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SUMMARY Deazaguanine modi�cations play multifaceted roles in the molecular 
biology of DNA and tRNA, shaping diverse yet essential biological processes, includ­
ing the nuanced �ne-tuning of translation e�ciency and the intricate modulation of 
codon-anticodon interactions. Beyond their roles in translation, deazaguanine modi�ca-

tions contribute to cellular stress resistance, self-nonself discrimination mechanisms, 
and host evasion defenses, directly modulating the adaptability of living organisms. 
Deazaguanine moieties extend beyond nucleic acid modi�cations, manifesting in the 
structural diversity of biologically active natural products. Their roles in fundamental 
cellular processes and their presence in biologically active natural products underscore 
their versatility and pivotal contributions to the intricate web of molecular interactions 
within living organisms. Here, we discuss the current understanding of the biosynthe­
sis and multifaceted functions of deazaguanines, shedding light on their diverse and 
dynamic roles in the molecular landscape of life.

KEYWORDS queuosine, archaeosine, toyocamycin, bacteriophage, restriction/modi�-

cation, genetic code

INTRODUCTION

7 -Deazapurines are analogs of nucleosides that feature pyrrolo[2,3-d]pyrimidine or 
pyrrolopyrimidine moieties. They can be found either as independent molecules 

or integrated into RNA or DNA polymers (1, 2). A distinctive structural characteristic 
of 7-deazapurines involves substitutions of the nitrogen atom typically located at the 
purine sca�old’s position 7 (Fig. 1). Deazapurine-containing antibiotics such as tubercidin 
and sangivamycin (3) (Fig. 2) and deazapurine RNA modi�cations such as queuosine (Q) 
(4) and archaeosine (G+) (5) were �rst described in the 1960s to 1980s. More recently, 
their large structural diversity has become apparent, propelled by the identi�cation of 
synthesis pathway genes and the growing availability of diverse genome sequencing 
data.

Though the pyrrolopyrimidine core structure is strictly conserved, the deazapur­
ines are a diverse class of molecules regarding their chemical structures, taxonomic 
distribution, and functional roles. While the diversity of 7-deazapurines has long been 
appreciated in the context of secondary metabolites, it was initially believed that 
only a few derivatives were present in nucleic acids, namely G+, Q, and Q derivatives 
(1). However, recent reports of 7-deazapurines in DNA have altered this perspective, 
identifying eight distinct pyrrolopyrimidine modi�cations in bacteriophages so far (6) 
(Fig. 1).

Depending on the deazapurine, taxonomic distribution may be wide or narrow and 
the degree of enzymatic conservation of the biosynthetic pathway can vary. For example, 
Q is predicted to be present in the tRNAs of over 90% of sequenced bacterial and 
eukaryotic species (7, 8), while many pyrrolopyrimidine secondary metabolites are only 
found in select bacterial lineages (Table 1). The functions of deazapurines vary greatly 
depending on their �nal structures and/or location, as the same molecule can have 
di�erent roles when located in RNA or DNA. G+ in archaea plays a role in stabilizing tRNA 
tertiary structure (9), whereas the same modi�ed base in DNA shields bacteriophages 
from restriction enzymes (10). Q is crucial for tRNA decoding e�ciency or accuracy (11, 
12) and has been adapted for regulatory functions in some individual species (13). Some 
deazapurines in bacterial DNA are components of restriction-modi�cation islands (14). 
The natural functions of deazapurine secondary metabolites are not entirely understood 
but some have demonstrated anticancer, antiviral, or antibacterial activities (Table 1).

The exploration of various 7-deazapurine biosynthesis pathways has unveiled 
unprecedented enzyme chemistries and novel structural folds (1, 2). This has both 
practical applications and evolutionary signi�cance, especially considering that many 
of these enzymes belong to the tunnel-fold (T-fold) family, which appears to have been 
recruited to execute di�erent types of reactions on similar substrates (39).
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Certain precursors leading to the formation of the ultimate 7-deazapurine molecules 
can be reclaimed and viewed as micronutrients (40). Consequently, the notion that 
competition for these deazapurine precursors might in�uence the ecology of distinct 
niches, such as the mammalian microbiota or other host-associated environments, is just 

FIG 1 General pathway of 7-deazaguanine modi�cations in tRNA and DNA. The illustration includes representations of all �nal and distinctive molecules in the 

pathway, excluding redundant ones. Key proteins catalyzing reactions are highlighted in bold text adjacent to the corresponding arrows and as described in the 

text. When two proteins or more are listed, these are alternate enzymes catalyzing the same reactions. Unknown enzymes have question marks associated (?).
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beginning to take root (41, 42). Thus, deazapurines are widespread metabolites with 
diverse biological functions, and the complete scope of their roles continues to reveal 
itself as our understanding advances.

PREQ0 AND PREQ1 ARE THE COMMON PRECURSORS FOR NUMEROUS 

DEAZAPURINE DERIVATIVES

PreQ0, also known as 7-cyano-7-deazaguanine, serves as the precursor to most natural 
7-deazaguanine-containing molecules (1, 2). Both preQ0 and its derivative, 7-amino­
methyl-7-deazaguanine (preQ1), can not only be incorporated into DNA or RNA and 
undergo further modi�cations but also act as precursors to numerous secondary 
metabolites. The biosynthesis of preQ0 occurs from guanosine-5'-triphosphate (GTP) in a 
four-step pathway (Fig. 1; Table 2) that remained enigmatic for over three decades. This 
pathway was eventually elucidated between 2004 and 2009: the gene candidates were 
identi�ed by a combination of taxonomic distribution �lters and gene neighborhood 
analyses and were validated by a combination of bioinformatic, genetic, and biochemical 
studies (43–46). These investigations also identi�ed QueF as the enzyme responsible for 
the biosynthesis of preQ1 from preQ0 (47).

QueD: The orst enzyme of preQ0 biosynthesis is shared with the tetrahydro­

folate and biopterin pathways

As predicted by the foundational work that identi�ed GTP as the deazapurine precursor 
(48, 49), the preQ0, tetrahydrofolate (THF), and biopterin (BH4) synthesis pathways share 
a common �rst step with the formation of 7,8-dihydroneopterin triphosphate (H2NTP) 
from GTP (Fig. 3) (46, 50). GTP cyclohydrolase I (EC 3.5.4.16), an enzyme class with various 
cofactors, mediates this reaction. The Zn2+-dependent variant (FolE; COG0302) is used 
by most bacteria and mammals, which contrasts with the FolE2 type (COG1469) used 
by other bacteria and most archaea, which employs di�erent metals like Mn2+ (51). Both 
FolE and FolE2 are members of the T-fold structural superfamily (39, 52). Shared pathway 
intermediates might enable shifts between THF and Q pools under conditions of GTP 
scarcity or elevated Q biosynthesis demand, as seen with ribo�avin, another molecule 

FIG 2 7-Deazapurine natural product representatives with entries in the MIBiG database. Huimycin 

(A), sangivamycin (B), tubercidin (C), and toyocamycin (D) are the only metabolites with known minimal 

annotations for the BGCs in the database. The rest of the compounds described in Table 1 remain 

orphaned. All those compounds have in common the preQ0 sca�old in their chemical structures.
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originating from GTP (53). The �rst committed step in preQ0 synthesis, catalyzed by 
6-carboxy-5,6,7,8-tetrahydropterin (6-CPH4) synthase EC (EC4.1.2.50) or QueD (43, 44) 
(Fig. 1), is a textbook example of the di�culty in annotating paralogous families (54). 
The Escherichia coli QueD (or PTPS-I) protein was �rst annotated as 6-pyruvoyltetra­
hydropterin synthase (PTPS) because of its similarity with the mammalian homolog 
involved in biopterin synthesis, now named PTPS-II. QueD/PTPS-I and PTPS-II are both 
members of the T-fold derived COG0720 family (Pfam PF01242). Comparative genomic 
predictions (43) combined with genetic (43), biochemical (44), and structural studies (50, 
55) revealed that slight variations in the active site can shift catalytic activity between 
PTPS-II and QueD/PTPS-I (Fig. 3). A third subgroup in this family, PTPS-III, catalyzes the 
conversion of H2NTP into neopterin, bypassing the FolB and FolQ enzymes in the THF 
pathways of certain bacteria and parasites (Fig. 3) (56). Remarkably, some bacteria have 
bifunctional QueD/PTPS-III enzymes that must be used both for Q and THF biosynthesis 
(50). Another QueD variant, QueD2 was identi�ed based on its signature motif and metal 
binding properties (Fig. 3) (50, 57). QueD is a Zn2+-dependent (44, 55) lyase that catalyzes 
the elimination of triphosphate and acetaldehyde from H2NTP. A coordinated zinc ion 
plays a key role, stabilizing oxyanion-containing intermediates leading to the product 
carboxylate. Comparative genomic analysis suggests QueD2 is regulated by the zinc 
uptake regulator (Zur) under metal-limiting conditions. The paralogs contain a second 

TABLE 1 7-Deazapurine derived natural products

Natural product Bioactivitya Organism MIBiG BGCb References

Tubercidin AB, AP, AV, AT Streptomyces tubercidis BGC0001937 (1, 15)

Sangivamycin AB, AT, AV Streptomyces rimosus ATCC 14673 BGC0000879 (1, 16, 17)

Toyocamycin AB, AT, AV Streptomyces rimosus ATCC 14673 BGC0000879 (1, 17, 18)

Cadeguomycin AB, AT Streptomyces hygroscopicus U (19)

Kanagawamicin AT Actinoplanes kanagawaensis U (20, 21)

Echiguanine A AT Streptomyces M1698-50F1 U (22)

Echiguanine B AT Streptomyces M1698-50F1 U (22)

Ara-A H Actinoplanes sp. A9222 U (23)

Dapiramicin A AB, AF Micromonospora sp. SF-1917 U (24, 25)

Dapiramicin B AB, AF Micromonospora sp. SF-1917 U (26)

5′-deoxyguanosine H Thermoactinomycete sp. A6019 U (23)

Coaristeromycin H Streptomyces sp. A6308 U (23)

Aristeromycin H Streptomyces sp. A6308 U (23)

5′-deoxytoyocamycin H Streptomyces sp. A14345 U (23)

Coformycin H Unclassi�ed U (23)

5′-deoxy-5-iodotubercidin AKI Hypnea valentiae U (27)

4-amino-5-bromo-pyrrolo[2,3-d] pyrimidine B Echinodictyum U (27)

Huimycin U Kutzneria albida DSM 43870 BGC0002354 (28)

Tubercidin-5′-α-d-glucopyranose CT, AF Plectonema radiosum, Tolypothrix tenuis U (29)

Toyocamycin-5′-α-d-glucopyranose CT, AF Plectonema radiosum, Tolypothrix tenuis U (29)

Mycalisine A AB Mycale sp. U (30)

Mycalisine B AM Mycale sp. U (30, 31)

5′-deoxy-5-iodotubercidin NB Hypnea valendiae, Didemnum voeltzkowi U (32)

5-(methoxycarbonyl) tubercidin CT Jaspis johnstoni U (33)

Toyomycin CT Jaspis johnstoni U (34)

Rigidins B-D CA Cystodytes sp. U (35)

7-deazainosine CT Aplidium pantherinum U (36)

5′-deoxy-3-bromotubercidin CT Didemnum voeltzkowi U (37)

5′-deoxytubercidin CT Didemnum voeltzkowi U (37)

Unamycin B AB Streptomyces . fungicidicus U (38)

Vengicide AB Streptomyces vendargensis U (38)
aantibiotic (AB); antiparasitic (AP); antiviral (AV); antitumor (AT); antifungal (AF); herbicidal (H); adenosine kinase inhibitor (AKI); bronchodilator (B); unknown (U); antimitotic 
(AM); cytotoxic (CT); neuromuscular blocking (NB); calmodulin antagonistic (CA).
bBGCs reported in MIBiG with minimal annotation.
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zinc-binding site located in an inserted region not present in QueD, and based on its 
structure, a model has been proposed where the second metal site of QueD2 slows 
the dissociation of the catalytic metal (50, 57). The di�erent COG0720 subgroups can 
be separated by strictly conserved signature motifs (50, 57, 58) but many annotation 
mistakes remain in most databases (59) and several discernable subgroups of this family 
remain to be functionally characterized [see Fig. S4 in (57)].

