτ in
most cases, we include it as an argument so that FLOAT output mappings can be discretized, which is
necessary for vectorization. For example, if the inputs to the vectorizer for the hand-written formula
task are y = 2.0 and ŷ = [1.0, 3.5, 2.0, 8.0], then it would return [0, 0, 1, 0].

Table 2: Vectorize and aggregate functions of different structural mappings.

Mapping (τ) Vectorizer (δτ (y, ŷ)) Aggregator (στ (r̂, p̂))

DISCRETEn e(y) with dim n p̂[r̂]

FLOAT [1y=ŷi
for i ∈ [1, . . . , length(ŷ)]] n/a

PERMUTATIONn [δDISCRETEn (y[i]) for i ∈ [1, . . . , n]] ⊗n
i=1σDISCRETEn (r̂[i], p̂[i])

TUPLE(τ1, . . . , τm) [δτi (y[i]) for i ∈ [1, . . . ,m]] ⊗m
i=1στi

(r̂[i], p̂[i])

LISTn(τ
′) [δτ′ (ai) for ai ∈ y] ⊗n

i=1στ′ (r̂[i], p̂[i])

We also require a mechanism to aggregate the probabilities of sampled symbols that resulted in a
particular output. With this aim, we define an aggregate function στ : (SET(τ),DIST(τ))→ R for
different input mappings τ in Table 2. ISED aggregates probabilities either by taking their minimum
or their product, and we denote both operations by ⊗. The aggregator takes as input sampled symbols
r̂ and neural predictions p̂ from which r̂ was sampled. It gathers values in p̂ at each index in r̂ and
returns the result of ⊗ applied to these values. For example, suppose we use min as the aggregator ⊗
for the hand-written formula task. Then if ⊗ takes r̂ = [1,+, 1] and p̂ as inputs where p̂[0][1] = 0.1,
p̂[1][+] = 0.05, and p̂[2][1] = 0.1, it would return 0.05.

3.3 Algorithm

We now formally present the ISED algorithm. For a given task, there is a black-box program P ,
taking m inputs, that operates on structured data. Let τ1, ..., τm be the mappings for these inputs
and τo the mapping for the program’s output. We write P as a function from its input mappings
to its output mapping: P : (τ1, ..., τm) → τo. For each unstructured input i to the program, there
is a neural model M i

θi
: xi → DIST(τi). S is a sampling strategy (e.g., categorical sampling) that

samples symbols using the outputs of a neural model, and k is the number of samples to take for each
training example. There is also a loss function L whose first and second arguments are the predicted
and ground truth values respectively. We present the pseudocode of the algorithm in Algorithm 1 and
describe its steps with the hand-written formula task:

Infer. The training pipeline starts with an example from the dataset, (x, y) = ([, ,], 3.0), and
uses a CNN to predict these images, as shown on lines 3-4. ISED initializes p̂ = Mθ(x).

Sample. ISED samples r̂ from p̂ for k iterations using sampling strategy S. For each sample j, the
algorithm initializes r̂j to be the sampled symbols, as shown on lines 6-9. To continue our example,
suppose ISED initializes r̂j = [7,+, 2] for sample j. The next step is to execute the program on r̂j ,
as shown on line 10, which in this example means setting ŷj = P (r̂j) = 9.0.

Estimate. In order to compute the prediction value to use in the loss function, ISED must consider
each output yl in the output mapping and accumulate the aggregated probabilities for all sampled
symbols that resulted in the output yl. We specify ⊗ as the min function, and ⊕ as the max function
in this example. Note that ISED requires that ⊗ and ⊕ represent either min and max or mult and
add respectively. We refer to these two options as the min-max and add-mult semirings. We define
an accumulate function ω that takes as input an element of the output mapping yl, sampled outputs ŷ,
sampled symbols r̂, and predicted input distributions p̂. The accumulator performs the ⊕ operation
on aggregated probabilities for elements of ŷ that are equal to yl and is defined as follows:

ω(yl, ŷ, r̂, p̂) = ⊕k
j=11ŷj=yl

στo(r̂j , p̂j)

Continuing our example, suppose, among the samples, there are two symbolic combinations ([7,+, 2]
and [3, ∗, 3]) that resulted in the output 9.0. Let us say that these sets of symbols had probabilities
[0.3, 0.8, 0.8] and [0.1, 0.1, 0.1], respectively. Then the result of the probability aggregation for
yl = 9.0 would be ω(9.0, ŷ, r̂, p̂) = max(min([0.3, 0.8, 0.8]), min([0.1, 0.1, 0.1])) = 0.3.

5

Algorithm 1 ISED training pipeline

Require: P is the black-box program (τ1, . . . , τm)→ τo, M i
θi

the neural model xi → DIST(τi) for
each τi, S the sampling strategy, k the sample count, L the loss function, and D the dataset.

