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On the Constrained CAV Platoon Control Problem

MirSaleh Bahavarniaf, Junyi JitY Ahmad F. Tahaf, and Daniel B. Work'Y

Abstract—The main objective of the connected and automated
vehicle (CAV) platoon control problem is to regulate CAVs’ posi-
tion while ensuring stability and accounting for vehicle dynamics.
Although this problem has been studied in the literature, existing
research has some limitations. This paper presents two new
theoretical results that address these limitations: (i) the synthesis
of unrealistic high-gain control parameters due to the lack of
a systematic way to incorporate the lower and upper bounds
on the control parameters, and (ii) the performance sensitivity
to the communication delay due to inaccurate Taylor series
approximation. To be more precise, taking advantage of the well-
known Padé approximation, this paper proposes a constrained
CAV platoon controller synthesis that (i) systematically incorpo-
rates the lower and upper bounds on the control parameters,
and (ii) significantly improves the performance sensitivity to the
communication delay. The effectiveness of the presented results is
verified through conducting extensive numerical simulations. The
proposed controller effectively attenuates the stop-and-go distur-
bance—a single cycle of deceleration followed by acceleration—
amplification throughout the mixed platoon (consisting of CAVs
and human-driven vehicles). Modern transportation systems will
benefit from the proposed CAV controls in terms of effective
disturbance attenuation as it will potentially reduce collisions.

Index Terms—Car-following models, connected and automated
vehicles, H . control, local stability, string stability, time-delay
systems.

I. INTRODUCTION AND PAPER CONTRIBUTIONS

RAFFIC oscillations, also known as stop-and-go distur-

bances, in congested traffic have attained an increasing
amount of attention in recent years (see [1] and the relevant
references therein). The term stop-and-go disturbance refers to
a single cycle of deceleration followed by acceleration. Various
approaches have been developed to mostly control human-
driven vehicles. One promising approach is via variable speed
limit (VSL) control [2], [3]. Another one utilizes the emerging
connected and automated vehicle (CAV) technology which
facilitates the effective control of CAVs leading to significant
enhancements in traffic flow capacity and stability [1], [4]-[6].
Specifically, the main objective of the CAV platoon control
problem is to regulate CAVs’ position while ensuring stability
and accounting for vehicle longitudinal dynamics [1].

CAV control strategies can mainly be classified into two
controller types: (i) model predictive control (MPC) [5], [7]-
[10], and (ii) linear controller [1], [6], [11]-[13]. Tab. I reflects
the pros and cons corresponding to such controller types
in terms of their ability to incorporate two crucial features:
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TABLE I
THE GENERAL SCHEMATIC STRUCTURE OF FEATURE INCORPORATION FOR
TWO MAIN CONTROLLER TYPES IN THE CAV CONTROL STRATEGIES: (i)
MPC, AND (ii) LINEAR CONTROLLER.

Controller Type MPC | Linear Controller
Feature
Local Stability and String Stability X v
Explicit Constraints v X

(i) local stability and string stability (two main stability
constraints to be thoroughly detailed in Section II-A), and
(ii) explicit constraints (e.g., lower and upper bounds on the
control parameters). Inspired by Tab. I, in the current study,
we choose linear controller as the controller type and propose
a systematic procedure to effectively incorporate both (i) local
stability and string stability (as stability constraints) and (ii)
box constraints (i.e., the lower and upper bounds) on the
control parameters (as a main subclass of explicit constraints).

In CAV-centered studies, vehicle platooning [14] emerges
as a pivotal application with significant potential in both
the immediate and distant future. This technology, crucial
for enhancing road safety and efficiency, heavily relies on
the efficacy of vehicle-to-everything (V2X) communication
systems. Research, including findings from [15], underscores
that both dedicated short-range communications and cellular
vehicle-to-everything technologies can competently support
safety applications necessitating end-to-end latency around
100 milliseconds, provided that vehicle density remains within
manageable limits. However, a critical challenge arises as
traffic density escalates, leading to a marked increase in
V2X communication delay due to the communication channel
congestion, as noted in several studies [16]-[18]. This surge
in latency, particularly in congested scenarios, is a matter of
concern.

As highlighted in [18], effective vehicle platooning must
accommodate maximum latencies ranging from 10 to 500
milliseconds. This necessitates the development of advanced
control systems capable of adapting to these varying delay
conditions, thereby ensuring the reliability and safety of ve-
hicle platooning in diverse traffic environments. This research
aims to address the escalating delays in high-density traffic
scenarios, emphasizing the need for advanced controller syn-
thesis that can effectively manage these challenges in vehicle
platooning applications.

Paper Objectives and Contributions. The main objective
of the CAV platoon control problem is to regulate CAVs’
position while ensuring stability and accounting for vehicle
longitudinal dynamics [1]. Although such a problem has been
studied thoroughly in the literature, the existing research work
[1] has some limitations. Two main limitations include (i) the
synthesis of unrealistic high-gain control parameters due to the



lack of a systematic way to incorporate the lower and upper
bounds on the control parameters, and (ii) the performance
sensitivity to the communication delay due to inaccurate
Taylor series approximation. The paper’s contributions can be
summarized as follows:

o To effectively address such limitations, taking advantage
of the well-known Padé approximation, this paper pro-
poses a constrained CAV platoon controller synthesis
that (i) systematically incorporates the lower and upper
bounds on the control parameters, and (ii) significantly
improves the performance sensitivity to the communica-
tion delay.

« Given box constraints on the control parameters, we first
parameterize the locally stabilizing feedback and feedfor-
ward gains. Deriving a necessary condition to ensure the
string stability criterion additionally, we then obtain more
representative parameterized locally stabilizing feedback
and feedforward gains. Utilizing the Padé approximation,
we more accurately ensure the string stability criterion
in the presence of communication delay compared to the
widely utilized Taylor series approximation. Furthermore,
in the case of a sufficiently small communication delay,
the Padé approximation attains a better near-optimality
and in the case of a large communication delay, it
successfully obtains a near-optimal CAV platoon con-
troller synthesis while the widely utilized Taylor series
approximation counterpart becomes unusable.

o Considering the mixed vehicular platoon scenario and
minimizing the H,, norm of the Padé approximated
transfer function over an interval defined by predomi-
nant acceleration frequency boundaries of human-driven
vehicles, we solve for a near-optimal constrained CAV
platoon controller synthesis via nonlinear optimization
tools. The effectiveness of the presented results is verified
through conducting extensive numerical simulations. The
proposed CAV platoon controller synthesis can effec-
tively attenuate the stop-and-go disturbance amplifica-
tion throughout the mixed vehicular platoon. Modern
transportation systems will potentially benefit from the
proposed CAV control strategy in terms of effective
stop-and-go disturbance attenuation as it will potentially
reduce collisions.