QueE: an atypical radical SAM enzyme

The next step in preQ0 biosynthesis is the heterocyclic radical-mediated conversion of 
6-carboxy-5,6,7,8-tetrahydropterin (CPH4) to 7-carboxy-7-deazaguanine (CDG) catalyzed 
by 7-carboxy-7-deazaguanine synthase or QueE (EC 4.3.99.3) (60). First identi�ed by in 

silico and genetics methods (43), QueE is a member of the radical SAM superfamily 
of enzymes [(61) and see https://radicalsam.org/explore.php?id=cluster-3-1&v=3.0] that 
perform a wide array of chemical reactions initiated by the highly reactive 5′-deoxyade­
nosyl radical (62) including C-H activation, atom/group transfer, isomerizations, bond 
cleavage, and rearrangements. QueE has been extensively studied using biophysical, 
structural, and biochemical approaches (60, 63–65). The overall mechanism involves 
nitrogen atom migration, resulting in ring contraction, followed by the elimination of 
ammonia. The role of QueE in catalysis is to stabilize and control the fate of high-energy 
radical intermediates. Among the larger family of radical SAM enzymes, QueE is atypical 
because of its dependence on an Mg+2 cation and overall turnover of the radical 
S-adenosylmethionine cofactor.

TABLE 2 Known bacterial and archaeal Q and G+ synthesis and salvage enzymes and transportersb

Protein name Protein function COG KO Cofactors

FolE/GCHI GTP cyclohydrolase IA (EC 3.5.4.16) COG0302 K01495 Zn

FolE2 GTP cyclohydrolase IB (EC 3.5.4.16) COG1469 K09007 Mn

QueD 6-carboxy-5,6,7,8-tetrahydropterin synthase (EC 4.1.2.50) COG0720a K01737 (1) Zn

QueD2 6-carboxy-5,6,7,8-tetrahydropterin synthase (EC 4.1.2.50) COG0720a K01737 (1) Fe, Zn

QueE 7-carboxy-7-deazaguanine synthase (EC 4.3.99.3) COG0602a K10026 Fe

QueC 7-cyano-7-deazaguanine synthase (EC 6.3.4.20) COG0603 K06920 ATP, Zn, NH4+

QueF type I 7-cyano-7-deazaguanine reductase (EC 1.7.1.13) Type II COG0780,

COG2904

K06879 NADPH

QueF type II 7-cyano-7-deazaguanine reductase (EC 1.7.1.13) Type I COG0789 K09457 NADPH

bTgt Queuine tRNA-ribosyltransferase (EC 2.4.2.29) COG0343 K00773 Zn

QueA S-adenosylmethionine:tRNA ribosyltransferase-isomerase (EC 

2.4.99.17)

COG0809 K07568 SAM

QueG Epoxyqueuosine reductase (EC 1.17.99.6) COG1600 K18979 Fe, Cobalamin

QueH epoxyqueuosine reductase (EC 1.17.99.6) COG1636a K09765 Fe

GluQ Glutamyl-Q tRNA(Asp) synthetase (EC 6.1.1.B3) COG0008a K01894 Zn

aTGT 7-cyano-7-deazaguanine tRNA-ribosyltransferase (EC 2.4.2.48) COG1370 K18779 Zn

ArcS Archaeosine synthase alpha-subunit (EC 2.6.1.97; 2.6.1.-) COG1549 K07557 Lys or Gln

RaSEA Archaeosine synthase beta-subunit [EC 2.6.1.-] COG1244a K06936

QueF-Like QueF-like amidinotransferase (EC 2.6.1.-) Pcal_0221 (2) NH4+

QPTR/YhhQ Queuosine precursor transporter (TC 3.A.1.28) COG1738 K09125

QrtT/QueT Energy-coupling factor transport system substrate-speci�c 

component (TC 3.A.1.28)

COG4708 K16923

QueK Queuosine hydrolase (EC 3.2.2.1) COG1957 No KO, CD630_16820 (2)

QueL Queuine lyase (EC 4.3.99.M4) COG1244a CD630_16840 (2) SAM

Qng1 Queuosine 5′-phosphate N-glycosylase/hydrolase (EC 3.2.2.-) pfam10343 (3) Sthe_2331 (2)
aNot isofunctional COG.
bCOG: Clusters of Orthologous Groups; KO: KEGG Orthology Number (1); KO not speci�c for QueD/PTPS-I (2); No KO number, posted a speci�c ID with experimental 
validation. (3); No COG number posted a pfam number instead.
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QueC: an ATPase that catalyzes two reactions

The enzyme 7-cyano-7-deazaguanine synthase, also known as QueC (EC 6.3.4.20), plays 
a pivotal role in catalyzing the conversion of CDG into preQ0 (45). This process involves 
two ATP molecules: one is consumed to generate a 7-amido-7-deazaguanine (ADG) 
intermediate while the other is used to process ADG into preQ0 (66) (Fig. 1). Mutating 
two strictly conserved residues located within 7 Å of the phosphate ligand (K163A/
R204A) in the Bacillus subtilis QueC protein, e�ectively halts the reaction at the ADG 
intermediate, showing the importance of these two residues in processing the second 
reaction from ADG to preQ0 (67). Each monomeric subunit of the QueC homodimer 
consists of an N-terminal domain exhibiting a Rossman fold architecture, a characteristic 
feature shared with many nucleotide-binding proteins. In addition, it contains a helical 
zinc-binding C-terminal domain. Notably, the active site is predicted to reside at the 
interface between these two domains (68, 69). QueC-like encoding genes have been 
found in phage defense clusters, such as QatC in the QueC-like associated with ATPase 
and TatD DNase system (Qat) (70) or Cap9 in the type IV cyclic oligonucleotide-based 
anti-phage signaling system (CBASS) (71), yet their functions remain to be elucidated.

QueF: the four-electron reduction of preQ0 to preQ1 from nitrile to primary 

amine

In contrast to non-speci�c reductions by nitrogenases, the QueF-mediated reduction 
of preQ0 to preQ1 is the only known nitrile reduction found in a natural biosynthetic 
pathway (72). Although the catalytic activity was witnessed in the late 1970s (73), 
the NADPH-dependent 7-cyano-7-deazaguanine QueF (EC 1.7.1.13) enzyme was only 
characterized in 2004 (47). QueF was �rst identi�ed by comparative genomic and genetic 

FIG 3 Functional roles of di�erent PTPS subfamilies. Biosynthesis pathways in which PTPS-I, II, and III are involved. Speci�c reactions catalyzed by PTPS-I 

(QueD or QueD2), PTPS-II, and PTPS-III, and conserved motifs were identi�ed. Abbreviations: GTP: guanosine triphosphate; FolE: GTP cyclohydrolase I; FolE2: 

GTP cyclohydrolase II; DHN-P3: dihydroneopterin-triphosphate; CTHP: 6-carboxytetrahydropterin; PTP: 6-pyruvoyl-tetrahydropterin; HMDHP: 6-hydroxymethyldi­

hydropterin; preQ0: 7-cyano-7-deazaguanosine; QueE: 7-carboxy-7-deazaguanine synthase; QueC: 7-cyano-7-deazaguanine synthase; SR: sepiapterin reductase; 

DHN: dihydroneopterin; [P-ase]: phosphatase; FolB: dihydroneopterin aldolase; FolK: 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; FolP: dihydropter­

oate synthase; FolC: dihydrofolate:folylpolyglutamate synthase; FolA: dihydrofolate reductase.
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studies and found to be involved in Q synthesis in Acinetobacter baylyi and Bacillus 

subtilis (43). The exact biochemical function was elucidated a few years later despite the 
initial misannotation that QueF was a GTP cyclohydrolase I based on its membership in 
the T-fold family (47). Sequence determinants speci�c to QueF’s reductase activity have 
been identi�ed and allow for the di�erentiation of QueF from GTP cyclohydrolases. As 
with other members of the T-fold family, the QueF active site pocket is located at the 
interface between subunits (72). Two types of QueF enzyme architectures have been 
characterized to date. In the QueF type I exempli�ed by B. subtilis YkvM (K09457), two 
independent subunits form the catalytic interface while in the QueF type II exempli�ed 
by E. coli YqcD (K06879), the interface is formed by two domains of the same subunit. 
Therefore, type II proteins are predicted to have arisen from a duplication of the type 
I domain with a catalytic inactive portion at the C-terminus (47). Mechanistic and 
structural studies identi�ed Cys55 in B. subtilis QueF as a key catalytic residue, forming 
an α,β-unsaturated thioamide covalent intermediate with preQ0, supporting a covalent 
catalysis reaction mechanism (72, 74–77). To prevent oxidation of the catalytic cysteine, 
QueF forms a large homodecameric complex with active sites at the inter-monomer 
interfaces, facilitated by an intermolecular disul�de bridge with another cysteine (78). 
Because of their unique reductase activity and their potential exploitation for biocataly­
sis (see in dedicated section), QueF enzymes have been extensively studied (76, 77). 
However, these characterized QueF enzymes are very speci�c for preQ0, with only a 
limited number of other substrates reported (79).

An analysis of the distribution of the preQ1 synthesis proteins 
(QueC, QueD, QueE, and QueF type I and Type II) and of the Q 
biosynthesis proteins [(Tgt), QueA see section below)] found 148 out 
of 7,267 bacterial genomes encoded all proteins but the QueF homo­
logs (data extracted from https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K01737+K10026+K06920+K06879+K09457+K00773+K07568 Release 108.0, 
October 1, 2023). This suggests a non-orthologous displacement for the yet unidenti�ed 
enzyme catalyzing preQ0 reductase activity, as enzymes with preQ1 substrate speci�city 
exist in those organisms, namely Tgt and QueA. Proposed candidates for this cryptic 
activity are members of the 2-hydroxyacyl-CoA dehydratase superfamily, but experimen­
tal validation remains to be performed (80).

