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Abstract

Sharpness-aware minimization (SAM) has well documented merits in enhancing
generalization of deep neural networks, even without sizable data augmentation.
Embracing the geometry of the loss function, where neighborhoods of ‘flat min-
ima’ heighten generalization ability, SAM seeks ‘flat valleys’ by minimizing the
maximum loss caused by an adversary perturbing parameters within the neigh-
borhood. Although critical to account for sharpness of the loss function, such an
‘over-friendly adversary’ can curtail the outmost level of generalization. The novel
approach of this contribution fosters stabilization of adversaries through variance
suppression (VaSSO) to avoid such friendliness. VaSSO’s provable stability safe-
guards its numerical improvement over SAM in model-agnostic tasks, including
image classification and machine translation. In addition, experiments confirm that
VaSSO endows SAM with robustness against high levels of label noise. Code is
available at https://github.com/BingcongLi/VaSsSso.

1 Introduction

Despite deep neural networks (DNNs) have advanced the concept of “learning from data,” and
markedly improved performance across several applications in vision and language ( ,

; , ), their overparametrized nature renders the tendency to overfit on training data
( , ). This has led to concerns in generalization, which is a practically underscored
perspective yet typically suffers from a gap relative to the training performance.

Improving generalizability is challenging. Common approaches include (model) regularization and
data augmentation ( , ). While it is the default choice to integrate regularization
such as weight decay and dropout into training, these methods are often insufficient for DNNs
especially when coping with complicated network architectures ( , ). Another line
of effort resorts to suitable optimization schemes attempting to find a generalizable local minimum.
For example, SGD is more preferable than Adam on certain overparameterized problems since it
converges to maximum margin solutions ( , ). Decoupling weight decay from
Adam also empirically facilitates generalizability ( , ). Unfortunately, the
underlying mechanism remains unclear, and whether the generalization merits carry over to other
intricate learning tasks calls for additional theoretical elaboration.

Our main focus, sharpness aware minimization/optimization (SAM), is a highly compelling optimiza-
tion approach that facilitates state-of-the-art generalizability by exploiting sharpness of loss landscape
( , ; , ). A high-level interpretation of sharpness is how violently the
loss fluctuates within a neighborhood. It has been shown through large-scale empirical studies that
sharpness-based measures highly correlate with generalization ( , ). Several works
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have successfully explored sharpness for generalization advances. For example, ( )
suggests that the batchsize of SGD impresses solution flatness. Entropy SGD leverages local entropy
in search of a flat valley ( , ). Different from prior works, SAM induces flatness by
explicitly minimizing the adversarially perturbed loss, defined as the maximum loss of a neighboring
area. Thanks to such a formulation, SAM has elevated generalization merits among various tasks

in vision and language domains ( , ). The mechanism fertilizing
SAM’s success is also theoretically 1nvest1gated based on arguments of implicit regularization; see
€. g ( ) 3 ) 9 s )

The adversary perturbation, or adversary for short, is central to SAM’s heightened generalization
because it effectlvely measures sharpness through the loss difference with original model (

, ). In practice however, this awareness on sharpness
is undermlned by what we termed friendly adversary. Confined by the stochastic linearization for
computational efficiency, SAM’s adversary only captures the sharpness for a particular minibatch of
data, and can become a friend on other data samples. Because the global sharpness is not approached
accurately, the friendly adversary precludes SAM from attaining its utmost generalizability. The
present work advocates variance suppressed sharpness aware optimization (VaSSO') to alleviate
‘friendliness’ by stabilizing adversaries. With its provable stabilized adversary, VaSSO showcases
favorable numerical performance on various deep learning tasks.

All in all, our contribution is summarized as follows.

o

< We find that the friendly adversary discourages generalizability of SAM. This challenge is
catastrophic in our experiments — it can completely wipe out the generalization merits.

R

< A novel approach, VaSSO, is proposed to tackle this issue. VaSSO is equipped with what
we termed variance suppression to streamline a principled means for stabilizing adversaries.
The theoretically guaranteed stability promotes refined global sharpness estimates, thereby
alleviating the issue of friendly adversary.

« A side result is tighter convergence analyses for VaSSO and SAM that i) remove the bounded
gradient assumption; and ii) deliver a more flexible choice for hyperparameters.

+« Numerical experiments confirm the merits of stabilized adversary in VaSSO. It is demon-
strated on image classification and neural machine translation tasks that VaSSO is capable of
i) improving generalizability over SAM model-agnostically; and ii) nontrivially robustifying
neural networks under the appearance of large label noise.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); ||x|| stands for ¢3 norm
of vector x; and (x, y) is the inner product of x and y. S,(x) denotes the surface of a ball with radius
p centered at x, i.e., S,(x) := {x + pu| [Jul| = 1}.

2 The known, the good, and the challenge of SAM

This section starts with a brief recap of SAM (i.e., the known), followed with refined analyses and
positive results regarding its convergence (i.e., the good). Lastly, the friendly adversary issue is
explained in detail and numerically illustrated.

2.1 The known

Targeting at a minimum in flat basin, SAM enforces small loss around the entire neighborhood in the
parameter space ( , ). This idea is formalized by a minimax problem

min max f(x—l— e) (1)
x lell<p

where p is the radius of considered neighborhood, and the nonconvex objective is defined as f(x) :=
Eg[f(x)]. Here, x is the neural network parameter, and B is a random batch of data. The merits
of such a formulation resides in its implicit sharpness measure max¢| <, f (X + e) — f(x), which
effectively drives the optimization trajectory towards the desirable flat valley ( ,

'Vasso coincides with the Greek nickname for Vasiliki.



