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On Updating Static Output Feedback Controllers

Under State-Space Perturbation

MirSaleh Bahavarnia† and Ahmad F. Taha†

Abstract—In this paper, we propose a novel update of a nomi-
nal stabilizing static output feedback (SOF) controller for a per-
turbed linear system. In almost every classical feedback controller
design problem, a stabilizing feedback controller is designed
given a stabilizable unstable system. In realistic scenarios, the
system model is usually imperfect and subject to perturbations.
A typical approach to attenuate the impacts of such perturbations
on the system stability is repeating the whole controller design
procedure to find an updated stabilizing SOF controller. Such
an approach can be inefficient and occasionally infeasible. Using
the notion of minimum destabilizing real perturbation (MDRP),
we construct a simple norm minimization problem (a least-
squares problem) to propose an efficient update of a nominal
stabilizing SOF controller that can be applied to various control
engineering applications in the case of perturbed scenarios like
abrupt changes or inaccurate system models. In particular, con-
sidering norm-bounded known or unknown perturbations, this
paper presents updated stabilizing SOF controllers and derives
sufficient stability conditions. Geometric metrics to quantitatively
measure the approach’s robustness are defined. Moreover, we
characterize the corresponding guaranteed stability regions, and
specifically, for the case of norm-bounded unknown perturba-
tions, we propose non-fragility-based robust updated stabilizing
SOF controllers. Through extensive numerical simulations, we
assess the effectiveness of the theoretical results.

Index Terms—Stability of linear systems, robust control, output
feedback control, uncertain linear systems.

I. INTRODUCTION

S
TABILITY robustness is a significant classical notion in

robust control theory [1]–[8]. Stability robustness simply

means how sensitive the stability of the control system is

against the perturbations/uncertainties. The varying nature of

engineering systems’ models necessitates the thorough anal-

ysis of stability robustness and its potential applications to

develop robustly stable engineering systems. Several studies

have quantitatively investigated the impacts of perturbations

on the stability robustness of the control systems. In [1], [3],

a class of non-destabilizing linear constant perturbations is

characterized for the linear-quadratic state feedback (LQSF)

designs. The authors in [2], propose a guaranteed cost LQSF

for which the closed-loop system is stable for any variation of

a vector-valued parameter. In [4], for the LQSF designs, the

stability robustness bounds are derived based on the algebraic

Riccati equation (ARE) and Lyapunov stability theory. In [5],
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bounds on the non-destabilizing time-varying nonlinear pertur-

bations are obtained for asymptotically stable linear systems

to provide computationally efficient quantitative robustness

measures. Various stability robustness tests are investigated in

[6] to highlight the trade-off between the stability robustness

conservatism and the information about the perturbation. In

[7], utilizing the Lyapunov stability theory, the author has pro-

posed an improved non-destabilizing perturbation bound over

the bound proposed by [5]. Taking advantage of appropriately

chosen coordinate transformations, the authors in [8] have

reduced the conservatism of non-destabilizing perturbation

bounds proposed by [5], [7].

In this paper, in contrast to the aforementioned studies, we

do not go through the derivation of non-destabilizing pertur-

bation bounds. Instead, we mainly focus on attenuating the

impacts of perturbations on the system stability via updating

a nominal stabilizing static output feedback (SOF) controller.

With that in mind, the control problem considered in this paper

is an SOF controller update problem. To put into perspective, it

is noteworthy that our considered problem slightly differs from

the robust feedback controller design problems for uncertain

linear systems (with norm-bounded unknown perturbation)

[9]–[16] in the sense that, the robust feedback controller in

those problems is robustly stabilizing for all perturbations

∆ satisfying 0 < ‖∆‖F f Ã while in our case, the robust

updated stabilizing SOF controller is robustly stabilizing for

a subset of perturbations ∆ satisfying 0 < ‖∆‖F f Ã that

will mathematically be characterized. Specifically, the more

accurate estimate ∆̂ of a norm-bounded unknown perturbation

we have, the more robustly stabilizing updated stabilizing SOF

controller we propose.

In general, the SOF controller stabilization problem is

known to be an NP-hard problem as it is intrinsically equiva-

lent to solving a bi-linear matrix inequality (BMI) [17]. Then,

utilizing a typical approach by repeating the whole controller

design procedure can become computationally cumbersome.

Also, we avoid utilizing any Lyapunov-based approach as it

enforces an extra computational burden (mostly in the case of

bi-linear matrix inequality (BMI) or linear matrix inequality

(LMI) formulations in semi-definite programs (SDPs) [18])

which is not desired in terms of computational efficiency.

Remarkably, the Lyapunov-based SOF controller synthesis

hinges on approximately solving BMIs [19], [20] or incor-

porating sufficient LMI conditions [13], [21] which induces

a conservatism. The alternative non-Lyapunov approach that

we take is built upon the notion of minimum destabilizing

real perturbation (MDRP) [22] which has inspired [23], [24]

to synthesize sparse feedback controllers for the large-scale
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systems. Throughout the paper, we utilize the fundamental

linear algebraic results from [25] where needed.

Paper Contributions. The main contributions of this paper

can be itemized as follows:

" Built upon the notion of minimum destabilizing real per-

turbation [22], we construct a simple norm minimization

problem (a least-squares problem) to propose a novel

update of a nominal stabilizing SOF controller that can

be applied to various control engineering applications in

the case of perturbed scenarios like abrupt changes or

inaccurate system models.

" Considering known perturbations and unknown perturba-

tions with a known upper bound on their norm, we pro-

pose novel updates of nominal stabilizing SOF controllers

and derive sufficient stability conditions.

" We define geometric metrics to quantitatively measure the

stability robustness of the proposed updates of nominal

stabilizing SOF controllers, characterize the correspond-

ing guaranteed stability regions, and specifically, for the

case of unknown perturbations with a known upper bound

on their norm, we propose non-fragility-based robust

updated stabilizing SOF controllers.

" Through extensive numerical simulations, we validate

the effectiveness of the theoretical results and present a

thorough analysis of the empirical visualizations.

Paper Structure. The remainder of the paper is structured as

follows: Section II states the main objective of the paper by

arising a question to be answered throughout the following

sections. Section III presents a novel updated stabilizing SOF

controller via updating a nominal stabilizing SOF controller

built upon a simple norm minimization problem (a least-

squares problem). Section IV contains the main results of the

paper detailing the stability regions for the corresponding up-

dated stabilizing SOF controllers. Through various numerical

simulations, Section V empirically verifies the effectiveness

of the theoretical results. Finally, the paper is concluded via

drawing a few concluding remarks in Section VI.

Paper Notation. We denote the vectors and matrices by lower-

case and uppercase letters, respectively. To represent the set of

real numbers, n-dimensional real-valued vectors, and m× n-

dimensional real-valued matrices, we respectively use R, Rn,

and R
m×n. We show the set of positive real numbers with

R++. We denote the identity matrix of dimension n with In.

For a square matrix M , ³(M) represents the spectral abscissa

(i.e., the maximum real part of the eigenvalues) of M . We say

a square matrix M is stable (Hurwitz) if ³(M) < 0 holds. For

a matrix M , symbols MT , ‖M‖F , vec(M), and UMΣMV
T
M

denote its transpose, Frobenius norm, vectorization, and sin-

gular value decomposition (SVD), respectively. Given a full-

column rank matrix M , M+ := (MTM)21MT denotes the

Moore-Penrose inverse of M . We represent the Kronecker

product with the symbol ·. For a vector v, we respectively

denote its Euclidean norm and vectorization inverse with

‖v‖ and vec
21(v) where vec

21(v) is a matrix that satisfies

vec(vec21(v)) = v. We represent the set union with *. Given

two real numbers a < b, we denote the open, closed, and half-

open intervals with ]a, b[, [a, b], [a, b[, and ]a, b], respectively.

We represent the logical or and the logical and with * and

', respectively. We show the computation complexity with big

O notation, i.e., O(). We denote the Gamma function with

Γ(.). Symbols U(0, 1) and N (0, I) respectively represent the

uniform distribution on [0, 1] and the normal distribution with

zero mean and unit variance.

II. PROBLEM STATEMENT

We consider the following linear state-space model:

ẋ(t) = (A+BFC)x(t), (1)

where x(t) * R
n, A * R

n×n, B * R
n×m, C * R

p×n, and

F * R
m×p denote the state vector, state matrix, input matrix,

output matrix, and a nominal stabilizing SOF controller matrix

(i.e., ³(A+BFC) < 0 holds), respectively.

Suppose that a norm-bounded perturbation ∆ * R
n×n

with an upper bound Ã > 0 on its Frobenius norm, (i.e.,

0 < ‖∆‖F f Ã) hits the state-space model (1) as follows:

ẋ(t) = (A+BFC +∆)x(t). (2)

Similar to [4]–[6], [8], [22], we choose the Frobenius norm

over the spectral norm as it provides more analytic conve-

nience. On the one hand, for non-destabilizing perturbations

(e.g., sufficiently small perturbations), although A+BFC+∆
in (2) is still a stable matrix, the stability robustness can

be degraded. On the other hand, for destabilizing perturba-

tions (e.g., more severe perturbations), A + BFC + ∆ in

(2) can become unstable. To attenuate the impacts of such

perturbations on the stability robustness and the stability, a

typical approach can be repeating the whole controller design

procedure to find a new SOF controller, namely F typical, to

stabilize A+∆ and get a stable A+∆+BF typicalC. Such a

typical approach can be inefficient in terms of scalability and

even infeasible in some cases. Motivated by such an issue and

utilizing a simple norm minimization problem (a least-squares

problem) built upon the notion of MDRP [22], we propose a

novel update of a nominal stabilizing SOF controller that can

be applied to various control engineering applications in the

case of perturbed scenarios like abrupt changes or inaccurate

system models. In a nutshell, the main objective of this paper

is to find an answer to the following question:

Q1: Given the perturbed state-space model (2), how can we

update a nominal stabilizing SOF controller F such that the

closed-loop system remains stable?