Conservation and regulation of preQ0/preQ1 biosynthetic genes

The dedicated preQ0/preQ1 biosynthetic genes (queD, queC, 

queE, and queF) are generally physically clustered in di�er-

ent combinations (see https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K01737+K10026+K06920+K06879+K09457+K18979+K09765+K00773+K07568). In 
some organisms, the folE/folE2 genes can also be present in the clusters (Fig. 4). 
The regulation of preQ0 and preQ1 biosynthetic genes remains poorly understood in 
many organisms, including the model E. coli K12. The only known dedicated regulatory 
elements are preQ1 responsive riboswitches, categorized into one of three classes (81). 
Members belonging to class-I were identi�ed upstream of the B. subtilis preQ1 biosynthe­
sis operon (82) and are mainly found in Proteobacteria and Firmicutes. Class-II preQ1 
riboswitches are primarily present in Lactobacillales, while class-III is primarily found 
in Clostridiales (81). Not all preQ1 riboswitches employ the same mechanisms: the B. 

subtilis class-I riboswitch uses ligand-triggered transcriptional termination, while the 
class-II Streptococcus pneumoniae R6 riboswitch utilizes metabolite-mediated sequestra­
tion of the Shine-Dalgarno sequence (83). A class-I preQ1 riboswitch in Carnobacterium 

antarcticus was recently found to bind stacked e�ector molecules, a unique property 
in riboswitches studied to date (84). preQ1 riboswitches have a characteristically short 
length, some as short as 25 nucleotides, making them suitable for structural and 
biophysical studies (85–87). They are used as inducible regulatory elements in synthetic 
biology (88, 89).
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DIVERSITY OF DEAZAGUANINE MODIFICATIONS IN NUCLEIC ACIDS

Transglycosylases insert free preQ0, preQ1, or Q bases in nucleic acids

preQ0 and preQ1 can be used directly as precursors of natural products (see dedicated 
section below). Their insertion as bases into nucleic acid molecules requires transglyco­
sylase enzymes that exchange the deazapurine and guanine bases (Fig. 1 and 5). The 
founding members of this family of enzymes (Interpro ID: IPR002616) modify tRNAs 
and fall into three subgroups: (i) homodimeric bacterial tRNA-guanine transglycosylases 
(EC 2.4.2.29, bTGT) that exchange the wobble position guanine in tRNA with GUN 
anticodons with preQ1; (ii) eukaryotic heterodimeric Queuine tRNA-ribosyltransferases 
[EC 2.4.2.64, eTGT composed of a catalytic subunit (QTRT1) and an accessory subunit 

FIG 4 Physical clustering of genes encoding preQ0/preQ1 synthesis or Q synthesis/salvage enzymes. Di�erent representatives of the gene neighborhood 

clusters discussed in the text are shown and were drawn using the GeneGraphics App (https://v2.genegraphics.net/) (90). Numeric protein identi�ers are given 

for every example to retrieve speci�c information. All abbreviations of 7-deazapurine metabolism-related proteins are given in the text or Table 2 with the 

exception of short-chain dehydrogenase reductase (SDR). DeoB-like and QueA-like re�ect that the functions might not be the same as the canonical DeoB 

(phosphopentomutase) or QueA enzymes.
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(QTRT2)] that introduce the Q base directly in the same target GUN-anticodon tRNAs; and 
(iii) archaeal tRNA-guanine transglycosylases (EC 2.4.2.48, arcTGT) that exchange the G at 
position 15, and sometimes at position 13 (91) with preQ0 in many target tRNAs in most 
Archaea. The structures and catalytic mechanisms of these three groups of enzymes have 
been extensively studied and previously reviewed (92). The residues of the substrate 
binding pocket that allow discrimination between preQ0, preQ1, and Q substrates are 
well characterized (92, 93) as shown in Fig. 5.

In the last 5 years, the understanding of the functional diversity of those di�erent 
subgroups has greatly expanded. A subgroup of bacterial enzymes was found to 
have shifted substrate speci�city from preQ1 to q in bacteria that live in queuine-rich 
environments (e.g., intracellular pathogens) (Fig. 5 and 6B) (7). Another subgroup, 
renamed DpdA for deazapurine in DNA, are homologs of archaeal TGT proteins encoded 
by bacteria or phages that have shifted their substrate speci�cities from RNA to DNA (14). 
In some bacteria, such as Salmonella enterica serovar Montevideo, DpdA incorporates 
preQ0 into DNA only with the help of the DpdB protein (98, 99). The functional roles of 
DpdB are not yet clearly de�ned (and discussed below). Phage DpdA proteins do not 
require DpdB to insert 7-deazapurines into DNA (6, 10). Phage DpdA can be categorized 
into four groups that di�er by their substrate speci�cities and potentially their sequence 
speci�cities. For example, the E. coli phages 9g and CAjan DpdA1 enzymes are speci�c 
for preQ0 (10, 14) while the Haloarcula virus HVTV-1 DpdA4 is speci�c for preQ1 (6). The 
DpdA2 enzymes seem to be more promiscuous. For example, the Vibrio natriegens phage 
nt-1 DpdA2 prefers preQ0 while the Vibrio phage VH7D DpdA2 prefers preQ1 but can 
insert preQ0 and CDG into DNA, albeit at lower e�ciencies, when preQ1 is not available 
(10). The in vivo substrates of the DpdA3 enzymes are yet to be determined, but the 

FIG 5 Substrate speci�city of various deazaguanine transglycosylases. Logos on top represent the conserved region for 7-deazaguanine substrate binding and 

were generated from a relevant set of orthologous sequences of the protein depicted using MAFTT (94) and WebLogo2 (95). Representative structures for some 

orthologs are depicted on the bottom with their cognate substrate (colored in orange). Bacterial TGT from Z. mobilis complexed with preQ1 (green, PDB ID: 1P0E), 

AlphaFold (96, 97) modeled C. trachomatis TGT with queuine (cyan, UniProt O84196), human TGT in complex with queuine (magenta, PDB ID: 6H45), and archaeal 

TGT from P. horikoshii complexed with preQ0 (yellow, PDB ID: 1IT8). All structural illustrations were prepared using PyMOL (https://pymol.org/2/).
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phage genomes that encode them are modi�ed with preQ0 precursors such as CDG or 
ADG (6).

Target sequence speci�city has been determined for two DpdA1 enzymes, both 
of which utilize preQ0 as a substrate. The DpdA1 enzyme from Enterobacteria phage 
CAjan recognizes both <GA= and <GGC= sequences (100), while the DpdA enzyme from 
Pseudomonas phage Iggy speci�cally recognizes <GA= (101). Both enzymes replace the 
�rst guanine of the recognition sequence with preQ0.

A predicted structural analysis of CAjan DpdA1 revealed striking similarities to TGTs 
(100). Notably, the binding pocket in CAjan DpdA1 resembles that of arcTGT, and 
both enzymes share two conserved catalytic aspartates. In addition, several residues 
(including Ser64, Phe67, Asp105, Gly153, Gly154, His132, and Phe189) are predicted to 
be involved in base binding activity. Asp206 is anticipated to catalyze the �rst step of 
the transglycosylation process, while Asp63 is likely responsible for the deprotonation of 
preQ0 (100).

FIG 6 Known bacterial Q synthesis or salvage pathways. (Upper feft) De novo Q synthesis and preQ0/preQ1 salvage pathways in E. coli; (Upper right) q salvage 

pathway in C. trachomatis; (Lower left ) preQ1, q, and Q salvage pathways in C. di�cile. The ECF transporters include four subunits: S, the substrate-speci�c 

transmembrane component (QueT); T, the energy-coupling module; A and A′, the pair of ABC ATPase. (Lower right) Possible q and Q salvage pathways in B. 

henselae Houston 1. All abbreviations of 7-deazapurine metabolism-related proteins are given in the text or Table 2.
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Diversity of deazapurine derivatives identioed in phage DNA

To date, eight derivatives of 7-deazaguanine have been identi�ed in phage genomes 
(Fig. 1). The �rst, known as dG+, was initially discovered in Enterobacteria phage 9g 
(14), where it replaced ~25% of the guanine content. Subsequently, three additional 
modi�cations were observed in various phage genomes: 2′-deoxy-7-cyano-7-deazagua­
nosine (dpreQ0), 2′-deoxy-7-amido-7-deazaguanosine (dADG), and 2′-deoxy-7-amino­
methyl-7-deazaguanine (dpreQ1) (10). dpreQ0 was found in Escherichia phage CAjan, 
with 32% of the guanine undergoing modi�cation, as well as in Mycobacterium phage 
Rosebush (28% guanine modi�cation) and Vibrio phage nt-1 (0.1% guanine modi�ca-

tion). dADG was found to modify 100% of the guanine in Campylobacter phage CP220 
(102). It was hypothesized that QueC only performs the initial reaction resulting in 
ADG, which would then be loaded onto a 2′-deoxyribose and inserted into its genome 
by DpdA3 (Fig. 1), but this scenario needs to be further validated. The presence of 
dADG was also detected in small amounts within Halovirus HVTV-1, Vibrio phage nt-1, 
and Mycobacterium phage Rosebush, while it constituted the primary modi�cation 
in Salmonella phage 7–11, a�ecting 0.02% of the guanine (10). In addition, dpreQ1 
was observed in Halovirus HVTV-1, where it modi�ed ~30% of the guanine, and 
in Streptococcus phage Dp-1, a�ecting 1.7% of the guanine residues (10). In more 
recent discoveries, methylated and formylated forms of preQ1 were identi�ed, namely 
2′-deoxy-7-(methylamino)methyl-7-deazaguanine (mdpreQ1) and 2′-deoxy-7-(formyla­
mino)methyl-7-deazaguanine (fdpreQ1), alongside dCDG and its decarboxylated form, 
2′-deoxy-7-deazaguanine (dDG) (6). mdpreQ1 was found in Cellulophaga phage phiSM, 
a�ecting 0.1% of the guanine residues, in combination with dpreQ1, which modi�ed 
1.1% of the guanines. Similar �ndings were observed for Cellulophaga phage phi38:2 
and phi 47:1. Meanwhile, fdpreQ1 and dDG were both observed at a 100% replacement 
rate in Flavobacterium phage vB_FspM_immuto_2–6A and Cellulophaga phage phST, 
respectively. Lastly, dCDG was noted in Sulfolobus virus SVST-2, a�ecting 0.04% of 
the guanine content. The process through which dCDG is produced in the genome 
of Sulfolobus virus SVST-2 remains unclear but for the other seven modi�cations, the 
pathways have been nearly fully elucidated.

Phages that undergo modi�cation with dpreQ0 consistently carry the genes encoding 
the preQ0 synthesis proteins FolE, QueE, QueD, and QueC, in addition to the signature 
enzyme DpdA (10, 14). Phages modi�ed with dG+ encode di�erent non-orthologous 
enzymes like ArcS or Gat_QueC, which facilitate the �nal amidotransferase step akin 
to G+ synthesis in Archaea (see below) (10). Phages encoding QueF are subject to 
modi�cation by dpreQ1, involving a change in the substrate of the cognate DpdA 
to preQ1 (10). A preQ1 methyltransferase, known as DpdM, has been identi�ed and 
experimentally validated (6). DpdM is likely a metalloprotein with four cysteine residues 
capable of binding two metals. Furthermore, a proposed preQ1 formyltransferase, DpdN, 
is a paralog of PurN involved in purine synthesis (103). A candidate CDG decarboxylase 
DpdL has also been suggested. DpdL, a member of the T-fold superfamily with a known 
a�nity for pterins and purines (39), features an LxxxHRHxF signature motif binding a 
metal, indicative of an alkaline decarboxylation mechanism.

Synthesis of Q and Q derivatives in RNA

Once preQ1 has been inserted in target tRNAs by the bTGT enzyme, two additional 
catalytic steps are required to �nalize the synthesis of the Q molecule using quite 
unusual enzymes.

SAM is a ribose donor in the formation of epoxy-Q

The initial enzyme in the transformation of preQ1-tRNA into Q-tRNA, known as S-adeno­
sylmethionine:tRNA ribosyltransferase-isomerase or QueA (EC 2.4.99.17), transfers the 
ribose moiety from S-adenosylmethionine (SAM) with L-Met and adenine as byproducts. 
The identi�cation of the queA gene occurred two decades ago in E. coli because it was 
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upstream of the tgt gene (104). This close syntenic association is prevalent, observed in 
~50% of the 4,610 bacterial genomes in the KEGG database that encode both tgt and 
queA (data extracted from https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K00773+K07568+K18979+K09765, Release 108.0, October 1, 2023).