1: procedure TRAIN
2: for ((x1, . . . xm), y) ∈ D do
3: for i ∈ 1 . . .m do
4: p̂[i]←M i

θi
(xi) ▷ Infer

5: end for
6: for j ∈ 1 . . . k do
7: for i ∈ 1 . . .m do
8: Sample r̂j [i] from p̂[i] using S ▷ Sample
9: end for

10: ŷj ← P (r̂j)
11: end for
12: ŵ ← normalize([ω(yl, ŷ, r̂, p̂) for yl ∈ τo (or yl ∈ ŷ)]) ▷ Estimate
13: w ← δ(y, ŷ)
14: l← L(ŵ, w)
15: Compute ∂l

∂θ by performing back-propagation on l

16: Optimize θ based on ∂l
∂θ ▷ Descend

17: end for
18: end procedure

ISED then sets w̃ = [ω(yl, ŷ, r̂, p̂) for yl ∈ τo] in the case where τo is not FLOAT. When τo is FLOAT,
as for hand-written formula, it only considers yl ∈ ŷ. Next, it performs L2 normalization over each
element in w̃ and sets ŵ to this result. To initialize the ground truth vector, it sets w = δ(y, ŷ). ISED
then initializes l = L(ŵ, w) and computes ∂l

∂θi
for each input i. These steps are shown on lines 12-15.

In our running example, since 9.0 is an incorrect output, the probability of the first symbol being
equal to 7 (instead of the correct answer 1) will be penalized while the probabilities for predicting
other symbols are unchanged.

Descend. The last step is shown on line 16, where the algorithm optimizes θi for each input i based
on ∂l

∂θi
using a stochastic optimizer (e.g., Adam optimizer). This completes the training pipeline for

one example, and the algorithm returns all final θi after iterating through the entire dataset.

4 Evaluation

In this section, we evaluate ISED and aim to answer the following research questions:

RQ1: How does ISED compare to state-of-the-art neurosymbolic, REINFORCE-based, and gradient
estimation baselines in terms of accuracy?
RQ2: What is the sample efficiency of ISED when compared to REINFORCE-based algorithms?
RQ3: How data-efficient is ISED compared to neural gradient estimation methods?

4.1 Benchmark Tasks: NeuroGPT, NeuroPython, and Neurosymbolic

We first introduce two new neural program learning benchmarks which both contain a program
component that can make a call to GPT-4. We call such models neuroGPT programs.

Leaf Classification. In this task, we use a dataset, which we call LEAF-ID, containing leaf images
of 11 different plant species [4], containing 330 training samples and 110 testing samples. We
define custom DISCRETE types MARGIN, SHAPE, TEXTURE. With this, we define LEAF-TRAITS
= TUPLE(MARGIN, SHAPE, TEXTURE) and LEAF-OUTPUT to be the DISCRETE set of 11 plant
species in the dataset. Neural program solutions either prompt GPT-4 (GPT leaf) or use a decision
tree (DT leaf).

Scene Recognition. We use a dataset containing scene images from 9 different room types [16],
consisting of 830 training examples and 92 testing examples. We define custom types OBJECTS and
SCENES to be DISCRETE set of 45 objects and 9 room types, respectively. We freeze the parameters

6

Table 3: Performance on selected benchmarks. "TO" means time-out, and "N/A" means the task could
not be programmed in the framework. Methods are divided (from top to bottom) by neurosymbolic,
black-box gradient estimation, and REINFORCE-based.2

Accuracy (%)

Method sum2 sum3 sum4 HWF DT leaf GPT leaf scene sudoku

DPL 95.14 93.80 TO TO 39.70 N/A N/A TO
Scallop 91.18 91.86 80.10 96.65 81.13 N/A N/A TO

A-NeSI 96.66 94.39 78.10 3.13 78.82 72.40 61.46 26.36

REINFORCE 74.46 19.40 13.84 88.27 40.24 53.84 12.17 79.08
IndeCateR 96.48 93.76 92.58 95.08 78.71 69.16 12.72 66.50

NASR 6.08 5.48 4.86 1.85 16.41 17.32 2.02 82.78
ISED (ours) 80.34 95.10 94.10 97.34 82.32 79.95 68.59 80.32

of YOLOv8 and only optimize the custom neural network. The neural program solution prompts
GPT-4 to classify the scene.

We also consider several tasks from the neurosymbolic literature, including hand-written formula
(HWF) evaluation and Sudoku solving. While the solutions to many of these tasks are usually
presented as a logic program in neurosymbolic learning frameworks, neural program solutions can
take the form of Python programs. We call such models neuroPython programs.

MNIST-R. MNIST-R [13, 14] contains 11 tasks operating on inputs of images of handwritten digits
from the MNIST dataset [11]. This synthetic test suite includes tasks performing arithmetic (sum2,
sum3, sum4, mult2, mod2, add-mod-3, add-sub), comparison (less-than, equal), counting (count-3-or-
4), and negation (not-3-or-4) over the digits depicted in the images. Each task dataset has a training
set of 5K samples and a testing set of 500 samples.

HWF. The goal of the HWF task is to classify images of handwritten digits and arithmetic operators
and evaluate the formula [12]. The dataset contains 10K formulas of length 1-7, with 1K length 1
formulas, 1K length 3 formulas, 2K length 5 formulas, and 6K length 7 formulas.

Visual Sudoku. The goal of this task is to solve an incomplete 9x9 Sudoku, where the problem board
is given as MNIST digits. We follow the experimental setting of NASR [5], including their pre-trained
MNIST digit recognition models and sudoku solvers. We use the SatNet dataset consisting of 9K
training samples and 500 test samples [25].