The remainder of the paper is structured as follows: Section
II formally presents the preliminaries and states the problem
to be solved. Section III contains the main results followed
by numerical simulations illustrated by Section IV. Finally,
Section V ends the paper with a few concluding remarks.
Notation. The uppercase and lowercase letters denote the
matrices and vectors, respectively. We represent the supremum
and maximum by sup and max, respectively. The set of n-
dimensional real-valued vectors is symbolized by R™. For
a vector v € R"™, we denote its /o, norm (i.e., max; |v;|)
by ||v]le... We represent the vector of all ones with 1. To
symbolize the imaginary unit, we use j = v/—1. For a square
matrix M, we denote the set of its eigenvalues with A(M)
and show its spectral abscissa (i.e., the maximum real part
of its eigenvalues) by sa(M). A square matrix M is said to

be Hurwitz if sa(M) < 0 holds. The time derivative of a
signal x(t) is represented by x(t). For a function f(w), the
first derivative and the second derivative with respect to w are
respectively denoted by % and %. Also, for brevity,
we alternatively use f/(w) and f”(w) to refer to the first
and second derivatives, respectively. To represent the limit

of a function f(w) as w tends to a, we utilize the notation
limg, 4 f(w).

II. PRELIMINARIES AND PROBLEM STATEMENT

This section is divided into two main parts: (a) preliminaries
in Section II-A, and (b) problem statement in Section II-B.
Preliminaries consist of (i) the state-space representation, (ii)
the local stability, and (iii) the string stability of the CAV
system.

Built upon the preliminaries, we next state a control problem
to propose a constrained CAV platoon controller synthesis
subject to the lower and upper bounds on the control param-
eters to prevent the synthesis of unrealistic high-gain control
parameters. Furthermore, we will observe that communication
delay can effectively be handled by utilizing a more accurate
approximation for the delay-dependent (exponential) term.

According to the travel direction, we consider a vehicular
platoon consisting of Ny, vehicles with vehicle 1 and vehicle
Nyp, as the most preceding (the first) and the most following
(the last) vehicles, respectively.

A. Preliminaries

1) State-space representation: Let us consider the state-
space representation of the CAV system ¢ as follows [1], [19],
[20]:

Xi(t) = Aixi(t) + Biu;(t) + Da;—1(t), (D
with
01 -7 0 0
A4,=10 0 —1|.B,=|0]|.D=]1],
00 —5 e 0

where yi(t) = [o:(t) Av(t) a:(t)]’, oi(t), Avi(t) =
vi—1(t) — v;i(t), a;(t), and u;(t) denote the state vector,
the deviation from equilibrium spacing, the speed difference
with the preceding vehicle (i.e., vehicle ¢ — 1), the realized
acceleration, and the control input, respectively. Moreover,
77, T;, and K, represent the predefined constant time gap,
time-lag for vehicle ¢ to realize the acceleration, and ratio
of demanded acceleration that can be realized, respectively.
We can find an equilibrium state x; .(t) by setting x;(t) =
Xie(t) = [0 0 O}T. Also, note that a;_1(t) is treated as
an external disturbance for CAV system ¢ because it is not
controllable by CAV system i.

As highlighted in [1], to bypass multiple delay accumu-
lation, we utilize the following standard decentralized linear
control strategy:

ui(t) = [ksi kvi  kai] xi(t) + kpiaia (6 —0), (2

where ks;, ky;, and kg; respectively represent the feedback
gains associated with the derivation from equilibrium spacing



oy, the speed difference Av;, and the acceleration a;. More-
over, ky; and 6 denote the feedforward gain and V2V/V2I
communication delay, respectively. For the sake of brevity,
we alternatively utilize & = [kl ko k3 k4} to denote
k = [ksi kvi kai kyi]. Similarly, we simply denote A;,
B;, K;, T;, and 77 by A, B, K, T, and T, respectively.

The main objective of the linear control strategy (2) is to
regulate CAVs’ position while ensuring stability and account-
ing for vehicle longitudinal dynamics [1]. The linear control
strategy (2) has widely been utilized in the literature [1], [11],
[13]. As highlighted in Tab. I, one important advantage of the
linear control strategy (2) over the MPC control strategy is that
it enables us with stability guarantees [1]. Furthermore, later
on, we show that by taking advantage of the parameterization
of stability regions of the CAV system in (1) governed by the
control strategy in (2) subject to imposed box constraints on
the control parameters, we effectively embed the constraints
and minimize the H..-based objective function similar to the
MPC control strategy.

2) Local stability: Local stability (also known as internal
stability) means that a disturbance (deviation from an equi-
librium point) can locally be resolved by a system. In the
context of a CAV system, it means that deviation from an
equilibrium spacing, speed difference, and acceleration can
locally be resolved in a vehicle [1].

Definition 1 (Local stability [1], [21]). A CAV platoon follow-
ing a linear control strategy (e.g., the control strategy in (2))
is called locally stable with respect to an equilibrium point X
if and only if sa(A + Bk) < 0 holds (A + Bk is Hurwitz).

As Proposition 1 in [1] states, the CAV system in (1)
governed by the control strategy in (2) is locally stable if the
following inequalities are satisfied:

ki > 0, (3a)

Thy + ks > 0, (3b)

1

=~ ka >0, (3¢)
1 T

It is noteworthy that inequalities (3) are derived by applying
the Hurwitz criterion [22] to the cubic polynomial det(s] —
(A+Bk)) = L5+ (& —ks)s®+ (k1 + k2)s + k1. Applying
the Hurwitz criterion [22], ensures that all the elements of
A(A+ Bk) lie on the LHS of the imaginary axis, i.e., sa(A+
Bk) < 0 holds (A + Bk is Hurwitz).

3) String stability: Strict string stability (also known as
Ho norm string stability) means that the magnitude of a
disturbance is not amplified for each leader-follower pair
through a vehicular string [1].

