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Abstract— The key objective of the connected and automated
vehicle (CAV) platoon control problem is to regulate CAVs’ position
while ensuring stability and accounting for vehicle dynamics. The
unconstrained version of this problem has thoroughly been investigated
in the literature. We elaborate on the constrained version of this
problem to theoretically mitigate the two shortcomings of the uncon-
strained counterpart: (i) the synthesis of unrealistic high-gain control
parameters due to the lack of a systematic way to incorporate the lower
and upper bounds on the control parameters, and (ii) the performance
sensitivity to the communication delay due to inaccurate Taylor series
approximation. The former is mitigated via a systematic parameter-
ization of the control gains based on the Hurwitz stability criterion.
The latter is mitigated by taking advantage of the well-known Padé
approximation. The usefulness of the proposed theoretical results is
assessed by performing numerous numerical simulations. Furthermore,
a thorough comparative analysis is empirically conducted between the
constrained and unconstrained versions of the CAV platoon control
problem with application to the mixed vehicular platoon. Modern
transportation systems will benefit from the proposed CAV controls
by effectively attenuating the stop-and-go disturbance—a single cycle
of deceleration followed by acceleration—amplification throughout the
mixed vehicular platoon as it will potentially reduce collisions.

Index Terms— Car-following models, connected and automated
vehicles,H∞ control, local stability, string stability, time-delay systems.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

T
RAFFIC oscillations, also known as stop-and-go disturbances,

in congested modes have recently attained growing attention

(see [1] and the references therein). Stop-and-go disturbance refers

to a single cycle of deceleration followed by acceleration. Several

approaches have mainly been proposed to control human-driven

vehicles. One promising approach is via variable speed limit (VSL)

control [2], [3]. Another one utilizes the emerging connected and

automated vehicle (CAV) technology facilitating the effective control

of CAVs leading to prominent improvements in traffic flow capacity

and stability [1], [4]–[6]. Specifically, the key objective of the CAV

platoon control problem is to regulate CAVs’ position while ensuring

stability and accounting for vehicle longitudinal dynamics [1].

The CAV technology [7], essential for improving road safety and

efficiency, deeply hinges on the efficacy of vehicle-to-everything

(V2X) communication systems. Both dedicated short-range

communications and cellular vehicle-to-everything technologies

can efficiently support safety applications necessitating end-to-end

latency of around 100 milliseconds, provided that vehicle density

remains within reasonable limits [8]. However, a vital challenge

arises as traffic density escalates, leading to a marked increase

in V2X communication delay due to the communication channel
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congestion, as highlighted in various studies [9]–[11]. This surge

in latency, specifically in congested scenarios, is crucial. As detailed

by [11], effective vehicle platooning must accommodate maximum

latencies ranging from 10 to 500 milliseconds. This necessitates

the development of advanced control systems capable of adapting

to these varying delay conditions, thereby ensuring the reliability

and safety of vehicle platooning in different traffic environments.

Although the CAV platoon control problem has thoroughly been

studied in the literature, the existing research work [1] has some

shortcomings. Two main shortcomings include (i) the synthesis

of unrealistic high-gain control parameters due to the lack of a

systematic way to incorporate the lower and upper bounds on

the control parameters (also known as box constraints), and (ii)

the performance sensitivity to the communication delay due to

inaccurate Taylor series approximation.

Main Contributions. The main contributions of this paper can

be listed as follows: 1) To effectively address such shortcomings,

taking advantage of the well-known Padé approximation, this paper

presents a constrained CAV platoon controller synthesis that (i)

systematically incorporates the lower and upper bounds on the

control parameters, and (ii) significantly improves the performance

sensitivity to the communication delay, 2) Given the box constraints,

we parameterize the locally stabilizing gains and then ensuring the

additional string stability criterion, we obtain more representative

parameterized locally stabilizing gains. The Padé approximation

facilitates ensuring the string stability criterion in the presence

of communication delay which leads to a better sub-optimality

compared to the Taylor series approximation, and 3) Minimizing

the H∞ norm of the Padé approximated transfer function over an

interval defined by predominant acceleration frequency boundaries

of human-driven vehicles, we solve for a sub-optimal constrained

CAV platoon controller synthesis via nonlinear optimization tools.

A thorough comparative analysis is empirically conducted between

the constrained and unconstrained versions of the CAV platoon

control problem with application to the mixed vehicular platoon.

The rest of the paper is organized as follows: Section II formally

presents the preliminaries and the problem statement. Section III

includes the main results followed by the numerous numerical

simulations detailed by Section IV. At last, Section V concludes

the paper with a few concluding remarks.