4.2 Evaluation Setup and Baselines

All of our experiments were conducted on a machine with two 20-core Intel Xeon CPUs, one NVIDIA
RTX 2080 Ti GPU, and 755 GB RAM. Unless otherwise noted, the sample count, i.e., the number of
calls to the program P per training example, is fixed at 100 for all relevant methods. For additional
details on experimental setup, see Appendix B. We apply a timeout of 10 seconds per testing sample,
and report the average accuracy and 1-sigma standard deviation obtained from 10 randomized runs.

We pick as baselines neurosymbolic methods DeepProbLog (DPL) [14] and Scallop [13], A-NeSI [24]
which performs neural approximation of the gradients, and sampling-based gradient approximation
methods REINFORCE [26], IndeCateR [21], and NASR [5]. IndeCateR achieves provably lower
variance than REINFORCE by using a specialized sampling method (Appendix A), and NASR is a
variant specialized for efficient finetuning by using a single sample and a custom reward function. We
also use purely neural baselines and CLIP [19] for GPT leaf and scene. CLIP is a multimodal model
that supports zero-shot image classification by simply providing names of the output categories.

4.3 RQ1: Performance and Accuracy

2In an earlier version of this paper, we reported lower numbers for REINFORCE and IndeCateR for RQ1 but
have since updated these numbers to reflect their performance with the MNIST network from the IndeCateR
implementation. Unlike ISED’s network, IndeCateR’s network lacks a softmax layer.

7

Table 4: Performance comparisons for sum8, sum12, and sum16 with different sample counts k.

Accuracy (%)

sum8 sum12 sum16

Method k = 80 k = 800 k = 120 k = 1200 k = 160 k = 1600

REINFORCE 8.32 8.28 7.52 8.20 5.12 6.28
IndeCateR 5.36 89.60 4.60 77.88 1.24 5.16

IndeCateR+ 10.20 88.60 6.84 86.92 4.24 83.52
ISED (Ours) 87.28 87.72 85.72 86.72 6.48 8.13

To answer RQ1, we evaluate ISED’s accuracy against those of the baselines. ISED matches, and in
many cases surpasses, the accuracy of neurosymbolic and gradient estimation baselines. We highlight
the results for sumn from MNIST-R and other benchmarks in Table 3. Tables 7-10 in Appendix C
contain results for the remaining MNIST-R tasks, including standard deviations for all tasks. ISED is
the top performer on 8 out of the 16 total tasks.

On the GPT leaf and scene tasks, ISED outperforms the purely neural baseline by 3.82% and 31.42%
respectively, and zero-shot CLIP by 59.80% and 17.50%. For many tasks, A-NeSI is the non-
neurosymbolic method that comes closest to ISED, sometimes outperforming our method. However,
A-NeSI achieves significantly lower performance than ISED on tasks involving complex programs,
namely HWF and sudoku. This is likely due to the difficulty of training a neural model to estimate
the output of P and its gradient when P is complex. ISED also outperforms REINFORCE on all but
3 tasks due to the REINFORCE learning signal being weaker for tasks where P involves multiple
inputs. NASR outperforms ISED only on sudoku by 2.46% due to NASR being well-suited for
fine-tuning as it restricts its algorithm to use a single sample. IndeCateR achieves similar performance
compared to ISED on most tasks but achieves significantly lower accuracy on the scene classification
task, which has a large input space with maximum 10 objects each with 47 possible values in each
scene, demonstrating that IndeCateR is less sample-efficient than ISED. We elaborate more on this
point in RQ2.

ISED outperforms the neurosymbolic methods on 9 out of 14 tasks that can be written in logic
programming languages. Despite treating P as a black-box, ISED even outperforms Scallop on HWF
by 0.69% and comes within 1.16% of NGS, a specialized neurosymbolic learning framework that
uses abductive reasoning [12]. Furthermore, DPL timed out on 4 tasks, and Scallop timed out on 1
(sudoku). These results demonstrate that even for tasks that can be written in a logic programming
language, treating the program as a black-box can often yield optimal results.

4.4 RQ2: Sample Efficiency

To answer RQ2, we evaluate the sample efficiency of ISED against REINFORCE, IndeCateR, and
IndeCateR+ on adding MNIST digits. IndeCateR+ [21] is a variant of IndeCateR with a sampling
method and loss computation customized for higher dimensional setting such as the addition of 16
MNIST digits. We vary the size of the input and output space (sum8, sum12, sum16) of P as well as
the sample count, and report the average accuracy and standard deviation obtained from 5 randomized
runs (Tables 4, 11-13).

For a lower number of samples, ISED outperforms all other methods on the three tasks, outperforming
IndeCateR by over 80% on sum8 and sum12. The experimental findings support the conceptual
difference of REINFORCE-based methods providing a weak learning signal compared to ISED
(Section 3.1). While ISED achieves accuracy similar to the top performer for sum8 and sum12 with
a high sample count, it comes second on sum16 with IndeCateR+ beating ISED by 75.39%. This
suggests our approach is limited in scaling to high-dimensional inputs to P , and motivates exploring
better sampling techniques, which is the core difference between IndeCateR and IndeCateR+.