Definition 2 (Strict string stability [1], [12]). A CAV vehicular
string is strict string stable if and only if
llai(s)ll2
llai-1(s)]l2

hold where Icay denotes the set of CAVs and ||a;(s)||2 rep-
resents the Ha norm of a;(s) which is defined as ||a;(s)||2 :=

<1, Vi € Icav,

@/fooo la;(jw)2dw. (||ai—1(s)||2 follows the similar nota-
tion/definition. )

As expressed by [1], applying the following Cauchy in-
equality [12]:

llai(s)ll2 ai(s)
lai—1(s)llz2 ~ [|ai-1(s)

a sufficient condition to guarantee the string stability can be
derived as

)

’ oo

1F5(5)[lo := sup |F;(jw)| <1, ©)
w>0
where F;(s) = aai—(ls()s) and || F;(s)|lcc denote the transfer
function capturing disturbance propagation through the ve-
hicular string in the frequency domain and its H,, norm
(i.e., the upper bound of the disturbance propagation ratio
through the vehicular string), respectively. As a reminder,
a;—1(t) (equivalently, a;_1(s) in frequency domain) is treated
as an external disturbance which facilitates the H. norm
applications in this context.
By taking the Laplace transform of the closed-loop system
consisting of (1) and (2), one can obtain the following expres-
sion for F;(s):
2 ,—0s

Fs) = Klluse _thasth) ®)
c38° + 28+ c18+ ¢

C3 — T, Cy = —Kkg + 1, C1 = K(Tkl + kg), Co — Kkl

Also, it can be verified that |F;(jw)| can be computed as

[Fi(jw)| = (6)

N(w) = ngw* + (n2 + go(w))w? + ny,

D(w) = dgw® + dyw* + daw? + do,

ng = KQki, Nng = szg, ng = KQkf,

go(w) = 2K?ky(—k; cos(0w) + kow sin(fw)),

d6 = T2, d4 = —2KT(T]€1 + kg) + (Kkg — 1)2,

dg = KQ(Tkl + k2)2 + 2Kk1(KI€3 — 1), do = sz%
It is noteworthy that the exponential term associated with the
communication delay € in F;(s) in (5), i.e., e=%%, adds more
complexity to the H., controller synthesis. In other words,
we need to utilize approximation techniques to efficiently
compute the approximate value of ||F;(s)||cc. To that end,

there exist various approximations. For instance, the authors in
[1], built upon a sufficient condition (i.e., utilizing the Taylor

series approximations of cos(fw) ~ 1 — 925’2 and sin(fw) =~
0w — % when 6 is sufficiently small) and imposing the

sufficient condition (4), derive a set of inequalities presented
by Proposition 2 therein as

K2kyko6?
T2 + % >0, (7a)
— 2KT(7ky + k) + (Kks — 1)?
— K?kq (k1602 4 2k20 + ky) > 0, (7b)

2k
2Kk (K (k4 + kg + 7hko + 72—1) — 1) >0, (7¢)



to guarantee the string stability of the CAV system in (1)
governed by the control strategy in (2) when 6 is sufficiently
small. The proof of Proposition 2 in [1] relies on a strong con-
dition. In other words, to impose the non-negativeness of the
corresponding quartic polynomial, namely, pw* + qw?+7r > 0
for which p, ¢, and r respectively denote the expressions on
the LHS of (7a)—(7c), they require all coefficients p, ¢, and
r to be non-negative as expressed by inequalities (7a)—(7c).
However, the feasibility set associated with the string stability
can be expanded by additionally including the following case:

p>0,q<0, 7>0, ¢ —4pr <0, ®)

which is missing in [1]. Such an inclusion helps us to search
a broader space and potentially find a better near-optimal
solution which was not achievable in [1] previously.

B. Problem statement

It is noteworthy that the ultimate goal is to apply the CAV
platoon controller synthesis results to the mixed vehicular
platoon. Due to the string unstable behavior of human-driven
vehicles, we have no direct control over them. However,
applying the (fully) CAV platoon controller synthesis results
to the mixed vehicular platoon can effectively attenuate the
stop-and-go disturbance amplification throughout the mixed
vehicular platoon. In the case of the mixed vehicular platoon,
the frequency of human-driven vehicle acceleration throughout
traffic oscillations is bounded and typically shows a pre-
dominant range [1], [23]. Then, for the sake of practicality,
we focus on minimizing ||F;(s)||eo oOver an interval defined
by predominant acceleration frequency boundaries of human-
driven vehicles (see [1] for more details).

Given the transfer function Fj(s) = aaj(ls()s) and the pre-
dominant acceleration frequency boundaries of human-driven
vehicles, namely, wy > w; > 0, let us define its H., norm
over w € [wy, wa], namely, lwrwal ag 11

| Fy(s)|| lor2] o= |F; (jw))- ©)

sup
wE[wy,ws]
Observe that based on definitions (4) and (9), the following
inequalities:

IE:(s)lI52) < (| Fis)lle < 1,

are satisfied if (4) holds.

Defining the H., norm over the predominant acceleration
frequency boundaries of human-driven vehicles, we are now
ready to state the main problem to be tackled in this work.

Problem 1. Given the CAV system in (1) governed by the
control strategy in (2), the predominant acceleration frequency
boundaries of human-driven vehicles wo > w1 > 0, and the
following box constraints (i.e., the lower and upper bounds)
on the feedback and feedforward gains [kl ko ks k4} :

kL <k < EY (10a)
kb < ky < kY, (10b)
kL < ks < kY, (10c)
ky < ks < K, (10d)

synthesize an ’HL“OJI wel optimal control strategy with an optimal

Her 2 porm of v (v < 1).

Solving Problem 1 enables us to effectively attenuate the
stop-and-go disturbance amplification throughout the mixed
vehicular platoon over the predominant acceleration frequency
boundaries of human-driven vehicles. Furthermore, such a
controller synthesis (i) facilitates the effective stop-and-go
disturbance attenuation for the scenario with a large commu-
nication delay, and (ii) systematically incorporates the lower
and upper bounds arising from the physics of the problem. It
is noteworthy that these objectives are not addressable via the
controller synthesis proposed by [1].

III. MAIN RESULTS

To effectively investigate Problem 1, the current section
is divided into three main parts: (a) parameterized locally
stabilizing feedback and feedforward gains subject to box
constraints, (b) string stability via the Padé approximation, and
(c) a near-optimal solution to Problem 1. By parameterizing
locally stabilizing feedback and feedforward gains subject to
box constraints, first, we systematically incorporate the local
stability and the box constraints. Second, we additionally
ensure the string stability via the Padé approximation. Finally,
taking advantage of the previous two stages, we efficiently
solve for a near-optimal solution to Problem 1.

To enhance the readability/tractability, we move all the proofs
to Appendices A—C.

A. Parameterized locally stabilizing gains

In this section, we elaborate on how to effectively guarantee
local stability subject to the satisfaction of the box constraints
via handy parameterizations.

The set of feedback gains [kl ko kg} satisfying the
local stability (3) can be parameterized via the parameters
[ y z]as

ki(x) =, (11a)
ko(z,y) = -T2 + 9, (11b)
ks(z,y,2) = =Y _ (110)

Ky

where z, y, and z are all positive parameters.