Paper Notations. The uppercase and lowercase letters denote the

matrices and vectors, respectively. We represent the supremum and

maximum by sup and max, respectively. The set of n-dimensional

real-valued vectors is symbolized by R
n. For a vector v∈R

n, we

denote its ℓ∞ norm (i.e., maxi |vi|) by ∥v∥ℓ∞ . We represent the

vector of all ones with 1. To symbolize the imaginary unit, we use

j=
√
−1. Also, to show the absolute value of a complex-valued

number, we use |.|. For a square matrix M , we denote the set of

its eigenvalues with ¼(M) and show its spectral abscissa (i.e., the



maximum real part of its eigenvalues) by sa(M). A square matrix

M is said to be Hurwitz if sa(M)<0 holds. The time derivative

of a signal Ç(t) is represented by Ç̇(t).

II. PRELIMINARIES AND PROBLEM STATEMENT

Based on the preliminaries, we state a control problem to propose

a constrained CAV platoon controller synthesis subject to the lower

and upper bounds on the control parameters to avoid the synthesis

of unrealistic high-gain control parameters. We also observe that

communication delay can effectively be handled by utilizing a

more accurate approximation (i.e., Padé approximation) for the

delay-dependent exponential term. According to the travel direction,

we consider a vehicular platoon consisting of Nvp vehicles with

vehicle 1 and vehicle Nvp as the most preceding and the most

following vehicles, respectively.

A. Preliminaries

1) State-space representation: Consider the state-space

representation of the CAV system i as follows [1], [12], [13]:

Ç̇i(t)=AiÇi(t)+Biui(t)+Dai−1(t), (1)

Ai=





0 1 −Ä∗i
0 0 −1
0 0 − 1

Ti



, Bi=





0
0
Ki
Ti



, D=





0
1
0



,

where Çi(t) =
[

Ãi(t) ∆vi(t) ai(t)
]¦

, Ãi(t) :=
∆ϑi(t) − ∆ϑ∗i (t), ∆vi(t) := vi−1(t) − vi(t), ai(t), and

ui(t) denote the state vector, the deviation from equilibrium spacing,

the speed difference with the preceding vehicle (i.e., vehicle i−1),

the realized acceleration, and the control input, respectively (spacing

is defined as ∆ϑi(t):=ϑi−1(t)−ϑi(t)). Furthermore, Ä∗i , Ti, and

Ki represent the predefined constant time gap, time-lag for vehicle

i to realize the acceleration, and ratio of demanded acceleration

that can be realized, respectively. We can find an equilibrium state

Çi,e(t) by setting Çi(t)=Çi,e(t)=
[

0 0 0
]¦

. It is noteworthy

that ai−1(t) is treated as an external disturbance for CAV system i.
To bypass multiple delay accumulation, we utilize the following

standard decentralized linear control strategy [1]:

ui(t)=
[

ksi kvi kai
]

Çi(t)+kfiai−1(t−¹), (2)

where ksi, kvi, and kai respectively represent the feedback gains

associated with the derivation from equilibrium spacing Ãi, the

speed difference ∆vi, and the acceleration ai. Moreover, kfi and ¹
denote the feedforward gain and V2V/V2I communication

delay, respectively. For brevity, we alternatively utilize

k=
[

k1 k2 k3 k4
]

to denote k=
[

ksi kvi kai kfi
]

. In

a similar fashion, we simply represent Ai, Bi, Ki, Ti, and Ä∗i by

A, B, K, T , and Ä , respectively. The key objective of the linear

control strategy (2) is to regulate CAVs’ position while ensuring

stability and accounting for vehicle longitudinal dynamics [1].

2) Local stability: Local stability (also known as internal

stability) means that a disturbance (deviation from an equilibrium

point) can locally be resolved by a system. In the context of a CAV

system, it means that deviation from an equilibrium spacing, speed

difference, and acceleration can locally be resolved in a vehicle [1].

Definition 1 (Local stability [1], [14]): A CAV platoon

following a linear control strategy (e.g., the control strategy in (2))

is called locally stable for an equilibrium point Çe if and only if

sa(A+Bk)<0 holds (A+Bk is Hurwitz).
As Proposition 1 in [1] states, the CAV system in (1) governed

by the control strategy in (2) is locally stable if the following

inequalities are satisfied:

k1>0, τk1>−k2,
1

K
>k3,

(

1

K
−k3

)

(τk1+k2)>
T

K
k1. (3)

3) String stability: Strict string stability (also known as H2 norm

string stability) means that the magnitude of a disturbance is not am-

plified for each leader-follower pair throughout a vehicular string [1].