4.5 RQ3: Data Efficiency

We now examine how ISED compares to state-of-the-art baselines in terms of data efficiency. We
compare ISED and A-NeSI in terms of training time and accuracy on sum3 and sum4. We choose
these tasks for evaluation because A-NeSI has been shown to scale well to multi-digit addition tasks

8

0 200 400 600

0.2

0.4

0.6

0.8

1

Time (seconds)

A
cc

ur
ac

y

ISED A-NeSI

Figure 3: Accuracy vs. Time for sum3.

0 200 400 600

0.2

0.4

0.6

0.8

1

Time (seconds)

A
cc

ur
ac

y

ISED A-NeSI

Figure 4: Accuracy vs. Time for sum4.

[24]. Furthermore, these tasks come from the MNIST-R suite in which we use 5K training samples,
which is less than what A-NeSI would have used in its evaluation (20K training samples for sum3

and 15K for sum4). We plot the average test accuracy and standard deviation vs. training time (over
10 runs) in Figures 3 and 4, where each point represents the result of 1 epoch.

While ISED and A-NeSI learn at about the same rate for sum3 after about 5 minutes of training,
ISED learns at a much faster rate for the first 5 minutes, reaching an accuracy of 88.22% after just 2
epochs (Fig. 3). The difference between ISED and A-NeSI is more pronounced for sum4, with ISED
reaching an accuracy of 94.10% after just 10 epochs while A-NeSI reaches 49.51% accuracy at the
end of its 23rd epoch (Fig. 4). These results demonstrate that with limited training data, ISED is able
to learn more quickly than A-NeSI, even for simple tasks. This result is likely due to A-NeSI training
2 additional neural models in its learning pipeline compared to ISED, with A-NeSI training a prior as
well as a model to estimate the program output and gradient.

5 Limitations and Future Work

The main limitation of ISED is the difficulty of scaling with the dimensionality of the space of
inputs to the program P . There are interesting future directions in adapting and expanding ISED
for high dimensionality. Specifically, improvements to the sampling strategy could help adapt ISED
to a complex space of inputs. Techniques can be borrowed from the field of Bayesian optimization
where such large spaces have traditionally been studied. Furthermore, there is merit to systematically
combining white-box and black-box methods. ISED is especially useful when logic programs fail to
encode reasoning components. Therefore, we believe that ISED can be used as an underlying engine
for a new neurosymbolic language that blends the accessibility of black-box with the performance of
white-box methods.

6 Related Work

Neurosymbolic programming frameworks. These frameworks provide a general mechanism
to define white-box neurosymbolic programs. DeepProbLog [14] and Scallop [13] abstract away
gradient calculations behind a rule-based language. Others specialize in targeted applications, such
as NeurASP [28] for answer set programming, or NeuralLog [3] for phrase alignment in NLP. ISED
is similar in that it seeks to make classes of neurosymbolic programs easier to write and access;
however, it diverges by offering an interface not bound by any specific domain or language syntax.

RL and sampling-based neurosymbolic frameworks. ISED incorporates concepts found in the
RL algorithm REINFORCE [26] such as the sampling of actions according to the current policy
distribution, similar to NASR [5], and IndeCateR [21]. Other work has proposed a semantic loss
function for neurosymbolic learning which measures how well neural network outputs match a given
constraint [27]. While this technique resembles ISED in that it samples symbols from their predicted
distributions to derive the loss, it relies on symbolic knowledge in the form of a constraint in Boolean
logic, whereas ISED allows the program component to be any black-box program.

Specialized neurosymbolic methods. The majority of the neurosymbolic learning literature pertains
to point solutions for specific use cases [7, 25]. In the HWF example, NGS [12] and several of its

9

variants leverage a hand-defined syntax defining the inherent structure within mathematical expres-
sions. Similarly, DiffSort [18] leverages the symbolic properties of sorting to produce differentiable
sorting networks. Other point solutions address broader problem setups, such as NS-CL [15] which
provides a framework for visual question answering by learning symbolic representations in text and
images. For reading comprehension, the NeRd [3] framework converts NL questions into executable
programs over symbolic information extracted from text. ISED aligns with all of these point solutions
by aiming to solve problems that have thus far required technically specific solutions in order to
access the advantages of neurosymbolic learning, but it takes an opposite and easier approach by
forgoing significant specializations and instead leverages existing solutions as black-boxes.

Differentiable programming and non-differentiable optimization. Longstanding libraries in
deep learning have grown to great popularity for their ability to abstract away automatic differen-
tiation behind easy-to-use interfaces. PyTorch [17] is able to do so by keeping track of a dynamic
computational graph. Similarly, JAX [1] leverages functional programming to abstract automatic
differentiation. ISED follows the style of these frameworks by offering an interface to abstract away
gradient calculations for algorithms used in deep learning, but ISED improves upon them by allowing
systematic compatibility of non-differentiable functions.

7 Conclusion

We proposed ISED, a data- and sample-efficient algorithm for learning neural programs. Unlike
existing general neurosymbolic frameworks which require differentiable logic programs, ISED is
compatible with Python programs and API calls to GPT, and it employs a sampling-based technique to
learn neural model parameters using forward evaluation. We showed that for neuroGPT, neuroPython,
and neurosymbolic benchmarks, ISED achieves better accuracy than end-to-end neural models
and similar accuracy compared to neurosymbolic frameworks. ISED also often achieves superior
accuracy on complex programs compared to REINFORCE-based and gradient estimation baselines.
Furthermore, ISED learns in a more data- and sample-efficient manner compared to these baselines.

