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Abstract—The key objective of the connected and automated
vehicle (CAV) platoon control problem is to regulate CAVs’ position
while ensuring stability and accounting for vehicle dynamics. The
unconstrained version of this problem has thoroughly been investigated
in the literature. We elaborate on the constrained version of this
problem to theoretically mitigate the two shortcomings of the uncon-
strained counterpart: (i) the synthesis of unrealistic high-gain control
parameters due to the lack of a systematic way to incorporate the lower
and upper bounds on the control parameters, and (ii) the performance
sensitivity to the communication delay due to inaccurate Taylor series
approximation. The former is mitigated via a systematic parameter-
ization of the control gains based on the Hurwitz stability criterion.
The latter is mitigated by taking advantage of the well-known Padé
approximation. The usefulness of the proposed theoretical results is
assessed by performing numerous numerical simulations. Furthermore,
a thorough comparative analysis is empirically conducted between the
constrained and unconstrained versions of the CAV platoon control
problem with application to the mixed vehicular platoon. Modern
transportation systems will benefit from the proposed CAV controls
by effectively attenuating the stop-and-go disturbance—a single cycle
of deceleration followed by acceleration—amplification throughout the
mixed vehicular platoon as it will potentially reduce collisions.

Index Terms— Car-following models, connected and automated
vehicles, 7. control, local stability, string stability, time-delay systems.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

TRAFFIC oscillations, also known as stop-and-go disturbances,
in congested modes have recently attained growing attention
(see [1] and the references therein). Stop-and-go disturbance refers
to a single cycle of deceleration followed by acceleration. Several
approaches have mainly been proposed to control human-driven
vehicles. One promising approach is via variable speed limit (VSL)
control [2], [3]. Another one utilizes the emerging connected and
automated vehicle (CAV) technology facilitating the effective control
of CAVs leading to prominent improvements in traffic flow capacity
and stability [1], [4]-[6]. Specifically, the key objective of the CAV
platoon control problem is to regulate CAVs’ position while ensuring
stability and accounting for vehicle longitudinal dynamics [1].
The CAV technology [7], essential for improving road safety and
efficiency, deeply hinges on the efficacy of vehicle-to-everything
(V2X) communication systems. Both dedicated short-range
communications and cellular vehicle-to-everything technologies
can efficiently support safety applications necessitating end-to-end
latency of around 100 milliseconds, provided that vehicle density
remains within reasonable limits [8]. However, a vital challenge
arises as traffic density escalates, leading to a marked increase
in V2X communication delay due to the communication channel
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congestion, as highlighted in various studies [9]-[11]. This surge
in latency, specifically in congested scenarios, is crucial. As detailed
by [11], effective vehicle platooning must accommodate maximum
latencies ranging from 10 to 500 milliseconds. This necessitates
the development of advanced control systems capable of adapting
to these varying delay conditions, thereby ensuring the reliability
and safety of vehicle platooning in different traffic environments.
Although the CAV platoon control problem has thoroughly been
studied in the literature, the existing research work [1] has some
shortcomings. Two main shortcomings include (i) the synthesis
of unrealistic high-gain control parameters due to the lack of a
systematic way to incorporate the lower and upper bounds on
the control parameters (also known as box constraints), and (ii)
the performance sensitivity to the communication delay due to
inaccurate Taylor series approximation.
Main Contributions. The main contributions of this paper can
be listed as follows: /) To effectively address such shortcomings,
taking advantage of the well-known Padé approximation, this paper
presents a constrained CAV platoon controller synthesis that (i)
systematically incorporates the lower and upper bounds on the
control parameters, and (i) significantly improves the performance
sensitivity to the communication delay, 2) Given the box constraints,
we parameterize the locally stabilizing gains and then ensuring the
additional string stability criterion, we obtain more representative
parameterized locally stabilizing gains. The Padé approximation
facilitates ensuring the string stability criterion in the presence
of communication delay which leads to a better sub-optimality
compared to the Taylor series approximation, and 3) Minimizing
the H o, norm of the Padé approximated transfer function over an
interval defined by predominant acceleration frequency boundaries
of human-driven vehicles, we solve for a sub-optimal constrained
CAV platoon controller synthesis via nonlinear optimization tools.
A thorough comparative analysis is empirically conducted between
the constrained and unconstrained versions of the CAV platoon
control problem with application to the mixed vehicular platoon.
The rest of the paper is organized as follows: Section II formally
presents the preliminaries and the problem statement. Section I1I
includes the main results followed by the numerous numerical
simulations detailed by Section IV. At last, Section V concludes
the paper with a few concluding remarks.
Paper Notations. The uppercase and lowercase letters denote the
matrices and vectors, respectively. We represent the supremum and
maximum by sup and max, respectively. The set of n-dimensional
real-valued vectors is symbolized by R”. For a vector v € R™, we
denote its £, norm (i.e., max; |v;|) by ||v||¢.. . We represent the
vector of all ones with 1. To symbolize the imaginary unit, we use
j =+/—1. Also, to show the absolute value of a complex-valued
number, we use |.|. For a square matrix M, we denote the set of
its eigenvalues with A(M) and show its spectral abscissa (i.e., the



maximum real part of its eigenvalues) by sa(M). A square matrix
M is said to be Hurwitz if sa(}) <0 holds. The time derivative
of a signal x(¢) is represented by X (t).