Algorithm 1 Generic form of SAM
1: Initialize: x, p

fort=0,...,7—1do
Sample a minibatch B;, and define stochastic gradient on B; as g;(+)
Find €, € S,(0) via stochastic linearization; e.g., (4) for VaSSO or (3) for SAM
Calculate stochastic gradient g (x; + €¢)
Update model via x;41 = x¢ — 18t (X + €;)

end for

Return: xr

The inner maximization of (1) has a natural interpretation as finding an adversary. Critical as it is,
obtaining an adversary calls for stochastic linearization to alleviate computational concerns, i.e.,

a b
€, — argmax f(x; + €)  argmax f(x;) + (VF(x;), €) % argmax f(x,) + (gi(x.),€) (2)
lell<e lell<p lell<p
where linearization (a) relies on the first order Taylor expansion of f(x; + €). This is typically
accurate given the choice of a small p. A stochastic gradient g;(x;) then substitutes V f(x;) in (b) to
downgrade the computational burden of a full gradient. Catalyzed by the stochastic linearization in
(2), it is possible to calculate SAM’s adversary in closed-form

gt(Xt)
SAM: = p—T. 3
= Pl ()] ©)

SAM then adopts the stochastic gradient of adversary g;(x; + €;) to update x; in a SGD fashion. A
step-by-step implementation is summarized in Alg. 1, where the means to find an adversary in line 4
is presented in a generic form in order to unify the algorithmic framework with later sections.

2.2 The good

To provide a comprehensive understanding about SAM, this subsection focuses on Alg. 1, and
establishes its convergence for (1). Some necessary assumptions are listed below, all of Wthh are
common for nonconvex stochastic optimization problems ( , ; ,

; ) 5 ) )-
Assumption 1 (lower bounded loss). f(x) is lower bounded, i.e., f(x) > f*,Vx.

Assumption 2 (smoothness). The stochastic gradient g(x) is L-Lipschitz, i.e.,
Lix -y, vx,y.

(x) —gy)l <

Assumption 3 (bounded variance). The stochastic gradient g(x) is unbiased with bounded variance,
that is, E[g(x)|x] = V f(x) and E[||g(x) — V f(x)|?|x] = o2 for some o > 0.

The constraint of (1) is never violated since ||€;|| = p holds for each ¢; see line 4 in Alg. 1. Hence,
the convergence of SAM pertains to the behavior of objective, where a tight result is given below.

Theorem 1 (SAM convergence). Suppose that Assumptions 1 — 3 hold. Let n, = n = % < 3%,

and p = \”} Then withcy = 1 — 3L" (clearly 0 < cg < 1), Alg. 1 guarantees that

T Z_; IV fx)I?] < <;;> Z_: E[|Vf(x + )] < <\‘;;)

t=0

The convergence rate of SAM is the same as SGD up to constant factors, where the detailed expression
hidden under big O notation can be found in Appendix D. Our results eliminate the need for the
bounded gradient assumption compared to existing analyses in ( s ; s ).
Moreover, Theorem 1 enables a much larger choice of p = O(T~'/2) relative to (

, ), where the latter only supports p = O(T~1/4).
A message from Theorem 1 is that any adversary satisfying €; € S,(0) ensures converge. Because

the surface S,(0) is a gigantic space, it challenges the plausible optimality of the adversary and poses
a natural question — is it possible to find a more powerful adversary for generalization advances?



B SGD B SGD <O m-SAM
= SAM 3 sAM

1 =m sam-db 1.028 1031 mmm sAM-var 106
B SAM-db-m/2 B SAM-var 107¢
Em SAM-var 1072

ResNet18 ResNet34 ResNet18 ResNet34 m

(@) (b) (c)
Figure 1: (a) A friendly adversary erases the generalization merits of SAM; (b) m-sharpness may not
directly correlate with variance since noisy gradient degrades generalization; and (c) m-sharpness
may not hold universally. Note that test accuracies in (a) and (b) are normalized to SGD.
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2.3 The challenge: friendly adversary

Adversary to one minibatch is a friend of others. SAM’s adversary is ‘malicious’ for minibatch B,
but not necessarily for other data because it only safeguards fg, (x; + €;) — fg, (x¢) > 0 for a small p.
In fact, it can be shown that fz(x; + €;) — f5(x:) < 0 whenever the stochastic gradients do not align
well, i.e., (g:(x¢),gn(x:)) < 0. Note that such misalignment is common because of the variance
in massive training datasets. This issue is referred to as friendly adversary, and it implies that the
adversary €, cannot accurately depict the global sharpness of x;. Note that the ‘friendly adversary’
also has a more involved interpretation, that is, g;(x;) falls outside the column space of Hessian at
convergence; see more discussions after ( s , Definition 4.3). This misalignment of
higher order derivatives undermines the inductive bias of SAM, thereby worsening generalization.

To numerically visualize the catastrophic impact of the friendly adversary, we manually introduce
one by replacing line 4 of Alg. 1 as €& = pg:(x:)/||&:(x¢)]|, where g; denotes the gradient on B,
a randomly sampled batch of the same size as ;. This modified approach is denoted as SAM-db,
and its performance for i) ResNet-18 on CIFAR10 and ii) ResNet-34 on CIFAR100? can be found in
Fig. 1(a). Note that the test accuracy is normalized relative to SGD for the ease of visualization. It is
evident that the friendly €; in SAM-db almost erases the generalization benefits entirely.

Source of friendly adversary. The major cause to the friendly adversary attributes to the gradient
variance, which equivalently translates to the lack of stability in SAM’s stochastic linearization (20).
An illustrative three dimensional example is shown in Fig. 2, where we plot the adversary €, obtained
from different g; realization in (2b). The minibatch gradient is simulated by adding Gaussian noise to
the true gradient. When the signal to noise ration (SNR) is similar to a practical scenario (ResNet-18
on CIFARI10 shown in Fig. 2 (e)), it can be seen in Fig. 2 (c) and (d) that the adversaries almost
uniformly spread over the norm ball, which strongly indicates the deficiency for sharpness evaluation.