8 Acknowledgements

We thank the anonymous reviewers for useful feedback. This research was supported by ARPA-H
grant D24AC00253-00, NSF award CCF 2313010, and by a gift from AWS AI to ASSET (Penn
Engineering Center on Trustworthy AI).

References

[1] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018.

[2] Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama,
Yisong Yue, et al. Neurosymbolic programming. Foundations and Trends in Programming
Languages, 7(3):158–243, 2021.

[3] Zeming Chen, Qiyue Gao, and Lawrence S. Moss. NeuralLog: Natural language inference with
joint neural and logical reasoning. In Proceedings of *SEM 2021: The Tenth Joint Conference
on Lexical and Computational Semantics, pages 78–88, 2021.

[4] Siddharth Singh Chouhan, Uday Pratap Singh, Ajay Kaul, and Sanjeev Jain. A data repository of
leaf images: Practice towards plant conservation with plant pathology. In 2019 4th International
Conference on Information Systems and Computer Networks (ISCON), pages 700–707, 2019.

[5] Cristina Cornelio, Jan Stuehmer, Shell Xu Hu, and Timothy Hospedales. Learning where
and when to reason in neuro-symbolic inference. In International Conference on Learning
Representations, 2023.

[6] Wang-Zhou Dai, Qiuling Xu, Yang Yu, and Zhi-Hua Zhou. Bridging machine learning and
logical reasoning by abductive learning. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, 2019.

10

[7] Rajdeep Dutta, Qincheng Wang, Ankur Singh, Dhruv Kumarjiguda, Li Xiaoli, and Senthilnath
Jayavelu. S-reinforce: A neuro-symbolic policy gradient approach for interpretable reinforce-
ment learning. arXiv preprint arXiv:2305.07367, 2023.

[8] Jiani Huang, Ziyang Li, Binghong Chen, Karan Samel, Mayur Naik, Le Song, and Xujie
Si. Scallop: From probabilistic deductive databases to scalable differentiable reasoning. In
Proceedings of the 35th International Conference on Neural Information Processing Systems,
pages 25134–25145, 2021.

[9] Paul Shekonya Kanda, Kewen Xia, and Olanrewaju Hazzan Sanusi. A deep learning-based
recognition technique for plant leaf classification. IEEE Access, 9:162590–162613, 2021.

[10] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. CoRR,
2012.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[12] Qing Li, Siyuan Siyuan Huang, Yining Hong, Yixin Chen, Ying Nian Wu, and Song-Chun Zhu.
Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and
symbolic reasoning. In Proceedings of the 37th International Conference on Machine Learning,
page 5884–5894, 2020.

[13] Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
In ACM International Conference on Programming Language Design and Implementation, page
1463–1487, 2023.

[14] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De
Raedt. Deepproblog: Neural probabilistic logic programming. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, page 3753–3763, 2018.

[15] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
In International Conference on Learning Representations, 2019.

[16] Lukas Murmann, Michael Gharbi, Miika Aittala, and Fredo Durand. A multi-illumination
dataset of indoor object appearance. In 2019 IEEE International Conference on Computer
Vision (ICCV), Oct 2019.

[17] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Proceedings of the 33rd International Conference
on Neural Information Processing Systems, page 8026–8037, 2019.

[18] Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Differentiable sorting
networks for scalable sorting and ranking supervision. In Proceedings of the 38th International
Conference on Machine Learning, 2021.

[19] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021.

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 779–788, 2016.

[21] Lennert De Smet, Emanuele Sansone, and Pedro Zuidberg Dos Martires. Differentiable
sampling of categorical distributions using the catlog-derivative trick. In Proceedings of the
37th International Conference on Neural Information Processing Systems, 2023.

[22] Dagher R. Talhouk S.N., Fabian M. Landscape plant database, 2015.
[23] Efthymia Tsamoura, Timothy Hospedales, and Loizos Michael. Neural-symbolic integration: A

compositional perspective. In AAAI Conference on Artificial Intelligence, 2020.
[24] Emile van Krieken, Thiviyan Thanapalasingam, Jakub M. Tomczak, Frank van Harmelen, and

Annette ten Teije. A-nesi: A scalable approximate method for probabilistic neurosymbolic in-
ference. In Proceedings of the 37th International Conference on Neural Information Processing
Systems, 2023.

11

[25] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning
and logical reasoning using a differentiable satisfiability solver. In Proceedings of the 36th
International Conference on Machine Learning, pages 6545–6554, 2019.

[26] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3–4):229–256, 1992.

[27] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den Broeck. A semantic loss
function for deep learning with symbolic knowledge. In Proceedings of the 35th International
Conference on Machine Learning, pages 5502–5511, 2018.

[28] Zhun Yang, Adam Ishay, and Joohyung Lee. Neurasp: Embracing neural networks into answer
set programming. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, pages 1755–1762, 2020.