Initial kinetic (105) and structural studies (106, 107) have revealed that this enzyme 
possesses a unique fold and operates through a fully ordered sequential bi-ter kinetic 
mechanism. In this mechanism, preQ1-tRNA-Tyr binds �rst, followed by SAM, with 
product release occurring in the order of adenine, methionine, and epoxyQ-tRNA (or 
oQ-tRNA). The proposed mechanism involves a unique enzymatic pathway that includes 
sulfonium ylide and vinyl sulfonium intermediates (108). The �ve carbons from the ribose 
moiety of SAM are transformed into the cyclopropyl epoxide of the �nal product. As of 
now, no structures bound to substrates have been resolved, leaving the characterization 
of this unconventional use of SAM as a ribosyl donor incomplete (109).

The QueA protein family generally exhibits iso-functionality, except for members 
found in numerous Actinomycetes. In most bacteria within this clade, the Q modi�cation 
is absent (110–112). QueA homologs in these Actinomycetes are encoded by genes that 
cluster with those encoding proteins of the short-chain dehydrogenase superfamily (Fig. 
4) and should be renamed QueA-like.

Cobalamin-dependent or independent solutions for epoxy-Q reductase 

synthesis

In the late 1980s, it was discovered that the last step in Q synthesis, the reduction of 
epoxy-Q (oQ) to Q, is dependent on cobalamin (Vitamin B12) (113). This insight originated 
from the observation that Q is present in E. coli tRNAs when grown anaerobically under 
fermentation conditions with limited iron but not in iron-abundant conditions. This 
pattern mirrored cobalamin biosynthesis, which is upregulated in anaerobic, iron-limi­
ted conditions but downregulated in aerobic or iron-abundant conditions. A genetic 
approach involving the deletion of hemA, a gene essential for cobalamin production, 
resulted in Q depletion in tRNA, accompanied by the accumulation of its direct precursor, 
oQ. This biochemical phenotype could be reversed by supplementing with 5-aminolevu­
linic acid. The gene responsible for the enzymatic reduction was identi�ed 23 years 
later in 2011 through a biochemical screen of over 1,700 E. coli Keio collection deletion 
mutants, and the enzyme named epoxyqueuosine reductase (EC 1.17.99.6) or QueG 
(114). The QueG protein is homologous to cobalamin-dependent iron-sulfur proteins 
involved in halorespiration (114, 115). Recombinant QueG from B. subtilis exhibited 
activity on a synthetic substrate and hypomodi�ed tRNAs from queG-deleted E. coli, 
requiring a reductant, a redox mediator, and stimulation by cobalamin. Structural studies 
of the B. subtilis QueG, including one with a bound tRNA-Tyr anticodon stem loop 
(indicating the positioning of the Q nucleoside in the enzyme’s active site), have led to 
the proposal of a reaction mechanism involving the formation of a covalent cobalamin-
tRNA intermediate (116).

A survey of bacterial genomes encoding the Q synthesis proteins revealed that QueG 
orthologs were absent in nearly half of these genomes (117), leading to the hypothesis 
that an alternative to QueG must exist in those genomes. A comparative genomics 
approach, focused on genomes lacking QueG, identi�ed members of the DUF208 
family as candidates for the missing epoxyQ-reductase enzyme and this hypothesis 
was validated using genetic approaches leading to renaming this family QueH (117). It 
was initially noted that puri�ed recombinant QueH proteins did not bind cobalamin. 
Subsequent structural characterization of the Thermotoga maritima homolog con�rmed 
that this protein adopted a novel fold, containing a [4Fe-4S] metallocluster with an 
intriguing adjacent, coordinated iron metal and an unprecedented mechanism for the 
reduction of epoxyqueuosine was proposed (118).

An updated analysis of the over 7,000 genomes present in the KEGG data­
base shows that 65% of the genomes encoding both Tgt and QueA also encode 
the cobalamin-dependent QueG while 25% encode the cobalamin-independent 
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QueH (data extracted from https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K07568+K18979+K09765+K00773). A small percentage of genomes (~9%) encoded 
both QueG and QueH (e.g., Acinetobacter baylyi) suggesting that in these organisms the 
availability of the cobalamin cofactor could drive the use of one enzyme over the other 
and that this could be a driving force behind the observed taxonomic distributions of 
queG and queH. Physical cluster data show that both queG and queH can sometimes 
be found adjacent to the tgt and queA genes (Fig. 4), reinforcing the strength of 
gene neighborhood information to link genes and functions (119). Finally, ~10% of 
the bacteria encoding Tgt and QueA lack homologs of both QueG and QueH, (e.g., in 
members of the Polaribacter clade). The pathway could stop at oQ in these organisms 
(e.g., as in E. coli MRE600) (120) or another reductase (speci�c or nonspeci�c) is yet to be 
discovered.

The only Q hypermodiocation found in bacteria is inserted by a paralog of 

glutamyl-tRNA synthase

Hypermodi�cation of queuosine, by the addition of sugar or amino acid side chains, has 
been shown to occur sporadically and only for a subset of tRNAs. For example, galacto­
syl-Q and mannosyl-Q are only found in mammalian tRNAs (40) and the corresponding 
enzymes have only been recently identi�ed (121). The only hypermodi�cation identi�ed 
in bacteria (mainly Proteobacteria) is glutamyl-Q (or GluQ) which is introduced speci�cally 
on the Q moiety present on tRNA-Asn by a paralog of glutamyl-tRNA synthase GluQ 
(YadB) (122–124).

Synthesis of archaeosine in DNA and RNA

The archaeosine base has been found in tRNA and DNA. In both molecules, its synthesis 
starts with the incorporation of preQ0 into the target polymer by a member of the Tgt 
or DpdA family. preQ0 moiety undergoes subsequent transformation into the archaeo­
sine base through one or two catalytic steps, a process that varies depending on the 
organism (Fig. 1). The diverse enzymatic systems enabling the conversion of a nitrile to 
a formamidine moiety showcase instances of both convergent and divergent evolution 
(125). To date, three non-orthologous enzymatic systems catalyzing this reaction have 
been identi�ed, all involving enzymes that are paralogs of those involved in queuosine 
biosynthesis.

Archaeosine synthase, or glutamine: preQ0-tRNA amidinotransferase (ArcS, EC 
2.6.1.97) was the �rst preQ0 aminotransferase discovered nearly 15 years ago in Haloferax 

volcanii utilizing comparative genomics and genetics (126). ArcS, mainly found in 
Euryarchaeota, is a paralog of the aTgt enzyme, featuring an additional domain. It 
was �rst shown that the Methanocaldococcus janaschii ArcS could catalyze the amidino­
transferase reaction in vitro (126). However, follow-up studies revealed a more complex 
pathway, requiring an additional radical-SAM enzyme, RaSEA (127). In Methanosarcina 

acetivorans, ArcS was observed to �rst link the ε-amino group of lysine to the cyano 
group of preQ0. Subsequently, RaSEA activates the molecule for C-N bond cleavage, 
resulting in the formation of G+ and 1-piperidine-6-carboxylic acid as a by-product (127). 
The vast majority (98%) of sequenced Euryarchaeota contain homologs of both ArcS and 
RaSEA, suggesting that the two-enzyme pathway is the primary route for G+ synthe­
sis in this clade (see data at https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K06936+K07557). However, a few Crenoarchaeota, such as Ignicoccus hospitalis 

KIN4/I and Thermo�lum pendens, only encode an ArcS homolog but no RaSEA homolog. 
In addition, ArcS homologs are found in dG+ insertion clusters from phages lacking any 
neighboring radical-SAM encoding gene (10). This implies that a direct one-step route 
may be biologically possible and that further structural and biochemical studies are 
required for clari�cation (128).

In Crenearchaeota, the formation of G+ can be catalyzed by distinct enzymes (129). For 
example, in Pyrobaculum calidifontis, this reaction is catalyzed by the QueF-like (QueF-L) 
ammonium: preQ0-tRNA aminotransferase (EC 2.6.1.B18). This enzyme is a paralog of 
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QueF that lacks an NADPH-binding site but still makes a thioamide intermediate with 
the preQ0-modi�ed target tRNA and using NH3 as a donor to make the G+ product (129–
131). In Sulfolobus solfataricus, the preQ0 amidinotransferase reaction is likely catalyzed 
by a protein fusion between glutamine amidotransferase (Gat) and QueC (129) but 
the enzymatic details of this Gat-QueC remain unexplored. Both QueF-L and Gat-QueC 
homologs have been found in phages involved in the synthesis of the archaeosine base 
in DNA (10, 14), as discussed above. The molecular determinants that drive the substrate 
switch from RNA to DNA in these phage enzymes are still unknown.

Biosynthesis of dADG in bacteria: roles of DpdB and DpdC

The paradigm that deazapurine derivatives were found only in tRNA was broken by the 
detection of dADG and dPreQ0 in bacterial genomic DNA, both originating from the 
preQ0 precursor (14). In Salmonella enterica serovar Montevideo, a DpdA-DpdB complex 
integrates preQ0 into DNA through a transglycosylation base exchange reaction, 
producing dPreQ0, subsequently converted to dADG by DpdC (98, 99) (Fig. 1).

The dpdB gene is detected in 92% of genomes encoding DpdA proteins (132). 
It belongs to the DNA sulfur modi�cation protein family DndB (IPR017642) which 
regulates the transcription of phosphorothioate (PT) DNA-modifying genes (133). The 
ATP hydrolysis function of DndB triggers the disassociation of the DndB-DNA complex, 
converting DndB-ATP into free DndB. This free DndB can then rebind to promoter 
DNA, thereby inhibiting transcription. DndB possesses a conserved DGQHR motif in its 
ATP-binding pocket, which corresponds to the DGQQR motif found in DpdB (14).

Although all DpdABC proteins can bind to DNA, DpdB shows the least DNA binding 
a�nity (98), indicating that its ATPase activity, rather than DNA binding, is key for the 
base exchange reaction. A recent study on the DpdABC complex revealed that the 
DpdB ATP hydrolysis activity is essential for the in vitro base exchange reaction of DpdA 
(99). dpdC is found in 88% of the genomes harboring dpdA (132). DpdC possesses 
a domain resembling the peroxide stress protein YaaA (PF03883). The X-ray crystal 
structure analysis of E. coli YaaA revealed a positively charged cleft and a helix-hairpin-
helix DNA-binding motif, characteristics shared by DNA repair enzymes (134). This aligns 
with the observation that DpdC has DNA-binding capabilities (98). In vitro incubation 
of preQ0-modi�ed DNA with DpdC resulted in the production of dADG-modi�ed DNA, 
either with or independently of DpdA/B (99). This suggests that DpdC can convert 
preQ0-modi�ed DNA to ADG-modi�ed DNA without relying on DpdA/B. However, it is 
important to note the possibility that DpdC �rst transforms free preQ0 into ADG, which is 
then inserted into DNA by DpdA to create dADG. This hypothetical pathway has not yet 
been de�nitively excluded.

SALVAGE AND RECYCLING OF Q PRECURSORS

The biosynthesis of Q-tRNA imposes a signi�cant demand on cellular energy and 
resources, involving the utilization of GTP, various metalloenzymes, and cofactors (Table 
2). To mitigate this metabolic burden, all eukaryotes and many bacteria opt to salvage 
precursors rather than synthesize Q de novo. Eukaryotes acquire the queuine base (q), 
derived from Q-tRNA, through food or microbiota (40). While most bacteria appear 
to salvage preQ0 and preQ1, some also employ Q salvage routes, particularly among 
pathogens (7, 135) (Fig. 6). Dedicated transporters facilitating these salvage routes are 
only beginning to be characterized. Furthermore, given that Q is the only known tRNA 
modi�cation that can be recycled, it is evident that cellular mechanisms must exist for 
reusing/recycling Q degradation products such as Q nucleosides and their phosphate 
derivatives. Their identity and role in Q metabolism are slowly emerging.