Imposing box constraints (10a)—(10c) to the parameterization
(11), we obtain the following parameterization of the param-
eters x, y, and z in (11):

Proposition 1. The parameters [SC Y z] in (11) satisfying
box constraints (10a)—(10c) can be parameterized via the



parameters [1/)1 o 1/)3] as

x(1) = (1 —y)z’ + P12, (12a)
= (W1, 2) = (1= o)y, + 2y, (12b)
= 2(¥1,¥2,93) = (1 = ¥3)2y, 4, + V325, 4,y (120)

with
2! = max{e, kt}, (12d)
=k}, (12e)
T
Yis, :max{euTX(wl)—’—ké?%}a (12f)
3
Yy, = Tx(101) + k3, (12g)
-T
szl)wz = max {6, X(};ﬂ;)(;f’é:ﬁ)h?/’ﬂ — kg}, (12h)
=T + , .
where ; € [0,1] holds for all i € {1,2,3} and € > 0 is an

infinitesimal value.

For the proof, the reader is referred to Appendix A.

Similar to Proposition 1, the feedforward gain k4 satisfying
box constraint (10d) can simply be parameterized via the
parameter 4 as

ky = (1 — )kl + aky,

where 14 € [0,1] holds. It is noteworthy that in parameteri-
zations (12) and (13), the form of ;’s can be chosen via any
arbitrary sigmoid function, e.g., the logistic function

1
Vv(B) = 1te B’

where ¢ > 0 denotes the logistic growth rate. Merging (11)—
(13) along with sigmoid functions, we obtain the following
parameterization of the locally stabilizing feedback and feed-

forward gains [kl ko ks k4} subject to box constraints
(10):

Corollary 1. The locally stabilizing feedback and feedforward
gains [kl ko k3 k4] subject to box constraints (10) can
be parameterized via the parameters [m K2 K3 54} as

13)

k1(k1) = x(¥(k1)), (14a)
ka(k1, ko) = —7x(¥(k1)) + y((k1),¥(k2)),  (14b)
ki (5, o, ) = —T'x(y (k1)) + y(¥ (K1), ¥(k2))
Ky(y(k1), ¥ (k2))
= z(¥(k1), ¥ (k2), ¥(K3)), (14c)
ka(ra) = (1= ¢(ka) Ky + P(ra)KY, (14d)
where k; € R holds for all i € {1,2,3,4} and x(), y(), and

z() represent the same functions expressed in (12).

Lemma 1. If the sufficient condition on the string stability
(4) holds for the transfer function F;(s) in (5), then inequality
(7¢) holds for the control parameters [kl ko k3 k4].

The proof is in Appendix B.
It can easily be verified that utilizing the necessary condition
(associated with the string stability) stated by Lemma 1, i.e.,

inequality (7c), and noting that KX > 0 and k; > 0 hold, the
feedforward gain k4 can be parameterized via the parameters
[:c y oz w} as

2

TT Tx
— —TY+ —+z+w,

5 Yo (15)

k4(I5y7 Z7w) =
where x, y, and z are as expressed in (11) and w is a
non-negative parameter. Imposing box constraints (10) to the
parameterizations (11) and (15), we obtain the following

parameterization of the parameters x, y, 2, and w in (11) and
(15):

Proposition 2. The parameters [x Yy oz w] in (11) and
(15) satisfying box constraints (10) can be parameterized via
the parameters [ty 12 13 4] as

= x(1) = (1 —¥y)a! + 2, (16a)
y=y(1,2) = (1 - ¢2)y¢1 + Yoy, (16b)
z = z(¥1,2,13) = (1 —1s)2l, 4, + 2l 4, (160)
w = w(1, 2, Y3, 14)
= (1 - w4)ww17w27w3 + w4w117)171/)2,w3’ (16d)
with
2! = max{e, k!}, (16e)
" = kY, (16f)
Tx
o, = m“{e’”w’l) T
)+ 4T7X(¢1)
x) ﬁ } (16g)
Yo, = TX(Y1) + k27 (16h)
—Tx(1) + y(Y1,¢ u .
Py = MAX {e, XEK;)( wli/ﬂﬂl 2 g } (16i)
. [T + ,
e[
_T2X(1/)1) _TXW)l) u} .
y TRt g gy Py 19
2
wiﬁl;wz,ws = max {07 U 2(1/)1) + TY(1/}171/)2)
—Tx(¢n) l}
—z k 16k
+ Ky(wlg'(/Q) (¢17¢27¢3)+ 4 (> ( 6 )
2y
wZ11¢21¢3 = %(1/}1) + TY(U)l’ 1/}2)
—T'x(¢1) u
— —z k 161
Ky(wlg'(/Q) (¢17¢27¢3) + 45 ( 6)
where 1; € [0,1] holds for all i € {1,2,3,4} and {(x(11)) =

‘r%géd)l) +e— k4u

See Appendix C for the proof.

Merging (11), (15), and (16) along with sigmoid functions,
we obtain the following parameterization of the locally sta-
bilizing feedback and feedforward gains [kl ko ks k4}
subject to box constraints (10), given in the following corrol-
lary.



Corollary 2. The locally stabilizing feedback and feedforward
gains [k:l ko ks k4] subject to box constraints (10) can
be parameterized via the parameters [m K2 K3 54} as

ki(k1) = x(¥(k1)), (17a)
ka(k1, ko) = —7x(p (k1)) + y(¥ (K1), P (k2)), (17b)
kg(lil Ko 53) _ _Tx(w(’il)) +Y(¢('€1)a¢(’i2))

T Ky(i(k1), ¢(k2))
— z(P (K1), Y(k2), ¥ (K3)), (17¢)

TQX(‘/’(M))

5 = 7y(¥(K1),¥(k2))

ky(k1, ko, k3, ka) =

T'x(¢(k1))
+ KY(l/J(fﬂ)aw(Hz)) + ZW(M)W(F@)W(@))
+ w(tp(k1), Y (k2), ¥(K3), ¥ (K1), (174d)
where r; € R holds for all i € {1,2,3,4} and x(), y(), z(),

and w() represent the same functions expressed in (16).