III. A NOVEL UPDATE OF A NOMINAL STABILIZING SOF

CONTROLLER

This section consists of twofold: (i) motivation and (ii) main

idea. First, we present what motivates us to propose a novel

update of a nominal stabilizing SOF controller. Second, we

detail the main idea behind the proposed updated stabilizing

SOF controller.
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A. Motivation

To improve the stability robustness of the perturbed state-

space (2), let us consider the updated stabilizing SOF con-

troller, as F +G, with the following state-space model:

ẋ(t) = (A+∆+B(F +G)C)x(t). (3)

For instance, for the special case of the typical approach,

Gtypical = F typical 2 F holds.

Defining the notion of minimum destabilizing real pertur-

bation (MDRP) of a given stable matrix A * R
n×n, namely

³R(A), as follows ((3.2) in [22]):

³R(A) := min{‖X‖F : ³(A + X ) = 0,X * R
n×n},

and choosing A = A+ BFC and X = BGC +∆ based on

the updated perturbed state-space model (3), we see that if

‖BGC +∆‖F < ³R(A+BFC), (4)

holds, then A + ∆ + B(F + G)C is stable, i.e., F + G is

an updated stabilizing SOF controller for A + ∆. Inequality

(4) motivates us to search for an efficient update F + G via

minimizing the ‖BGC +∆‖F .

In the sequel, we present the lower and upper bounds on

MDRP of A + BFC followed by a brief description of its

exact value computation.

1) Lower bound: Considering the fact that ³(X) is a

continuous function with respect to X , we have by definition

"ë > 0, #·(ë) > 0, s.t. if ‖X‖F < ·(ë) holds, then

³(A) 2 ë < ³(A + X ) < ³(A) + ë holds,

Then, choosing A = A+BFC and X = BGC+∆, we realize

that for any ë satisfying ë < 2³(A + BFC), if ‖BGC +
∆‖F < ·(ë) holds, then A+∆+B(F +G)C is stable. That

suggests the following lower bound on MDRP of A+BFC:

0 < ·sup f ³R(A+BFC), (5a)

·sup := sup{·(ë) : ë *]0,2³(A+ BFC)[}, (5b)

2) Upper bound: On one hand, since ³(A+X ) = 0 holds

for the choice of X = 2³(A)In, then choosing A = A +
BFC and X = 2³(A+BFC)In, we get the following upper

bound on MDRP of A+BFC [22]:

³R(A+BFC) f 2:
n³(A+BFC). (6)

On the other hand, given A = UAΣAV
T
A as the singu-

lar value decomposition (SVD) of A and choosing X =
2Ãmin

A umin
A vminT

A (superscript min denotes the corresponding

minimum singular value and vectors), it can be verified that

³(A + X ) = 0 holds. Then, choosing A = A + BFC and

according to (6), we get the following upper bound on MDRP

of A+BFC [22]:

³R(A+BFC) f ³u
R
, (7a)

³u
R
= min{Ãmin(A+BFC),2:

n³(A +BFC)}. (7b)

For the special case of a symmetric matrix A + BFC, since

Ãmin(A+BFC) = 2³(A+BFC) holds, (7) reduces to

³R(A+BFC) f 2³(A+BFC), (8)

which is a tighter bound compared to the upper bound in (6).

According to Corollary 3.5. in [26] and noting that ‖X‖ f
‖X‖F holds for any X [25], it can be verified that Ãmin(A+
BFC) f ³R(A + BFC) holds and the equality in (8) is

consequently satisfied.

3) Exact value: Unfortunately, computing the exact value

of ³R(A+BFC) is not theoretically possible [22]. Also, there

is no systematic tractable way to compute the exact value of

the lower bound ·sup in (5) since we only know about the

existence of ·(ë) and nothing more. However, taking advantage

of the upper bounds on ³R(A+BFC) (derived in (7) and (8)),

we may utilize heuristics to obtain an appropriate approximate

value of ³R(A + BFC) in a reasonable computational time.

Since (4) plays a significant role in the characterization of the

stability regions, the tightness of the upper bound on ³R(A+
BFC) in (7) becomes crucial. Remarkably, if the equality in

(7) becomes active (i.e., the case of a tight upper bound), then

the proposed updated stabilizing SOF controller in this paper

becomes efficient as it only requires the value of ³u
R

which

can efficiently be computed (e.g., the case of a symmetric A+
BFC for which ³R(A+BFC) = 2³(A+BFC) holds). For

the special case of structured perturbation, i.e., ∆ = BMC for

a matrix M * R
m×p, one may compute MDRP via (frequency

domain)-based algorithms detailed by [27].

B. Main idea

Since (4) provides a sufficient condition on the stability of

A+∆ + B(F +G)C, our main idea to propose an efficient

updated stabilizing SOF controller F + G is to compute G

via minimizing ‖BGC+∆‖2F and verifying that under which

conditions, the minimized value of ‖BGC + ∆‖2F would be

less than ³R(A + BFC)2. It is noteworthy that if the most

optimistic scenario occurs, (i.e., the scenario in which for a

known ∆, equation ‖BGC + ∆‖F = 0 has a solution G),

then one can completely cancel out the effect of the hitting

perturbation ∆ and retrieve the primary unperturbedA+BFC
as detailed later on. With that in mind and to find a reasonable

answer to the question stated in Section II (Q1), we consider

the following optimization problem:

min
G*Rm×p

‖BGC +∆‖2F . (9)

By vectorizing BGC + ∆, defining g := vec(G), · :=
vec(∆), H := CT · B, and noting that vec(XYZ) =
(ZT · X )vec(Y) holds for any triplet (X ,Y,Z) with con-

sistent dimensions and ‖vec(X)‖ = ‖X‖F holds for any

X , optimization problem (9) can equivalently be cast as the

following least-squares problem [28]:

min
g*Rmp

‖Hg + ·‖2. (10)

In this paper, we assume that the following standard assump-

tion holds for B and C.

Assumption 1. We assume that B and C are full-column rank

and full-row rank, respectively.
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According to Assumption 1 and noting that identity (CT ·
B)+ = CT+ · B+ holds, optimization problem (10) can

analytically be solved as

g7δ = 2(CT+ ·B+)·, (11)

and the analytic optimal solution of (9) can subsequently be

presented as follows:

G7
∆ = vec

21(g7δ ) = 2B+∆(CT+)T , (12)

for which the computation complexity is O(n2 min{m, p})
while the computation complexity of (11) is O(n2m2p2).
Substituting g7δ of (11) in (10), the optimal value of the

objective function in (10), namely J7(·), becomes

J7(·) := ‖Hg7δ + ·‖2 = ‖(In2 2HH+)·‖2. (13)

Defining P := In2 2HH+ and noting that PTP = P holds

(since H+H = Imp holds), (13) reduces to

J7(·) = ·TP·. (14)

For the sake of preciseness, with a bit of abuse of notation,

we simply define J7(∆) := J7(vec(∆)) = J7(·).

IV. MAIN RESULTS

This section consists of the main results of the paper. The

main results are twofold: (i) In Section IV-A, given a known

norm-bounded perturbation ∆ with 0 < ‖∆‖F f Ã, we

investigate the dependency of J7(∆) on ∆ via inspecting

the linear algebraic properties of P in (14). Proposition 1

analytically parameterizes the norm-bounded perturbation and

proposes a closed-form formula for J7(∆). Proposition 2

elaborates on deriving sufficient conditions for the stability

of the proposed updated stabilizing SOF controllers while

analytically characterizing the guaranteed stability regions.

Furthermore, we define a geometric metric to quantify the

stability robustness of the proposed updated stabilizing SOF

controllers, (ii) in Section IV-B, given an unknown norm-

bounded perturbation ∆ with a known upper bound Ã on

its Frobenius norm, we derive sufficient conditions on the

stability of the proposed updated stabilizing SOF controllers in

Proposition 3. Proposition 4 mathematically characterizes the

guaranteed stability regions for which the proposed updated

SOF controllers are stabilizing. Similarly, we define a geo-

metric metric to quantify the stability quality of the proposed

updated stabilizing SOF controllers. Also, built upon a notion

of non-fragility utilized in the literature of robust non-fragile

proportional-integral-derivative (PID) controller designs [29]–

[32], we propose non-fragility-based robust updated stabiliz-

ing SOF controllers. In the sequel, to save space, whenever

needed, we refer to ³R(A+BFC) as ³.

A. Known norm-bounded perturbation

In the following lemma, we present an SVD-based parame-

terization of P in (14) that facilitates parameterizing the norm-

bounded perturbation ∆ and subsequently proposing a closed-

form expression for J7(∆).

Lemma 1. Suppose that H = UHΣHV
T
H is the SVD of H .