II. PRELIMINARIES AND PROBLEM STATEMENT

Based on the preliminaries, we state a control problem to propose
a constrained CAV platoon controller synthesis subject to the lower
and upper bounds on the control parameters to avoid the synthesis
of unrealistic high-gain control parameters. We also observe that
communication delay can effectively be handled by utilizing a
more accurate approximation (i.e., Padé approximation) for the
delay-dependent exponential term. According to the travel direction,
we consider a vehicular platoon consisting of Ny, vehicles with
vehicle 1 and vehicle Ny, as the most preceding and the most
following vehicles, respectively.

A. Preliminaries

1) State-space representation: Consider the state-space
representation of the CAV system ¢ as follows [1], [12], [13]:

Xi(t)=Aixi(t)+Biu;(t)+Da; 1 (1), (D
01 -7 0 0

A=lo 0o —1| B=|0]| p=|1],
00 —g G 0

where x;(t) = [oi(t) Au(t) a®)], o) =
A’L% (t) — Aﬁ: (t), A’L}l(t) = ’Ui_l(t) — U (t), a; (t), and
u;(t) denote the state vector, the deviation from equilibrium spacing,
the speed difference with the preceding vehicle (i.e., vehicle ¢ —1),
the realized acceleration, and the control input, respectively (spacing
is defined as A, (t) :=10;_1(t)—1;(¢)). Furthermore, 7;*, T;, and
K represent the predefined constant time gap, time-lag for vehicle
7 to realize the acceleration, and ratio of demanded acceleration
that can be realized, respectively. We can find an equilibrium state
Xi.e(t) by setting x;(t) =x;(t)=[0 0 0] " 1t is noteworthy
that a;_1 (¢) is treated as an external disturbance for CAV system 4.

To bypass multiple delay accumulation, we utilize the following

standard decentralized linear control strategy [1]:

ui(t)=[ksi kvi Kai] Xi(t)+kpiai_1(t—0), ()
where kg;, k,;, and k,; respectively represent the feedback gains
associated with the derivation from equilibrium spacing o;, the
speed difference Av;, and the acceleration a;. Moreover, & ¢; and ¢
denote the feedforward gain and V2V/V2I communication
delay, respectively. For brevity, we alternatively utilize
k= [kl ko k3 k4] to denote k= [ksz kvi ki kfl] In
a similar fashion, we simply represent A4;, B;, K;, T;, and 7, by
A, B, K, T, and T, respectively. The key objective of the linear
control strategy (2) is to regulate CAVs’ position while ensuring
stability and accounting for vehicle longitudinal dynamics [1].

2) Local stability: Local stability (also known as internal
stability) means that a disturbance (deviation from an equilibrium
point) can locally be resolved by a system. In the context of a CAV
system, it means that deviation from an equilibrium spacing, speed
difference, and acceleration can locally be resolved in a vehicle [1].

Definition 1 (Local stability [1], [14]): A CAV  platoon
following a linear control strategy (e.g., the control strategy in (2))
is called locally stable for an equilibrium point X, if and only if
sa(A+ Bk) <0 holds (A+ Bk is Hurwitz).

As Proposition 1 in [1] states, the CAV system in (1) governed
by the control strategy in (2) is locally stable if the following

inequalities are satisfied:
K %—k:g (Tk1+k2)>%k1. 3)
3) String stability: Strict string stability (also known as s norm
string stability) means that the magnitude of a disturbance is not am-
plified for each leader-follower pair throughout a vehicular string [1].
Definition 2 (Strict string stability [1], [15]): A CAV platoon
string is strict string stable if and only if
las(s) 2/ lai—1(s)lla < 1, Vi € Toav,
hold where Zcay denotes the set of CAVs and ||a;(s)]2
represents the #Ho norm of a;(s) which is defined as

lai(s)ll2:=1/ J5 lai(jw)2dw.
Applying the following Cauchy inequality [1], [15]:
[lai(s)ll2/[lai-1(s)ll2 < llai(s)/ai-1(s)llso,

a sufficient condition to guarantee the string stability can be derived
as

1
k)l >0, 7’]€1>—]€27 7>k37

1F3(8)lloo :=sp | Fi(jeo)| <1, @

where Fj(s) := a“i(ls()s) and ||F;(s)|l« represent the transfer

function capturing disturbance propagation throughout the vehicular
string in the frequency domain and its ., norm (i.e., the upper
bound of the disturbance propagation ratio throughout the vehicular
string), respectively. By taking the Laplace transform of the
closed-loop system consisting of (1) and (2), one can obtain the
following expression for F;(s):