Friendly adversary in the lens of Frank Wolfe. An additional evidence in supportive to SAM’s
friendly adversary resides in its connection to stochastic Frank Wolfe (SFW) that also heavily relies
on stochastic linearization ( ) ). The stability of SFW is known to be vulnerable — its
convergence cannot be guaranteed without a sufficient large batchsize. As thoroughly discussed in
Appendix A, the means to obtain adversary in SAM is tantamount to one-step SFW with a constant
batchsize. This symbolizes the possible instability of SAM’s stochastic linearization.

2.4 A detailed look at friendly adversaries

The gradient variance is major cause to SAM’s friendly adversary and unstable stochastic linearization,
however this at first glance seems to conflict with an empirical note termed m-sharpness, stating that
the benefit of SAM is clearer when €, is found using subsampled B; of size m (i.e., larger variance).

Since m-sharpness highly hinges upon the loss curvature, it is unlikely to hold universally. For
example, a transformer is trained on IWSLT-14 dataset, where the test performance (BLEU) decreases
with smaller m even if we have tuned p carefully; see Fig. 1(c). On the theoretical side, an example
is provided in ( , , Sec. 3) to suggest that m-sharpness is not

https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 2: (a) - (d) SAM’s adversaries spread over the surface; (¢) SNR is in [0.01, 0.1] when training
a ResNet-18 on CIFAR10, where the SNR is calculated at the first iteration of every epoch.

necessarily related with sharpness or generalization. Moreover, there also exists specific choice for m
such that the m-sharpness formulation is ill-posed. We will expand on this in Appendix B.

Even in the regime where m-sharpness is empirically observed such as ResNet-18 on CIFAR10 and
ResNet-34 on CIFAR100, we show through experiments that m-sharpness is not a consequence of
gradient variance, thus not contradicting with the friendly adversary issue tackled in this work.

Observation 1. Same variance, different generalization. Let m = 128 and batchsize b = 128.
Recall the SAM-db experiment in Fig. 1(a). If m-sharpness is a direct result of gradient variance, it
is logical to expect SAM-db has comparable performance to SAM simply because their batchzises
(hence variance) for finding adversary are the same. Unfortunately, SAM-db degrades accuracy. We
further increase the variance of g;(x;) by setting m = 64. The resultant algorithm is denoted as
SAM-db-m/2. It does not catch with SAM and performs even worse than SAM-db. These experiments
validate that variance/stability correlates with friendly adversary instead of m-sharpness.

Observation 2. Enlarged variance degrades generalization. We explicitly increase variance when

finding adversary by adding Gaussian noise ¢ to g;(x;), i.e., €& = pm After tuning the best

p to compensate the variance of ¢, the test performance is plotted in Fig. 1(b). It can be seen that the
generalization merits clearly decrease with larger variance on both ResNet-18 and ResNet-34. This
again illustrates that the plausible benefit of m-sharpness does not stem from increased variance.

In sum, observations 1 and 2 jointly suggest that gradient variance correlates with friendly adversary
rather than m-sharpness, where understanding the latter is beyond the scope of current work.

3 Variance-supressed sharpness-aware optimization (VaSSO)

This section advocates variance suppression to handle the friendly adversary. We start with the design
of VaSSO, then establish its stability. We also touch upon implementation and possible extensions.

3.1 Algorithm design and stability analysis

A straightforward attempt towards stability is to equip SAM’s stochastic linearization with variance
reduced gradients such as SVRG and SARAH ( ; ;

, ). However, the requirement to compute a full gradient every a few iterations is 1nfea51ble
and hardly scales well for tasks such as training DNNs.

The proposed variance suppression (VaSSO) overcomes this computational burden through a novel
yet simple stochastic linearization. For a prescribed 6 € (0, 1), VaSSO is summarized below

VaSS0: d; = (1—6)d;_1 + 0g;(x;) (4a)

d;
€; = argmax f(x¢) + (d¢, €) = 3
lell<p Pl

(4b)

Compared with (2) of SAM, the key difference is that VaSSO relies on slope d; for a more stable
stochastic linearization as shown in (4b). The slope d; is an exponentially moving average (EMA)
of {g:(x;)}+ such that the change over consecutive iterations is smoothed. Noticing that €; and d;
share the same direction, the relatively smoothed {d;} thus imply the stability of {e; }; in VaSSO.
Moreover, as d; processes information of different minibatch data, the global sharpness can be
captured in a principled manner to alleviate the friendly adversary challenge.



To theoretically characterize the effectiveness of VaSSO, our first result considers d; as a qualified
strategy to estimate V f(x;), and delves into its mean square error (MSE).

Theorem 2 (Variance suppression). Suppose that Assumptions I — 3 hold. Let Alg. 1 equip with i) €;
obtained by (4) with 0 € (0,1); and, ii) n, and p selected the same as Theorem 1. VaSSO guarantees
that the MSE of d; is bounded by

Elld: - VIl < 00+ 0( L2022, ®

Because SAM’s gradient estimate has a looser bound on MSE (or variance), that is, E[||g; —
Vf(x¢)|[?] < 0?2, the shrunk MSE in Theorem 2 justifies the name of variance suppression.

Next, we quantify the stability invoked with the suppressed variance. It is convenient to start
with necessary notation. Define the quality of a stochastic linearization at x; with slope v as
L(v) := max|e|<, f(x¢) + (v, €). For example, £;(d;) and L;(g:(x;)) are quality of VaSSO and
SAM, respectively. Another critical case of concern is L, (V f (xt)). It is shown in ( ,

) that £,(V f(x)) ~ max¢|<, f(x + €) given a small p. Moreover, L (V f(x;)) — f(x¢) is
also an accurate approximation to the sharpness ( , ). These observations safeguard
L:(V f(x¢)) as the anchor when analyzing the stability of SAM and VaSSO.