Then, P in (14) can be parameterized as follows:

P = UH

[

0 0
0 In22mp

]

UT
H , (15)

where UH = (VC · UB)UΩ holds provided that B =
UBΣBV

T
B , C = UCΣCV

T
C , and Ω := ΣT

C ·ΣB = UΩΣΩV
T
Ω

denote the SVDs of B, C, and Ω, respectively.

Proof: See Appendix A.

1) Norm-bounded perturbation analytic parameterization:

Built upon Lemma 1, we present the following proposition

that analytically parameterizes the norm-bounded perturbation

∆ while proposing a closed-form expression for J7(∆).

Proposition 1. Given the norm-bounded perturbation ∆ with

‖∆‖F = r and r *]0, Ã], and considering r = Ã sin(πτ2 )
with Ç *]0, 1], the norm-bounded perturbation ∆ can be

parameterized as follows:

∆ = Ã sin
(ÃÇ

2

)

UBvec
21

(

UΩ

[

Çc cos(
πθ
2 )

Çs sin(
πθ
2 )

])

V T
C , (16)

where Çc * R
mp with ‖Çc‖ = 1, Çs * R

n22mp with ‖Çs‖ = 1,

and » * [0, 1], and we can compute J7(∆) in (14) as follows:

J7(∆) =

(

Ã sin
(ÃÇ

2

)

sin
(Ã»

2

)

)2

. (17)

Proof: See Appendix B.

The following corollary provides an alternative formula to

compute G7
∆ in (12).

Corollary 1. Considering the following identities:

(UH ,ΣH , VH) = ((VC · UB)UΩ,ΣΩ, (UC · VB)VΩ),

B = UBΣBV
T
B , C = UCΣCV

T
C ,Σ

T
C · ΣB = UΩΣΩV

T
Ω ,

(12) can alternatively be computed as follows:

G7
∆ = 2vec

21(VH
[

(
[

Imp 0
]

ΣH)21 0
]

UT
Hvec(∆)).

Fig. 1 depicts the dependency of
J∗(∆)
ρ2 on Ç and ». As

expected, since functions sin(πτ2 ) and sin(πθ2 ) have monotonic

behaviors versus Ç (for Ç *]0, 1]) and » (for » * [0, 1]),

respectively, the smaller Ç and/or », the smaller
J∗(∆)
ρ2 we get.

Note that the smaller value of
J∗(∆)
ρ2 is equivalent to the higher

chance of satisfaction of the sufficient stability condition (4).

In other words, its intuitive interpretation is that handling a less

severe perturbation via an updated stabilizing SOF controller

F +G7
∆ with G7

∆ in (12) is easier.

2) The guaranteed stability region analytic characteriza-

tion: We state the following proposition that derives sufficient

conditions on the stability of the proposed updated stabilizing

SOF controllers while analytically characterizing the guaran-

teed stability regions.

Proposition 2. Given the norm-bounded perturbation ∆ pa-

rameterized by (16), F +G7
∆ with G7

∆ in (12) is an updated

stabilizing SOF controller,

i . if Ã < ³R(A+BFC) holds.
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Figure 1. The dependency of
J∗(∆)

ρ2
on τ and θ.

ii . else if Ã g ³R(A + BFC) and (Ç∆, »∆) * Sκ hold

where the guaranteed stability region Sκ is defined as:

Sκ := Š * S̃, (18a)

Š := {(Ç, ») : Ç *]0, »[, » * [0, 1]}, (18b)

» :=
2

Ã
arcsin

(³R(A+BFC)

Ã

)

, (18c)

S̃ := {(Ç, ») : Ç * [», 1], » * [0, ·τ,κ[}, (18d)

·τ,κ :=
2

Ã
arcsin

( sin(πκ2 )

sin(πτ2 )

)

. (18e)

Moreover, the following geometric metric provides a

percentage-based lower bound on the stability of the

updated perturbed state-space (3):

¿κ (%) := 100×
(

»+

∫ 1

κ

·τ,κdÇ

)

, (19)

and ¿κ is an increasing function of » (equivalently ¿ρ is

a decreasing function of Ã for a fixed ³R(A+BFC) and

an increasing function of ³R(A+BFC) for a fixed Ã).

Proof: See Appendix C.

For the case of Ã < ³R(A+BFC), the guaranteed stability

region would be ]0, 1] × [0, 1] = Sκ|κ=1 * {(1, 1)}, i.e., the

unit square in the non-negative quadrant of (Ç, »). For the sake

of notation simplicity, we define S =]0, 1]× [0, 1] and utilize

the unified notation of S to refer to both guaranteed stability

regions Sκ and S. The following corollary thoroughly sheds

light on the dependency and limiting behaviors of ¿ρ and ¿β
on Ã and ³, respectively.

Corollary 2. For the case of Ã g ³R(A+BFC), considering

the following expression for ¿ρ:

¿ρ =
2

Ã
arcsin

(³

Ã

)

+
2

Ã

∫ 1

2
π
arcsin

(

β
ρ

)

arcsin
( ³

Ã sin(πτ2 )

)

dÇ,

we compute the derivative of ¿ρ with respect to Ã as follows:

d¿ρ

dÃ
= 2 2

ÃÃ

∫ 1

2
π
arcsin

(

β
ρ

)

³

Ã
√

sin(πτ2 )2 2 (β
ρ
)2
dÇ. (20)

Moreover, as Ã tends to ³ and > in (20), we get

lim
ρ³β+

d¿ρ

dÃ
= 2 2

Ã³
, lim
ρ³>

d¿ρ

dÃ
= 0, lim

ρ³β+
¿ρ = 1, lim

ρ³>
¿ρ = 0.

Similarly, considering the following expression for ¿β:

¿β =
2

Ã
arcsin

(³

Ã

)

+
2

Ã

∫ 1

2
π
arcsin

(

β
ρ

)
arcsin

( ³

Ã sin(πτ2 )

)

dÇ,

we compute the derivative of ¿β with respect to ³ as follows:

d¿β

d³
=

2

ÃÃ

∫ 1

2
π
arcsin

(

β
ρ

)

1
√

sin(πτ2 )2 2 (β
ρ
)2
dÇ. (21)

Moreover, by tending ³ to 0 and Ã in (21), we get

lim
β³0+

d¿β

d³
= >, lim

β³ρ−

d¿β

d³
=

2

ÃÃ
, lim
β³0+

¿β = 0,

lim
β³ρ−

¿β = 1.

Fig. 2 visualizes the guaranteed stability region Sκ for » =
1
3 and the percentage-based lower bounds on the stability of

the updated perturbed state-space (3) versus », Ã, and ³. As

expected, the empirical observations of Fig. 2 are consistent

with the theoretical results of Proposition 2 and Corollary 2.

Precisely, as » decreases, e.g., for an increased perturbation

upper bound Ã or a decreased MDRP ³, the percentage-based

lower bound on the stability of the updated perturbed state-

space (3) ¿ (%) degrades which is expected. As Fig. 2 (Top-

Left) depicts, for the sufficiently large values of Ç and/or »,

i.e., more severe perturbations, (Ç, ») lies outside the Sκ and

there is no stability guarantee for the proposed updated SOF

controller which is aligned with the expectations around the

negative impacts of perturbations on the stability.
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Figure 2. (a) The guaranteed stability region Sκ for κ = 1
3

, (b) the
percentage-based lower bound on the stability of the updated perturbed state-
space (3) ξκ (%) versus κ, (c) the percentage-based lower bound on the
stability of the updated perturbed state-space (3) ξρ (%) versus ρ for β = 1,
and (d) the percentage-based lower bound on the stability of the updated
perturbed state-space (3) ξβ (%) versus β for ρ = 1.
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B. Unknown norm-bounded perturbation

Given an unknown norm-bounded perturbation ∆ with 0 <
‖∆‖F f Ã, let us denote a known norm-bounded perturbation

with an upper bound Ã on its Frobenius norm as ∆̂. We refer to

∆̂ as an estimate of unknown ∆. Also, whenever needed, for

ease of representation, we will simply denote Ç∆̂ and »∆̂ with

Ç̂ and »̂, respectively. Moreover, we represent the guaranteed

stability regions associated with ∆̂ by Ŝκ, Ŝ, and Ŝ (the unified

notation for both Ŝκ and Ŝ). In the following proposition, we

derive sufficient stability conditions under which the proposed

updated SOF controllers are stabilizing.

Proposition 3. Given an unknown norm-bounded perturbation

∆ and its estimate ∆̂ both with an upper bound Ã on their

Frobenius norms, F + G7
∆̂

with G7
∆̂

in (12) is an updated

stabilizing SOF controller,

i . if Ã < ³R(A+BFC) and

‖∆2 ∆̂‖F < Ç, (22a)

Ç := ³R(A+BFC)2 Ã sin
(ÃÇ∆̂

2

)

sin
(Ã»∆̂

2

)

, (22b)

hold.

ii . if Ã g ³R(A+BFC), (22), and (Ç∆̂, »∆̂) * Ŝκ hold.

Proof: See Appendix D.

The following lemma enables us to have a more thorough

quantitative understanding of the estimation inaccuracy and its

dependency on various factors.

Lemma 2. Given the ∆ and ∆̂ as in Proposition 3, the

following identity holds:

‖∆2 ∆̂‖F = Ã

√

s2τ + s2τ̂ 2 2sτsτ̂ c2η, (23a)

sτ := sin
(ÃÇ∆

2

)

, sτ̂ := sin
(ÃÇ∆̂

2

)

, (23b)

c2η := cos(Ã·), · :=
1

Ã
arccos(ËT Ë̂), (23c)

Ë := Ë∆, Ë̂ := Ë∆̂. (23d)

Proof: See Appendix E.