Corollary 3. Given the locally stabilizing feedback and feed-
forward gains [kl ko ks k4} subject to box constraints
(10) and utilizing the parameterization (17), the corresponding
parameters [m K2 K3 54} can be extracted as

1 ¢1 (kl) — .I'l )
ky(ky) = —In (2B =2 3 18a
1(k1) c (x“—gbl(k:l) (18a)
1. [ b2(ki, k) =yl ))
ko(ki, ko, k1) = =1n ), (18b
2(k1, ka, 1) ¢ (y P2 (K1, k2) )
(k17k25k3alilali2) -
4
I (¢3<k1’k2’k3) (k). w<nz>> (18¢c)
C k1), (ka) ¢3(k17k27k3)
ka(ki, ko, k3, ka, k1, Ko, K3) =
w!
11n<¢4(k1’k2’k3’k4)‘ wmwwwm) (18d)
C w(m) P(K2),(Kr3) ¢4(k17 ko, ks, k4)
with
(k1) = ka, (18¢)
¢2(k1, ko) = Tk + ko, (18f)
—Tkq 1
ki,kok3) = ———— + — — k 18
d3(k1, k2, k3) Kk + ) +K 3, (18¢g)
72 1
Galk1, ko, k3, ka) = 7/€1 + Tk + k3 + ka — e (18h)
where
! u l u
Yu(ra)r Yp(ra)r Zup(ra)p(r2) Z(k1)(r2)
l u
Wy (r1),1p(k2) 1 (r3)0 Wap(s1),p(k2),(r3)

are evaluated by replacing ; (in (16)) with ¥(k;) for all
ie€{1,2,3}

As a summary, (i) Corollary 2 will be utilized as a
cornerstone to parameterize the locally stabilizing feedback
and feedforward gains [k1 ko ks ks| via the param-
eters [k1 K2 K3 k4], and (i) Corollary 3 will facil-
itate the extraction of the parameters [m Ko K3 H4]
given the locally stabilizing feedback and feedforward gains
[kl ko k3 k4]. The former is a useful feature in the case

of searching for the near-optimal solution to Problem 1 while
the latter is a key tool to the case of opting (extracting)
an initial feasible point for the main optimization problem
associated with Problem 1.

B. String stability via the Padé approximation

In this section, we shed light on incorporating the string
stability into the locally stabilizing box-constrained gains
parameterized in the previous section.

As mentioned earlier, one needs to overcome the complexity
of the communication delay in the Ho, controller synthesis.
In that regard, unlike the Taylor series approximation utilized
by [1], we employ the Padé approximation [24] approach to
approximate the transfer function Fj(s) in (5), namely, Fj(s).
To that end, we replace the exponential term associated with
the communication delay 6 in F;(s) in (5), i.e., e~ 95 with its
Padé approximation which poses the following rational form:

19)

where PP (s) and QF%9(s) denote the N-th order (N:
Padé approximation order) numerator and denominator poly-
nomials, respectively. Inspired by the sufficient condition (4),
to more accurately ensure the string stability of the CAV
system in (1) governed by the control strategy in (2) in the
presence of communication delay, we utilize the following
condition:

1E3(s)]|oo < 1. (20)

Notice that in our case, deriving a set of inequalities similar
to the inequalities (7) proposed by Proposition 2 in [1] is
impossible as we do not limit ourselves to the case that
is sufficiently small in the current paper. Specifically, the
authors in [1] take advantage of the specific properties of the
corresponding quartic polynomial pw? + qw? +7 > 0 resulting
from the aforementioned simplifying assumption regarding the
6 that is no longer applicable to our case.

Centering around (20), we incorporate the string stability
into the locally stabilizing box-constrained gains by utilizing
the Padé approximation (19). Also, later on, we empirically
observe that the Padé approximation provides a more accurate
approximation than the Taylor series approximation, leading to
a potentially better near-optimal solution. We emphasize that
although there exists an analytical explicit formula for F;(jw)
in (4) and (9) (according to (6)), utilizing the approximate
forms of (4) and (9), i.e., (19), is inevitable as (4) and (9)
cannot be utilized directly due to the com[putatlonal complex-
ity of computing ||F}(s)]|ac and ||F}(s)]|2"?), respectively.
Then, we utilize the Padé approx1mat10n based counterparts
1 E5(s)]|oc and HFA‘Z(S)”L%ILQ] in the next section to effectively
solve Problem 1 for a near-optimal solution.

C. A near-optimal solution to Problem 1

Here, we propose a two-stage procedure to solve Problem
1 for a near-optimal solution. Such two stages are as follows:



1) Finding an initial stabilizing feasible point satisfying box
constraints (10) and both local stability (3) and string
stability (4).

2) Solving Problem 1 for a near-optimal solution starting
from the obtained initial stabilizing feasible point in the
first stage.

Substituting the parameterized locally stabilizing feedback
and feedforward gains (17) provided by Corollary 2 into F;(s)
in (5), we obtain the parameterized F'(s; ) and denote its Padé
approximation by F(s;x). Then, defining the optimization
variable k as k = [K1 K2 K3 FKa T we consider the
following optimization problem:

Minimize ||F(s; r)||@re2)] (21a)
rER4
subject to : ||F(s;£)|ls < 1, (21b)

to solve Problem 1 for a near-optlmal solution (Remember that
| F(s; 1) ]| “?) denotes the H“?) norm of F(s;)). The
aforementioned two-stage procedure takes the following form:

1) We first search for an initial stabilizing feasible point x°
that satisfies constraint (21b).

2) We then solve optimization problem (21) for a near-
optimal solution x* starting from the obtained initial
stabilizing feasible point in the first stage, i.e., x°.
Finally, one can compute k£* by substituting x* into
the parameterization (17) provided by Corollary 2 as
k* = k(k*).

In the sequel, we delve into each stage thoroughly.

1) First stage: Notably, one can take advantage of (18)
provided by Corollary 3 to extract x° from k°. Such a fact
motivates us to: first, alternatively search for an initial stabi-
lizing feasible point k£ and second, extract the corresponding
initial stabilizing feasible point x° from k°. To that end, first,
we consider the following parameterization:

k() = (1= p(p)) max{e, ki) +p(p)ki,  (22a)
ka(p2) = (1 — p(p2))ky + p(uz)ks, (22b)
ks(ps) = (1 — p(us)) ks + p(us)ky, (22¢)
ka(pa) = (1= p(pa))kh + p(pa)ky, (22d)
with
1
p(B) = 1103 (23)

where v > 0 can arbitrarily be chosen and second, defining
pi=lp p2 ps udT and substituting the parameterized
feedback and feedforward gains (22) into F;(s) in (5), we
obtain the parameterized G(s; p) and denote its Padé approx-
imation by G(s; ).

Then, to search for an initial stabilizing feasible point
0 that satisfies ||G(s;1)]lso < 1 (an equivalent constraint
to constraint (21b)), we solve the following standard H.

optimization problem:
Minimize [|G(s; 1)l s0s (24)
pER?

for u0, utilizing a well-developed standard H ., problem solver
built upon [25], i.e., hinfstruct solver proposed by [26],

[27]. Afterwards, according to the parameterization (22), we
get k¥ = k(u°) and plug k° to (18) provided by Corollary 3

to extract k9.

Remark 1. It is noteworthy that due to the fundamental lim-
itations of the implementation of hinfstruct, one cannot
utilize the most representative sophisticated parameterization
(17) provided by Corollary 2 at this stage, to solve (24) for
10, That is why we alternatively employ the simple parame-
terization (22) along with (23) to that end.