[29] Delu Zeng, Minyu Liao, Mohammad Tavakolian, Yulan Guo, Bolei Zhou, Dewen Hu, Matti
Pietikäinen, and Li Liu. Deep learning for scene classification: A survey, 2021.

12

A Explanation of Differences Between ISED and Baseline Methods

We explain the differences between ISED and prior techniques using the simple example of sum2,
where digits are restricted to be between 0-2. Suppose that we are training a neural network Mθ

for this task, and we are considering the symbol-output sample where the ground truth symbols
are 1 and 2, i.e., r1 = 1, r2 = 2, and the ground truth output is y = 3. Suppose that the predicted
distributions from Mθ for r1 and r2 are [0.1, 0.6, 0.3] and [0.2, 0.1, 0.7] respectively. We now explain
how different methods perform their loss computations.

A.1 ISED

Suppose ISED is initialized with a sample count of 3, and the sampled symbol-output pairs are
((1, 2), 3), ((1, 0), 1), and ((2, 1), 3). We use the add-mult semiring in this example. ISED can be
thought of as differentiating through the following summary logic program:

r1 = 1 ∧ r2 = 2→ y = 3

r1 = 1 ∧ r2 = 0→ y = 1

r1 = 2 ∧ r2 = 1→ y = 3

As a result, the final vector calculated for the loss function before normalization would be
0.0

0.6 ∗ 0.2
0.0

0.6 ∗ 0.7 + 0.3 ∗ 0.1
0.0


where each value corresponds to the probability of the given output (possible outputs are in the
range 0-4). Note that if there are duplicate samples, ISED includes the duplicate probabilities in its
aggregation. In our implementation, we would perform normalization on this vector and then pass it
into the binary cross-entropy loss function, with the ground truth vector being:

0.0
0.0
0.0
1.0
0.0


We would then minimize this loss and update Mθ accordingly.

If we use the min-max semiring instead, ∗ is replaced by min and + by max in the final vector
calculation, resulting in 

0.0
0.2
0.0
0.6
0.0


A.2 REINFORCE

Suppose REINFORCE is also initialized with a sample count of 3, and it samples the same symbol-
output pairs. The final reward is computed by element-wise multiplication of the log probability of
each sample with its reward value and taking the mean, as follows:

1

3
∗

[
log(0.6) + log(0.7)
log(0.6) + log(0.2)
log(0.3) + log(0.1)

]
∗

[
1.0
0.0
1.0

]
and the goal is to optimize Mθ to maximize this reward. While this approach resembles ISED’s loss
computation for the add-mult semiring, it does not involve the mult step. As it rewards possible
values instead of possible combinations, the final reward would have been the same when (1,1)
and (2,2) were the correct samples, instead of (1,2) and (2,1). Hence, the learning signal is weaker
compared to ISED when there is more than one input to P .

13

A.3 IndeCateR and NASR

IndeCateR is an extension of the REINFORCE estimator that is unbiased with a provably lower
variance. It assumes and exploits the factoring of the underlying multivariate distribution into
independent categorical variables by summing out one dimension while keeping a sample for other
dimensions fixed. For each sample drawn, IndeCateR systematically creates additional samples that
differ on a single entry by enumerating all possible values for each variable. NASR targets efficient
finetuning by setting the sample count to one and customizing the reward function.

The loss computation for IndeCateR and NASR are identical to that of REINFORCE, also providing
weak signals with fewer samples. Furthermore, both set the reward to 0 for samples leading to
incorrect predictions, effectively ignoring them, unlike ISED which penalizes such symbols. Since
only the correct symbol contribute to the final reward, the signal is sparser than ISED, making it
sample-inefficient.

A.4 A-NeSI

A-NeSI trains two additional neural networks: a prediction model Qθ′ as a surrogate for P , and a
prior model Rα for learning the parameters α for the Dirichlet distribution Dα.

Suppose A-NeSI is also initialized with a sample count of 3. At each training step, A-NeSI first
updates α using ŷ = Mθ(x). Next, it samples a single symbol from each of the 3 distributions
sampled from Dα, and uses the sampled symbol-output pair and the standard cross entropy loss
to update Qθ′ . Then, A-NeSI optimizes Mθ by minimizing the loss L(Qθ′(Mθ(r1, r2))) using the
prediction model instead of P .

A.5 DeepProbLog

DeepProbLog (DPL) enumerates all possible proofs for each output and aggregates probabilities
accordingly. For example, the proofs for y = 1 include r1 = 0, r2 = 1 and r1 = 1, r2 = 0. Thus, the
probability of this output is 0.6 ∗ 0.2 + 0.1 ∗ 0.1. The final vector calculated would be

0.1 ∗ 0.2
0.6 ∗ 0.2 + 0.1 ∗ 0.1

0.1 ∗ 0.7 + 0.6 ∗ 0.1 + 0.3 ∗ 0.2
0.6 ∗ 0.7 + 0.3 ∗ 0.1

0.3 ∗ 0.7


and we would pass this vector into some loss function (e.g., cross-entropy), with the same ground
truth vector that ISED would use. DPL would then minimize this loss and update Mθ accordingly.