Note that Ã· denotes the phase difference between Ë and

Ë̂.

1) The guaranteed stability region mathematical character-

ization: Built upon Proposition 3 and Lemma 2, we present

the following proposition that lists all the possible parametric

scenarios for mathematically characterizing the guaranteed

stability regions.

Proposition 4. Given the ∆ and ∆̂ as in Proposition 3 and

defining

sθ̂ := sin

(

Ã»∆̂
2

)

, » :=
³R(A+BFC)

Ãsτ̂
2 sθ̂ =

Ç

Ãsτ̂
,

·̄ :=
1

Ã
arcsin(»), for 0 < » f 1, b̂ :=

sτ̂

2
(12 »2) +

1

2sτ̂
,

· :=
1

Ã
arccos(b̂), for |b̂| f 1, s2η := sin(Ã·),

bl(·) := sτ̂

(

c2η 2
√

»2 2 s22η

)

,

×l(·) :=
2

Ã
arcsin(bl(·)), for 0 f bl(·) < 1,

bu(·) := sτ̂

(

c2η +
√

»2 2 s22η

)

,

×u(·) :=
2

Ã
arcsin(bu(·)), for 0 < bu(·) f 1,

if (·∆, Ç∆) * S holds, then F + G7
∆̂

with G7
∆̂

in (12) is

an updated stabilizing SOF controller where the guaranteed

stability region S in 2-dimensional parametric space of (·, Ç)
can be characterized via the following itemized approach:

i . if 0 < » f 1 and b̂ f 1 hold, then S is defined as

S := Š * S̃, (24a)

Š := {(·, Ç) : · * [0, ·[, Ç *]×l(·), 1]}, (24b)

S̃ := {(·, Ç) : · * [·, ·̄[, Ç *]×l(·), ×u(·)[}, (24c)

ii . if 0 < » f 1 and b̂ > 1 hold, then S is defined as

S := {(·, Ç) : · * [0, ·̄[, Ç *]×l(·), ×u(·)[}, (25)

iii . if » > 1 and |b̂| f 1 hold, then S is defined as

S := Š * S̃, (26a)

Š := {(·, Ç) : · * [0, ·[, Ç *]0, 1]}, (26b)

S̃ := {(·, Ç) : · * [·, 1], Ç *]0, ×u(·)[}, (26c)

iv . if » > 1 and b̂ > 1 hold, then S is defined as

S := {(·, Ç) : · * [0, 1], Ç *]0, ×u(·)[}, (27)

v . if » > 1 and b̂ < 21 hold, then S is defined as

S := {(·, Ç) : · * [0, 1], Ç *]0, 1]}, (28)

Moreover, if Ã < ³R(A + BFC) holds, then 0 < » automat-

ically holds. Also, in the case of Ã g ³R(A + BFC), 0 < »

holds if and only if (Ç∆̂, »∆̂) * Ŝκ holds.

Proof: See Appendix F.

Utilizing the following equivalences:

» > 0 ñó sτ̂sθ̂ f ³

Ã
, » f 1 ñó ³

Ã
f sτ̂ (sθ̂ + 1),

b̂ f 1 ñó » g 1

sτ̂
2 1 ñó 1 + sτ̂ (sθ̂ 2 1) f ³

Ã
,

b̂ g 21 ñó » f 1

sτ̂
+ 1 ñó ³

Ã
f 1 + sτ̂ (sθ̂ + 1),

the following corollary facilitates the itemized characterization

proposed by Proposition 4.

Corollary 3. The if parts of the items presented by Proposition

4 can be simplified into the following items:

i . if 1 + sτ̂ (sθ̂ 2 1) f β
ρ
f sτ̂ (sθ̂ + 1) and 1

3 f Ç∆̂ f 1
hold.

ii . 1) if sτ̂sθ̂ <
β
ρ
f sτ̂ (sθ̂ + 1) and 0 < Ç∆̂ < 1

3 hold,

or

2) if sτ̂sθ̂ <
β
ρ
< 1 + sτ̂ (sθ̂ 2 1) and 1

3 f Ç∆̂ < 1 hold.

iii . 1) if 1+sτ̂(sθ̂21) f β
ρ
f 1+sτ̂(sθ̂+1) and 0 < Ç∆̂ < 1

3
hold,

or

2) if sτ̂ (sθ̂ + 1) < β
ρ
f 1 + sτ̂ (sθ̂ + 1) and 1

3 f Ç∆̂ f 1
hold.

iv . if sτ̂ (sθ̂ + 1) < β
ρ
< 1 + sτ̂ (sθ̂ 2 1) and 0 < Ç∆̂ < 1

3
hold.
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v . if 1 + sτ̂ (sθ̂ + 1) < β
ρ

holds.

Note that the upper bounds of β
ρ

in item ii in Corollary

3 and the lower bounds of β
ρ

in item iii in Corollary 3 can

compactly be expressed as follows:

ii. sτ̂sθ̂ +min{sτ̂ , 12 sτ̂},
iii. sτ̂sθ̂ +max{sτ̂ , 12 sτ̂},

where highlights the appearance of the threshold Ç∆̂ = 1
3 , i.e.,

‖∆̂‖F = ρ
2 .

Fig. 3 illustrates the guaranteed stability region S in 2-

dimensional parametric space of (·, Ç) for various cases

itemized by Corollary 3. Remarkably, item v in Corollary 3

can only occur for the case of Ã < ³ as 1 < 1 + sτ̂ (sθ̂ + 1)
should be satisfied. Also, the non-trivial boundary points with

· = 0 ((0, Ç0l ) and (0, Ç0u)) or · = 1 ((0, Ç1u)) can be computed

via the following formulas:

Ç0l =
2

Ã
arcsin

(

sτ̂ (1 + sθ̂)2
³

Ã

)

,

Ç0u =
2

Ã
arcsin

(

sτ̂ (1 2 sθ̂) +
³

Ã

)

,

Ç1u =
2

Ã
arcsin

(

sτ̂ (212 sθ̂) +
³

Ã

)

.

It is noteworthy that the extreme cases · = 0 (no phase

difference) and · = 1 (maximum phase difference) represent

the special cases Ë̂ = Ë and Ë̂ = 2Ë, respectively.

Similar to the case with known perturbation, we define a

geometric metric to provide a percentage-based lower bound

on the stability of the updated perturbed state-space (3). Given

the guaranteed stability region S in 2-dimensional parametric

space of (·, Ç) (as presented by Proposition 4 and Corollary

3), we define the following geometric metric:

Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%) := 100× Vn2(D(S))

Vn2(Sn2

ρ )
. (29)

where VN(.), SN
r , and D(S) denotes the N -dimensional vol-

ume of an object, N -dimensional hypersphere of radius r

centered at origin, and set of all · with ‖vec21(·)‖F f Ã

corresponding to S.

To compute Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%) (defined by (29)), we need to

compute Vn2(D(S)) and Vn2

(

Sn2

ρ

)

. We compute both volumes

via integral computation techniques similarly utilized by [33].

First, Vn2

(

Sn2

ρ

)

can simply be computed as follows:

Vn2

(

S
n2

ρ

)

=
Ã

n2

2 Ãn
2

Γ
(

n2

2 + 1
) . (30)

Second, according to the spherical symmetry, Vn2(D(S)) can

be computed as follows:

Vn2(D(S)) =
∫ πηl

πηu

fu(×)2 fl(×) d×, (31a)

fu(×) := Vn221

(

S
n221
ru(ϕ) sin(ϕ)

)d(ru(×) cos(×))

d×
, (31b)

fl(×) := Vn221

(

S
n221
rl(ϕ) sin(ϕ)

)d(rl(×) cos(×))

d×
. (31c)
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Figure 3. The guaranteed stability region S in 2-dimensional parametric space
of (η, τ) for various cases itemized by Corollary 3 (a) i, (b) ii-1, (c) ii-2, (d)
iii-1, (e) iii-2, (f) iv, and (g) v.

where × := Ã·, r := Ã sin(πτ2 ), and ru(×)/·u and rl(×)/·l
represent the upper and lower curves/bounds corresponding to

S, respectively. Note that the following identities:

Vn221

(

S
n221
ru(ϕ) sin(ϕ)

)

=
Ã

n2
−1
2 (ru(×) sin(×))

n221

Γ
(

n221
2 + 1

) , (32a)

Vn221

(

S
n221
rl(ϕ) sin(ϕ)

)

=
Ã

n2
−1

2 (rl(×) sin(×))
n221

Γ
(

n221
2 + 1

) , (32b)

d(ru(×) cos(×))

d×
= 2ru(×) sin(×) +

dru(×)

d×
cos(×), (32c)

d(rl(×) cos(×))

d×
= 2rl(×) sin(×) +

drl(×)

d×
cos(×), (32d)

hold. Then, utilizing (30), (31), and (32) enables us to compute
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Ξτ
∆̂
,θ

∆̂
;β
ρ
,n (%).