Diversity of transporters involved in salvaging Q

Although several strong transporter candidates had been predicted in silico (136, 137), 
the �rst experimental evidence for Q precursor salvage was reported in 2017 for the 
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COG1738 aka YhhQ family classi�ed as the vitamin uptake transporter (VUT) family (TC 
2.A.88). It has since been reclassi�ed as Queuosine Precursor Transporter or QPTR (135). 
Genes encoding members of this family are associated strongly with Q pathway genes 
when analyzed by comparative genomic approaches (Fig. 4). QPTR (UniProt: P37619) 
from E. coli was shown to transport both preQ0 and preQ1 (Fig. 6A) with a slight 
preference for the latter (135).

The substrate speci�city of Q precursor transporters can be predicted from the 
presence and absence of Q pathway genes (7, 135): QPTR homologs found in bacteria 
that harbor queF, tgt, queA, and queG/H are predicted to transport both preQ0 and preQ1, 
while those in organisms that lack queF but harbor downstream enzymes are predic­
ted to only transport preQ1. Noteworthy, some bacteria only encode TGT and QPTR 
homologs. The implication, supported by experimental validation of the corresponding 
Chlamydia trachomatis D/UW-3/CX genes, is that in these organisms, the TGT enzymes 
and QPTR transporters have switched their substrate speci�city for queuine as observed 
in eukaryotes (7, 135) (Fig. 6B). There are some exceptions, such as Bartonella henselae 

that encode only TGT and QPTR enzymes that have retained the capacity to use preQ1 as 
a substrate (138) (Fig. 6D).

The size of QPTR family members ranges from ~19 to 32 kDa and exhibit a predicted 
six transmembrane helices, and like other transporters, must be located at the inner 
membrane with a C-terminal inside appendage in the cytosol (135, 139, 140). However, 
as there are no known structural homologs present in the Protein Data Bank (PDB) for 
the QPTR family, it has not been possible to determine the residues involved in substrate 
recognition that could explain the observed shifts in substrate speci�city (7, 135).

Energy-coupling factor (ECF)-type transporters are a subfamily of ATP-binding 
cassette (ABC) transporters (136, 141). While being exclusive to prokaryotes, they consist 
of two identical copies of cytoplasmic ATPases (A and A′) and two transmembrane units, 
namely the transmembrane component (T) and substrate-binding component (S). Group 
I ECF transporters use a dedicated energy coupling module [TAA′; e.g., Rhodobacter 

capsulatus bioMNY (A, T, S) transports biotin] while group II ECF transporters share the 
energy coupling module with other S components that transport di�erent molecules 
(e.g., Bacillus subtilis thiT (S) transports thiamine) (141). Comparative genomic analyses 
predicted that members of the ECF family transported preQ1: the group I QrtTUVW and 
the group II ECF-QueT (137). These predictions have been experimentally validated in 
only one organism, Clostridioides di�cile, that encodes three ECF-QueT homologs (7). The 
heterologous expression of a reconstituted ECF complex in E. coli shows that one of the S 
components (CD630_16830) can transport preQ1 and Q while another (CD630_2097) 
could only transport preQ1 (7) (Fig. 6C). The distribution of QPTR/YhhQ and QueT/QrtT 
homologs in bacteria predicted to be transporting a Q precursor is sporadic (see data at 
https://www.kegg.jp/kegg-bin/view_ortholog_table?orthol­
ogy=K00773+K09125+K16787+K16786+K16785+K16923+K01737+K10026+K06920+K0
6879+K09457+K07566, Release 108.0, October 1, 2023), suggesting that many more 
bacterial Q precursor transporters are yet to be identi�ed. Candidates identi�ed from 
gene fusion and physical clustering studies are currently under investigation (de Crécy-
Lagard laboratory, unpublished).

Salvage enzymes can regenerate preQ1 and Q from Q/QMP derived from 

tRNA degradation

Queuosine hydrolases are responsible for catalyzing the hydrolysis of the queuosine 
ribonucleoside to produce the queuine base and ribose. Two families with Q hydrolase 
activity have been characterized so far, QueK and Qng1 (7, 142, 143). Initially predicted 
through the analysis of genes regulated by preQ1 riboswitches and named IunH (82), 
the �rst experimentally validated queuosine hydrolase is encoded by a gene under 
the predicted control of a preQ1 riboswitch in C. di�cile (7). Renamed QueK, this 
enzyme belongs to the Ca++-dependent nucleoside hydrolase family (Fig. 6C). Further 
analyses, including sequence and structural assessments, identi�ed signature motifs for 

Review Microbiology and Molecular Biology Reviews

March 2024  Volume 88  Issue 1 10.1128/mmbr.00199-2316

D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
jo

u
rn

al
s.

as
m

.o
rg

/j
o
u
rn

al
/m

m
b
r 

o
n
 2

7
 N

o
v
em

b
er

 2
0
2
4
 b

y
 1

2
8
.2

2
7
.1

9
2
.1

9
7
.

https://www.kegg.jp/kegg-bin/view_ortholog_table?orthology=K00773+K09125+K16787+K16786+K16785+K16923+K01737+K10026+K06920+K06879+K09457+K07566
https://doi.org/10.1128/mmbr.00199-23


speci�cally annotating the QueK subgroup. The queK gene is frequently found in physical 
clusters, both with ECF-queT genes and yhhQ genes (Fig. 4).

Another family with Q hydrolase activity has recently been biochemically and 
structurally characterized. Initially designated DUF2419, this family was observed to 
co-distribute with the eukaryotic TGT enzyme subunit QTRT1 (8). Genetic studies 
demonstrated the involvement of members from this family in Q salvage in S. pombe 

and plants, although the precise reaction remained undetermined, despite structure 
modeling hinting at a potential nucleoside hydrolase role. Recent biochemical and 
structural characterizations con�rm that the homolog from S. thermophilus, S. pombe, 
and humans, named Qng1, indeed hydrolyzes Q in vitro (142, 143). However, it preferen­
tially targets the Q-5′MP and Q-3′MP substrates (143). The widespread presence of Qng1 
homologs in many bacteria, along with their clustering with tgt genes or potential Q 
hydrolase genes (Fig. 4), suggests potential involvement in Q salvage, recycling, and/or 
degradation in these organisms. This hypothesis is yet to be experimentally validated 
and would require a TGT dedicated to queuine incorporation [similar to C. trachomatis 

(7)] or another enzyme for further breakdown of queuine into preQ1 that could be used 
as substrate by canonical bacterial TGTs.

While numerous bacteria, including intracellular pathogens like C. trachomatis, 
directly salvage Q with a TGT with altered speci�city from preQ1 to Q (Fig. 6B), a subset 
of pathogenic bacteria has developed an indirect queuine salvage pathway (7) (Fig. 
6C). In those organisms, preQ1 is regenerated from queuine through the action of a 
recently identi�ed enzyme, queuine lyase or QueL, which belongs to the radical-SAM 
family (see https://radicalsam.org/explore.php?id=cluster-2-7&v=3.0). The uncommon 
chemical mechanism involves a radical-mediated cleavage of a C-N bond along with 
the generation of cyclopentenone compounds.

QueL encoding genes are generally located in an operon with queT and queK but 
also with yhhQ genes (Fig. 4). These physical clustering associations suggest that queuine 
is imported from an environment where it is available (e.g., in mammalian blood) and 
recycled to form preQ1 that, in turn, can be salvaged by most bacterial tgt without 
necessitating any changes in their sequence for substrate speci�city adaptation.

We recently performed a phylogenomic prediction of intracellular organisms that 
encode the direct q pathway by encoding only a full-length TGT [Fig, 7 of (138)]. We 
found it was prevalent and predicted in nearly all members of the Dietziaceae, Gordio­

naceae, and Anasplamataceae families and half of the species in the Borreliaceae and 
Corynabacteriaceae families that all include major human pathogens. We also did a 
prediction of organisms that rely on the q indirect pathway (Fig. 7). These are sparse, 
spread all around the bacterial tree, and are mainly members of the Fusobacteriia, 
Clostridia, Spirochaetia, and Erysipelotrichia classes. Of note, other yet unidenti�ed Q 
lyases might exist and current analyses are likely to underestimate the prevalence of the 
indirect q salvage capabilities.

PHYLOGENETIC DISTRIBUTION OF THE Q PATHWAY IN BACTERIA AND 

ARCHAEA

bTGT is the signature enzyme of the Q pathway, as it is the enzyme responsible for 
the base exchange. Hence, when a given genome harbors a tgt gene, it can be inferred 
with con�dence that the corresponding organism salvages or synthesizes Q. However, 
one should ensure that tgt annotations are correct, as otherwise biological inferences 
will be erroneous. Common annotation issues arise due to the presence of tgt gene 
fragments and the miscalling of dpdA genes as tgt genes. The fragmentation of the tgt 

gene is commonly observed in organisms such as Bartonella quintana that have lost 
the Q pathway (138). Analysis of 4,245 complete representative genomes in the BV-BRC 
database (version 3.31.12) revealed they encoded 3,714 proteins annotated as queuine 
tRNA-ribosyltransferase (EC 2.4.2.29). In all, 50 (~12%) of those were shorter than 260 
amino acids in length and further analyses showed these were tgt gene fragments, 
like in B. quintana (138). bDpdA proteins are currently annotated as <archaeosine 
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tRNA-ribosyltransferase (EC 2.4.2.-) type 5= in the BV-BRC database so they cannot be 
mistaken for bTGT. In other databases such as Uniprot, DpdA proteins are sometimes 
incorrectly annotated as queuine tRNA-ribosyltransferase (see Verru16b_03187, Uniprot 
ID A0A1D8AZ010) though the two families can be readily di�erentiated based on 
sequence similarity and gene neighborhoods (14).

The analysis of the tgt gene distribution across bacterial kingdoms shows it is 
uniformly spread, with independent losses in various clades (Fig. 7). This supports the 
hypothesis that Q was present in the common ancestor of bacteria. The clades that have 
lost tgt are the Actinomycetiae class, the Tenericute phylum, and the Lactobacillaceae 

family. For a few individual organisms in these groups, the absence of Q in tRNA has 
been experimentally validated (112, 146). Across the broader phylogeny, the loss of tgt is 
sporadic. It occurs mainly in symbionts or intracellular pathogens with minimal genomes 
even if the Q synthesis pathways are retained in many of such organisms, as seen in 
several Buchera or Rickettsia species (147, 148).

FIG 7 Presence and absence of encoded signature Q pathways protein TGT and of indirect q salvage pathways in representa­

tive bacterial genomes. A maximum likelihood tree of 10 concatenated ribosomal proteins was created for the species 4,231 

complete representative genomes in the BV-BRC database (https://www.bv-brc.org/, version 3.31.12) (144) and the presence 

(red) or absence (blue) of a full length (>200 aa) TGT encoded protein annotated as Queuine tRNA-ribosyltransferase (EC 

2.4.2.29) were noted in the outside circles. Genomes that encode the indirect Q salvage pathway (QueA, QueG/H, QueK, and 

QueL) are noted in green (outer circle). For better visualization, the branches are grouped and colored by phyla or clade. 

The branches were colored by bootstrap support value. The tree was visualized using the iTOL platform https://itol.embl.de/ 

(version 6.8.1) (145). The branch length scale bar indicates the evolutionary distance of 0.5 amino acid substitutions per site.
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It was previously thought that the Q modi�cation was only found in bacteria and not 
in archaea. However, it was recently reported that the entire Q pathway is encoded in 
some archaea, notably in Woesearcheaota genomes (149). A current limitation of these 
observations is the lack of experimental validation. To date, Q has not been observed in 
any archaeal tRNA.