P K(kys?e 0 4 kos+k)
i(s)= c3s3+cas2+cistey

C3:T, Co = —Kk3—|—1, C1 :K(Tkl +I€2)7 Co :Kkl
Substituting s = jw in (5), one can analytically compute |F;(jw)|
as detailed by [16]. The exponential term associated with the
communication delay 6 in F;(s) in (5), ie., e~ 95, adds more
complexity to the H., controller synthesis, necessitating the
utilization of approximation techniques to efficiently compute
the approximate value of ||F;(s)||~. In that regard, diverse
approximations exist. For instance, the authors in [1], based on a
sufficient condition (i.e., utilizing the Taylor series approximations
of cos(fw)~=1— % and sin(fw) = Ow— % for a sufficiently
small #) and imposing the sufficient condition (4), derive a set of
inequalities presented by Proposition 2 in [1] as

®

2 3
T+ % >0, (6)
—2KT(1k1+k2) 4 (Kks —1)* — K ka (k16> 4+ 2k20+k4) >0, (6b)

T2]€1

2Kk1 (K ka+ks+1ke+ —11]>0, (6¢)

to guarantee the string stability of the CAV system in (1) governed
by the control strategy in (2) for a sufficiently small 6.

B. Problem statement

The ultimate goal of the current study is to apply the CAV
platoon controller synthesis results to the mixed vehicular platoon.
Due to the string unstable behavior of human-driven vehicles, we
have no direct control over them. Nonetheless, applying the (fully)
CAV platoon controller synthesis results to the mixed vehicular
platoon can effectively attenuate the stop-and-go disturbance
amplification throughout the mixed vehicular platoon. In the case of
the mixed vehicular platoon, the frequency of human-driven vehicle
acceleration throughout traffic oscillations is bounded and typically
shows a predominant range [1], [17]. Then, for practicality, we aim
at minimizing || F;(s) || over an interval defined by predominant



acceleration frequency boundaries of human-driven vehicles (see [1]
for more details). Given the transfer function F;(s)= aaj(ls()s) and
the predominant acceleration frequency boundaries of human-driven
vehicles, namely wo >w; > 0, let us define/denote its H ., norm
over w € [wy ,wo), namely Hrwe) a1

IFi(s)|lrl:= sup  |Fy(jw)|- @)
wE[wr ,wa]

Observe that based on definitions (4) and (7), inequalities
IE(s)[|&2) < ||Fy(s)|lsc < 1 are satisfied if (4) holds.
Defining the H ., norm over the predominant acceleration frequency
boundaries of human-driven vehicles wo >wq >0, we are now ready
to formally state the main problem to be investigated in this paper.

Problem 1: Given the CAV system in (1) governed by the
control strategy in (2), the predominant acceleration frequency
boundaries of human-driven vehicles wo, > w; > 0, and the
following box constraints (i.e., the lower and upper bounds) on
the gains [k1 ko ks k4

K <k <k ic{1,23},

Ky <ky<kf, (8)
synthesize an "Hﬁ[fél’wg] optimal control strategy with an optimal
H@w2) horm of v (<.

Solving Problem 1 facilitates the effective attenuation of the
stop-and-go disturbance amplification throughout the mixed
vehicular platoon over the predominant acceleration frequency
boundaries of human-driven vehicles. Furthermore, such a controller
synthesis (i) facilitates the effective stop-and-go disturbance
attenuation for the scenario with a large communication delay, and
(ii) systematically incorporates the box constraints arising from
the physics of the problem. Remarkably, these objectives are not
achievable via the controller synthesis proposed by [1].

(8a)

III. MAIN RESULTS

By parameterizing locally stabilizing gains subject to box
constraints, first, we systematically incorporate the local stability
and the box constraints. Second, we additionally ensure the string
stability via the Padé approximation. Finally, built upon the previous
two steps, we efficiently solve for a sub-optimal solution to Problem
1. For the proofs, see Appendices A—C in [16].