Definition 2 (Strict string stability [1], [15]): A CAV platoon

string is strict string stable if and only if

∥ai(s)∥2/∥ai−1(s)∥2f1, ∀i∈ICAV,
hold where ICAV denotes the set of CAVs and ∥ai(s)∥2
represents the H2 norm of ai(s) which is defined as

∥ai(s)∥2 :=
√

∫∞

0
|ai(jÉ)|2dÉ.

Applying the following Cauchy inequality [1], [15]:

∥ai(s)∥2/∥ai−1(s)∥2f∥ai(s)/ai−1(s)∥∞,
a sufficient condition to guarantee the string stability can be derived

as

∥Fi(s)∥∞ :=sup
É>0

|Fi(jÉ)|f1, (4)

where Fi(s) := ai(s)
ai−1(s)

and ∥Fi(s)∥∞ represent the transfer

function capturing disturbance propagation throughout the vehicular

string in the frequency domain and its H∞ norm (i.e., the upper

bound of the disturbance propagation ratio throughout the vehicular

string), respectively. By taking the Laplace transform of the

closed-loop system consisting of (1) and (2), one can obtain the

following expression for Fi(s):

Fi(s)=
K(k4s

2e−¹s+k2s+k1)

c3s3+c2s2+c1s+c0
, (5)

c3=T, c2=−Kk3+1, c1=K(Äk1+k2), c0=Kk1.
Substituting s=jÉ in (5), one can analytically compute |Fi(jÉ)|
as detailed by [16]. The exponential term associated with the

communication delay ¹ in Fi(s) in (5), i.e., e−¹s, adds more

complexity to the H∞ controller synthesis, necessitating the

utilization of approximation techniques to efficiently compute

the approximate value of ∥Fi(s)∥∞. In that regard, diverse

approximations exist. For instance, the authors in [1], based on a

sufficient condition (i.e., utilizing the Taylor series approximations

of cos(¹É)≈1− ¹2É2

2 and sin(¹É)≈¹É− ¹3É3

6 for a sufficiently

small ¹) and imposing the sufficient condition (4), derive a set of

inequalities presented by Proposition 2 in [1] as

T
2+

K2k4k2θ
3

3
≥0, (6a)

−2KT(τk1+k2)+(Kk3−1)2−K
2
k4(k1θ

2+2k2θ+k4)≥0, (6b)

2Kk1

(

K

(

k4+k3+τk2+
τ2k1

2

)

−1

)

≥0, (6c)

to guarantee the string stability of the CAV system in (1) governed

by the control strategy in (2) for a sufficiently small ¹.

B. Problem statement

The ultimate goal of the current study is to apply the CAV

platoon controller synthesis results to the mixed vehicular platoon.

Due to the string unstable behavior of human-driven vehicles, we

have no direct control over them. Nonetheless, applying the (fully)

CAV platoon controller synthesis results to the mixed vehicular

platoon can effectively attenuate the stop-and-go disturbance

amplification throughout the mixed vehicular platoon. In the case of

the mixed vehicular platoon, the frequency of human-driven vehicle

acceleration throughout traffic oscillations is bounded and typically

shows a predominant range [1], [17]. Then, for practicality, we aim

at minimizing ∥Fi(s)∥∞ over an interval defined by predominant



acceleration frequency boundaries of human-driven vehicles (see [1]

for more details). Given the transfer function Fi(s)=
ai(s)
ai−1(s)

and

the predominant acceleration frequency boundaries of human-driven

vehicles, namely É2>É1>0, let us define/denote its H∞ norm

over É∈ [É1,É2], namely H[É1,É2]
∞ , as [1]

∥Fi(s)∥[É1,É2]
∞ := sup

É∈[É1,É2]

|Fi(jÉ)|. (7)

Observe that based on definitions (4) and (7), inequalities

∥Fi(s)∥[É1,É2]
∞ f ∥Fi(s)∥∞ f 1 are satisfied if (4) holds.

Defining the H∞ norm over the predominant acceleration frequency

boundaries of human-driven vehiclesÉ2>É1>0, we are now ready

to formally state the main problem to be investigated in this paper.

Problem 1: Given the CAV system in (1) governed by the

control strategy in (2), the predominant acceleration frequency

boundaries of human-driven vehicles É2 > É1 > 0, and the

following box constraints (i.e., the lower and upper bounds) on

the gains
[

k1 k2 k3 k4
]

:

klifkifkui , i∈{1,2,3}, (8a)

kl4fk4fku4 , (8b)

synthesize an H[É1,É2]
∞ optimal control strategy with an optimal

H[É1,É2]
∞ norm of µ (µf1).