Definition 1 (J-stability). A stochastic linearization with slope v is said to be §-stable if its quality
satisfies E[|Ly(v) — Lo(V f(x))|] < 6.

A larger § implies a more friendly adversary, hence is less preferable. We are now well-prepared for
our main results on adversary’s stability.

Theorem 3 (Adversaries of VaSSO is more stable than SAM.). Suppose that Assumptions 1 —
3 hold. Under the same hyperparameter choices as Theorem 2, the stochastic linearization is

[\/gpa + 0(9;—;’/4)] -stable for VaSSO, while po-stable in SAM.

Theorem 3 demonstrates that VaSSO alleviates the friendly adversary problem by promoting stability.
Qualitatively, VaSSO is roughly v € (0,1) times more stable relative to SAM, since the term in
big O notation is negligible given a sufficiently large 7". Theorem 3 also guides the choice of 6 —
preferably small but not too small, otherwise the term in big O is inversely amplified.

3.2 Additional perspectives of VaSSO

Having discussed about the stability, this subsection proceeds with other aspects of VaSSO for a
thorough characterization.

Convergence. Summarized in the following corollary, the convergence of VaSSO can be pursued as
a direct consequence of Theorem 1. The reason is that €; € S,(0) is satisfied by (4).

Corollary 1 (VaSSO convergence). Suppose that Assumptions 1 — 3 hold. Choosing n. and p the
same as Theorem 1, then for any 6 € (0,1), VaSSO ensures that

1= 9 o? 1= 9 o?
7 LBV <0(T2) and 1S EIVIG+el?] < 0 Tx).

t=0 t=0

VaSSO better reflects sharpness around optimum. Consider a near optimal region where
IVf(x¢)]| — 0. Suppose that we are in a big data regime where g;(x;) = Vf(x;) + ¢ for
some Gaussian random variable ¢. The covariance matrix of ¢ is assumed to be %I for simplicity,
but our discussion can be extended to more general scenarios using arguments from von Mises-Fisher
statistics ( R ). SAM has difficulty to estimate the flatness in this case, since
€: = p¢/||¢|| uniformly distributes over S,(0) regardless of whether the neighboring region is sharp.
On the other hand, VaSSO has €; = pd,/|/d;||. Because {g(x.)} on sharper valley tend to have
larger magnitude, their EMA d; is helpful for distinguishing sharp with flat valleys.

Memory efficient implementation. Although at first glance VaSSO has to keep both d; and €; in
memory, it can be implemented in a much more memory efficient manner. It is sufficient to store d
together with a scaler ||d;|| so that €; can be recovered on demand through normalization; see (4b).
Hence, VaSSO has the same memory consumption as SAM.



CIFARIO | SGD SAM ASAM FisherSAM VaSSO
VGG-11-BN | 932040.05 93.82:0.05 93474004 93.6010.00 94.101007
ResNet-18 | 9625006 96.5810.10 96.3310.00 96.7210.03 96.7710.09
WRN-28-10 | 97.0840.16 97324011 97.151005 97464018 97.5440.12
PyramidNet-110 | 97.3910.09 97.8540.14 97561011 97.8440.18 97.9310.08

Table 1: Test accuracy (%) of VaSSO on various neural networks trained on CIFAR10.

Extensions. VaSSO has the potential to boost the performance of other SAM family approaches by
stabilizing their stochastic linearization through variance suppression. For example, adaptive SAM
methods ( s ; s ) ensure scale invariance for SAM, and GSAM (

, ) jointly minimizes a surrogated gap with (1). Nevertheless, these SAM variants leverage
stochastic linearization in (2). It is thus envisioned that VaSSO can also alleviate the possible friendly
adversary issues therein. Confined by computational resources, we only integrate VaSSO with GSAM
in our experiments, and additional evaluation has been added into our research agenda.

4 Numerical tests

To support our theoretical findings and validate the powerfulness of variance suppression, this section
assesses generalization performance of VaSSO via various learning tasks across vision and language
domains. All experiments are run on NVIDIA V100 GPUs.

4.1 Image classification

Benchmarks Building on top of the selected base optimizer such as SGD and AdamW (
, ), the test accuracy of VaSSO is compared w1th SAM and two
adaptlve approaches ASAM and FisherSAM ( s ; s ; s ).

CIFARI10. Neural networks including VGG-11, ResNet-18, WRN-28-10 and PyramidNet-110
are trained on CIFAR10. Standard implementation including random crop, random horizontal flip,
normalization and cutout ( , ) are leveraged for data augmentation. The first
three models are trained for 200 epochs with a batchsize of 128, and PyramidNet-110 is trained for
300 epochs using batchsize 256. Cosine learning rate schedule is applied in all settings. The first
three models use initial learning rate 0.05, and PyramidNet adopts 0.1. Welght decay is chosen as
0.001 for SAM, ASAM, FisherSAM and VaSSO following ( R ), but
0.0005 for SGD. We tune p from {0.01, 0.05,0.1,0.2,0.5} for SAM and find that p = 0.1 gives the
best results for ResNet and WRN, p = 0. 05 and p = 0.2 suit best for and VGG and PyramidNet,
respectively. ASAM and VaSSO adopt the same p as SAM. FisherSAM uses the recommended
p=0.1¢( , ). For VaSSO, we tune § = {0.4, 0.9} and report the best accuracy although
VaSSO with both parameters outperforms SAM. We find that # = 0.4 works the best for ResNet-18
and WRN-28-10 while 6 = 0.9 achieves the best accuracy in other cases.

It is shown in Table 1 that VaSSO offers 0.2 to 0.3 accuracy improvement over SAM in all tested
scenarios except for PyramidNet-110, where the improvement is about 0.1. These results illustrate that
suppressed variance and the induced stabilized adversary are indeed beneficial for generalizability.

