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Fused Gromov-Wasserstein Variance Decomposition
with Linear Optimal Transport

Michael Wilson, Tom Needham and Anuj Srivastava

Abstract—Wasserstein distances form a family of metrics on
spaces of probability measures that have recently seen many
applications. However, statistical analysis in these spaces is com-
plex due to the nonlinearity of Wasserstein spaces. One potential
solution to this problem is Linear Optimal Transport (LOT). This
method allows one to find a Euclidean embedding, called LOT
embedding, of measures in some Wasserstein spaces, but some
information is lost in this embedding. So, to understand whether
statistical analysis relying on LOT embeddings can make valid
inferences about original data, it is helpful to quantify how well
these embeddings describe that data. To answer this question,
we present a decomposition of the Fréchet variance of a set of
measures in the 2-Wasserstein space, which allows one to compute
the percentage of variance explained by LOT embeddings of
those measures. We then extend this decomposition to the Fused
Gromov-Wasserstein setting. We also present several experiments
that explore the relationship between the dimension of the
LOT embedding, the percentage of variance explained by the
embedding, and the classification accuracy of machine learning
classifiers built on the embedded data. We use the MNIST
handwritten digits dataset, IMDB-50000 dataset, and Diffusion
Tensor MRI images for these experiments. Our results illustrate
the effectiveness of low dimensional LOT embeddings in terms
of the percentage of variance explained and the classification
accuracy of models built on the embedded data.

I. INTRODUCTION

Probability measures are objects of fundamental importance
in statistics, and Optimal Transport (OT) theory [52] provides
a powerful framework for studying them. Recently, compu-
tational methods for optimal transport [18], [42] have found
diverse applications in machine learning and data science [13],
[39]. These include applications in computer vision [8], as
well as in generative modeling [5], [29], [44] and domain
adaptation [27]. Variants of OT have also been applied to
diffeomorphic image registration with Wasserstein-Fisher Rao
metrics [14], [24], [25], comparison of Gaussian mixture mea-
sures [20], [54], and shape or graph matching with Gromov-
Wasserstein and Fused Gromov-Wasserstein distances [15]—
[17], [36], [37], [50], [51].

This paper focuses on the statistical analysis of datasets
where each observation is a point cloud or graph, represented
as an empirical probability measure in a metric space. A
significant challenge in this approach is that such data ob-
jects have no canonical Euclidean representation and thus
do not lend themselves to statistical techniques designed for
Euclidean data. One potential solution to this problem, called
Linear Optimal Transport (LOT) [53], offers an embedding
of measures supported on R? (and even some Riemannian
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manifolds [45]) into a given Euclidean space. However, given
that the original data are not Euclidean, one should expect
some information to be lost in the embedding process. Thus, to
determine whether LOT should be used on a particular dataset,
it would be helpful to quantify how much information is lost,
how this relates to the dimension of the embedding, and what
consequences this has on subsequent statistical analysis.

To address these questions, we present a decomposition
of Fréchet variance [22] in the 2-Wasserstein space, which
allows one to compute the percentage of variance captured
by Linear Optimal Transport embeddings. This is similar in
spirit to the non-Euclidean PCA (e.g., tangent space PCA [28])
where one evaluates a PCA representation using the fraction
of total variance captured by the linear approximation. We
then proceed to show that similar decompositions of Fréchet
variance can be found for the Gromov-Wasserstein (GW) and
Fused Gromov-Wasserstein (FGW) distances.

This paper first recalls the Wasserstein distance, Wasserstein
barycenters, and the concept of Fréchet variance, focusing on
empirical probability measures. It then develops a principled
way to decompose Fréchet variance in Wasserstein space and
demonstrates this idea practically using several experiments
on real data. We also recall the concept of (Fused) Gromov-
Wasserstein distance and show how our results on Fréchet
variance and our numerical framework extend to this set-
ting. Our experiments study the relationships between the
dimension of the LOT embedding, the percentage of variance
explained by the embedding, and the accuracy of machine
learning classifiers built on the embedded data. We apply these
experiments to the MNIST handwritten digits dataset [33],
IMDB-50000 sentiment analysis dataset [35], and Diffusion
Tensor MRI (DTMRI) data from the “Human Connectome
Project - Young Adult” (HCP-YA) dataset [48]. Our results
show that LOT can be used to find low-dimensional Euclidean
embeddings of unstructured data while maintaining relatively
high classification accuracy, especially in applications to com-
puter vision.

The specific contributions of this work are as follows.

1) Using a novel interpretation of a decomposition of

squared 2-Wasserstein distances previously noted in [2],
[6], we express the 2-Wasserstein Fréchet variance as a
sum of deterministic and probabilistic components.

2) We introduce a similar decomposition of the 2-Gromov-
Wasserstein Fréchet variance into deterministic and
probabilistic components, including a proof that the
deterministic component in the decomposition corre-
sponds to a 2-Gromov-Wasserstein Fréchet variance.
Using these results, we show that one can also define a
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decomposition of Fused 2-Gromov-Wasserstein Fréchet
variance.