Solving Problem 1 facilitates the effective attenuation of the

stop-and-go disturbance amplification throughout the mixed

vehicular platoon over the predominant acceleration frequency

boundaries of human-driven vehicles. Furthermore, such a controller

synthesis (i) facilitates the effective stop-and-go disturbance

attenuation for the scenario with a large communication delay, and

(ii) systematically incorporates the box constraints arising from

the physics of the problem. Remarkably, these objectives are not

achievable via the controller synthesis proposed by [1].

III. MAIN RESULTS

By parameterizing locally stabilizing gains subject to box

constraints, first, we systematically incorporate the local stability

and the box constraints. Second, we additionally ensure the string

stability via the Padé approximation. Finally, built upon the previous

two steps, we efficiently solve for a sub-optimal solution to Problem

1. For the proofs, see Appendices A–C in [16].

A. Parameterized locally stabilizing gains

The set of feedback gains
[

k1 k2 k3
]

satisfying the local

stability (3) can be parameterized via the parameters
[

x y z
]

as

k1(x)=x, k2(x,y)=−Äx+y, k3(x,y,z)=
−Tx+y
Ky

−z, (9)

where x, y, and z are all positive parameters. Imposing box

constraints (8a) to the parameterization (9), we obtain the parameter-

ization of the parameters x, y, and z in (9) detailed by Proposition

1 in [16]. Similar to Proposition 1 in [16], the feedforward gain k4
satisfying box constraint (8b) can simply be parameterized via the

parameter È4 as k4=(1−È4)k
l
4+È4k

u
4 , where È4∈ [0,1] holds.

Note that the form ofÈi’s for all i∈{1,2,3,4} can be chosen via any

arbitrary sigmoid function, e.g., the logistic functionÈ(´)= 1
1+e−ζβ

,

where · > 0 denotes the logistic growth rate. According to the

statement of Lemma 1 in [16], if the sufficient condition on the

string stability (4) holds for the transfer function Fi(s) in (5), then

inequality (6c) holds for the control parameters
[

k1 k2 k3 k4
]

.

Utilizing the necessary condition (associated with the string stability)

stated by Lemma 1 in [16], i.e., inequality (6c), and noting thatK>
0 and k1>0 hold, the feedforward gain k4 can be parameterized

TABLE I

CLOSED-FORM EXPRESSIONS FOR THE PARAMETERS IN PROPOSITOIN 1.

xl=max{ϵ,kl1}, x
u=ku1

yl
È1

=max

{

ϵ,Äx(È1)+kl2,
Tx(È1)

−Kkl3+1−Kϵ
,ϕy

}

, yu
È1

=Äx(È1)+ku2

zl
È1,È2

=max

{

ϵ,
−Tx(È1)+y(È1,È2)

Ky(È1,È2)
−ku3

}

zu
È1,È2

=min

{

−Tx(È1)+y(È1,È2)
Ky(È1,È2)

−kl3,ϕz

}

wl
È1,È2,È3

=max{0,ϕw}

wu
È1,È2,È3

=
−Ä2x(È1)

2
+Äy(È1,È2)+

−Tx(È1)
Ky(È1,È2)

−z(È1,È2,È3)+ku4
ϵ : an infinitesimal positive value

ϕy=
À(x(È1))+

√

À(x(È1))2+
4Tτx(ψ1)

K

2Ä
, À(x(È1))=

Ä2x(È1)
2

+ϵ−ku4

ϕz=
−Ä2x(È1)

2
+Äy(È1,È2)+

−Tx(È1)
Ky(È1,È2)

+ku4

ϕw=
−Ä2x(È1)

2
+Äy(È1,È2)+

−Tx(È1)
Ky(È1,È2)

−z(È1,È2,È3)+kl4

via the parameters
[

x y z w
]

as k4(x,y,z,w)=
Ä2x
2 −Äy+

Tx
Ky

+ z +w, where x, y, and z are as expressed in (9) and w
is a non-negative parameter. Imposing box constraints (8) to the

parameterizations (9) and k4(x,y,z,w)=
Ä2x
2 −Äy+ Tx

Ky
+z+w,

we obtain the following parameterization of the parameters x, y, z,

and w in (9) and k4(x,y,z,w)=
Ä2x
2 −Äy+ Tx

Ky
+z+w:

Proposition 1: The parameters
[

x y z w
]

in (9) and

k4(x,y,z,w)=
Ä2x
2 −Äy+ Tx

Ky
+z+w satisfying box constraints

(8) can be parameterized via the parameters
[

È1 È2 È3 È4

]

as

x=x(È1)=(1−È1)x
l+È1x

u,

y=y(È1,È2)=(1−È2)y
l
È1
+È2y

u
È1
,

z=z(È1,È2,È3)=(1−È3)z
l
È1,È2

+È3z
u
È1,È2

,

w=w(È1,È2,È3,È4)=(1−È4)w
l
È1,È2,È3

+È4w
u
È1,È2,È3

, (10)

where Èi ∈ [0,1] holds for all i∈ {1,2,3,4} and the expressions

for xl, xu, ylÈ1
, yuÈ1

, zlÈ1,È2
, zuÈ1,È2

,wlÈ1,È2,È3
, andwuÈ1,È2,È3

are

reflected on Tab. I.

Merging (9), k4(x, y, z, w) = Ä2x
2 − Äy + Tx

Ky
+ z + w,

and (10) along with sigmoid functions, we obtain the following

parameterization of the locally stabilizing gains
[

k1 k2 k3 k4
]

subject to box constraints (8):

Corollary 1: The locally stabilizing gains
[

k1 k2 k3 k4
]

subject to box constraints (8) can be parameterized via the

parameters
[

»1 »2 »3 »4
]

as

k1(»1)=x(È(»1)),

k2(»1,»2)=−Äx(È(»1))+y(È(»1),È(»2)),

k3(»1,»2,»3)=
−Tx(È(»1))+y(È(»1),È(»2))

Ky(È(»1),È(»2))

−z(È(»1),È(»2),È(»3)),

k4(»1,»2,»3,»4)=
Ä2x(È(»1))

2
−Äy(È(»1),È(»2))

+
Tx(È(»1))

Ky(È(»1),È(»2))
+z(È(»1),È(»2),È(»3))

+w(È(»1),È(»2),È(»3),È(»4)), (11)

where »i∈R holds for all i∈{1,2,3,4} and x(), y(), z(), and w()
represent the same functions expressed in (10).

Given the locally stabilizing gains
[

k1 k2 k3 k4
]

subject

to box constraints (8) and utilizing the parameterization (11), the

corresponding parameters
[

»1 »2 »3 »4
]

can be extracted as



detailed by Corollary 3 in [16]. As a summary, (i) Corollary 1 will

be utilized as a cornerstone to parameterize the locally stabilizing

gains
[

k1 k2 k3 k4
]

via the parameters
[

»1 »2 »3 »4
]

,

and (ii) Corollary 3 in [16] will facilitate the extraction of the

parameters
[

»1 »2 »3 »4
]

given the locally stabilizing gains
[

k1 k2 k3 k4
]

. The former is useful for searching for the

sub-optimal solution to Problem 1 while the latter is essential for

opting (extracting) an initial feasible point for the main optimization

problem associated with Problem 1.

B. String stability via the Padé approximation

As mentioned earlier, one needs to overcome the complexity

of the communication delay in the H∞ controller synthesis. To

that end, unlike the Taylor series approximation utilized by [1],

we employ the Padé approximation approach to approximate the

transfer function Fi(s) in (5), namely F̂i(s). For more details, see

Section III-B in [16].

Inspired by the sufficient condition (4), to more accurately

ensure the string stability of the CAV system in (1) governed

by the control strategy in (2) in the presence of communication

delay, we utilize the following condition: ∥F̂i(s)∥∞f1. Centering

around ∥F̂i(s)∥∞f1, we incorporate the string stability into the

locally stabilizing box-constrained gains by utilizing the Padé

approximation. Although an analytical explicit formula exists

for Fi(jÉ) in (4) and (7), utilizing the approximate forms of (4)

and (7) via the Padé approximation, is unavoidable as (4) and (7)

cannot directly be utilized due to the computational complexity of

computing ∥Fi(s)∥∞ and ∥Fi(s)∥[É1,É2]
∞ , respectively. Then, in the

next section, we alternatively utilize the Padé approximation-based

counterparts ∥F̂i(s)∥∞ and ∥F̂i(s)∥[É1,É2]
∞ to effectively solve

Problem 1 for a sub-optimal solution.