CIFAR100. The training setups on this dataset are the same as those on CIFAR10, except for the
best choice for p of SAM is 0.2. The numerical results are listed in Table 2. It can be seen that SAM
has significant generalization gain over SGD, and this gain is further amplified by VaSSO. On all
tested models, VaSSO improves the test accuracy of SAM by 0.2 to 0.3. These experiments once
again corroborate the generalization merits of VaSSO as a blessing of the stabilized adversary.

ImageNet. Next, we investigate the performance of VaSSO on larger scale experiments by training
ResNet-50 and ViT-S/32 on ImageNet ( , ). Implementation details are deferred to
Appendix C. Note that the baseline optimizer is SGD for ResNet and AdamW for ViT. VaSSO is
also integrated with GSAM (V+G) to demonstrate that the variance suppression also benefits other
SAM type approaches ( , ). For ResNet-50, it can be observed that vanilla VaSSO



CIFARI00 | SGD SAM ASAM FisherSAM VaSSO

ResNet-18 ‘ 77'9Oi0.07 80.9610,12 79~91j:0.04 80~99j:0.13 81.30i0,13
WRN-28-10 | 81710013 84881010 83.541014 8491007 85.0640.05
PyramidNet-llO ‘ 83.50i0_12 85.601()‘11 83.72i0.09 85.5510.14 85.85i0_09

Table 2: Test accuracy (%) of VaSSO on various neural networks trained on CIFAR100.

ImageNet | vanilla SAM ASAM GSAM VaSSO V+G

ResNet-50 ‘ 76.6210412 77.16i0,14 77-10i0.16 77'20i0.13 77-42i0413 77.48i0,04
ViT-S/32 ‘68.12:‘:0.05 68.98:‘:0'08 68.74:|:0_11 69.42:|:(),18 69.54:‘:().15 69.61i0_11

Table 3: Test accuracy (%) of VaSSO on ImageNet, where V+G is short for VaSSO + GSAM.

outperforms other SAM variants, and offers a gain of 0.26 over SAM. V+G showcases the best
performance with a gain of 0.28 on top of GSAM. VaSSO and V+G also exhibit the best test accuracy
on ViT-S/32, where VaSSO improves SAM by 0.56 and V+G outperforms GSAM by 0.19. These
numerical improvement demonstrates that stability of adversaries is indeed desirable.

4.2 Neural machine translation

Having demonstrated the benefits of a suppressed variance on vision tasks, we then test VaSSO on
German to English translation using a Transformer ( , ) trained on IWSLT-14 dataset

, ). The fairseq implementation is adopted. AdamW is chosen as base optimizer in
SAM and VaSSO because of its improved performance over SGD. The learning rate of AdamW is
initialized to 5 x 10~% and then follows an inverse square root schedule. For momentum, we choose
B1 = 0.9 and B3 = 0.98. Label smoothing is also applied with a rate of 0.1. Hyperparameter p is
tuned for SAM from {0.01, 0.05,0.1,0.2}, and p = 0.1 performs the best. The same p is picked for
ASAM and VaSSO as well.

The validation perplexity and test BLEU scores are shown in Table 4. It can be seen that both SAM
and ASAM have better performance on validation perplexity and BLEU relative to AdamW. Although
VaSSO with 6 = 0.9 has slightly higher validation perplexity, its BLEU score outperforms SAM and
ASAM. VaSSO with § = 0.4 showcases the best generalization performance on this task, providing a
0.22 improvement on BLEU score relative to AdamW. This aligns with Theorems 2 and 3, which
suggest that a small 0 is more beneficial to the stability of adversary.

4.3 Additional tests

Additional experiments are conducted to cor- | SGD SAM VaSSO
roborate the merits of suppressed variance and

stabilized adversary in VaSSO. In particular, this A1 | 82.52 26.40 23.32
subsection evaluates several flatness related met-

rics after training a ResNet-18 on CIFAR10 for /A | 1663 212 1.86
200 epochs, utilizing the same hyperparameters Table 5: Hessian spectrum of a ResNet-18
as those in Section 4.1. trained on CIFAR10.

Hessian spectrum. We first assess Hessian eigenvalues of a ResNet-18 trained with SAM and
VaSSO We focus on the largest eigenvalue \; and the ratio of largest to the fifth largest eigenvalue

A1/As. These measurements are also adopted in ( , ) to reflect
the flatness of the solution, where smaller numbers are more preferable Because exact calculation
for Hessian spectrum is too expensive provided the size of ResNet-18, we instead leverage Lanczos
algorithm for approximation ( , ). The results can be found in Table 5. It can
be seen that SAM indeed converges to a much flatter solution compared with SGD, and VaSSO
further improves upon SAM. This confirms that the friendly adversary issue is indeed alleviated by



VaSSO VaSSO

AdamW SAM ASAM 0 0.9) 0 = 0.4)

val. ppl ‘ 5.02:‘:0.03 5.00:‘:0'04 4.99i0_03 5.00:|:0_03 4.99:|:0_03
BLEU | 34.66+0.06 34.7540.04 34.7640.04 34.8140.04 34.88.10.03

Table 4: Performance of VaSSO for training a Transformer on IWSLT-14 dataset.

VaSSO VaSSO VaSSO

SAM 0=09  @=04 (=02

25% label noise ‘ 96.39i0,12 96.36i0.11 96.42i0,12 96.48i0,09
50% label noise | 93.93.¢.2: 94.0010.24 94.6340.01 94931 16
75% label noise ‘ 75.36i0.42 77.401()‘37 80.94i0,40 85.02i0_39

Table 6: Test accuracy (%) of VaSSO on CIFAR10 under different levels of label noise.

the suppressed variance in VaSSO, which in turn boosts the generalizability of ResNet-18 as shown
earlier in Section 4.1.