A. Parameterized locally stabilizing gains

The set of feedback gains [k1 ka ks3] satisfying the local
stability (3) can be parameterized via the parameters [33 Y z} as

kl (I) =z, k2(xvy) =—TT+Y, k3(x7yvz) = T%ﬁ —Z, (9)
where z, y, and z are all positive parameters. Imposing box
constraints (8a) to the parameterization (9), we obtain the parameter-
ization of the parameters z, y, and z in (9) detailed by Proposition
1 in [16]. Similar to Proposition 1 in [16], the feedforward gain k4
satisfying box constraint (8b) can simply be parameterized via the
parameter 14 as ky = (1—1b4)k} +104k%, where 14 €[0,1] holds.
Note that the form of ¢;’s for all i € {1,2,3,4} can be chosen via any
arbitrary sigmoid function, e.g., the logistic function () = Heil—cﬁ
where ¢ > 0 denotes the logistic growth rate. According to the
statement of Lemma 1 in [16], if the sufficient condition on the
string stability (4) holds for the transfer function F;(s) in (5), then
inequality (6¢) holds for the control parameters [kjl ky ks k4] .
Utilizing the necessary condition (associated with the string stability)
stated by Lemma 1 in [16], i.e., inequality (6¢), and noting that K >
0 and k1 > 0 hold, the feedforward gain &, can be parameterized

TABLEI
CLOSED-FORM EXPRESSIONS FOR THE PARAMETERS IN PROPOSITOIN 1.

' =max{ekl}, 2V =k¥

y,fz,l =m%{e,fx(w1)+ké7%,¢y}, Yy, =7=(¥1)+kG

l — —Tx(p)+v(p1,%2)
1o —ma““{ﬁ’ Ky($1,92) kg}

o :min{ “Ta()y(oa) g

Ky(1,12)
. wibl W2,03 =max{0,¢w}
WY e = T |y (3 4h2) + %&1;) —2z(1,32,33) + kY
¢: an infinitesimal positive value
_ OB VORI )= ) ey
6= T8 oy (g o)+ i)k
= w +7y(h1,32)+ #ﬁ;i) —z (1 2,3) kY

by

via the parameters [z y z w] as ky(z,y,2,w) = 7279” —Ty+
% + 2z + w, where z, y, and z are as expressed in (9) and w
is a non-negative parameter. Imposing boxzconstraints (8) to the
parameterizations (9) and k4(z,y,2,w) = 5* —Ty+ % +z4w,
we obtain the following parameteri22ation of the parameters z, y, z,
and w in (9) and ky(,y,2,w) = 5 —Ty+ F2 + 24w

Proposition 1: The parameters [x Yy oz w] in (9) and
ka(x,y,z,w) = 727“ —TYy+ IT(—"Z + z+w satisfying box constraints
(8) can be parameterized via the parameters [1/)1 Py Y3 1/14} as

z=x(1)=(1—1p)z! +ey1 2",

y=y(W1,02) = (1—12)yly, +1b2ui,»

z=z(P1aho03) = (1—3)2L, o +328, 0,

w=w(tna,s,0a) = (L=a)wy, y, o FP0Y, gy gy (10)
where 1; € [0,1] holds for all ¢ € {1,2,3,4} and the expressions
for xl’ zt, yfﬁl > y;LZ1’ Z’f/h P2 2112171/)2’ w'lt/«'l RUPRUCY and w:/il b by AE
reflected on Tab. I. ,

Merging (9), ks(z,y, z,w) = 5% — 7y + IT(—Z + z + w,
and (10) along with sigmoid functions, we obtain the following
parameterization of the locally stabilizing gains [k1 ka2 ks ki)
subject to box constraints (8):

Corollary 1: The locally stabilizing gains [kl ko k3 k4]
subject to box constraints (8) can be parameterized via the
parameters [k1 Ky kg K4 as

k1(k1) =x((k1)),
ka(k1,k2) =—T=(¢ (k1)) +y (¥ (K1) ¥(K2)),
—Tx(3 (k1)) +y (@ (K1) 9 (k2))
Ky(@(k1)1(k2))
—2(P (K1) (K2) b (K3)),
TQX@/’("M))

ks(k1,k2,k3) =

k4 (K/l 7”27”33”4) ==

5 =7y (P (k1)¥(k2))
TX(ZZ’(M))

Ky(¥(k1),1(k2)) +2 (¥ (k1) ¥ (k2)(k3))

+w((k1) (k) (k3)(Ka)), an
where «; € R holds for all ¢ € {1,2,3,4} and x(), y(), z(), and w()
represent the same functions expressed in (10).
Given the locally stabilizing gains [ky k2 ks k| subject
to box constraints (8) and utilizing the parameterization (11), the
corresponding parameters [m Ko K3 li4] can be extracted as




detailed by Corollary 3 in [16]. As a summary, (i) Corollary 1 will
be utilized as a cornerstone to parameterize the locally stabilizing
gains [k:l ko k3 k‘4] via the parameters [m Ko K3 ff4] ,
and (ii) Corollary 3 in [16] will facilitate the extraction of the
parameters [nl Ko K3 114] given the locally stabilizing gains
[kl ko k3 k4]. The former is useful for searching for the
sub-optimal solution to Problem 1 while the latter is essential for
opting (extracting) an initial feasible point for the main optimization
problem associated with Problem 1.