2) Second stage:
following function:

p 1 (s; ) |52 | (s ) oo < 1
) = { o [B(sir)le > 1

Motivated by (20), let us define the

(25)

where v > 1 can arbitrarily be chosen. Now, we can alterna-
tively solve the following unconstrained optimization problem:
Minimize h(k), (26)

KER4

to find a solution k* to optimization problem (21). Finally,
one can compute k* by substituting x* into the parame-
terization (17) provided by Corollary 2 as k* = k(x*).
Regarding the initialization, we utilize x° obtained from the
first stage. Furthermore, due to the non-convex and non-
smooth nature of the function h(7) in (25), we need to utilize
non-convex and non-smooth optimization tools to solve the
unconstrained optimization problem (26). For instance, we
can employ fminsearch solver developed based on Nelder—
Mead simplex method [28] in that regard. It is noteworthy that
given a non-convex non-smooth optimization problem, finding
a globally optimal solution is generally a challenging task. As
a result, we utilize the term near-optimal instead of the term
optimal in the current paper.

Procedure 1 summarizes the two-stage H ., controller syn-
thesis procedure.

Procedure 1: Two-stage H, Controller Synthesis

1 Input: 7,7,K,0,wiwo {k ) (k¥ 0, ( v, N

First stage:

Construct G(s; 1) via the parameterization (22).
Get G(s; p) via the Padé approximation of G(s; ).
Solve (24) for 1% via hinfstruct solver.
Compute £° = k(u°) via the parameterization (22).
Extract x° from k° via (18).

Second stage:

Construct F'(s; k) via the parameterization (17).
Get F'(s; k) via the Padé approximation of F(s; ).
Initialize (26) with x° obtained from the first stage.
Solve (26) for k* via fminsearch solver.

13 Compute k* = k(x*) via the parameterization (17).
14 Output: £*.

o X NN NN R WN

—
N =D

Remark 2. Observe that for the parameterized F(s; k), on the
one hand, according to the supremum-based definition of the
Hoo norm expressed in (4), we have |F(s;k)|lcoc > 1 based
on lim,_,o+ F(jw;k) = 1, imy,_,o+ F'(jw;k) = 0, and



lim,, o+ F"(jw; k) < 0 (See Appendix B for more details).
On the other hand, according to (4), we impose | F(8; £) |00 <
1 to obtain the parameterized locally stabilizing feedback and
feedforward gains that guarantee the string stability. Thus,
we conclude that for such feedback and feedforward gains
|F(s;K)|loc = 1 holds. Particularly, for x° and k*, the
equalities || F(s;k)||oo = 1 and ||F(s;k)||co = 1 are satisfied,
respectively.

Remark 3. The first stage presented in Procedure 1 can
be devised differently. In other words, various alternatives
exist to choose an appropriate k°. As an effective alternative,
one can think of sampling the 4-dimensional search space
R* equipped with a pre-assumed distribution (e.g., uniform
distribution). Denoting the set of samples k by S, for any
sample K € S, we can check that if ||F(s;R)||co <1 holds or
not. Collecting all those samples satisfying || F(s;&)]oo < 1
and somng the corresponding ’HL“O)I'M norm values, i.e.,
h(R) = | F(s; R) ||[“’1 “?!in an ascending order, we can set
kY as K = arg min; g h(k). Notice that at the expense of
a denser sampling (higher computational time), one expects
to obtain a more representative choice of such k° leading
to a better near-optimal solution k*. However, the first stage
presented in Procedure 1 significantly saves computational
time while mostly generating a high-quality choice of k°
leading to an acceptable near-optimal solution k*.

IV. NUMERICAL SIMULATIONS

Throughout this section, we assess the effectiveness of the
theoretical results presented in the paper. Depending on how
small the communication delay is, the section is divided into
two main parts: (a) Case 1: a sufficiently small communication
delay 6 and (b) Case 2: a large communication delay 6.

In Case 1, since the communication delay 6 is sufficiently
small, we can set the unconstrained ., controller synthesis
proposed in [1], namely, k", as a benchmark for comparative
analysis purposes. In that regard, to have a fair comparison,
we impose the box constraints on k*, based on ||k""¢||,__. In
other words, we consider a hypercube that encompasses k""°.
In Case 2, since 6 is not sufficiently small anymore, the Taylor
series approximation-based method proposed by [1] becomes
unusable.

We conduct all the numerical experiments in MATLAB
R2022b on a MacBook Pro with a 3.1 GHz Intel Core i5
and memory 8 GB 2133 MHz. To create the continuous-
time transfer function models, we employ t £. We also utilize
getPeakGain (developed built upon [29]) to evaluate the
#9213y norm values. Regarding the Padé approximation,
we utilize pade equipped with N which denotes the Padé
approximation order. To utilize hinfstruct, we take ad-
vantage of realp, creating real-valued tunable parameters fi1,
L2, 3, and py. Furthermore, we initialize those real-valued
parameters via rand.

A. Case I: a sufficiently small communication delay

In this section, considering the case of sufficiently small 6,
we conduct a comparative analysis between the unconstrained
and constrained Ho syntheses £""° [1] and k*.

TABLE Il
VALUE SETTING FOR THE EXPERIMENTAL H oo CONTROLLER SYNTHESIS
[1]. TIME QUANTITIES ARE ALL IN SECONDS.

Parameter | Value
T 1
T 0.45
K 1
0 0.1
w2 2.5

Similar to [l], we consider the value setting in Tab.
Il for the experimental H., controller synthesis. Time
quantities are all in seconds. Setting w; = 0.5, k! =
— |k, [0 1 1 1]T, ke = k™|, 1, a = 1.05,
¢ =5, v =25 N = 5 and running Procedure 1, we
obtain the two- stage HOO controller synthesis illustrated by
Tab. III for which the Hoo rw2) horm values corresponding to
the unconstrained and constrained H ., syntheses k* and k"¢
[1] are ||F(s)]|%“?) = 0.6758 and || F(s)]|%" " = 0.8667,
respectively. Accordingly, Fig. 1 visualizes the w-dependent
|F'(jw)| values corresponding to the unconstrained and con-
strained H o, syntheses k"¢ and k* with § = 0.1 and w; = 0.5
for w € [wy,ws] on the left and w € [0.01,5.01] on the right.
According to Tab. III, A\(A + Bk*) = {—8.0215, —0.4595 —
0.36064, —0.4595 + 0.36065}, and Fig. 1, we observe that
box constraints (10) and both local stability (3) and string
stability (4) are satisfied for k*. Also, Fig. 2 depicts the relative
error percentages 100 X W (%) associated with
the Taylor series approximation-based method and the Padé
approximation-based method with § = 0.1 and w; = 0.5 for
w € [w1,ws] on the left and w € [0.01,5.01] on the right. As
Fig. 2, the Padé approximation-based method attains a more
accurate approximation than the Taylor series approximation-
based counterpart.