C. A sub-optimal solution to Problem 1

We here propose a two-stage procedure to solve Problem 1

for a sub-optimal solution. Substituting the parameterized locally

stabilizing gains (11) provided by Corollary 1 into Fi(s) in

(5), we obtain the parameterized F(s; ») and denote its Padé

approximation by F̂(s;»). Then, defining the optimization variable

» as » :=
[

»1 »2 »3 »4
]¦

, we first consider the following

optimization problem:

Minimize
»∈R4

∥F̂(s;»)∥[É1,É2]
∞ , (12a)

subject to: ∥F̂(s;»)∥∞f1, (12b)

to solve Problem 1 for a sub-optimal solution. We then propose

a two-stage procedure as follows:

1) We first search for an initial stabilizing feasible point »0 that

satisfies constraint (12b).

2) We then solve optimization problem (12) for a sub-optimal

solution »∗ starting from the obtained initial stabilizing feasible

point in the first stage, i.e., »0. Finally, one can compute k∗

by substituting »∗ into the parameterization (11) provided by

Corollary 1 as k∗=k(»∗).

In the sequel, we delve into each stage thoroughly.

1) First stage: Notably, one can take advantage of Corollary 3
in [16] to extract »0 from k0. Such a fact motivates us to: first, alter-

natively search for an initial stabilizing feasible point k0 and second,

extract the corresponding initial stabilizing feasible point »0 from

k0. To that end, first, we consider the following parameterization:

k1(µ1)=(1−Ä(µ1))max{ϵ,kl1}+Ä(µ1)ku1 ,
ki(µi)=(1−Ä(µi))kli+Ä(µi)kui , i∈{2,3,4}, (13)

with Ä(´) = 1
1+¿´2 where ¿ > 0 can arbitrarily be chosen and

second, defining µ :=
[

µ1 µ2 µ3 µ4
]¦

and substituting

the parameterized gains (13) into Fi(s) in (5), we obtain the

parameterized G(s; µ) and denote its Padé approximation by

Ĝ(s;µ). Then, to search for an initial stabilizing feasible point µ0

that satisfies ∥Ĝ(s;µ)∥∞f1 (an equivalent constraint to constraint

(12b)), we solve the following standard H∞ optimization problem:

Minimize
µ∈R4

∥Ĝ(s;µ)∥∞, (14)

for µ0, utilizing a well-developed standard H∞ problem solver,

namely hinfstruct solver. Afterwards, according to the

parameterization (13), we get k0=k(µ0) and plug k0 to Corollary

3 in [16] to extract »0.

2) Second stage: Motivated by ∥F̂i(s)∥∞f1, let us define the

following function:

h(»):=

{

∥F̂(s;»)∥[É1,É2]
∞ if ∥F̂(s;»)∥∞f1,

³ else,
(15)

where ³>1 can arbitrarily be chosen. Now, we alternatively solve

the following unconstrained optimization problem:

Minimize
»∈R4

h(»), (16)

to find a solution »∗ to optimization problem (12). Finally, one

can compute k∗ by substituting »∗ into the parameterization (11)

provided by Corollary 1 as k∗=k(»∗). Regarding the initialization,

we utilize »0 obtained from the first stage. Furthermore, due to the

non-convex and non-smooth nature of the function h(») in (15),

we need to utilize non-convex and non-smooth optimization tools

to solve the unconstrained optimization problem (16). For instance,

we can employ fminsearch solver. Procedure 1 summarizes

the two-stage H∞ controller synthesis procedure.

Procedure 1: Two-stage H∞ Controller Synthesis

1 Input: Ä ,T ,K,¹,É1,É2,{kli}4i=1,{kui }4i=1,³,·,¿,N
2 First stage:

3 ConstructG(s;µ) via the parameterization (13).

4 Get Ĝ(s;µ) via the Padé approximation ofG(s;µ).
5 Solve (14) for µ0 via hinfstruct solver.

6 Compute k0=k(µ0) via the parameterization (13).

7 Extract »0 from k0 via Corollary 3 in [16].

8 Second stage:

9 Construct F(s;») via the parameterization (11).

10 Get F̂(s;») via the Padé approximation of F(s;»).
11 Initialize (16) with »0 obtained from the first stage.

12 Solve (16) for »∗ via fminsearch solver.

13 Compute k∗=k(»∗) via the parameterization (11).

14 Output: k∗.

IV. NUMERICAL SIMULATIONS

Throughout this section, we assess the effectiveness of the

presented theoretical results via MATLAB simulations and the

NGSIM trajectory data for I-80 in California [18]. Depending on

how small the communication delay is, the section is divided into

two main parts: (a) Case 1: a sufficiently small communication

delay ¹ and (b) Case 2: a large communication delay ¹. In Case 1,



TABLE II

THE TWO-STAGE H∞ CONTROLLER SYNTHESIS k∗ AND kunc [1].