Label noise. It is known that SAM holds great potential to harness robustness to neural networks
under the appearance of label noise in training data ( , ). As the training loss landscape
is largely perturbed by the label noise, this is a setting where the suppressed variance and stabilized
adversaries are expected to be advantageous. In our experiments, we measure the performance
VaSSO in the scenarios where certain fraction of the training labels are randomly flipped. Considering
6 = {0.9,0.4, 0.2}, the corresponding test accuracies are summarized in Table 6.

Our first observation is that VaSSO outperforms SAM at different levels of label noise. VaSSO
elevates higher generalization improvement as the ratio of label noise grows. In the case of 75% label
noise, VaSSO with # = 0.4 nontrivially outperforms SAM with an absolute improvement more than
5, while VaSSO with # = 0.2 markedly improves SAM by roughly 10. In all scenarios, § = 0.2
showcases the best performance and 6 = 0.9 exhibits the worst generalization when comparing
among VaSSO. In addition, when fixing the choice to 8, e.g., § = 0.2, it is found that VaSSO has
larger absolute accuracy improvement over SAM under higher level of label noise. These observations
coincide with Theorem 3, which predicts that VaSSO is suitable for settings with larger label noise
due to enhanced stability especially when 6 is chosen small (but not too small).

5 Other related works

This section discusses additional related work on generalizability of DNNs. The possibility of
blending VaSSO with other approaches is also entailed to broaden the scope of this work.

Sharpness and generalization. Since the study of ( ), the relation between
sharpness and generalization has been intensively investigated. It is observed that sharpness is
closely correlated with the ratio between learning rate and batchsize in SGD ( ,

). Theoretical understandings on the generahzatlon error using sharpness related measures can
be found in e.g., ( s ). These
works justify the goal of seeking for a ﬂatter valley to enhance generahzablhty Targeting at a flatter
minimum, approaches other than SAM are also developed. For example, ( )
proposes stochastic weight averaging for DNNs. ( ) studies a similar algorithm as SAM
while putting more emphases on the robustness of adversarial training.

Other SAM type approaches. Besides the discussed ones such as GSAM and ASAM, ( ,

) proposes a variant of SAM by penalizing the gradient norm based on the observation where
sharper valley tends to have gradient with larger norm. ( ) arrive at a similar
conclusion by analyzing the gradient flow. Exploiting multiple (ascent) steps to find an adversary is
systematically studied in ( , ). SAM has also been extended to tackle the challenges in



domain adaptation ( s ). However, these works overlook the friendly adversary issue,
and the proposed VaSSO provides algorithmic possibilities for generalization benefits by stabilizing
their adversaries. Since the desirable confluence with VaSSO can be intricate, we leave an in-depth
investigation for future work.

Limitation of VaSSO and possible solutions. The drastically improved generalization of VaSSO
comes at the cost of additional computation. Similar to SAM, VaSSO requires to backpropagate twice
per iteration. Various works have tackled this issue and developed lightweight SAM. LookSAM
computes the extra stochastic gradient once every a few iterations and reuses it in a fine-grained
manner to approximate the additional gradient ( , ). ESAM obtains its adversary
based on stochastic weight perturbation, and further saves computation by selecting a subset of the
minibatch data for gradient computation ( , ). The computational burden of SAM
can be compressed by switching between SAM and SGD following a predesigned schedule (

s ), or in an adaptive fashion ( s ). SAF connects SAM with distillation for
computational merits ( , ). It should be pointed out that most of these works follow
the stochastic linearization of SAM, hence can also encounter the issue of friendly adversary. This
opens the door of merging VaSSO with these approaches for generalization merits while respecting
computational overhead simultaneously. This has been included in our research agenda.

6 Concluding remarks

This contribution demonstrates that stabilizing adversary through variance suppression consolidates
the generalization merits of sharpness aware optimization. The proposed approach, VaSSO, provably
facilitates stability over SAM. The theoretical merit of VaSSO reveals itself in numerical experiments,
and catalyzes model-agnostic improvement over SAM among various vision and language tasks.
Moreover, VaSSO nontrivially enhances model robustness against high levels of label noise. Our
results corroborate VaSSO as a competitive alternative of SAM.
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Supplementary Document for
“Enhancing Sharpness-Aware Optimization Through Variance Suppression”

A Linking SAM adversary with stochastic Frank Wolfe

A.1 Stochastic Frank Wolfe (SFW)

We first briefly review SFW. Consider the following nonconvex stochastic optimization
max h(x) := B¢ [h(x, €)] (6)

where X is a convex and compact constraint set. SFW for solving (6) is summarized below.

Algorithm 2 SFW ( , )
1: Inmitialize: xo € X
2: fort=0,1,..., 7 —1do
3. draw iid samples {€/} 2",
4 letgy = 4 >0 Vh(xi, &)
5 Vi41 = argmax,cy (8, V)
6: Xep1 = (L= 7)Xe + % Veq1
7: end for

It has been shown in ( , , Theorem 2) that one has to use a sufficient large batch size
B, = O(T), Vt to ensure convergence of SFW. This is because line 5 in Alg. 2 is extremely sensitive
to gradient noise.

A.2 The adversary of SAM

By choosing h(€) = f(x; + €) and X = S,(0), it is not hard to observe that 1-iteration SFW with
Yo = 1 gives equivalent solution to the stochastic linearization in SAM; cf. (2) and (3). This link
suggests that the SAM adversary also suffers from stability issues in the same way as SFW. Moreover,
what amplifies this issue in SAM is the adoption of a constant batch size, which is typically small
and far less than the O(T') requirement for SFW.