Fig. 1. The w-dependent | F'(jw)| values corresponding to the unconstrained
and constrained Hoo syntheses k"¢ and £* with § = 0.1 and w; = 0.5 for
w € [wi,ws] on the left and w € [0.01,5.01] on the right.

Fig. 3 visualizes the 3D search space (fixing k3 = k3 and
k4 = k}) corresponding to the constrained H., controller
synthesis £* with § = 0.1 and w; = 0.5.

For predominant acceleration frequency boundary of
human-driven vehicles w; € {0.1,0.3,0.5,0.7}, Tab. IV
reflects the w;-dependency of the Hoo o a] norm values corre-
sponding to the unconstrained and constrained H.., syntheses
k"¢ and k*. According to Tab. IV, the Padé approximation-
based box-constrained solution outperforms the Taylor series
approx1mat10n-based unconstrained solution [1] in terms of
the Heo w2l norm. As another observation that holds for both
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Fig. 2. The relative error percentages 100 X wm% (%) as-

sociated with the Taylor series approximation-based method and the Padé
approximation-based method with = 0.1 and w; = 0.5 for w € [wi,wz2]
on the left and w € [0.01,5.01] on the right.

TABLE III
THE TWO-STAGE H o CONTROLLER SYNTHESIS FOR THE VALUETSETTING
INTAB. IL wy = 0.5, k' = —[[k"|, [0 1 1 1],

kv = |[k"¢|l, 1, =105, =5v=>5, N =5 k""°: THE
UNCONSTRAINED Hoo CONTROLLER SYNTHESIS [1].

Vector Value
k* [0.4212  0.4775 —1.0078 1.3197] "
K [-0.1516  —0.0237 1.7065 —0.7647]
Y [0.0018 —0.0378 —0.2983 —0.1611]
K0 [0.8089 0.3191 0.3611 0.3492] "
p° [0.3555 0.3495 0.3377  0.3411] "
kune [0.9200 1.3200 —0.9200 0.7200] "

Fig. 3. The 3D search space (fixing k3 = x5 and k4 = k}) corresponding
to the constrained Hoo controller synthesis k* with § = 0.1 and w; = 0.5.

unconstrained and constrained H., syntheses £""¢ and k¥,
the smaller predominant acceleration frequency boundary of
human-driven vehicles w;, the larger HO‘ZIM] norm. Such
a monotonous trend is aligned with the fact that decreasing
the value of predominant acceleration frequency boundary of
human-driven vehicles w; in (9) leads to a larger interval
[w1,ws], i.e., an expanded searching space. Note that as
predominant acceleration frequency boundary of human-driven
vehicles w; tends to 0, the HLUS“WZ] norm value converges to
1 (due to lim,, g+ |F(jw)| = 1, and based on definitions (4)

and (9)), i.e., the same value for the H,, norm value.

B. Case 2: a large communication delay

In this section, we corroborate the usefulness of the two-
stage H.o, controller synthesis procedure presented by Pro-
cedure 1 in the case of dealing with large 6. Repeating the
experiments for # = 1.5, we obtain the two-stage H, con-
troller synthesis illustrated by Tab. V for which the lore]
norm value corresponding to k* is ||F(s)||L°21’w2] = 0.8669.
Accordingly, Fig. 4 visualizes the w-dependent | F'(jw)| values
corresponding to the constrained /., controller synthesis k*

TABLE IV
THE w1 -DEPENDENCY OF THE H ool “2! NORM VALUES CORRESPONDING
TO THE UNCONSTRAINED AND CONSTRAINED H oo SYNTHESES k'"1° [1]
AND k* FOR PREDOMINANT ACCELERATION FREQUENCY BOUNDARY OF
HUMAN-DRIVEN VEHICLES w1 € {0.1,0.3,0.5,0.7}.

w | kIR
0.1 kunc 0.9739
0.1 k* 0.9628
0.3 kune 0.9001
0.3 k* 0.8207
0.5 kunc 0.8667
0.5 k* 0.6758
0.7 kunc 0.7304
0.7 k* 0.5669
TABLE V

THE TWO-STAGE H oo CONTROLLER SYNTHESIS FOR THE VALUE SETTING
IN TAB. IT EXCEPT FOR @ WITH 6 = 1.5, w1 = 0.5,
K=-2[0 1 1 1]", k*=21,a=1.05(=5v=>5N=5.

Vector Value
k* [1.9696 1.9953 —0.2273 0.0234] T
K* [0.8341 1.3187 —0.1138 —0.0214} T
K0 [—0.2638 0.5087 0.1669 —0.3410} T
k0 [0.4219 1.8308 —1.1174 0.3717]T
uO [—0.8649 —0.0940 0.8405 0.3706} T

for w € [wy,ws] on the left and w € [0.01,5.01] on the right.
According to Tab. V, AM(A + Bk*) = {—3.2621, —0.2376 —
0.364434, —0.2376+0.36445 }, and Fig. 4, we observe that box
constraints (10) and both local stability (3) and string stability
(4) are satisfied for k*.

0.88
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Fig. 4. The w-dependent |F'(jw)| values corresponding to the constrained
Hoo controller synthesis k* for w € [w1,w2] on the left and w € [0.01, 5.01]
on the right.

V. CONCLUDING REMARKS

To effectively address the limitations arising from the un-
constrained CAV platoon controller synthesis in the literature,
this work proposes a (near-optimal) constrained CAV platoon
controller synthesis subject to the lower and upper bounds
on the control parameters. To that end, given box constraints
on the control parameters, parameterizing the set of feedback
and feedforward gains to ensure the local stability of the CAV
platoon and deriving a necessary condition to ensure the string
stability criterion additionally, we obtain more representative
parameterized locally stabilizing feedback and feedforward
gains. Then, we employ the Padé approximation to more
accurately ensure the string stability criterion in the presence
of communication delay.



We empirically observe that such an approximation out-
performs the Taylor series approximation in the literature.
Due to the string unstable behavior of human-driven vehicles,
we have no direct control over them. However, applying
the (fully) CAV platoon controller synthesis results to the
mixed vehicular platoon can effectively attenuate the stop-and-
go disturbance amplification throughout the mixed vehicular
platoon. Considering the mixed vehicular platoon scenario and
minimizing the ., norm of the Padé approximated transfer
function over an interval defined by predominant acceleration
frequency boundaries of human-driven vehicles, we solve for a
near-optimal constrained CAV platoon controller synthesis via
non-convex and non-smooth optimization tools. Conducting
extensive numerical experiments corroborates that (i) in the
case of a sufficiently small communication delay, the Padé
approximation-based method outperforms the Taylor series
approximation in terms of the ., norm over an interval
defined by predominant acceleration frequency boundaries
of human-driven vehicles and (ii) in the case of a large
communication delay, the Padé approximation-based method
successfully proposes an H, controller synthesis while the
Taylor series approximation-based method in the literature
becomes unusable.