A.6 Scallop

Suppose Scallop is configured to use the diff-top-1-proofs semiring. This means that for each
possible output, Scallop will use the proof of that output with the highest probability. For instance,
the most likely proof for y = 1 is r1 = 1 and r2 = 0, and the probability of the output y = 1 is
0.6 ∗ 0.2. The final vector calculated would be

0.1 ∗ 0.2
0.6 ∗ 0.2
0.1 ∗ 0.7
0.6 ∗ 0.7
0.3 ∗ 0.7


and we would pass this vector into some loss function (e.g., binary-cross-entropy), with the same
ground truth vector that ISED would use. Scallop would then minimize this loss and update Mθ

accordingly. This probability estimation would change depending on the choice of semiring (e.g.,
diff-top-k-proofs for a different value of k).

B Evaluation Setup

For tasks with the MNIST dataset as unstructured data, we employ LeNet [11], a 2-layer CNN-based
model, except for sum8, sum12, and sum16 tasks where we choose a smaller 2-layer CNN used by

14

IndeCateR [21]. For HWF, we also use a 2-layer CNN-based model. For leaf classification tasks,
images are scaled down and passed to a simple CNN-based network with 4 convolutional layers.
For the scene recognition, we use YOLOv8 and a 3-layer convolutional network for neural program
methods, 7-layer CNN for the purely neural solution, and CLIP with ViT-B/32. For all tasks included
in RQ1, other than sudoku, we remove the final softmax function at the end of each network when
evaluating IndeCateR since its sampling procedure yields optimal results without the softmax. We
also do that same with REINFORCE if it results in higher accuracy. Since sudoku uses a pretrained
CNN, we use the same CNN across all methods, including IndeCateR and REINFORCE.

We use the Adam optimizer with the best learning rate among {1e−3, 5e−4, 1e−4}. We train for
maximum 100 epochs, but stop early if the training saturates. For MNIST-R tasks, we used learning
rate 1e−4 and trained ISED for 10 epochs, REINFORCE and IndeCateR for 50 epochs, and A-NeSI
and NASR for 100 epochs. We trained ISED for 30 epochs, A-NeSI for 100 epochs, and the rest for
50 epochs for HWF and Leaf Classification with learning rate 1e−4. For the Scene Recognition task,
we trained A-NeSI and the purely neural baseline 50 epochs and the rest 100 epochs with learning
rate 5e−4. For tasks sum8 to sum16 we trained ISED for 50 epochs and the rest for 100 epochs with
learning rate 1e−3. For Visual Sudoku, we follow the setting in NASR [5] and train for 10 epochs
with learning rate 1e−5.

We configure ISED to use the min-max semiring for HWF and the add-mult semiring for all other
tasks. We use categorical sampling and binary cross-entropy loss for ISED.

B.1 Neural-GPT Experiment Prompts

For leaf classification and scene recognition, the neural-GPT experiments, we used the up-to-date
version of GPT-4, gpt-4-1106-preview and gpt-4o respectively, with the parameter top-p set to
1e−8. We present the prompts used for the experiments in Tables 5 and 6.

Table 5: GPT-4 prompt for the leaf classification task.

System message You are an expert in classifying plant species based on the margin, shape, and
texture of the leaves. You are designed to output a single JSON.

User message <PLANT NAME>. Classify into one of: <MARGIN/SHAPE/TEXTURE>.
Give your answer without explanation.

Table 6: GPT-4 prompt for the scene recognition task.

System message You are an expert at identifying room types based on the object detected.
Give short single responses.

User message There are <DETECTED OBJECTS>.
What type of room is most likely? Choose among <SCENES>.

We use MARGIN = {entire, dentate, lobed, serrate, serrulate, undulate}, SHAPE ={ellipti-
cal, lanceolate, obovate, oblong, ovate}, TEXTURE ={glossy, leathery, smooth, medium}, and
PLANT NAME ∈{Alstonia Scholaris, Citrus limon, Jatropha curcas, Mangifera indica, Ocimum
basilicum, Platanus orientalis, Pongamia Pinnata, Psidium guajava, Punica granatum, Syzygium
cumini, Terminalia Arjuna}.

Furthermore, SCENES = {bathroom, bedroom, dining room, living room, kitchen, lab, office, home
lobby, basement} and DETECTED OBJECTS is a list of maximum length 10 with duplicates.

C Full Performance Summary

We report the accuracy of all benchmarks with 1-sigma standard deviation in Tables 7, 8, 9, and 10.
We further provide the performance comparison with varying sample counts with 1-sigma standard
deviation in Tables 11, 12, and 13.

15

Table 7: Performance comparison for DT leaf, GPT leaf, scene, and sudoku.

Accuracy (%)

Method DT leaf GPT leaf scene sudoku

DPL 39.70± 6.55 N/A N/A TO
Scallop 81.13± 3.50 N/A N/A TO

A-NeSI 78.82± 4.42 72.40± 12.24 61.46± 14.18 26.36± 12.68

REINFORCE 40.24± 0.08 53.84± 0.04 12.17± 0.02 79.08± 0.87
IndeCateR 78.71± 5.59 69.16± 2.35 12.72± 2.51 66.50± 1.37

NASR 16.41± 1.79 17.32± 1.92 2.02± 0.23 82.78 ± 1.06
ISED (ours) 82.32 ± 4.15 79.95 ± 5.71 68.59 ± 1.95 80.32± 1.79

Table 8: Performance comparison for HWF, sum2, sum3, and sum4.