Our solution VaSSO takes inspiration from modified SFW approaches which leverage a constant
batch size to ensure convergence; see e.g., ( , ). Even though,
coping with SAM’s instability is still challenging with two major obstacles First, SAM uses one-step
SFW, which internally breaks nice analytical structures. Moreover, the inner maximization (i.e., the
objective function to the SFW) varies every iteration along with the updated x;.

A.3 The three dimensional example in Fig. 2

Detailed implementation for Fig. 2 is listed below. We use V f(x) = [0.2, —0.1, 0.6]. The stochastic
noise is & = [£1, &2, &3], where &1, &2, &5 are iid Gaussian random variables with variance scaling
with 0.2, 1, 2, respectively. We scale the variance to change the SNR. We generate 100 adversaries by
solving arg max; ¢ <,(V f(x) + &, €) for each choice of SNR. As shown in Fig. 2, the adversaries
are unlikely to capture the sharpness information when the SNR is small, because they spread
indistinguishably over the sphere.

B More on m-sharpness

m-sharpness can be ill-posed. Our reason for not studying m-sharpness directly is that its formu-

lation ( , , €q. (3)) may be ill-posed mathematically due to
the lack of a clear definition on how the dataset S is partitioned. Consider the following example,
where the same notation as ( , ) is adopted for convenience.

Suppose that the loss function is I;(w) = a;w? + b;w, where (a;, b;) are data points and w is the
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parameter to be optimized. Let the dataset have 4 samples, (a1 = 0,b; = 1); (a2 = 0,by = —1);
(a3 = —1,b3 = 0); and, (a4 = 1,b4 = 0). Consider 2-sharpness.

* If the data partition is {1,2} and {3.4}, the objective of 2-sharpness i.e., equation (3) in
( , ), becomes min,, 2?21 max||s||<, 0.

* If the data partition is {1,3} and {2,4}, the objective is min,, Zle max||s||<, fi(w,d),
where f; is the loss on partition {1,3}, i.e., f1(w,d) = —(w + §)? + (w + §); and
f2(w, ) = (w+ 8)? — (w + &) is the loss on partition {3,4}.

Clearly, the objective functions are different when the data partition varies. This makes the problem
ill-posed — different manners of data partition lead to entirely different loss curvature. In practice, the
data partition even vary with a frequency of an epoch due to the random shuffle.

C Details on numerical results

CIFAR10 and CIFAR100. For these small resolution datasets, we slightly change the first con-
volution layer of ResNet18 and WRN-28-10 to one with 3 x 3 kernel size, 1 stride and 1 padding
following ( ). The results on SGD and SAM demonstrate that the accuracy is almost
identical to the vanilla model.

ResNet50 on ImageNet. Due to the constraints on computational resources, we report the averaged
results over 2 independent runs. For this dataset, we randomly resize and crop all images to a
resolution of 224 x 224, and apply random horizontal flip, normalization during training. The batch
size is chosen as 128 with a cosine learning rate scheduling with an initial step size 0.05. The
momentum and weight decay of base optimizer, SGD, are set as 0.9 and 104, respectively. We
further tune p from {0.05,0.075,0.1, 0.2}, and chooses p = 0.075 for SAM. VaSSO uses 6 = 0.99.
VaSSO and ASAM adopt the same p = 0.075.

ViT-S/32 on ImageNet. We follow the implementation of ( s ), where we train the
model for 300 epochs with a batch size of 4096. The baseline optimizer is chosen as AdamW with
weight decay 0.3. SAM relies on p = 0.05. For the implementation of GSAM and V+G, we adopt
the same implementation from ( , ).

D Missing proofs

Alg. 1 can be written as

XH‘% =Xt + € (73)

Xep1 = X¢ — 7:8e(Xp 1 1) (7b)

gt (xt)
llge (xo)l

where ||€;|| = p. In SAM, we have ¢; = p , and in VaSSO we have €; = p”g—zu.

D.1 Useful lemmas

This subsection presents useful lemmas to support our main results.

Lemma 1. Alg. [ (or equivalently iteration (7)) ensures that

2
WE(VF (), V1 Gx0) — g1 y)] < SB[V o)) + -

Proof. To start with, we have that

(VIx0), VI(xe) = ge(xp41)) = (VF(x0), V(xe) — 8e(x0) + gi(xe) — 8e(Xp52))- (8)
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Taking expectation conditioned on x;, we arrive at

]E[< f(x¢), Vf(x¢) — gt(xt+%)>|xt]
(Vf(xt), V(%) — gt(Xt)>|Xt] + E[<Vf(xt)7 gi(x¢) — gt(xt+%)>|xt]
(Vf(xt), ge(xt) — gt(xt+%)>|xt}
IV f ()l - [lge(xe) — g (1)l ]
< LBV - 0 — %0l

© Lo V)|

=E|
=E|
<E[

where (a) is because of Assumption 2; and (b) is because x; — x; 1= € and its norm is p. This
inequality ensures that

LIVl | Le?

ME[(Vf(xe), Vf(xe) = ge(xpq1))xe] < Lome [V f (%) < 5 5

where the last inequality is because pn, ||V f (x;)|| < 277||V f(x¢)||? + 4 p?. Taking expectation w.r.t.
x; finishes the proof. O

Lemma 2. Alg. [ (or equivalently iteration (7)) ensures that

E[llg (x4 1)I%] < 2L%0% + 2E[||V f (x0)[|*] + 207

Proof. The proof starts with bounding [|g:(x, 1 )|| as

e (ke )II” = llge (xeq1) — 8e(x0) + ge(x0) |2
< 218 (xps 1) — 8e(xe) |* + 2l g (o) |12

222, — x,, 12+ 2l (x|
D 2120 + 2 gi(x2) — VS (x1) + V(x|
where (a) is the result of Assumption 2; and (b) is because x; — X; | 1= € and its norm is p.
Taking expectation conditioned on x;, we have
E[llge(x,q 1) 11*xe] < 2L%p% + 2Ellge (%) — V(%) + V(%) ]| *[¢]
<2L2p% + 2|V f(x0)||* + 20°

where the last inequality is because of Assumption 3. Taking expectation w.r.t. the randomness in x;
finishes the proof. O