Modern transportation systems will potentially benefit from
the proposed CAV control strategy in terms of effective stop-
and-go disturbance attenuation as it will potentially reduce
collisions. Furthermore, taking advantage of the sensory data,
data-driven CAV platoon controllers can be synthesized to
enhance the disturbance attenuation performance. Specifically,
in the case of inaccurate models, such data-driven counterparts
will show their potential superiority over model-based synthe-
sis in terms of disturbance attenuation performance.

Limitations: Although the near-optimal performance of the
proposed controller synthesis is satisfactory, its near-optimality
level can be sensitive to the first stage (stable initialization) of
the proposed two-stage H, controller synthesis procedure. It
is noteworthy that enhancing the quality of the non-convex
and non-smooth optimization tools also affects the quality
of the proposed controller synthesis in terms of the near-
optimality level. As another limitation, in the current study,
we have assumed that the vehicle dynamics and the commu-
nication delay are deterministic and time-invariant, which is
unrealistic. Such a limitation necessitates the consideration of
the uncertain and time-varying nature of those elements [1],
[30] to develop a robust and adaptive CAV platoon controller
synthesis. Elaboration on such a generalized synthesis is left
as a pertinent future direction.
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APPENDIX A
PROOF OF PROPOSITION 1

Imposing box constraints (10a)—(10c) to the parameteriza-
tion (11), we obtain

k< x<kY (27a)
kh < —ta+y <k, (27b)

Since 0 < z, 0 < y, and 0 < z hold, we can equivalently
consider them as € < x, € < y, and € < z, respectively, for
an infinitesimal ¢ > 0. Then, (27) along with ¢ < z, € < g,
€ <z, and K > 0 implies that

e <z, (28a)

K<z, (28b)

z < kY, (28¢)

c<y, (284)

T + le <vw, (28e)

“KkL ?1 “Ke =V (28D

y < 1x+ kY, (28g)

e<z, (28h)

IO e, (284)
Ky -

z < %;y — ki, (28))

hold. Notice that (28f) is obtained from the combination of
(28h) and (28j), and then simplifying the resulting inequality
e < %ﬁjv — k% via K > 0. Thus, utilizing (28), the z, ¥,
and z in (11) satisfying box constraints (10a)—(10c) can be
parameterized as (12) and the proof is complete.
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APPENDIX B
PROOF OF LEMMA 1

Utilizing the derivative rules in classic Calculus, it can be
verified that
dlF;(jw)| _ D(w)N'(w) — D'(w)N(w)

dw 2D(w)+y/D(w)N(w)

)

holds. Since

lim N = lim D =d
Sy V) =m0, Jig, D) = do,
lim N'(w) =0, lim D'(w)=0,
w—0t w—0Tt
are all satisfied, we obtain
- d|F(jw)|
1 —= =0. 29
wi{g* dw (29)

It can similarly be verified that (drop w for the brevity)
P|Fy(jw)| _
dw?
D?*(2NN" — (N")?) + N?(3(D")?> —2DD") —2DND'N’
4D2NvDN ’

holds. Since

lim N = lim D =d
Jim, (w) = no, JHm (w) = do,
lim N'(w) =0, lim D'(w)=0,

w—0~t w—0Tt

lim N”(w) =2(ny + lim gg(w)), lim D"(w) = 2da,
w—0t w—0t

w—0t

lim go(w) = —2K2kqk1, no = do = K2k?,

w—0t

are all satisfied, we obtain

lim d2|Fl(]w)| _ Ng —Ng — 2K2k4/€1 _ -n

w—0+ dw? no K k%7
where 77 denotes the LHS of (7c). According to (29) and
(30), if (4) (i.e., a sufficient condition to guarantee the string
stability) holds for Fi(s) in (5), then lim,,_,o+ Z1E9) —
K}—Z% < 0 is satisfied (proof by contradiction incorporating
the second-derivative test [31]) and consequently, n > 0
holds. Thus, inequality (7c) holds for the control parameters
[kl ko ks k4} and the proof is complete.

(30)

APPENDIX C
PROOF OF PROPOSITION 2

Imposing box constraints (10) to the parameterizations (11)
and (15), we obtain

K <a <k (31a)
kb < —rz+y < kY, (31b)
Tz +y w
kggTy—zgk?,, (31c)
2 Tx w
kisT—ry+K—y+z+wsk4. (31d)

Since 0 < z, 0 < y, and 0 < z hold, we can equivalently
consider them as € < z, € < y, and € < z, respectively, for



an infinitesimal € > 0. Then, (31) along with € < z, € < y,
€ <z 0<w,and K > 0 implies that

e <z, (32a)
k<, (32b)
x < kY, (32¢)
e<y, (32d)
T+ kb <, (32e)
Tx
- < 32
Kk, +1-Ke =7 (320
E(x) + 1/ E(x)? + 4522
o7 <v, (32¢)
y < 7Tx+ kY, (32h)
e< z, (321)
-T
— k< (320)
-T
2 < K‘“—;y — K, (32K)
—72z —Tx w
0<w, (32m)
2
- -T
;I—f—Ty—i—K—yx—z—i—kigw, (32n)
2
- -T
w < I—I—Ty-l-K—;—Z—I—kff, (320)

hold. Notice that (32f) is obtained from the combination of
(32i) and (32k). Similarly, (321) is obtained from the com-
bination of (32m) and (320). Furthermore, (32g) is obtained
from the combination of (32i) and (32l), and then equiva-
lently imposing the non- negativity of the quadratic polynomial
Ply) = 1y* — &(x)y — ££ (as 0 < y holds) with £(x) =

T% + € — k}. Notice that for such a quadratic polynomial,
A &(x)?+ 422 > 0 holds, and since (—42) /7 = — 4L <

0 is satisfied, the polynomial has a positive real root (i.e., the
(@) +/E(w)2+ =

larger root) 0 < ry = > and a negative real
. _ &@)— \/W
root (i.e., the smaller root) r_ = < 0. For

y € R, we know that 0 < P(y) holds if and only if y < r_ or
r+ < y holds. However, y < r_ is not feasible as 0 < y and
r— < 0 hold. Thus, 0 < P(y) holds if and only if r; < y, i.e.,
(32g) holds. Thus, utilizing (32), the =z, y, 2, and w in (11)
and (15) satisfying box constraints (10) can be parameterized
as (16) and the proof is complete.
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