Fig. 4 depicts the dependency of Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%) on Ç∆̂

and »∆̂ for β
ρ

= 1
2 and n = 4. As observed, approaching

the origin, the value of the geometric metric gets improved (a

maximum value of 1.5259 × 1023%), meaning that a larger

amount of perturbations can be handled provided that they are

less severe. Similarly, approaching the instability boundary,

the value of the geometric metric gets degraded, that is, a

smaller amount of perturbations can be handled provided that

they are more severe. Then, there exists a fundamental trade-

off between the potential severeness of perturbations and the

successfully handled amount of perturbations.

Figure 4. The dependency of Ξ
τ
∆̂

,θ
∆̂

; β
ρ
,n

(%) (defined by (29)) on τ
∆̂

and

θ
∆̂

for β
ρ
= 1

2
and n = 4.

2) Non-fragility-based robust update: Inspired by Proposi-

tions 1, 2, 3, and 4 and employing a notion of non-fragility

(NF) utilized by [29]–[32], we propose a robust update for the

case of dealing with an unknown norm-bounded perturbation

∆ with a known upper bound Ã on its Frobenius norm, based

on the following criterion:

C1: Choose the point deepest inside the guaranteed stability

region Ŝ (i.e., farthest from the boundary) as a robust update.

To choose the point deepest inside the guaranteed stability

region Ŝ, we utilize three well-known geometric notions: (i)

Chebyshev center, (ii) centroid, and (iii) weighted centroid.

Chebyshev center: A robust update based on the Cheby-

shev center can be computed as follows:

G7
∆̂NF

= 2B+∆̂NF(C
T+)T , (33a)

∆̂NF = Ã sin
(ÃÇ̂NF

2

)

vec
21

(

UH

[

Ç̂c cos(
πθ̂NF

2 )

Ç̂s sin(
πθ̂NF

2 )

])

, (33b)

Ç̂NF =
42 2

:
2

Ã
arcsin

(
√

³

Ã

)

, »̂NF = Ç̂NF. (33c)

Centroid: A robust update based on centroid can be com-

puted as follows:

G7
∆̂NF

= 2B+∆̂NF(C
T+)T , (34a)

∆̂NF = Ã sin
(ÃÇ̂NF

2

)

vec
21

(

UH

[

Ç̂c cos(
πθ̂NF

2 )

Ç̂s sin(
πθ̂NF

2 )

])

, (34b)

Ç̂NF =

∫

Ŝ
Ç̂ d»̂dÇ̂

∫

Ŝ
d»̂dÇ̂

, »̂NF =

∫

Ŝ
»̂d»̂dÇ̂

∫

Ŝ
d»̂dÇ̂

. (34c)

wherein »̂NF = Ç̂NF holds due to the symmetry of Ŝ with

respect to »̂ = Ç̂ .

Specifically, for the case of Ã < ³R(A + BFC), both of the

robust updates in (33) and (34) reduce to the following form:

G7
∆̂NF

= 2B+∆̂NF(C
T+)T , (35a)

∆̂NF =
Ã

2
vec

21

(

UH

[

Ç̂c

Ç̂s

])

. (35b)

Note that in (35) (Ç̂NF, »̂NF) = (12 ,
1
2 ) holds as Ŝ = Ŝ holds.

Weighted centroid: A robust update based on a weighted

centroid can be computed as follows:

G7
∆̂NF

= 2B+∆̂NF(C
T+)T , (36a)

∆̂NF = Ã sin
(ÃÇ̂NF

2

)

vec
21

(

UH

[

Ç̂c cos(
πθ̂NF

2 )

Ç̂s sin(
πθ̂NF

2 )

])

, (36b)

Ç̂NF =

∫

Ŝ
Ξ(Ç̂ , »̂)Ç̂ d»̂dÇ̂

∫

Ŝ
Ξ(Ç̂ , »̂)d»̂dÇ̂

, »̂NF =

∫

Ŝ
Ξ(Ç̂ , »̂)»̂d»̂dÇ̂

∫

Ŝ
Ξ(Ç̂ , »̂)d»̂dÇ̂

. (36c)

The following corollary highlights that since G7
∆̂NF

in (33),

(34), and (36) all lie inside the guaranteed stability region Ŝ,

the corresponding F + G7
∆̂NF

is a robust updated stabilizing

SOF controller by construction.

Corollary 4. Given an unknown norm-bounded perturbation

∆ with an upper bound Ã on its Frobenius norm and consid-

ering the guaranteed stability region Ŝ, then F +G7
∆̂NF

with

G7
∆̂NF

in (33), (34), and (36) is a robust updated stabilizing

SOF controller.

We highlight that for an arbitrary choice of (Ç̂ , »̂), one can

similarly compute the corresponding G7
∆̂

via

G7
∆̂
= 2B+∆̂(CT+)T , (37a)

∆̂ = Ã sin
(ÃÇ̂

2

)

vec
21

(

UH

[

Ç̂c cos(
πθ̂
2 )

Ç̂s sin(
πθ̂
2 )

])

. (37b)

Given (Ã, n), computing (³R(A + BFC), Ç̂NF, »̂NF), and

having access to sufficiently accurate estimates (Ç̂c, Ç̂s) of

(Çc, Çs), we can utilize (33), (34), and (36) to propose robust

updated stabilizing SOF controllers. We emphasize that by

construction, the set of robust updated stabilizing SOF con-

trollers proposed by Corollary 4 is a proper subset of the exact

(ideal) set of solutions as the special form of the solutions in

Corollary 4 is built upon engineered sufficient conditions.

V. NUMERICAL SIMULATIONS

This section is naturally divided into two main parts: (i)

known norm-bounded perturbation and (ii) unknown norm-

bounded perturbation. To assess the effectiveness of the the-

oretical results, we employ two benchmarks of the SOF

controller benchmarks collected by [34]. To design a nominal

stabilizing SOF controller F , we utilize MATLAB built-in

function hinfstruct(.) [35] that has been developed built

upon [36] to synthesize structured H> controllers.
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As mentioned earlier in the paper, computing the exact value

of MDRP ³ is theoretically impossible. However, we utilize

the following optimization problem:

max
v*Rn2

, β*R++

³

(

A+BFC + ³vec21

(

v

‖v‖

))

. (38)

along with a specialized bisection method (fixing the value of

³ and solving for a v * R
n2

), to obtain a near-optimal value

of ³. We initialize ³ with ³u
R

and at each step, we check if the

maximum value, namely ³7, is non-negative or not. To solve

the optimization problem, one could utilize MATLAB’s built-

in function fminunc(.). We emphasize that the efficiency

of the proposed updated stabilizing SOF controller mainly

depends on the computational efficiency of MDRP ³ as the

computation complexity of (12) is O(n2 min{m, p}). Further-

more, it is noteworthy that solving the optimization problem

(38) along with a specialized bisection method to obtain a

near-optimal value of ³ can become challenging for higher-

order systems as the dimension of v is n2 and quadratically

increasing with n.

A. Known norm-bounded perturbation

Let us consider a lateral axis model of an L2 1011 aircraft

in cruise flight conditions (AC3) [34]. For such a model, we

have (n,m, p) = (5, 2, 4). We design the following nominal

stabilizing SOF controller F via hinfstruct(.):

F =

[

0 0 0 20.5057
0.7521 0 23.0713 1.1408

]

.

for which ³(A + BFC + ∆) = 0.0483 (i.e., a destabilizing

∆), ³ = 0.1931, and ³u
R
= 0.3230 hold.

Fig. 5 (Left) visualizes the stability regions for AC3 bench-

mark with β
ρ

= 1
2 : the guaranteed (conservative) stability

region based on Proposition 2 and the exact one based on

³(A + BFC + ∆ + BG7
∆C) < 0 with G7

∆ in (12). As

expected, the guaranteed (conservative) stability region is a

subset of the exact one. For instance, the update G7
∆ for

(Ç∆, »∆) = (0.45, 0.45) is as follows:

G7
∆ =

[

0.0745 20.2034 0.0214 20.0939
0.0115 20.0302 0.0018 20.0169

]

,

for which ³(A+BFC +∆+BG7
∆C) = 20.0637 holds and

the updated stabilizing SOF controller F +G7
∆ is as follows:

F +G7
∆ =

[

0.0745 20.2034 0.0214 20.5996
0.7636 20.0302 23.0695 1.1239

]

.

Remarkably, the accurate computing of ³ plays a significant

role in accurately identifying the stability regions. As Fig. 5

(Right) depicts, choosing Ã equal to 2 × 0.1931 (as chosen

for Fig. 5 (Left)) and ³ equal to 0.3230 (an inaccurate value),

leads to the misleading stability regions. First, the guaranteed

(conservative) stability region has erroneously been enlarged.

Second, the guaranteed (conservative) stability region has

erroneously become the superset of the exact one.

(a) (b)

Figure 5. The stability regions for AC3 benchmark with (a) ρ = 2βaccurate

and β = βaccurate and (b) ρ = 2βaccurate and β = βinaccurate: the
guaranteed (conservative) stability regions based on Proposition 2 (filled with
blue circles) and the exact ones based on α(A+ BFC +∆+ BG∗

∆) < 0
with G∗

∆ in (12) (filled with red asterisks).