Vector Value

k∗ [0.4212 0.4775 −1.0078 1.3197]¦

kunc [0.9200 1.3200 −0.9200 0.7200]¦

TABLE III

THE H
[É1,É2]
∞ NORM VALUES FOR kunc [1] AND k∗.

É1 ∥F(s)∥
[É1,É2]
∞ for kunc ∥F(s)∥

[É1,É2]
∞ for k∗

0.1 0.9739 0.9628
0.3 0.9001 0.8207
0.5 0.8667 0.6758
0.7 0.7304 0.5669

since the communication delay ¹ is sufficiently small, we can set

the unconstrained H∞ controller synthesis proposed in [1], namely

kunc, as a benchmark for fair comparative analysis purposes. In that

regard, to have a fair comparison, we impose the box constraints on

k∗, based on ∥kunc∥ℓ∞ . In other terms, we consider a hypercube

that encompasses kunc. In Case 2, since ¹ is not sufficiently

small anymore, the Taylor series approximation-based method [1]

becomes unusable. We utilize getPeakGain to evaluate the

H[É1,É2]
∞ /H∞ norm values. Regarding the Padé approximation, we

utilize pade equipped with N which denotes the Padé approx-

imation order. To utilize hinfstruct, we take advantage of

realp, creating real-valued tunable parameters µ1, µ2, µ3, and µ4.

Furthermore, we initialize those real-valued parameters via rand.

A. Case 1: a sufficiently small communication delay

In this section, for the sufficiently small ¹, we conduct a

comparative analysis between the unconstrained and constrained

H∞ syntheses kunc [1] and k∗.

Similar to [1], we adopt the value setting from Tab. II in [16] for

the experimental H∞ controller synthesis. Time quantities are all in

seconds. SettingÉ1=0.5, kl=−∥kunc∥ℓ∞
[

0 1 1 1
]¦

, ku=
∥kunc∥ℓ∞1, ³=1.05, ·=5, ¿=5,N=5 and running Procedure

1, we obtain the two-stage H∞ controller synthesis k∗ illustrated

by Tab. II for which the H[É1,É2]
∞ norm values corresponding to the

unconstrained and constrained H∞ syntheses k∗ and kunc [1] are

∥F(s)∥[É1,É2]
∞ =0.6758 and ∥F(s)∥[É1,É2]

∞ =0.8667, respectively.

According to ¼(A + Bk∗) = {−8.0215, −0.4595 −
0.3606j,−0.4595 + 0.3606j}, and Fig. 1 in [16], we observe

that box constraints (8) and both local stability (3) and string

stability (4) are satisfied for k∗. As Fig. 2 in [16] depicts, the Padé

approximation-based method attains a more accurate approximation

than the Taylor series approximation-based counterpart.

For predominant acceleration frequency boundary of human-

driven vehicles É1 ∈ {0.1, 0.3, 0.5, 0.7}, Tab. III reflects the

É1-dependency of the H[É1,É2]
∞ norm values corresponding to the

unconstrained and constrained H∞ syntheses kunc [1] and k∗.

Accordingly, for É∈ [0.01,5.01], Fig. 1 illustrates the |F(jÉ)|
values corresponding to the unconstrained and constrained H∞

syntheses kunc [1] and k∗ with ¹=0.1 and É1∈{0.1,0.3,0.5,0.7}.

According to Tab. III, the Padé approximation-based box-

constrained solution outperforms the Taylor series approximation-

based unconstrained solution [1] in terms of the H[É1,É2]
∞

norm. As Fig. 1 depicts, although the unconstrained and con-

strained H∞ syntheses have similar starting patterns, the pat-

terns are different in the sequel. As an interesting obser-
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Fig. 1. The |F(jÉ)| values for kunc [1] on the left and k∗ on the right with
¹=0.1 and É1∈{0.1,0.3,0.5,0.7}.
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Fig. 2. The state trajectories corresponding to kunc [1] on the left and k∗ on the
right with ¹=0.1 and É1=0.3.

vation, based on ∥F(s; »unc(0.5))∥[0.5,2.5]∞ = 0.8667 and

∥F(s;»unc(0.3))∥[0.5,2.5]∞ = 0.8228 from Fig. 1, we notice that

inequality ∥F(s;»unc(0.5))∥[0.5,2.5]∞ f ∥F(s;»unc(0.3))∥[0.5,2.5]∞

(due to definition (7)) is violated for the unconstrainedH∞ synthesis

kunc [1], i.e., for É1=0.5, the sub-optimality of their proposed solu-

tion is high. It is noteworthy that such inequality violation does not

occur in the case of constrained H∞ synthesis k∗ based on Fig. 1.