B. String stability via the Padé approximation

As mentioned earlier, one needs to overcome the complexity
of the communication delay in the H., controller synthesis. To
that end, unlike the Taylor series approximation utilized by [1],
we employ the Padé approximation approach to approximate the
transfer function F;(s) in (5), namely F;(s). For more details, see
Section III-B in [16].

Inspired by the sufficient condition (4), to more accurately
ensure the string stability of the CAV system in (1) governed
by the control strategy in (2) in the presence of communication
delay, we utilize the following condition: || F;(s)||eo < 1. Centering
around || F}(s)||so < 1, we incorporate the string stability into the
locally stabilizing box-constrained gains by utilizing the Padé
approximation. Although an analytical explicit formula exists
for F;(jw) in (4) and (7), utilizing the approximate forms of (4)
and (7) via the Padé approximation, is unavoidable as (4) and (7)
cannot directly be utilized due to the computational complexity of
computing || F;(s)||o and HE(S)HL@“M, respectively. Then, in the
next section, we alternatively utilize the Padé approximation-based
counterparts || £}(s)]||s and || F}(s) ||[§§1’w2] to effectively solve
Problem 1 for a sub-optimal solution.

C. A sub-optimal solution to Problem 1

We here propose a two-stage procedure to solve Problem 1
for a sub-optimal solution. Substituting the parameterized locally
stabilizing gains (11) provided by Corollary 1 into F;(s) in
(5), we obtain the parameterized F'(s;«) and denote its Padé
approximation by F(S;Iﬁ:). Then, defining the optimization variable
Kaski=[K1 Ko K3 Fy T we first consider the following
optimization problem:

Minimize || F(s;)||©12], (12a)
KERY
subject to: || F(s:x)]|s0 <1, (12b)

to solve Problem 1 for a sub-optimal solution. We then propose
a two-stage procedure as follows:

1) We first search for an initial stabilizing feasible point x° that
satisfies constraint (12b).

2) We then solve optimization problem (12) for a sub-optimal
solution x* starting from the obtained initial stabilizing feasible
point in the first stage, i.e., x°. Finally, one can compute k*
by substituting x* into the parameterization (11) provided by
Corollary 1 as k* =k(k*).

In the sequel, we delve into each stage thoroughly.

1) First stage: Notably, one can take advantage of Corollary 3
in [16] to extract x° from k°. Such a fact motivates us to: first, alter-

natively search for an initial stabilizing feasible point k° and second,
extract the corresponding initial stabilizing feasible point x° from

k©. To that end, first, we consider the following parameterization:
ke (p1) = (1= p(p ) )max{ ek }+p(pa )i,

k(i) = (1—p(po) ki +p(pa)kl, i€{2,34},  (13)

with p(8) = ﬁ where v > 0 can arbitrarily be chosen and
] T

second, defining p := [,ul te p3  pg| and substituting
the parameterized gains (13) into F;(s) in (5), we obtain the
parameterized G(s; 1) and denote its Padé approximation by
G (8;14)- Then, to search for an initial stabilizing feasible point 10
that satisfies ||G(s;u)||oo <1 (an equivalent constraint to constraint
(12b)), we solve the following standard H ., optimization problem:

Minimize ||G(s314)]| oo, (14)

HER?

for 11, utilizing a well-developed standard H., problem solver,
namely hinfstruct solver. Afterwards, according to the
parameterization (13), we get k° = k(u") and plug £° to Corollary
3 in [16] to extract x°. R
2) Second stage: Motivated by || F;(s)]||oo <1, let us define the
following function:
ni)o={ IEGmI! it [E(sm)ll oo <1,
« else,
where o > 1 can arbitrarily be chosen. Now, we alternatively solve
the following unconstrained optimization problem:
MiIgRgize h(k),

(15)

(16)

to find a solution x* to optimization problem (12). Finally, one
can compute k£* by substituting £* into the parameterization (11)
provided by Corollary 1 as k* = k(x*). Regarding the initialization,
we utilize x° obtained from the first stage. Furthermore, due to the
non-convex and non-smooth nature of the function h(x) in (15),
we need to utilize non-convex and non-smooth optimization tools
to solve the unconstrained optimization problem (16). For instance,
we can employ fminsearch solver. Procedure 1 summarizes
the two-stage H . controller synthesis procedure.