B. Unknown norm-bounded perturbation

Let us consider the autopilot control problem for an air-to-

air missile (AC4) [34]. For such a model, we have (n,m, p) =
(4, 1, 2). The number of states for such a control problem is

n = 4. For β
ρ
= 1

2 and n = 4, we get the following NF-based

designs:

(Ç̂Chebyshev center
NF , »̂

Chebyshev center
NF ) =

(

22
:
2

2
,
22

:
2

2

)

,

(Ç̂Centroid
NF , »̂Centroid

NF ) = (0.3787, 0.3787),

(Ç̂W2centroid
NF , »̂W2centroid

NF ) = (0.1603, 0.2278),

where attain ΞChebyshev center
β
ρ
,τ

∆̂
,θ

∆̂

= 5.0077×1027%, ΞCentroid
β
ρ
,τ

∆̂
,θ

∆̂

=

2.0450 × 10210%, and ΞW2centroid
β
ρ
,τ

∆̂
,θ

∆̂

= 7.0944 × 1025%,

respectively.

Fig. 6 visualizes the guaranteed stability region S in 2-

dimensional parametric space of (·, Ç) for various NF-based

robust updates. As observed, the weighted centroid update

attains the best average performance as it considers both

being far from the boundary and obtaining a large guaranteed

stability region (i.e., a large value of the geometric metric).

Also, unlike the Chebyshev center update and the centroid

update, for the case of weighted centroid update the identity

»̂NF = Ç̂NF does not necessarily hold as Ξ(c1, c2) = Ξ(c2, c1)
does not necessarily hold for c1 6= c2. Fig. 7 illustrates the

weighted centroid updates for β
ρ
= 1

2 and various values of n.

As Fig. 7 depicts, the higher the dimension n, the closer to the

origin, the weighted centroid update we get. Tab. I reflects the

corresponding values of the geometric metric Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%)

for the weighted centroid updates with β
ρ

= 1
2 and various

values of n. As Tab. I shows, the higher the dimension n, the

smaller geometric metric Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%) we get.

Given an arbitrary point (·ap, Çap) in 2-dimensional para-

metric space of (·, Ç) and utilizing the itemized charac-

terization proposed by Proposition 4, we visualize all the

(Ç̂ , »̂)’s belonging to Ŝ for which the guaranteed stability

region S contains (·ap, Çap). For instance, Fig. 8 depicts

such a visualization for (·ap, Çap) = (0.1, 0.5) and β
ρ
= 1

2 .

Fig. 9 visualizes all the G7
∆̂

-stabilizable points (·ap, Çap) in

2-dimensional parametric space of (·, Ç) for β
ρ

= 1
2 . As
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0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Figure 6. The guaranteed stability region S in 2-dimensional parametric
space of (η, τ) for various NF-based robust updates (Chebyshev center in red,

Centroid in green, and Weighted centroid in blue) for β
ρ

= 1
2

and n = 4.

Colored circles on the vertical axis represent the corresponding perturbations

in the ideal case, i.e., ∆̂NF = ∆.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

(a)

0.1 0.15 0.2

0.18

0.2

0.22

0.24

0.26

0.28

(b)

Figure 7. The weighted centroid updates for β
ρ

= 1
2

and various values of

n (a) inside Ŝ and (b) zoomed version.

expected, from Fig. 9, we realize that the perturbations with

both high gain (? Ç ) and high phase difference (? ·) are not

G7
∆̂

–stabilizable.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Figure 8. All the (τ̂ , θ̂)’s belonging to Ŝ for which the guaranteed stability

region S contains (ηap, τap) = (0.1, 0.5) and
β
ρ

= 1
2

. Colored circles

identify the corresponding items: item iv (filled with red circles), item ii (filled
with green circles), and item i (filled with blue circles).

Given a G7
∆̂

-stabilizable point (·ap, Çap) in 2-dimensional

parametric space of (·, Ç), we define the following geometric

metric:

Mη,θ;β
ρ
(%) := 100×G7

∆̂
2stabilizing Region Area, (39)

to quantify the G7
∆̂

-stabilizability. Fig. 10 visualizes the G7
∆̂

-

stabilizability geometric metric Mη,θ;β
ρ
(%) for β

ρ
= 1

2 . The

Table I
THE CORRESPONDING VALUES OF THE GEOMETRIC METRIC

Ξ
τ
∆̂

,θ
∆̂

;
β
ρ
,n

(%) FOR THE WEIGHTED CENTROID UPDATES WITH
β
ρ
= 1

2

AND VARIOUS VALUES OF n.

n (τ̂W−centroid
NF , θ̂W−centroid

NF ) Ξ
τ
∆̂
,θ

∆̂
; β
ρ
,n

(%)

2 (0.2210, 0.2865) 1.5360 × 100%
3 (0.1837, 0.2505) 2.1317 × 10−2%
4 (0.1603, 0.2278) 7.0944 × 10−5%
5 (0.1444, 0.2120) 5.5841 × 10−8%
6 (0.1330, 0.2003) 1.0332× 10−11%
7 (0.1244, 0.1912) 4.4808× 10−16%
8 (0.1179, 0.1838) 4.5271× 10−21%
9 (0.1127, 0.1777) 1.0651× 10−26%
10 (0.1085, 0.1725) 5.8343× 10−33%

Figure 9. All the G∗

∆̂
-stabilizable points (ηap, τap) in 2-dimensional

parametric space of (η, τ) for
β
ρ
= 1

2
.

larger M
η,θ;β

ρ

(%), the easier to stabilize a G7
∆̂

-stabilizable

point (·ap, Çap) in 2-dimensional parametric space of (·, Ç)
we have. As Fig. 10 depicts, the largest value of M

η,θ;β
ρ

(%),

i.e., 39.1386%, is attained by (·ap, Çap) = (0, 13 ). A possible

justification for such an observation can be the fact that ·ap =
0 corresponds to a zero phase difference and Çap = 1

3 corre-

sponds to r = ρ
2 = 0+ρ

2 . Note that Mη,θ;β
ρ
(%) = 0% in Fig.

10 represents the points (·ap, Çap) in 2-dimensional parametric

space of (·, Ç) that are not G7
∆̂

-stabilizable. Fig. 11 depicts the

corresponding G7
∆̂

-stabilizing region for (·ap, Çap) = (0, 13 ).

Figure 10. The G∗

∆̂
-stabilizability geometric metric M

η,θ;β
ρ

(%) for
β
ρ
=

1
2

.

To empirically verify the relative performance of the
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Figure 11. All the (τ̂ , θ̂)’s belonging to Ŝ for which the guaranteed stability

region S contains (ηap , τap) = (0, 1
3
) and

β
ρ
= 1

2
. Colored circles identify

the corresponding items: item iv (filled with red circles) and item ii (filled
with green circles).

weighted centroid update compared to the centroid update

(Case 1), the Chebyshev center update (Case 2), and the update

based on a point close to the origin (Ç̂ , »̂) = (0.01, 0) (Case 3),

we generate uniformly random samples of an unknown norm-

bounded perturbation ∆ with 0 < ‖∆‖F f Ã [37] and check

for how many percentages of the samples if ‖∆ 2 ∆̂‖F < Ç

holds inducing a percentage-based performance associated

with each update. Then, to compute the relative performance

values, the percentage-based performance associated with the

weighted centroid update is compared to the percentage-based

performance associated with the updates of Cases 1–3. Such

comparisons can simply be classified as three categories for

each case: (i) Better, (ii) Equal, and (i) Worse. Precisely, we

generate the uniformly random samples as follows [37]:

∆ = vec
21

(

r
Ó

‖Ó‖

)

, r * Ã× U(0, 1) 1

n2 , Ó * N (0, In2).

According to (23), considering

Ë =

[

Çc cos(
πθ
2 )

Çs sin(
πθ
2 )

]

, Ë̂ =

[

Ç̂c cos(
πθ̂
2 )

Ç̂s sin(
πθ̂
2 ),

]

and defining (³c, ³s) := (ÇTc Ç̂c, Ç
T
s Ç̂s), cθ := cos(πθ2 ), sθ :=

sin(πθ2 ), and cθ̂ := cos(πθ̂2 ), we get

· =
1

Ã
arccos(ËT Ë̂) =

1

Ã
arccos(³ccθcθ̂ + ³ssθsθ̂). (40)

It is noteworthy that ³c * [21, 1] and ³s * [21, 1] hold. For

the ideal case of estimated ∆̂, i.e., ∆̂ = ∆, on the one hand,

we have »̂ = » and subsequently (cθ̂, sθ̂) = (cθ, sθ). Also, we

have (Ç̂c, Ç̂s) = (Çc, Çs) and subsequently (³c, ³s) = (1, 1).
Consequently, according to (40), we observe that · = 0 holds.

On the other hand, for the ideal case of estimated ∆̂, Ç̂ = Ç

or equivalently r̂ = r holds.

Since UHË = ϑ
‖ϑ‖ and UT

HUH = In2 hold, we have

Ë = UT
H

ϑ
‖ϑ‖ . Then, defining µ :=

[

Imp 0
]

Ë and ¿ :=
[

0 In22mp

]

Ë, we get

Çc =
µ

‖µ‖ , µ =
[

Imp 0
]

UT
H

Ó

‖Ó‖ , (41a)

Çs =
¿

‖¿‖ , ¿ =
[

0 In22mp

]

UT
H

Ó

‖Ó‖ , (41b)

» =
2

Ã
arcsin(‖¿‖). (41c)

Note that given Ó, we can compute Çc, Çs, and » via (41).

To compute G7
∆̂

in (37), we need to choose (Ç̂c, Ç̂s) given

(³c, ³s). The more accurate (³c, ³s) (i.e., the larger values

of ³c and/or ³s) and/or (Ç̂ , »̂) (i.e., the smaller values of

Ç̂ 2 Ç and/or »̂ 2 »), the more accurate estimate ∆̂ we have.