Accuracy (%)

Method HWF sum2 sum3 sum4

DPL TO 95.14± 0.80 93.80± 0.54 TO
Scallop 96.65± 0.13 91.18± 13.43 91.86± 1.60 80.10± 20.4

A-NeSI 3.13± 0.72 96.66 ± 0.87 94.39± 0.77 78.10± 19.0

REINFORCE 88.27± 0.02 74.46± 26.29 19.40± 4.52 13.84± 2.26
IndeCateR 95.08± 0.41 96.48± 0.53 93.76± 0.47 92.58± 0.80

NASR 1.85± 0.27 6.08± 0.77 5.48± 0.77 4.86± 0.93
ISED (ours) 97.34 ± 0.26 80.34± 16.14 95.10 ± 0.95 94.1 ± 1.6

Table 9: Performance comparison for mult2, mod2, less-than, and add-mod-3.

Accuracy (%)

Method mult2 mod2 less-than add-mod-3

DPL 95.43± 0.97 96.34± 1.06 96.60 ± 1.02 95.28± 0.93
Scallop 87.26± 24.70 77.98± 37.68 80.02± 3.37 75.12± 21.64

A-NeSI 96.25± 0.76 96.89± 0.84 94.75± 0.98 77.44± 24.60

REINFORCE 96.62 ± 0.23 94.40± 2.81 78.92± 2.31 95.42 ± 0.37
IndeCateR 96.32± 0.50 97.04 ± 0.39 94.98± 1.50 78.52± 23.26

NASR 5.34± 0.68 20.02± 2.67 49.30± 2.14 33.38± 2.81
ISED (ours) 96.02± 1.13 96.68± 0.93 96.22± 0.95 83.76± 12.89

Table 10: Performance comparison for add-sub, equal, not-3-or-4, and count-3-4.

Accuracy (%)

Method add-sub equal not-3-or-4 count-3-4

DPL 93.86± 0.87 98.53 ± 0.37 98.19± 0.55 TO
Scallop 92.02± 1.58 71.60± 2.29 97.42± 0.73 93.47± 0.83

A-NeSI 93.95± 0.60 77.89± 36.01 98.63± 0.50 93.73± 2.93

REINFORCE 17.86± 3.27 78.26± 3.96 99.28 ± 0.21 87.78± 1.14
IndeCateR 93.74± 0.44 98.18± 0.39 99.26± 0.16 94.30± 1.26

NASR 5.26± 1.10 81.72± 1.94 68.36± 1.54 25.26± 1.66
ISED (ours) 95.32 ± 0.81 96.02± 1.74 98.08± 0.72 95.26 ± 1.04

16

Table 11: Performance comparison for sum8 with different sample counts k.

Accuracy (%)

sum8

Method k = 80 k = 800

REINFORCE 8.32± 2.52 8.28± 0.39
IndeCateR 5.36± 0.26 89.60 ± 0.98

IndeCateR+ 10.20± 1.12 88.60± 1.09
ISED (Ours) 87.28 ± 0.76 87.72± 0.86

Table 12: Performance comparison for sum12 with different sample counts k.

Accuracy (%)

sum12

Method k = 120 k = 1200

REINFORCE 7.52± 1.92 8.20± 1.80
IndeCateR 4.60± 0.24 77.88± 6.68

IndeCateR+ 6.84± 2.06 86.92 ± 1.36
ISED (Ours) 85.72 ± 2.15 86.72± 0.48

Table 13: Performance comparison for sum16 with different sample counts k.

Accuracy (%)

sum16

Method k = 160 k = 1600

REINFORCE 5.12± 1.91 6.28± 1.04
IndeCateR 1.24± 1.68 5.16± 0.52

IndeCateR+ 4.24± 0.95 83.52 ± 1.75
ISED (Ours) 6.48 ± 0.50 8.13± 1.10

D License Information

For implementing the baselines, we adapted the code from the official repositories of DeepProblog
[14] (Apache 2.0), Scallop [8] (MIT), A-NeSI [24] (MIT), NASR [5] (MIT), and IndeCateR [21]
(Apache 2.0). Additionally, our benchmarks use Multi-illumination dataset [16] (CC BY 4.0), HWF
dataset (CC BY-NC-SA 3.0) from NGS [12], a subset of the leaf database [4] (CC BY 4.0), YOLOv8
(AGPL-3.0) and CLIP (MIT).

17

	Introduction
	Neural Programs
	Learning Neural Programs
	ISED Overview
	Preliminaries and Programming Interface
	Algorithm

	Evaluation
	Benchmark Tasks: NeuroGPT, NeuroPython, and Neurosymbolic
	Evaluation Setup and Baselines
	RQ1: Performance and Accuracy
	RQ2: Sample Efficiency
	RQ3: Data Efficiency

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgements
	Explanation of Differences Between ISED and Baseline Methods
	ISED
	REINFORCE
	IndeCateR and NASR
	A-NeSI
	DeepProbLog
	Scallop

	Evaluation Setup
	Neural-GPT Experiment Prompts

	Full Performance Summary
	License Information