Procedure 1: Tivo-stage Ho Controller Synthesis

1 Input: 7,7, K 0.1 wo {kl M4 {2 0. v,N

First stage:
Construct G(s;u) via the parameterization (13).
Get G(s;11) via the Padé approximation of G/(s;u).
Solve (14) for u° via hinfstruct solver.
Compute k° =k(u°) via the parameterization (13).
Extract £° from k° via Corollary 3 in [16].

Second stage:
Construct F'(s;x) via the parameterization (11).
Get F(s;k) via the Padé approximation of F'(s;x).
Initialize (16) with x° obtained from the first stage.
Solve (16) for k* via fminsearch solver.

13 Compute k* =k(x*) via the parameterization (11).

14 Output: £*.
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IV. NUMERICAL SIMULATIONS

Throughout this section, we assess the effectiveness of the
presented theoretical results via MATLAB simulations and the
NGSIM trajectory data for I-80 in California [18]. Depending on
how small the communication delay is, the section is divided into
two main parts: (a) Case 1: a sufficiently small communication
delay 8 and (b) Case 2: a large communication delay 6. In Case 1,



TABLE 1T
THE TWO-STAGE Hoo CONTROLLER SYNTHESIS k™ AND k"¢ [1].

Vector Value
k* | [0.4212 04775 —1.0078 1.3197]"
ke [[0.9200 1.3200 —0.9200 0.7200]
TABLE Il

THE HL‘Z} 2] NORM VALUES FOR kU0 [1] AND k*.

wi | IFG)ELH for ke | 1F(s) 02T for k*
0.1 0.9739 0.9628
03 0.9001 0.8207
05 0.8667 0.6758
07 0.7304 0.5660

since the communication delay 6 is sufficiently small, we can set
the unconstrained ., controller synthesis proposed in [1], namely
k"¢, as a benchmark for fair comparative analysis purposes. In that
regard, to have a fair comparison, we impose the box constraints on
k*, based on ||k"¢||¢_. . In other terms, we consider a hypercube
that encompasses k""°. In Case 2, since 6 is not sufficiently
small anymore, the Taylor series approximation-based method [1]
becomes unusable. We utilize getPeakGain to evaluate the
#2121 norm values. Regarding the Padé approximation, we
utilize pade equipped with /N which denotes the Padé approx-
imation order. To utilize hinfstruct, we take advantage of
realp, creating real-valued tunable parameters (i1, (2, (3, and fi4.
Furthermore, we initialize those real-valued parameters via rand.

A. Case 1: a sufficiently small communication delay

In this section, for the sufficiently small 6, we conduct a
comparative analysis between the unconstrained and constrained
H o syntheses £""° [1] and k*.

Similar to [1], we adopt the value setting from Tab. IT in [16] for
the experimental # . controller synthesis. Time quantities are all in
seconds. Setting wy =0.5, k! =—|[[k™[[,_ [0 1 1 1] T k=
||k, 1, «=1.05, (=5, v=>5, N =5 and running Procedure
1, we obtain the two-stage "H oo controller synthesis £* illustrated
by Tab. II for which the Hoo k2] horm values corresponding to the
unconstrained and constrained ., syntheses £* and k"¢ [1] are
|1 F(s)]| 2! =0.6758 and || F(s)]| "2 =0.8667, respectively.

According to A(A + BEk¥) {—8.0215, —0.4595 —
0.36067, —0.4595 + 0.36065}, and Fig. 1 in [16], we observe
that box constraints (8) and both local stability (3) and string
stability (4) are satisfied for £*. As Fig. 2 in [16] depicts, the Padé
approximation-based method attains a more accurate approximation
than the Taylor series approximation-based counterpart.

For predominant acceleration frequency boundary of human-
driven vehicles wy € {O 1, 0 3,0.5,0.7}, Tab. 1T reflects the
w1 -dependency of the Hoo ] norm values corresponding to the
unconstrained and constrained H ., syntheses £""° [1] and k*.

Accordingly, for w € [0.01,5.01], Fig. 1 illustrates the |F'(jw)|
values corresponding to the unconstrained and constrained H o
syntheses k"¢ [1] and k* with §=0.1 and w; € {0.1,0.3,0.5,0.7}.