Given (³c, ³s) and computing (Çc, Çs), we solve the following

equations:

ÇTc Ç̂c 2 ³c = 0, ÇTs Ç̂s 2 ³s = 0, (42)

for (Ç̂c, Ç̂s) via the MATLAB built-in function fsolve(.).
We generate N∆ = 106 uniformly random samples inside the

n2-dimensional hypersphere of radius Ã centered at origin by

the Cartesian product of Nr = 104 samples of r and Nϑ = 102

samples of Ó [37].

Fig. 12 depicts the relative performance of the weighted

centroid update compared to the centroid update (Case 1),

the Chebyshev center update (Case 2), and the update based

on a point close to the origin (Ç̂ , »̂) = (0.01, 0) (Case 3)

for various choices of (³c, ³s). As Fig. 12 shows, for the

case of a more accurate estimate ∆̂ (i.e., the larger values

of ³c and/or ³s), the weighted centroid update outperforms

all the other updates. Interestingly, as the estimation quality

degrades (i.e., the values of ³c and/or ³s decrease as visualized

by the trend from Fig. 12 (Top-Left) to Fig. 12 (Bottom-

Right)), a point close to the origin attains the best relative

performance. Such an observation can be interpreted in the

following way: when we have no accurate information about

the perturbation, the best strategy is choosing a point close

to the origin (e.g., (Ç̂ , »̂) = (0.01, 0)) as it attains the largest

value of the geometric metric Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%). Also, as Fig.

12 (Top-Left) depicts, we observe that the Chebyshev center

update outperforms the centroid update.

Fig. 13 depicts the corresponding plots for the case of

checking ‖BG7
∆̂
C + ∆‖F < ³ (the exact one) instead of

‖∆2∆̂‖F < Ç (the guaranteed (conservative) stability region).

Similar observations/trends to the observations/trends depicted

in Fig. 12 are also observed in Fig. 13. One difference is that

fortunately, the relative performance of the NF-based robust

updates in the exact scenario can be better than the guaranteed

(conservative) scenario.

Fig. 14 visualizes the relative performance (both guaranteed

(conservative) and exact scenarios) of the weighted centroid

update compared to the centroid update (Case 1), the Cheby-

shev center update (Case 2), and the update based on a ran-

domly generated point (Ç̂ , »̂) = (0.4081, 0.3969) (Case 3) for

a randomly generated choice of (³c, ³s) = (0.9212, 0.8315).
As Fig. 14 (Left) shows, the weighted centroid update is the

only successful update among all the updates. Fig. 14 (Right)

similarly depicts the superiority of the weighted centroid

update over the other updates. Also, it depicts that in the

exact scenario, the other updates have attained some positive

results. The descending order of the performance according

to Fig. 14 (Right) is the W-centroid update, the Chebyshev

center update, the centroid update, and the random update.

Interestingly, we observe that the corresponding values of
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Figure 12. The relative performance of the weighted centroid update
compared to the centroid update (Case 1), the Chebyshev center update (Case

2), and the update based on a point close to the origin (τ̂ , θ̂) = (0.01, 0)
(Case 3). The Left (blue), Middle (red), and Right (yellow) bars in each case
respectively correspond to Better, Equal, and Worse relative performances.

Note that in each case the scenarios in which ‖∆2 ∆̂‖F < υ holds neither
by the weighted centroid update nor by the counterpart, are eliminated. (a)
(γc, γs) = (1, 1), (b) (γc, γs) = (0.9, 0.9), (c) (γc, γs) = (0.8, 0.8),
(d) (γc, γs) = (0.7, 0.7), (e) (γc, γs) = (0.6, 0.6), and (f) (γc, γs) =
(0.5, 0.5).

the geometric metric Ξτ
∆̂
,θ

∆̂
; β
ρ
,n (%) have the same order

(7.0944×1025%, 5.0077×1027%, 2.0450×10210%, 7.1872×
10212%).

VI. CONCLUDING REMARKS

In this paper, we propose a simple yet efficient update of a

nominal stabilizing SOF controller. According to the derived

theoretical and empirical results throughout the paper, we

present the following answer to the question stated in Section

II (Q1):

A1: A least-squares problem built upon the notion of MDRP

enables us to propose an efficient updated stabilizing SOF

controller. For both known and unknown perturbations with a

known upper bound on their norm, we derive sufficient stabil-

ity conditions followed by the characterized guaranteed stabil-

ity regions. Moreover, we define geometric metrics to quantify

the stability robustness of the proposed updated stabilizing

SOF controllers. Specifically, for unknown perturbations with

a known upper bound on their norm, we interestingly observe
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Figure 13. The relative performance of the weighted centroid update
compared to the centroid update (Case 1), the Chebyshev center update (Case

2), and the update based on a point close to the origin (τ̂ , θ̂) = (0.01, 0)
(Case 3). The Left (blue), Middle (red), and Right (yellow) bars in each case
respectively correspond to Better, Equal, and Worse relative performances.
Note that in each case the scenarios in which ‖BG∗

∆̂
C + ∆‖F < β holds

neither by the weighted centroid update nor by the counterpart, are eliminated.
(a) (γc, γs) = (1, 1), (b) (γc, γs) = (0.9, 0.9), (c) (γc, γs) = (0.8, 0.8),
(d) (γc, γs) = (0.7, 0.7), (e) (γc, γs) = (0.6, 0.6), and (f) (γc, γs) =
(0.5, 0.5).
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Figure 14. The relative performance of the weighted centroid update
compared to the centroid update (Case 1), the Chebyshev center update

(Case 2), and the update based on a randomly generated point (τ̂ , θ̂) =
(0.4081, 0.3969) (Case 3) for a randomly generated choice of (γc, γs) =
(0.9212, 0.8315). The Left (blue), Middle (red), and Right (yellow) bars
in each case respectively correspond to Better, Equal, and Worse relative
performances. (a) guaranteed (conservative) scenario and (b) exact scenario.

that the NF-based robust updates attain better performance

compared to the random update. Moreover, in the case of a
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sufficiently accurate estimation of the unknown perturbation,

the descending order of the NF-based robust updates in terms

of performance is the weighted centroid update, the Chebyshev

center update, and the centroid design.

Limitations: Like any engineering solution, the proposed

updated stabilizing SOF controller has some limitations. The

main limitations are three-fold: (i) we propose a semi-dynamic

solution to a dynamic problem. The static nature comes from

the utilized least-squares problem and the dynamic nature

comes from the information stored in the nominal stabilizing

SOF controller F for the state-space triplet (A,B,C) (i.e.,

³R(A + BFC)), (ii) computing the exact value of MDRP

³R(A + BFC) is theoretically impossible and the practical

heuristics to estimate ³R(A + BFC) may provide the less

accurate values. The less accurate ³R(A + BFC), the less

accurate guaranteed stability we get for the proposed update.

Also, the more time-consuming practical heuristics we utilize

to estimate ³R(A + BFC), the less efficient update we get,

and (iii) Unlike the typical update, the proposed update can

be destabilizing for a subset of perturbations as illustrated

by the region outside the guaranteed stability region Sκ for

» < 1, i.e., ³R(A + BFC) < Ã. However, the positive point

about the proposed update is that, unlike the typical update, it

always provides a non-empty guaranteed stability region (the

typical approach can fail to propose an updated stabilizing

SOF controller as it is a complex problem in general).

Future directions: As a pertinent future direction, a compre-

hensive comparison can be conducted between the proposed

robust control approach in this paper and other specialized

alternative robust control approaches including sliding mode

control (SMC) and H> control. Also, for the scenario of

unknown perturbations with a known upper bound on their

norm, exploring the case of time-varying perturbations can be

considered as another potential future direction.
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APPENDIX A

PROOF OF LEMMA 1

Considering ΣH =
[

ΓT
H 0

]T
and noting that UT

HUH =
In2 and V T

H VH = Imp hold, we have

P := In2 2HH+ = In2 2H(HTH)21HT =

In2 2 UHΣHV
T
H (VHΣT

HU
T
HUHΣHV

T
H )21VHΣT

HU
T
H =

In2 2 UHΣHV
T
H (VH(Γ2

H)21V T
H )VHΣT

HU
T
H =

In2 2 UH

[

ΓT
H 0

]T
(Γ2

H)21
[

ΓT
H 0

]

UT
H =

UHIn2UT
H 2 UH

[

Imp 0
0 0

]

UT
H = UH

[

0 0
0 In22mp

]

UT
H .

Moreover, according to H := CT · B and the properties of

Kronecker product, we get

H := CT ·B = (VC · UB)(Σ
T
C · ΣB)(UC · VB)

T =

(VC · UB)(UΩΣΩV
T
Ω )(UC · VB)

T =

((VC · UB)UΩ)ΣΩ((UC · VB)VΩ)
T .

Then, we have

(UH ,ΣH , VH) = ((VC · UB)UΩ,ΣΩ, (UC · VB)VΩ),

which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 1

Substituting (15) of Lemma 1 in (14), we get

J7(∆) = vec(∆)TUH

[

0 0
0 In22mp

]

UT
Hvec(∆) =

·TUH

[

0 0
0 In22mp

]

UT
H·.