DIVERSITY OF DEAZAPURINE-DERIVED NATURAL PRODUCTS

Microorganisms are proli�c producers of a diverse array of natural products (NPs) (150) 
also referred to as secondary or specialized metabolites, which often confer �tness 
advantages in their environments (151). Exploring the biosynthetic capacities of the 
microbial world has revealed numerous anticancer (152), anti-in�ammatory, photopro­
tectant (153), and antibiotic (154) NPs, including those harboring 7-deazapurine moieties 
(155). Deazapurine-derived NPs have recently attracted increasing scienti�c interest due 
to their diverse chemical structures and biological activities (156–158). The distinctive 
chemistry and biology of these nucleosides and nucleoside-like compounds o�er an 
intriguing path to investigate their range of structures, biosynthetic pathways, and 
evolutionary histories.

Pyrrolopyrimidine-derived NPs exhibit a remarkable diversity, still far from being 
fully described. They are exempli�ed by the nucleosides toyocamycin from Streptomy­

ces toyocaensis and S. rimosus, as well as sangivamycin from S. rimosus, that exhibit 
diverse bioactive properties including antibiotic, antitumor, and antiviral activities (16, 
18). Tubercidin, discovered in S. tubercidis, also demonstrates versatile characteristics, 
including antimicrobial, antiparasitic, antiviral, and antitumor properties (15). Beyond 
these exemplars, the broader array of deazapurine-derived compounds reveals a myriad 
of functionalities, underscoring their potential as promising sources for novel therapeutic 
agents (Table 1).

The central precursor, preQ0, serves a dual role, being not only a critical participant 
in DNA and tRNA modi�cations but also a precursor for putative NPs. In fact, preQ0 
itself has shown anticancer properties (159), potentially contributing to the bioactivity 
seen in its downstream NPs. Although sangivamycin, toyocamycin, tubercidin, hui­
mycin, kanagawamicin, echiguanine, cadeguomycin, and dapiramicin share a com­
mon pyrrolopirimidine core, deazapurine-derived NPs have notable chemical diversity 
with examples of distinct structural modi�cations. Commonly, deazapurine-derived 
metabolites attach a ribose moiety to their core (17). The biosynthesis of pyrrolopyrimi­
dines is carried out by a series of reactions, which is initiated with the conversion of 
GTP to preQ0, orchestrated by pivotal genes including folE, queD, queE, and queC as 
previously described. For example, the toyocamycin biosynthetic gene cluster harbors 
dedicated homologs from preQ0 biosynthesis. ToyD catalyzes the reaction of GTP to 
H2NTP (as in GTP cyclohydrolase I; FolE), ToyB catalyzes H2NTP to CPH4 (as in QueD), 
ToyC catalyzes CPH4 to CDG (as in QueE), and ToyM catalyzes CDG to preQ0 (as in QueC). 
From here, further tailoring occurs depending on the gene content of the biosynthetic 
gene cluster (1, 28). For example, the presence and/or regulation of other biosynthetic 
genes can drive the conversion of one NP to another, as in Streptomyces rimosus where 
both toyocamycin and sangivamycin are produced through a common biosynthetic 
pathway (17). Sangivamycin emerges as a downstream product of toyocamycin under 
certain regulatory conditions that, when met, modify toyocamycin by a nitrile hydratase 
(TNHase), introducing a non-heme iron or non-corrin cobalt ion to amide nitrogen and 
cysteine sulfurs (1). In another example, huimycin is produced by preQ0 methylation 
by HuiC (a SAM-dependent methyltransferase) before attaching N-acetylglucosamine 
through the glycosyltransferase HuiG (28). These tailoring variations represent only a 
subset of what has been described and what is yet to be discovered. As with other NPs, 
their unique chemistries can in�uence their interactions with enzymatic, biological, and 
ecological processes.

While many deazapurine-derived natural compounds have been identi�ed (Table 1), 
their biosynthetic pathways remain elusive. This renders these compounds <orphans= in 
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a sense, as the genes responsible for their biosynthesis have not yet been characterized. 
In the MIBiG (Minimum Information about Biosynthetic Gene Cluster) database (160), 
only tubercidin, toyocamycin, sangivamycin, and huimycin have their biosynthetic gene 
clusters (BGCs) partially annotated. In part, this is due to the lack of their biosynthetic 
rules being incorporated in conventional genome mining algorithms, such as antiSMASH 
(161). This gap underscores the need for orthogonal approaches to unveil the genetic 
diversity of these intriguing deazapurine-derived NPs, de-orphan known NPs by linking 
them to their cognate BGCs, and mine genomes for BGCs predicted to be novel examples 
of the class. As more putative deazapurine BGCs are identi�ed, biosynthetic genes 
must be carefully annotated to properly predict their enzymatic functions. Comparative 
genomic analyses have uncovered genetic signatures associated with DNA (dpdAs genes) 
(14) and tRNA modi�cations (bacterial tgt genes and their homologs in archaea arcTGT/
arcS) (91). If we exclude regions that encode these characteristic DNA and tRNA-mod­
ifying enzymes, the remainder may be BGCs responsible for generating deazapurine-
derived NPs.

FUNCTION OF DEAZAPURINES

Functions of Q and G+ in RNA

Complex roles of Q in decoding accuracy and eociency

Q is exclusively found at position 34 of the anticodon stem-loop of the four tRNAs with 
GUN anticodons that decode the NAC/U codons encoding His/Tyr/Asn/Asp, all located 
in split codon boxes (Fig. 8). Over the last 20 years, a combination of studies in di�erent 
organisms using +1 or −1 frameshifts (162, 163), amino acid misincorporations (11, 12, 
164), stop-codon readthrough assays (13, 165), and sense codon reassignment analyses 
(166) have been employed to better understand Q function. Decoding of reporter genes 
with enrichments of C or U ending Q-dependent codons (13, 167–169), structures 
focusing on codon/anticodon interactions in the ribosome decoding sites (170, 171), 
evolutionary analyses (172), and ribosome pro�ling studies (12, 173) can be combined 
in a model where the presence of Q can stabilize or destabilize the interactions of 
the Q34U35N36 anticodon with N1A2U/C3 codons in the ribosome A site. This, in turn, 
homogenizes the translation rates of C or U ending codons and modulates the e�ciency 
of second codon mismatch in both directions near cognate recognition (for Cys and Gly) 
(12, 164). The speci�c role of the Q modi�cation in translation speed and accuracy does, 
however, vary greatly between tRNA isoacceptors and organisms (Fig. 8). For example, 
RiboSeq provides a genome-wide measurement of translation speed at every codon 
(174). Applied to mammals, it suggests that Q increases the speed or e�ciency of 
decoding at all NAC/U codons but with a marked di�erence in ratios: the NAU codons are 
more dependent on the Q modi�cation than are the NAC codons (173) as predicted from 
the pioneering studies of Grosjean and Nishimura that found that Q-containing tRNAs 
bind better to U than to C codons (4, 175). In Schizosaccharomyces pombe however, Q 
increases the translation speed of the codons G/CAC but not of the G/CAU Asp and His 
codons, whereas it decreases the translation speed of the A/UAU but not of the A/UAC 
Asn and Tyr codons (12). These results are consistent with the theory of Grosjean and 
Westhof (170) where codon-anticodon strength is equilibrated across the genetic code 
and Q plays di�erent roles for intermediate strength codons (e.g., Asp, His) compared 
to weak codons (e.g., Asn, Tyr). The only bacterial RiboSeq study of Q-de�cient mutants 
was recently performed in Vibrio cholerae where the absence of Q led to a more e�cient 
translation of UAU (Tyr) and GAU (Asp) (13). These results contrast with a recent analysis 
of EGFP reporter genes recoded with only C or U ending Q-codons. Here, in an E. coli 

queF mutant, the U-ending codon reporter gene is translated less e�ciently (20%) (168). 
Of note, the distinct types of Q-dependent U ending codons were not di�erentiated 
in this study. Some of the di�erences observed between codons could be caused by 
the presence of the hypermodi�cation of Glu-Q on tRNA-Asp (166). It has recently 
been observed that Shewanella glacialimarina phage 1/4 in�uences the level of Q in 
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tRNA throughout the phage infection cycle, lowering it in the early stage and gradually 
increasing it (176). It is proposed to help in the translation of the genes expressed late in 
the cycle to have a preferred GUA codon for tyrosine decoding.

Although Q at position 34 clearly �ne-tunes the e�ciency and accuracy of transla­
tion, its role varies with each of the four Q-modi�ed tRNAs and one must be cautious 
not to generalize �ndings from one organism to another without further experimental 
validations. Indeed, the role of Q is a consequence of an evolutionary adaptation to all 
other components of the translation machinery, including the presence of other tRNA 
modi�cations or the codon usage that is speci�c to every species. Q is predicted to have 
been present at the origin of bacteria (177), yet organisms can adapt to life without this 
modi�cation, as it has been repeatedly lost along the tree of life (Fig. 7). More studies 
are required to understand the role of Q in translation in di�erent bacteria and in the 
few Archaea where it is present. This could include RiboSeq analyses of Q+ and Q- in 
E. coli and B. subtilis, to better link the pleiotropic phenotypes caused by Q de�ciency 
(discussed below) and the underlying molecular mechanisms.

Q is rarely a determinant for other enzymes interacting with tRNAs

Q functions as a determinant for Dnmt2, the enzyme responsible for inserting the m5C38 
modi�cation in tRNAs in Eukaryotes (178). However, it is not known to act as a determi­
nant for any modi�cation enzyme in bacteria. In E. coli, tRNA extracted from a Q- strain 

FIG 8 E�ects of Q on decoding speed in di�erent organisms. Decoding of GUN codons by Q-modi�ed tRNAs in ribosomal A sites. The hydrogen pairing pattern 

of the wobble base is a�ected by the presence/absence of Q and decoding speed has been measured by RiboSeq in three organisms to date: H. sapiens (173), S. 

pombe (12), and V. cholerae (13).
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does not show any variations in the levels of other tRNA modi�cations (unpublished data 
from Dedon and de Crécy-Lagard). Although it has been reported that tRNA-Tyr in E. coli 

is less e�ciently charged when Q34 is replaced by C34 (179), the absence of signi�cant 
growth defects in an E. coli tgt mutant suggests that this defect may not be relevant 
in vivo (180, 181). Q has been implicated in protecting against ribonuclease cleavage 
in mammals (182), but this protective role has not been observed in bacteria to date. 
Ribotoxin E5 speci�cally cleaves Q-modi�ed tRNAs in vivo, yet Q is not a determinant for 
recognition (183).

Pleiotropic phenotypes linked to Q or GluQ deociency vary across organisms

As listed in Table 3, the absence of Q leads to a wide variety of phenotypes across 
bacteria. Until recently, it was thought that Q was dispensable as several important 
model organisms such as Saccharomyces cerevisiae, Arabidopsis thaliana, or Mycoplasma 

genitalium have lost the enzymatic capacity for the modi�cation (184) and the tgt mutant 
of E. coli does not show any growth defects in most conditions (180). The only notable 
phenotype was the virulence de�ciency of a Shigella �exneri Q- strain caused by a 
reduced expression of the virF regulator (185). Several studies in the last 3 years have 
now changed this view with roles in oxidative stress resistance, bio�lm formation, and 
metal homeostasis emerging as common themes.