According to Tab. III, the Padé approximation-based box-
constrained solution outperforms the Taylor series appr0x1rnat10n-
based unconstrained solution [1] in terms of the H12
norm. As Fig. 1 depicts, although the unconstrained and con-
strained Hoo syntheses have similar starting patterns, the pat-
terns are different in the sequel. As an interesting obser-

Fig. 1. The |F(jw)]| values for k"¢ [1] on the left and k* on the right with
9=0.1 and w1 €70.1,0.3,0.5,0.7}.
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Fig. 2. The state trajectories corresponding to k"¢ [1] on the left and &£* on the
right with §=0.1 and w1 =0.3.
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vation, based on ||F(s; £"(0. 5))H0525] 0.8667 and

|1 F'(s; 640 (0. 3))||[0 2251 — .8228 from Fig. 1, we notice that
inequality || F/(s;5""(0.5))|%>*% < || (557 (0.3)) | &>
(due to definition (7)) is violated for the unconstrained .. synthesis
k™€ [1], i.e., for w; = 0.5, the sub-optimality of their proposed solu-
tion is high. It is noteworthy that such inequality violation does not
occur in the case of constrained /. synthesis £* based on Fig. 1.

To visualize the corresponding state trajectories of the
unconstrained and constrained . syntheses £""¢ [1] and k*, we
utilize the following formula:

Xi (t) — e(Ai +Bik)txi (0)+

t
eATBRE=O)(Bikpia;1(p—0)+Dai—1()) de,

along OWith the human-driven vehicle acceleration information
adopted from the NGSIM trajectory data for I-80 in California
[18]. Considering a mixed vehicular platoon consisting of 1
human-driven vehicle, namely Vehicle 1845 (as a leading vehicle)
and 5 CAVs, and running Procedure 1 with #=0.1 and w; =0.3,
we get the corresponding state trajectories of the unconstrained and
constrained H ., syntheses k"¢ [1] and k£* visualized in Fig. 2.
Moreover, Fig. 3 depicts the Cumulative Damping Ratio (defined

as % in [1]) associated with the CAVs for the unconstrained
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Fig. 3. The cumulative damping ratio associated with the CAVs for k"¢ [1] and
k* with =0.1 and w1 =0.3.
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w

Fig. 4. The |F(jw)| values for k* with w € [wi, w2] on the left and
w€[0.01,5.01] on the right with 6 =1.5 and wq =0.5.

and constrained H . syntheses £""° [1] and £* with 6 =0.1 and
w1 = 0.3. Fig. 3 empirically certifies that the constrained H.o
synthesis k* outperforms the unconstrained H., synthesis k"¢
[1] in terms of disturbance attenuation effectiveness.

B. Case 2: a large communication delay

In this section, since 6 is not sufficiently small anymore, the
Taylor series approximation-based method [1] becomes unusable.
We certify the functionality of the two-stage H ., controller synthesis
procedure presented by Procedure 1 for dealing with large 6. Repeat-
ing the experiments for the value setting in Tab. IT in [16] except for
6 with =150, =05, k'=—2[0 1 1 1], k=21,a=
1.05, (=5, v=>5, N =5, we obtain the two-stage H, controller
synthesis k* illustrated by Tab. V in [16] for which the L]
norm value corresponding to k* is || F'(s) HL“Q 2l — 0.8669. Accord-
ingly, for w € [wy,ws] on the left and w € [0.01,5.01] on the right,
Fig. 4 visualizes the | F'(jw)| values corresponding to the constrained
‘H oo controller synthesis £* with §=1.5 and w; =0.5. According
to AM(A + Bk*) = {—3.2621, —0.2376 — 0.36445, —0.2376 +
0.3644;}, and Fig. 4, we realize that box constraints (8) and both
local stability (3) and string stability (4) are satisfied for k*.

V. CONCLUDING REMARKS

To effectively address the shortcomings arising from the uncon-
strained CAV platoon controller synthesis in the literature, this work
proposes a (sub-optimal) constrained CAV platoon controller synthe-
sis subject to the box constraints. Applying the (fully) CAV platoon
controller synthesis results to the mixed vehicular platoon can effec-
tively attenuate the stop-and-go disturbance amplification throughout
the mixed vehicular platoon. Minimizing the H ., norm of the Padé
approximated transfer function over an interval defined by predom-
inant acceleration frequency boundaries of human-driven vehicles,
we solve for a sub-optimal constrained CAV platoon controller syn-
thesis via non-convex and non-smooth optimization tools. Conduct-
ing extensive numerical experiments certifies that (i) for a sufficiently
small communication delay, the Padé approximation-based method

outperforms the Taylor series approximation in terms of the H
norm over an interval defined by predominant acceleration frequency
boundaries of human-driven vehicles, and (ii) for a large commu-
nication delay, the Padé approximation-based method successfully
proposes an ., controller synthesis while the Taylor series
approximation-based method in the literature becomes unusable.
Limitations: Although the sub-optimal performance of the
proposed controller synthesis is satisfactory, its sub-optimality level
can be sensitive to the first stage (stable initialization) of the proposed
two-stage H., controller synthesis procedure. As another limitation
of the current study, we have assumed that the vehicle dynamics
and the communication delay are deterministic and time-invariant,
which is unrealistic. Elaboration on such a robust synthesis for the
uncertain case can be considered as a pertinent future direction.
REFERENCES

1 Y. Zhou, S. Ahn, M. Wang, and S. Hoogendoorn, “Stabilizing mixed vehicular
platoons with connected automated vehicles: An H-infinity approach,”
Transportation Research Part B: Methodological, vol. 132, pp. 152-170, 2020.
A. Popov, A. Hegyi, R. Babuska, and H. Werner, “Distributed controller design
approach to dynamic speed limit control against shockwaves on freeways,”
Transportation Research Record, vol. 2086, no. 1, pp. 93-99, 2008.