Then, defining Ç := UT
H· and noting that UHU

T
H = In2 holds

(because UH is a unitary matrix), we get · = UHÇ. Since

·T · = ÇTUT
HUHÇ, UT

HUH = In2 , and ·T · = ‖∆‖2F = r2

hold, we get ÇTÇ = r2 that inspires us to define Ë := χ
‖χ‖ =

χ
r

. Note that Ë * R
n2

and ‖Ë‖ = 1 hold. Then, we have

Ç = rË and subsequently we get · = UHÇ = rUHË. Defining

µ * R
mp and ¿ * R

n22mp as follows:

µ :=
[

Imp 0
]

Ë, ¿ :=
[

0 In22mp

]

Ë,

we get Ë =
[

µT ¿T
]T

. Since ‖Ë‖2 = ‖µ‖2 + ‖¿‖2 = 1
holds, we can consider ‖µ‖ = cos(πθ2 ) and ‖¿‖ = sin(πθ2 )
for a » * [0, 1]. Then, we have

µ =
µ

‖µ‖ cos
(Ã»

2

)

, ¿ =
¿

‖¿‖ sin
(Ã»

2

)

.

Defining Çc := µ
‖µ‖ and Çs := ν

‖ν‖ , we get µ = Çc cos(
πθ
2 )

and ¿ = Çs sin(
πθ
2 ) (Note that ‖Çc‖ = 1 and ‖Çs‖ = 1 hold).

Then, considering the r = Ã sin(πτ2 ) with Ç *]0, 1], we have

∆ = vec
21(·) = vec

21(rUHË) =

rvec21

(

(VC · UB)UΩ

[

Çc cos(
πθ
2 )

Çs sin(
πθ
2 )

])

=

Ã sin
(ÃÇ

2

)

UBvec
21

(

UΩ

[

Çc cos(
πθ
2 )

Çs sin(
πθ
2 )

])

V T
C .

which completes the proof of (16).

Also, for J7(∆) in (14), we have

J7(∆) = vec(∆)TPvec(∆) = ·TP· = (rUHË)
TP (rUHË)

r2ËTUT
HPUHË = r2

[

µT ¿T
]

[

0 0
0 In22mp

] [

µ

¿

]

=

r2¿T ¿ = r2
(

Çs sin
(Ã»

2

))T

Çs sin
(Ã»

2

)

=
(

r sin
(Ã»

2

))2

‖Çs‖2 =
(

Ã sin
(ÃÇ

2

)

sin
(Ã»

2

))2

,

which completes the proof of (17).

APPENDIX C

PROOF OF PROPOSITION 2

We use (4) as a sufficient condition on the stability of the

updated perturbed state-space (3). By substituting G7
∆ in (4),

we get

sin
(ÃÇ

2

)

sin
(Ã»

2

)

<
³R(A+BFC)

Ã
. (43)

If Ã < ³R(A + BFC) holds, then F + G7
∆ with G7

∆ in

(12) is an updated stabilizing SOF controller because the left-

hand-side of (43) is at most 1 and the right-hand-side of (43)

is greater than 1. Then, (43) holds.

If Ã g ³R(A + BFC) holds, since sin(πθ2 ) attains its

maximum value at » = 1, (43) reduces to

sin
(ÃÇ

2

)

<
³R(A+BFC)

Ã
,

or equivalently

Ç <
2

Ã
arcsin

(³R(A+BFC)

Ã

)

,

from which, we define » in (18). Similarly, we may extract

the definition of ·τ,κ in (18). Thus, if (Ç∆, »∆) * Sκ holds,

then F +G7
∆ with G7

∆ in (12) is an updated stabilizing SOF

controller.

The expression in (19) expresses the area of Sκ divided by

the area of unit square ]0, 1] × [0, 1] in 2-dimensional para-

metric space of (Ç, »). Note that
∫ κ

0
1dÇ = » has simplified

the right-hand-side of (19). To show that ¿κ is an increasing

function of », we compute the derivative of ¿κ with respect

to » as follows (utilizing the Leibniz integral rule [38]):

d¿κ

d»
= cos

(Ã»

2

)

∫ 1

κ

1
√

sin(πτ2 )2 2 sin(πκ2 )2
dÇ. (44)
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According to (44), dξκ
dκ

g 0 holds and noting that

d»

dÃ
= 2 2³

ÃÃ
√

Ã2 2 ³2
< 0,

d»

d³
=

2

Ã
√

Ã2 2 ³2
> 0,

hold, the proof is complete.

APPENDIX D

PROOF OF PROPOSITION 3

On the one hand, using (4) as a sufficient condition on

the stability of the updated perturbed state-space (3) and

substituting G7
∆̂

in (4), we get

‖BG7
∆̂
C +∆‖F < ³R(A+BFC). (45)

On the other hand, by applying the triangle inequality, we get

‖BG7
∆̂
C +∆‖F f ‖BG7

∆̂
C + ∆̂‖F + ‖∆2 ∆̂‖F . (46)

Considering (45) and (46), we derive the following sufficient

condition:

‖∆2 ∆̂‖F < ³R(A+BFC)2 ‖BG7
∆̂
C + ∆̂‖F . (47)

Substituting ‖BG7
∆̂
C + ∆̂‖F = Ã sin(

πτ
∆̂

2 ) sin(
πθ

∆̂

2 ) in (47),

we get (22). Since ‖∆ 2 ∆̂‖F g 0 holds, the satisfaction

of (22) implies that Ç > 0 must hold. In the case of Ã <

³R(A + BFC), it automatically holds because (Ç∆̂, »∆̂) * Ŝ

holds and in the case of Ã g ³R(A + BFC), it holds if and

only if (Ç∆̂, »∆̂) * Ŝκ holds which completes the proof.

APPENDIX E

PROOF OF LEMMA 2

Noting that UT
HUH = In2 and ‖Ë‖ = 1, ‖Ë̂‖ = 1, and

ËT Ë̂ = ‖Ë‖‖Ë̂‖ cos(Ã·) hold, we have

‖∆2 ∆̂‖2F = ‖· 2 ·̂‖2 = ‖ÃsτUHË 2 Ãsτ̂UH Ë̂‖2 =

Ã2(sτUHË 2 sτ̂UH Ë̂)
T (sτUHË 2 sτ̂UHË̂) =

Ã2(s2τ + s2τ̂ 2 2sτsτ̂Ë
T Ë̂) = Ã2(s2τ + s2τ̂ 2 2sτsτ̂c2η).

which ends the proof taking the square root of both sides.

APPENDIX F

PROOF OF PROPOSITION 4

Utilizing the results of Proposition 3 and Lemma 2, and

dividing the both sides of (22) by Ãsτ̂ , we get
√

1

s2τ̂
s2τ + 12 2c2η

sτ̂
sτ < ». (48)

Then, 0 < » must hold. Assuming that 0 < » holds, squaring

the both sides of (48) and multiplying the both sides by s2τ̂ ,

we obtain the following quadratic inequality (in terms of sτ ):

s2τ 2 2sτ̂c2ηsτ + s2τ̂ (12 »2) < 0. (49)

Observe that (49) holds if and only if

bl(·) < sτ < bu(·), (50)

holds for which s2η < » must hold. Since 0 < sτ holds,

then 0 < bu(·) must hold based on (50). Moreover, it can be

verified that the following equivalence holds:

0 < bu(·) ñó » > 1 *
(

0 < » f 1 ' 0 f · <
1

2

)

. (51)

In the case of 0 < » f 1, s2η < » is equivalent to 0 f · < ·̄

as arcsin(Ã·) is an increasing function of · for 0 f · < 1
2

(according to (51)) and in the case of » > 1, observe that

s2η < » automatically holds as s2η f 1 is satisfied. Then,

these observations can compactly be expressed as

s2η < » ñó
(

» > 1 * (0 < » f 1 ' 0 f · < ·̄)
)

. (52)

Under the bu(·) > 1, observe that sτ < bu(·) in (50)

automatically holds as sτ f 1 is satisfied. Moreover, it can be

verified that the following equivalence holds:

bu(·) f 1 ñó c2η f b̂. (53)

Also, based on |b̂|, (53) can equivalently be expressed as

bu(·) f 1 ñó
(

b̂ > 1 *
(

|b̂| f 1 ' · g ·
)

)

. (54)

Under the bl(·) < 0, observe that bl(·) < sτ in (50)

automatically holds as 0 < sτ is satisfied. Moreover, it can

be verified that the following equivalence holds:

0 f bl(·) ñó
(

0 < » f 1 ' 0 f · <
1

2

)

. (55)

It is noteworthy that for the case of 0 < » f 1

0 < ·̄ f 1

2
, (56)

holds. Also, for the case of 0 < » f 1 and |b̂| f 1

· < ·̄, (57)

holds. To prove that, we have

1

Ã
arccos(b̂) <

1

Ã
arcsin(») ñó

√

12 »2 < b̂,

where
:
12 »2 < b̂ is satisfied according to the arithmetic-

geometric inequality as

√

12 »2 f
sτ̂ (12 »2) + 1

sτ̂

2
,

where the equality cannot occur as sτ̂ (12»2) < 1 f 1
sτ̂

holds.

Case i. According to (50)-(52) and (54)-(57), S in (24) can

be defined.

Case ii. According to (50)-(52) and (54)-(56), S in (25) can

be defined.

Case iii. According to (50)-(52), (54), and (55), S in (26)

can be defined.

Case iv. According to (50)-(52), (54), and (55), S in (27)

can be defined.

Case v. According to (50)-(52), (54), and (55), S in (28)

can be defined which ends the proof.
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