TABLE 3 Phenotypes linked to Q genes de�ciency or overexpression in bacteria

Organism Phenotype References

Oxidative stress

  Escherichia coli tgt mutant is slightly more sensitive to oxidative stress. (181)

  Streptococcus thermophilus tgt mutant is more sensitive to oxidative stress (186)

  Vibrio cholerae Translation of regulator of oxidative stress rtxA is increased in tgt mutant (13)

Metal homeostasis

  Escherichia coli tgt mutant is more resistant to cobalt and nickel and more sensitive to cadmium (181)

  Acinetobacter baumanii queD and tgt expression induced by metal sequestration enzyme and metal limitation

reduces Q levels in tRNA

(57, 187)

  Arthrobacter viscosus Overexpression of the queC gene in E. coli confers aluminum resistance (188)

  Erwinia amylovira yhhQ and queF overexpressed in high copper (189)

  Neisseria meningitidis queC and queF induced by zinc limitation (190)

  Pseudomonas putida queF/cinQ expression is induced by copper but mutant does not give any copper sensitivity (191)

  Agrobacterium tumefaciens QueF is highly induced by manganese limitation (192)

Virulence

  Shigella �exneri Reduced virulence in tgt mutant because of decreased levels of VirF (193)

  Rhizobium meliloti Mutants in queC, queF, and tgt are de�cient in triggering cytoskeleton modi�cation in 

uninvaded Hela cells

(194)

  Escherichia coli Bio�lm and cell aggregates diminish in a ΔqueF and iboth with the addition of LPS l levels 

increase when some of the Q synthesis genes are overexpressed

(168)

Miscellaneous

  Escherichia coli tgt mutant has �tness defect in the stationary phase

Growth defect with streptomycin but not ampicillin or spectinomycin

(180)

(181)

  Streptococcus gordonii queA mutant has �tness cost in the stationary phase (195)

  Vibrio cholerae TnSeq data show that mutations in tgt and queADEF genes confer sensitivity to sub-MIC 

tobramycin

(196)

  Bacillus subtilis Overexpression of queCDEF genes in VBNC cells and queG mutant more sensitive to Kan in 

those cells

(197)

  Pseudomonas simiae TnSeq data show that queA mutants are de�cient in deoxyribose catabolism (198)

  Staphylococcus epidermidis queF, queH, and tgt induced by pH (199)

  Bacillus subtilis Sporulation and bio�lm reduced in ΔqueF mutant (168)

  Pseudomonas putida Growth inhibition of E. coli by P. putida increased when queF is overexpressed (168)
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Two types of oxidative stress phenotypes have been linked to Q de�ciency in bacteria 
to date. The �rst is a mild sensitivity to oxidative stress as seen in S. thermophilus and 
E. coli (Table 3) that is not yet understood at the molecular level, but it is possible that 
this sensitivity may be due to a general response to protein aggregation triggered by 
conditions that a�ect translation speed, as previously discussed (181). This mechanism 
tying Q and oxidative stress could be conserved between kingdoms (200, 201). The 
second is a Modi�cation Tunable Transcript (or MoTT) regulatory mechanism (202, 203), 
as seen in V. cholerae where the translation of the rtxA gene is decreased under Q 
excess because it is enriched in tyrosine encoding TAT codons (13). In V. cholerae, RtxA 
inactivates the main oxidative stress activator SoxR. High Q levels would lead to an 
increased oxidative stress response than would low Q levels. This response is required 
to resist aminoglycosides and would explain why the V. cholerae Q- mutants are more 
sensitive to tobramycin (196). It was also shown in V. cholerae that the transcription of 
the tgt gene is regulated by the central regulator CRP and by the stringent response. 
This leads to an intricate regulatory model where stress increases the levels of Q, leading 
to decreased levels of TrxA and the induction of oxidative stress response through the 
activation of SoxR. This second mechanism appears species speci�c as the regulation 
observed in V. cholerae is absent in the fellow Enterobacteriaceae E. coli.

The role of metals in Q synthesis was �rst observed by one of the pioneers in the 
study of Q synthesis, Helga Kersten, who found that the presence of iron and B12 
in the media a�ected the ratio of oQ/Q in S. typhimurium and E. coli (113) because 
the last enzyme in the Q pathway in this organism is the B12-dependent iron-sulfur 
cluster enzyme QueG (114). Additional sporadic observations have linked metal and Q 
synthesis genes over the years (Table 3). Most of the enzymes in Q synthesis are metal 
dependent (57, 204) (Table 2). FolE, QueD, QueC, and Tgt are zinc-dependent enzymes 
and QueE is an iron-dependent radical-SAM enzyme. Comparative genomic analyses of 
genes in the Zur regulon predicted that Q might be required under zinc limitation in 
certain organisms (50, 205). In addition, metal limitation was shown to lower Q levels in 
Acinetobacter baumanii and induce the expression of Q biosynthesis genes (57, 187), but 
it is yet to be shown that these phenotypes are part of a regulatory circuit. The E. coli 

tgt mutant is more resistant to nickel and cobalt and more sensitive to cadmium (181). 
The sensitivity to nickel is possibly caused by a lower expression of the nickel transporter 
encoding operon nikABCDE when Q is absent, but the underlying mechanism has not 
been elucidated. One hypothesis that is yet to be experimentally validated is that NikR 
the repressor is enriched in TAT codon and could be e�ciently translated in the absence 
of Q (13).

A recent study combining proteomic, codon-usage analyses, and phenotypic 
validations in several model bacteria reported reduced bio�lm formation in queF 

mutants of both E. coli and B. subtilis (168). The study also linked several other virulence- 
related traits/proteins to Q de�ciency and/or to an enrichment in Q-dependent U ending 
codons. The authors proposed that Q could have a general role in regulating bacterial 
virulence by modulating the translation of virulence genes. This hypothesis is yet to 
be validated with RiboSeq data, recoding of target genes, and identi�cation of the 
signal(s) that would modulate Q levels in conditions where virulence genes would be 
di�erentially expressed.

Q biosynthesis is complex, requires several metals (as discussed above), draws on 
many building blocks from central metabolism (GTP, SAM, ATP, cobalamin) (Table 2), and 
shares intermediates with essential cofactors such as tetrahydrofolate (Fig. 3). Thus, Q 
could be used to monitor many aspects of cellular physiology (206). We anticipate that 
the next few years will reveal more examples of regulatory roles of the Q modi�cation 
in bacteria as more phenotypes get reported and their molecular mechanisms get fully 
dissected (as done to date only in the case of the V. cholerae RtxA). This will likely be 
accelerated as new methods for Q detection become more accessible (207–212) and 
more RiboSeq data sets of Q-de�cient cells are generated.
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We emphasize, however, that based on the current known cases, MoTT-dependent 
regulations when identi�ed will be very species-speci�c. In many organisms, the absence 
of Q might just lead to a mild increase in amino acid misincorporations and/or aggre­
gation phenotypes (12) that could become problematic under additional proteotoxic 
stresses, as with many other tRNA modi�cations de�cient cells (213).

The precise role of the hypermodi�ed Glu-Q tRNA-Asp is not fully understood, but 
it has been associated with stress resistance, observed through its co-transcription with 
the stringent response-regulated gene dksA in many gammaproteobacteria, including a 
Shigella �exneri mutant that lacks the Glu-Q modi�cation that demonstrates increased 
sensitivity to osmotic stress (214).

Q and its precursors are micronutrients

All eukaryotes salvage the queuine (q) base derived from bacterial Q directly from the 
microbiota or indirectly through the diet (40). The last 10 years have seen a reemer­
gence of Q as a micronutrient important for human health (215, 216), particularly for 
optimal brain function (217, 218). Even if it is yet to be explored, queuine should also 
be an important micronutrient for the health of most plants but crucifers that have 
lost Q biosynthesis genes (8). Another unexplored area is how bacteria compete for Q 
precursors particularly in speci�c niches. Di�erent bacteria of the microbiota can make 
Q de novo, be preQ1/preQ0/Q scavengers, or have lost all genes of the pathway (7, 168). 
This may encourage competition between sympatric organisms for Q as is observed for B 
vitamins (219, 220). Indeed, Q supplementation leads to an increased level of α-diversity 
among intestinal microbiota (42). The amount of Q produced and utilized by the gut 
microbiome will have health consequences on the host that are just starting to be 
appreciated. For example, the gut microbiome is enriched in Q-producing bacteria in 
obese mice (41) or chickens raised outdoors compared to indoors (221).

Structural role of G+ in tRNA stability

Since its discovery in the early 1990s (5), the proposition that G+, primarily located at 
position 15 and occasionally at 13 in archaeal tRNAs (91), plays a structural role has been 
substantiated. This hypothesis has been con�rmed both in vivo and in vitro across various 
archaeal models. Experiments involving random and targeted deletion of G+ synthesis 
genes in thermophilic and mesophilic archaea (9, 91, 222, 223) demonstrated that the 
absence of G+ in tRNAs resulted in a thermosensitivity (Ts) phenotype in the hyperther­
mophile Thermococcus kodakarensis but not in the mesophiles Haloferax volcanii and 
Methanosarcina mazei. A comparison of thermal denaturation pro�les between fully 
modi�ed T. kodakarensis tRNAs and naked transcripts with or without G+ revealed that 
the presence of G+ protected from melting, particularly in the transcripts. These �ndings, 
obtained by two independent laboratories, collectively underscore the role of this 
modi�cation in adapting to high growth temperatures. Nevertheless, the conservation of 
this modi�cation in most sequenced Archaea (i.e., not only limited to thermophiles), the 
absence of a Ts phenotype in G+-de�cient M. mazei, and the cold-sensitive phenotype 
of G+-de�cient H. volcanii suggest that the roles of G+ might extend beyond thermotoler­
ance.

Function of deazapurines in DNA

dADG is used by bacteria to discriminate self from non-self

The bacterial dpdABC genes that modify genomic DNA with dADG are located in 
genomic islands called dpd islands. These islands contain a consistent set of nine genes 
(DpdABC-DpdEGIJKD) with minor variations, that are sporadically distributed around 
the bacterial phylogenetic tree and most certainly spread through horizontal gene 
transfer (14). Classical transformation e�ciency experiments revealed that plasmids 
extracted from cells expressing dpdABC and subsequently modi�ed with dADG were 
more e�ciently transformed in host cells harboring dpdEFGHIJ than plasmids extracted 
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from cells expressing dpdAB and hence modi�ed with preQ0 or unmodi�ed plasmids. 
These di�erences in transformation e�ciencies disappeared after the disruption of any 
of the dpdEGIJKD genes (98).

These features bear a resemblance to the well-characterized <self-nonself discrimi­
nation= mechanism of methylation-based Restriction-Modi�cation (R-M) systems. R-M 
systems, typically composed of a methyltransferase (MTase) and a restriction endo­
nuclease (REase), are considered primitive immune systems in bacteria, protecting 
against bacteriophages or other invading DNA. A similar defensive feature suggests that 
DpdABC-DpdEGIJKD constitutes a novel dADG-based R-M system, recognizing the dADG 
status of invading foreign DNA, such as plasmids (14, 98). DpdABC modi�es DNA with 
dADG, while DpdEGIJKD acts as the cognate restriction enzymes that recognize foreign 
DNA lacking ADG modi�cation and may initiate its cleavage.

Deazapurines are used as anti-restriction strategies by phages

The suggestion that 7-deazaguanine modi�cations might impede digestion by 
restriction enzymes was proposed upon their discovery in Enterobacteria phage 9g (14), 
given the observed resistance of the phage’s DNA to initial digestion (224). Subsequent 
comprehensive testing by New England Biolabs on this phage DNA revealed that only 
restriction enzymes interacting with guanines would be inhibited (225). Notably, EcoRV, 
known to have guanine in its recognition site, was entirely inhibited when the guanine 
was replaced by a 7-deazaguanine (226). Further exploration involving various bacter­
iophages with 7-deazaguanine derivatives con�rmed that all natural 7-deazaguanines 
protect against digestion (6, 10). A connection between the recognition sequence of 
Enterobacteria phage CAjan (<GA= and <GGC=) and the range of inhibited restriction 
enzymes was established, indicating that only enzymes with recognition sites containing 
<GA= are a�ected (100). In addition, dPreQ0 in Pseudomonas phage iggy was found to 
protect against Cas9 digestion and potentially other DNA-degrading defense systems 
(101).