To visualize the corresponding state trajectories of the

unconstrained and constrained H∞ syntheses kunc [1] and k∗, we

utilize the following formula:

Çi(t)=e
(Ai+Bik)tÇi(0)+

∫ t

0

e(Ai+Bik)(t−φ)(Bikfiai−1(φ−¹)+Dai−1(φ)) dφ,

along with the human-driven vehicle acceleration information

adopted from the NGSIM trajectory data for I-80 in California

[18]. Considering a mixed vehicular platoon consisting of 1
human-driven vehicle, namely Vehicle 1845 (as a leading vehicle)

and 5 CAVs, and running Procedure 1 with ¹=0.1 and É1=0.3,

we get the corresponding state trajectories of the unconstrained and

constrained H∞ syntheses kunc [1] and k∗ visualized in Fig. 2.

Moreover, Fig. 3 depicts the Cumulative Damping Ratio (defined

as
∥ai(s)∥2
∥a0(s)∥2

in [1]) associated with the CAVs for the unconstrained
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Fig. 3. The cumulative damping ratio associated with the CAVs for kunc [1] and
k∗ with ¹=0.1 and É1=0.3.
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Fig. 4. The |F(jÉ)| values for k∗ with É ∈ [É1, É2] on the left and
É∈ [0.01,5.01] on the right with ¹=1.5 and É1=0.5.

and constrained H∞ syntheses kunc [1] and k∗ with ¹=0.1 and

É1 = 0.3. Fig. 3 empirically certifies that the constrained H∞

synthesis k∗ outperforms the unconstrained H∞ synthesis kunc

[1] in terms of disturbance attenuation effectiveness.

B. Case 2: a large communication delay

In this section, since ¹ is not sufficiently small anymore, the

Taylor series approximation-based method [1] becomes unusable.

We certify the functionality of the two-stageH∞ controller synthesis

procedure presented by Procedure 1 for dealing with large ¹. Repeat-

ing the experiments for the value setting in Tab. II in [16] except for

¹ with ¹=1.5, É1=0.5, kl=−2
[

0 1 1 1
]¦

, ku=21, ³=
1.05, ·=5, ¿=5,N=5, we obtain the two-stage H∞ controller

synthesis k∗ illustrated by Tab. V in [16] for which the H[É1,É2]
∞

norm value corresponding to k∗ is ∥F(s)∥[É1,É2]
∞ =0.8669. Accord-

ingly, for É∈ [É1,É2] on the left and É∈ [0.01,5.01] on the right,

Fig. 4 visualizes the |F(jÉ)| values corresponding to the constrained

H∞ controller synthesis k∗ with ¹=1.5 and É1=0.5. According

to ¼(A + Bk∗) = {−3.2621,−0.2376 − 0.3644j,−0.2376 +
0.3644j}, and Fig. 4, we realize that box constraints (8) and both

local stability (3) and string stability (4) are satisfied for k∗.

V. CONCLUDING REMARKS

To effectively address the shortcomings arising from the uncon-

strained CAV platoon controller synthesis in the literature, this work

proposes a (sub-optimal) constrained CAV platoon controller synthe-

sis subject to the box constraints. Applying the (fully) CAV platoon

controller synthesis results to the mixed vehicular platoon can effec-

tively attenuate the stop-and-go disturbance amplification throughout

the mixed vehicular platoon. Minimizing the H∞ norm of the Padé

approximated transfer function over an interval defined by predom-

inant acceleration frequency boundaries of human-driven vehicles,

we solve for a sub-optimal constrained CAV platoon controller syn-

thesis via non-convex and non-smooth optimization tools. Conduct-

ing extensive numerical experiments certifies that (i) for a sufficiently

small communication delay, the Padé approximation-based method

outperforms the Taylor series approximation in terms of the H∞

norm over an interval defined by predominant acceleration frequency

boundaries of human-driven vehicles, and (ii) for a large commu-

nication delay, the Padé approximation-based method successfully

proposes an H∞ controller synthesis while the Taylor series

approximation-based method in the literature becomes unusable.

Limitations: Although the sub-optimal performance of the

proposed controller synthesis is satisfactory, its sub-optimality level

can be sensitive to the first stage (stable initialization) of the proposed

two-stage H∞ controller synthesis procedure. As another limitation

of the current study, we have assumed that the vehicle dynamics

and the communication delay are deterministic and time-invariant,

which is unrealistic. Elaboration on such a robust synthesis for the

uncertain case can be considered as a pertinent future direction.
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