Lemma 3. Let Ary1 = oAy + B with some o € (0,1), then we have

B

Appr <o Ag + T

P;;oof. The proof can be completed by simply unrolling A; ; and using the fact 1+a+a?+. . .+at

LA

1—a”
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D.2 Proof of Theorem 1
Proof. Using Assumption 2, we have that
f(xer1) = f(xe)
L
< (VF(xe)y X = %) + S lIxess — x|
Ln?
= _nt<vf(xt)7gt(xt+%)> + Tt”gt(XH%)HQ

2
= (V0 (i y) = V(00 + VI Gx0) + o ()

L 2
= =0V I” = eV f(x0) ge(x4 1) = VI (x0)) + %”gt(XtJr%)”Q'

Taking expectation, then plugging Lemmas 1 and 2 in, we have

3L77t2
2

2

Lp
VRNV A1) + 24 + L4 + .

E[f(xt+1) - f(Xt)] < - (m -

As the parameter selection ensures that 7y = n = -1 <
and rearrange the terms to arrive at

37 » it is possible to divide both sides with n

(1 - ??)E[Vf(xls)llz] < Bl ;f(xt“)] + Zé’: + LPnp® + Lo,

Summing over ¢, we have

T—1
3L 1 m _E[fx0) = fx0)] | LpP 4
1—— )= E < Lp* .
( 9 >T; IV f(x)II?] < T + 2 + L + Lo
(a) _fx Lo?
S M + 7p +L377p2 +L’I702
nT 2n
_ fxo) I Lpj LPnopg | Lnoo®

+ s+
novT  2pVT TP VT

where (a) uses Assumption 1, and the last equation is obtained by plugging in the value of p and 7).
This completes the proof to the first part.

For the second part of this theorem, we have that
E[[[Vf(xe + e)l’] = E[IVf(x: + ) + V(x) = VF(x)]]]
< 2E[|[VF(x[2] + 2E[IV S (x + €)= V(x:)]]
<2E[||Vf(x:]*] +2L%p°
2L°pj
T

Averaging over ¢t completes the proof. O

= 2E[||V £ (xl”] +

D.3 Proof of Theorem 2

Proof. To bound the MSE, we first have that
Id; — V£ ()| ©)
= [|(1 = 0)d;—1 + 0gi(x;) — (1 = O)V f(x4) — OV f(x,)|?
= (1=0)?|di—1 — VFx)* + 0*llge(x1) — Vf(x2)|1?
+20(1 = 0)(di—1 — Vf(x¢),8e(x¢) — Vf(x¢)).

Now we cope with three terms in the right hind of (9) separately.
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The second term can be bounded directly using Assumption 2
E[llg:(xe) = Vf(xe)|*xe] < 0. (10)
For the third term, we have
E[(dt,l —Vf(xt),ge(xt) — Vf(xt)>|xt} =0. (11)

The first term is bounded through
[di—1 = VI[P = dir = V(xm1) + VF(xe-1) = VF(x0)]1?

(a)
€ (U Ny = V70x )P+ (L ) IVFxe 1) — V)P
< (L4 Mot = VF )+ (14 5) Pl il

1
=@+ Nlde-1 = VFGxen)|? + (1 + X)n2L2”gt—l(xt—1)”2

2
where (a) is because of Young’s inequality. Taking expectation and applying Lemma 2, we have that
Eflldi—1 = Vf(x0)[?] (12)

< (U B[l - V)] + (14 )92 (22267 + 2B[19 o) P] + 207

1 o?
< (L+NE[||di—1 — VF(xe) ] + (1 + X) : O(\/T)

The last inequality uses the value of 7 = 7% and p = L& In particular, we have n?p?L* = O(1/T?)
and n?L%0? = O(0?/T), and
272 2 ngL? 2 2721 -« 2 o’
o PE(IV S 17] = B9 Se0l) < w2 3 B9 See0l) = O )
where the last equation is the result of Theorem 1.

Combining (9) with (12), (10) and (11), and choosing A = %, we have

(1-0)? o?
Elld: ~ V10)I) < (1= B[t ~ VsG] + 1502 ) 020

1—0 2.2
<052+ 0 (()U>
02T
where the last inequality is the result of Lemma 3. O

D.4 Proof of Theorem 3

Proof. We adopt a unified notation for simplicity. Let v; := d; for VaSSO, and v; := g;(x;) for
SAM. Then for both VaSSO and SAM, we have that

Jxe) + (e, €) = f(xi) + plvell = f(xe) + pllve = VF(xe) + Vf(x)]- 13)
For convenience, let €; = pV f(x;)/||V f(x¢)||. From (13), we have that
f) + (v, &) = f(x0) + pllve = Vf(x0) + V(x| (14)

< ) + V(x| + pllve = V(x|
= J(xe) + (VF(x0), €) + pllve = V(o).

Applying triangular inequality |[|a]| — [|b|| < [la — b||, we arrive at

J(xe) + (v, €r) = f(x¢) + plVF(xs) = (Vf(xe) = Vo)l (15)
> f(xe) + oV (xe)|| = pllve = V()|
= f(x¢) + (Vf(xt),€) — pllve = VF(xe)]]-

18



Combining (14) with (15), we have
[Le(ve) = Le(Vf(xe))] < pllve = VF(xe)l
which further implies that

E[|Le(ve) = Le(VF(xe))l] < pE[[ve = Vf(x)]] < p\/E[IIVt = V(o))

The last inequality is because (E[a])? < E[a?]. This theorem can be proved by applying Assumption
3 for SAM and Lemma 2 for VaSSO. O
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