A. Hegyi, S. P. Hoogendoorn, M. Schreuder, and H. Stoelhorst, “The expected

effectivity of the dynamic speed limit algorithm specialist-a field data

evaluation method,” in European Control Conference (ECC). IEEE, 2009,

pp. 1770-1775.

D. Chen, S. Ahn, M. Chitturi, and D. A. Noyce, “Towards vehicle automation:

Roadway capacity formulation for traffic mixed with regular and automated

vehicles,” Transportation Research Part B: Methodological, vol. 100, pp.

196-221, 2017.

G. Piacentini, A. Ferrara, 1. Papamichail, and M. Papageorgiou, “Highway

traffic control with moving bottlenecks of connected and automated vehicles

for travel time reduction,” in IEEE 58th Conference on Decision and Control

(CDC), 2019, pp. 3140-3145.

S. C. Vishnoi, J. Ji, M. Bahavarnia, Y. Zhang, A. F. Taha, C. G. Claudel, and

D. B. Work, “CAV traffic control to mitigate the impact of congestion from

bottlenecks: A linear quadratic regulator approach and microsimulation study,”

Journal on Autonomous Transportation Systems, vol. 1, no. 2, pp. 1-37, 2024.

E. Larsson, G. Sennton, and J. Larson, “The vehicle platooning problem:

Computational complexity and heuristics,” Transportation Research Part C:

Emerging Technologies, vol. 60, pp. 258-277, 2015.

R. Molina-Masegosa and J. Gozalvez, “LTE-V for sidelink 5G V2X vehicular

communications: A new 5G technology for short-range vehicle-to-everything

communications,” IEEE Vehicular Technology Magazine, vol. 12, no. 4, pp.

30-39, 2017.

K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin,

“Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication

in a heterogeneous wireless network—performance evaluation,” Transportation

Research Part C: Emerging Technologies, vol. 68, pp. 168—184, 2016.

[10] S. A. Ahmad, A. Hajisami, H. Krishnan, F. Ahmed-Zaid, and E. Moradi-Pari,
“V2V system congestion control validation and performance,” IEEE
Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2102-2110, 2019.

[11] G. Naik, B. Choudhury, and J.-M. Park, “IEEE 802.11 bd & 5G NR V2X:
Evolution of radio access technologies for V2X communications,” IEEE
Access, vol. 7, pp. 70 169-70 184, 2019.

[12] D. Swaroop, J. K. Hedrick, C. Chien, and P. Ioannou, “A comparison of

spacing and headway control laws for automatically controlled vehicles,”

Vehicle System Dynamics, vol. 23, no. 1, pp. 597-625, 1994.

K. Yiand Y. Do Kwon, “Vehicle-to-vehicle distance and speed control using an

electronic-vacuum booster,” JSAE Review, vol. 22, no. 4, pp. 403412, 2001.

[14] R. E. Wilson and J. A. Ward, “Car-following models: Fifty years of linear
stability analysis—a mathematical perspective,” Transportation Planning and
Technology, vol. 34, no. 1, pp. 3—18, 2011.

[15] G.J. Naus, R. P. Vugts, J. Ploeg, M. J. van De Molengraft, and M. Steinbuch,
“String-stable cacc design and experimental validation: A frequency-domain
approach,” IEEE Transactions on Vehicular Technology, vol. 59, no. 9, pp.
4268-4279, 2010.

[16] M. Bahavarnia, J. Ji, A. F. Taha, and D. B. Work, “On the constrained CAV
platoon control problem,” arXiv e-prints, pp. arXiv—2401, 2024.

[17] C. Thiemann, M. Treiber, and A. Kesting, “Estimating acceleration and
lane-changing dynamics from next generation simulation trajectory data,”
Transportation Research Record, vol. 2088, no. 1, pp. 90-101, 2008.

[18] Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting

Data. [Dataset]. Provided by ITS DataHub through Data.transportation.gov.

Accessed 2024-03-11 from http://doi.org/10.21949/1504477 .

[

[

[2

—

3

[t}

[4

=

[5

=

[6

—=

[7

—

[8

=

9

—

[13

—_