Function of deazapurine small molecules

In therapeutic contexts, toyocamycin, while potent against tumors, also demonstrates 
substantial host toxicity (3, 17). Tubercidin and its analogs are potent antimicrobi­
als, particularly against Candida species and Mycobacterium tuberculosis (227). Sangiva­
mycin and echiguanines A-B exhibit high cytotoxicity and inhibit protein kinase C. 
The mechanism of action for echiguanines could be involved in phosphatidylinositol 
turnover and with cell surface tyrosine kinase receptors [members of the platelet-derived 
growth factor (PDGF) family]. On the other hand, sangivamycin might have two possible 
mechanisms of action: cell death by apoptosis [i.e., protein kinase C (PKC) and c-Jun 
NH2-terminal kinase (JNK) activation] and by growth arrest [i.e., cyclin-dependent kinase 
(CDK) inhibition, DNA damage, and p21 induction) associated with multidrug-resistant 
breast cancer lines (16, 22). Collectively, these compounds intervene in cellular processes 
associated with adenine nucleosides, exhibiting diverse e�ects rather than targeting 
a singular cellular entity or process (1). As such, these compounds showcase various 
modes of action, leading to hypotheses that their impacts on cellular metabolism can 
occur at multiple levels. Despite the paucity of identi�ed self-resistance mechanisms 
for 7-deazaguanines in the producing organisms, the extracellular release of these 
molecules in the culture might suggest that it safeguards the producing strains (1). 
However, there is no empirical evidence for this assumption and further analyses are 
required to validate this hypothesis.
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DETECTION AND BIOTECHNOLOGICAL USES OF DEAZAPURINES

7-deazapurine detection methods

Gel-based assays coupled with Northern blotting that separate and detect Q-modi�ed 
tRNA through the addition of acryloylaminophenyl boronic (APB) acid have made Q 
detection accessible to numerous laboratories since the 1980s (228). However, the utility 
of APB gels is con�ned to Q detection alone. Traditionally, the detection and quanti�ca-
tion of other deazapurines relied on liquid chromatography-mass spectrometry (LC-MS) 
(229). Although lacking single nucleotide resolution, the heightened sensitivity of these 
methods now allows the detection of modi�cations with minimal starting material, 
making them indispensable when combined with synthetic chemistry for the discovery 
of new modi�cations (230, 231).

Nanopore technology was successfully used to detect preQ0 in phage DNA (100, 101) 
but next-generation methods have also recently been developed to detect Q, preQ1, 
and preQ0 in RNA. To be detected at the single nucleoside level, chemical treatment 
(211) or labeling of the tRNA by a non-natural preQ1 derivative (232) must be performed 
before sequencing, even though some polymerases have been found to make more 
mistakes in the presence of Q and hence can be used to detect the modi�cation by 
mapping the errors (208, 212). Direct sequencing by nanopore was recently used to 
detect Q and preQ1 in tRNA (208, 212). This method does not require prior treatments 
or labeling but does require comparing modi�ed to unmodi�ed samples, reminiscent of 
bisul�de sequencing strategies to measure DNA methylation patterns. The toolbox for 
deazapurine detection is expanding with single base resolution methods and although 
many are not yet cost-e�ective for tRNA modi�cations, they may be critical to survey the 
locations of deazapurine modi�cations in DNA.

Biotechnological uses of deazapurines and their biosynthetic enzymes

At the frontiers of unique biochemistry and microbial defense systems, deazapurines 
and their biosynthetic enzymes have emerged as versatile molecular tools in green 
chemistry, genetic engineering, and pharmaceutical development. Harnessing the 
enzymatic reduction of nitrile to primary amine would be of great interest for green 
chemistry applications (233). This reaction is crucial in synthetic chemistry, traditionally 
involving harmful reducing agents and complex blocking/deblocking processes (234–
237). Exploring enzymatic nitrile reduction o�ers an alternative to synthetic methods. 
Despite QueF enzymes typically favoring preQ0 as a substrate, advancements in enzyme 
design raise the possibility of using QueF as a template for creating versatile nitrile 
reductases that accept a broader range of substrates. A systematic screening of QueF 
type I, II, and QueF-like enzymes could identify homologs that could accept non-canoni­
cal substrates and serve as the basis for directed evolution approaches that could greatly 
expand our chemical/enzymatic toolkit (238).

Wild-type bacteria encode multiple defense systems against mobile genetic elements 
(MGEs), such as plasmids, transposons, and bacteriophages (239). In many cases in 
both bacteria and archaea, the �rst line of defense is provided by restriction/modi�-

cation systems. Several of these MGEs are employed in genetic engineering applica­
tions, including plasmids in complementation assays, transposons in mutagenesis, and 
strategies against pathogens (e.g., phage therapy). Thus, it has been proposed to use 
7-deazaguanine DNA modi�cations as a shield to protect against a wide variety of 
restriction enzymes (225) [and potentially other defense mechanisms (101)] during 
the initial entry of the MGE (International Patent Application No. PCT/US20/21886). 
Consequently, the 7-deazaguanine-modi�ed MGE would withstand the �rst defensive 
barrier of the target bacteria, avoiding degradation by an organism’s restriction-modi�-

cation systems.
As we discussed before, pyridopyrimidines derivatives exhibit utility as anticancer, 

antiviral, and antibiotic agents, which can lead to the discovery of deazapurine-like 
NPs or serve as a sca�old for synthetic or mimics NPs (240, 241). For instance, 
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some FDA-approved drugs such as ribociclib (242) fododesine, and ruxolitinib contain 
7-deazapurine moieties, which are being used to treat breast cancer, leukemia, and 
pleural mesothelioma, respectively (243). In another study, using 7-deazapurine, as 
an alternative to conventional purine structures, researchers were able to synthesize 
compounds that exhibited signi�cantly enhance characteristics. These compounds not 
only displayed greater potency but also showcased an increased level of selectivity. 
Moreover, the resultant compounds exhibited favorable pharmacokinetic properties, 
making them highly promising candidates for applications in the context of cardiac 
troponin I-interacting kinase (TNNI3K) (244).

7-Deazapurines act as important analogs of biogenic purine nucleosides. Upon 
replacing the N7 atom with carbon, these compounds gain increased electron den­
sity, enabling diverse substituents at the C7 position. This increased electron density 
makes 7-deazapurines particularly versatile in terms of their chemical functionalization. 
These modi�cations may be crucial in the development of compounds with enhanced 
biological activity, especially in the context of interactions with nucleic acids like DNA 
and RNA (157).

CONCLUSIONS

The recent surge in 7-deazapurine-related research prompted this review. Following the 
initial exploration of Q and G+ in the 1980s, the �eld experienced a downturn by the end 
of the century, with only a few papers annually. However, the advent of whole-genome 
sequences, coupled with the rising interest in epigenetics and epitranscriptomics, has 
sparked a renaissance, resulting in over 20 papers per year. This body of knowledge 
remains however con�ned to specialists, as pathway databases inadequately capture 
it. Comparison among Gene Ontology (245), KEGG (246), and MetaCyc (247) (Table 4) 
reveals that while Q synthesis is well documented, archaeosine synthesis is incomplete, 
and DNA modi�cation pathways, even for those like dG+ published seven years ago, 
are nonexistent. Consequently, recent papers may overlook that preQ0-related clusters 
in certain phage genomes pertain to DNA modi�cation genes, not tRNA modi�cation 
genes (248).

TABLE 4 Comparison of deazapurine-related pathway annotations in knowledge databases

DatabAse objects Pathway names Notes

Metacyca Good coverage of RNA modi�cations with a few missing enzymes or 

intermediates, No DNA modi�cations, one natural product.

  PWY-6700 Pathway: queuosine biosynthesis I (de novo) Q and GluQ synthesis complete

  PWY-8105 Pathway: queuosine biosynthesis II (queuine salvage) Direct q salvage, no transporter, no Qng1

  PWY-8106 Pathway: queuosine biosynthesis III (queuosine salvage) Indirect pathway from C. di�cile, complete with transporter 

(RXN-21036)

  PWY-6703 Pathway: preQ0 biosynthesis Missing ADG intermediate

  PWY-6720 Pathway: toyocamycin biosynthesis Complete

  PWY-6711 Pathway: archaeosine biosynthesis I ArcS missing raSEA

  PWY-7923 Pathway: archaeosine biosynthesis II QueF-like but missing Gat-QueC

KEGGb All pathways nonexistent except for preQ0

  map00790   Folate biosynthesis Only preQ0 synthesis as part of the folate pathway map, no ADG 

intermediate

Geneontology.orgc Queuosine synthesis is well described; the other pathways are 

inexistent or fragmentary

  GO:0046116 Queuosine metabolic process From GTP to Q in Bacteria, missing FolE2, and QueH

  GO:0002927 Archaeosine-tRNA biosynthetic process Very fragmentary in terms of enzyme captures

  GO:1990397 Queuosine salvage Just QPTR no other transporter gene

  CHEBI:134606 Toyocamycin Not linked to genes

  CHEBI:45075 preQ0 Not linked to genes
ahttps://metacyc.org.
bhttps://www.kegg.jp/kegg/.
chttps://amigo.geneontology.org/amigo/landing.
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This review addresses lingering questions that will drive future research. Although 
pathways for preQ0-derived molecules are better understood than ever, validation or 
discovery of some pathway enzymes is still required (Fig. 1). Many transporters for Q 
precursors are unidenti�ed, and comprehension of how Q precursors circulate within 
microbial communities or between communities and hosts remains inadequate. The 
newfound associations between Q, considered a quasi-vitamin source (215), and various 
human diseases (249, 250) have spurred investigations into Q synthesis in the human 
microbiota (251), but more studies are needed to fully understand the interplay of 
the gut microbiome and the diet in supplying the Q precursors to the human host. Q 
degradation is unexplored, and like other modi�ed ribonucleosides (252, 253), Q may 
serve as a carbon or nitrogen source.

Furthermore, knowledge about the regulation of 7-deazapurine synthesis genes in 
bacteria without riboswitches is nonexistent. Mechanistically, the observed di�erences 
in how Q a�ects the decoding speed of U or C-ending GUN codons between species 
(Fig. 8) lack understanding. In addition, the prevalence of regulatory circuits using Q, 
as described in V. cholerae (13), and whether preQ0 and preQ1 have roles as signaling 
molecules remain unknown.

Comparative genomics of the enzymatic machinery involved in the production of 
deazapurine NPs can unveil valuable insights into the evolutionary forces that shape 
these pathways, including patterns of conservation, duplication, and adaptation (151, 
254). Importantly, 7-deazapurines are not con�ned solely to bacterial sources. Their 
occurrence in sponges and algae underscores their broader distribution (1), perhaps 
suggesting an ancient ancestral origin and potential biological interactions mediated 
by this privileged structural motif that has perpetuated it across diverse evolutionary 
lineages. The structural diversity seen in these compounds might re�ect an evolutionary 
divergence that has occurred to adapt to distinct niches.

The potential use of 7-deazaguanine derivatives in biotechnology is a promising 
avenue for exploration. These DNA modi�cations, protecting against restriction enzymes 
and possibly other defense systems, o�er opportunities for research involving naturally 
isolated bacteria that are challenging to genetically manipulate. Alternatively, bacter­
iophages modi�ed with 7-deazaguanine emerge as strong candidates for phage therapy, 
given their increased likelihood of surviving the initial infection round (International 
Patent Application No. PCT/US20/21886).
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