3) We present a novel extension of the F'-statistic that
allows one to test for equality of n support barycentric
projection for point clouds, with accompanying exam-
ples that show how to conduct permutation tests using
the statistic on simulated data.

4) We present experiments that show how LOT and the
variance decomposition can be used for dimensionality
reduction of point clouds and graphs and for parameter
selection in the Fused Gromov-Wasserstein setting. Our
results illustrate that low dimensional LOT embeddings
can capture much of the Fréchet variation and pro-
vide relatively good classification results in real-world
datasets.

The rest of this paper is organized as follows; in Section
I, we present relevant background on Optimal Transport
and Linear Optimal Transport. In Section III, we present
a decomposition of the 2-Wasserstein Fréchet variance for
datasets of empirical probability measures supported on R?
into deterministic and probabilistic components, and then
extend this decomposition to the Gromov-Wasserstein and
Fused Gromov-Wasserstein settings. In Section IV, we present
the results of numerical experiments that explore the variance
decompositions using the MNIST handwritten digits dataset,
natural language data from the IMDB-50000 dataset, and
DTMRI data from the HCP-YA dataset. In Section V, we
conclude by discussing directions for future work.

II. BACKGROUND MATERIAL

A. Wasserstein Distances and Empirical Distributions

We start by defining the Wasserstein distance between
probability measures supported on an arbitrary metric space.
Our main reference for classical optimal transport is [52].

Definition 1: Let (€2, d) be a Polish metric space. For p > 1,
let

Po(@) = {: / (0P dp(z) < o0 Vo € O}

denote the set of Borel probability measures on €2 with finite
p-th moment. For v, 1 € P,(2), define II(v, i) to be the set
of couplings of v and p, that is, the set of joint probability
measures v on ) x ) with marginals v and pu, respectively.
Then

inf / d(w,y)pdv(x,y)>p (1)
YEI(v,11) JOxQ

Wylw = (

defines a distance on P, (2) called the p-Wasserstein distance.
We let Wi(v,u) = (Wa(v,u))? denote the squared 2-
Wasserstein distance. Elements of II(v, p) are also referred
to as tramsport plans, and a ~y that achieves the infimum of
(1) is called an optimal transport plan.

For arbitrary v, € P,(Q), it is not possible to calcu-
late W, (v, 1) explicitly. However, one can always compute
Wasserstein distances between empirical probability measures,
i.e., discrete probability measures with a finite number of

support points. For n > 1, define the probability simplex to
be the set
Yn ={u e R} : |juljy = 1}.

One can represent an empirical probability measure with
weights a = (a1, as,...,a,) € X, and support points X =
(1,22, ....,2,) € Q" as v = Y. | a;0,,, where J, denotes
the Dirac probability measure at © € €. We let supp(v) denote
the support of a measure v.

In order to calculate Wasserstein distances between empiri-
cal probability measures, one can use the solution to a standard
form linear program known as the transportation problem
[7]. For empirical probability measures v = > .. | a;0y,,
=35, bjdy,, the set of couplings II(v, 1) can be identified
with the set of matrices

Ua,b) = {y e R} : Z%’j = bj;Z%j =a; Vi, j}.
j=1

=1

Letting D;; = d(wz;,y;)?, one can compute the squared 2-
Wasserstein distance between v and g by using linear pro-
gramming to find a matrix -y that solves

WZ(v,p) = min trace(y? D).

~veU (a,b)
Throughout the paper, we mildly abuse terminology and con-
flate couplings (measures) with elements of U (a, b) (matrices),
when the meaning is clear from context.

We now recall some useful terminology. Let (X, v) and
(Y, 1) be probability spaces, and let T : X — Y be a
measurable map. The pushforward of v by T is the measure
Tyv on Y defined by (Txv)(A) = v(T'(A)). The map
T is called measure-preserving if Tuwv = p; in the context
of optimal transport, such a map is called a transport map.
Observe that a transport map always leads to a coupling of
v and p, via (idx X T)uv, where idy x T : X - X xY
is the map = +— (x,T(x)). If a transport plan (coupling)  is
induced by a transport map in this manner, we say that v is a
deterministic coupling. This is to emphasize the point that a
general transport plan is probabilistic, in the sense that mass
at a single point in supp(v) can be assigned to multiple points
in supp(p), whereas this behavior does not occur when the
plan is induced by a map.

B. Wasserstein Barycenters and Fréchet Variance

Using the metric structure of P, (£2) one can define Fréchet
means, also referred to as Wasserstein barycenters [1] in the
OT literature.

Definition 2: A p-Wasserstein barycenter of measures [, €
Pp(), £ =1,...,N, is any measure v satisfying

N
v € argmin,ep (o) (Z Wf(%ﬂl)) . )
=1

While there exist methods to calculate Wasserstein barycen-
ters for sets of empirical probability measures [4], they are
often computationally intractable for large datasets. For the
applications presented in Section IV, we use free support
Wasserstein barycenter algorithms [19], [43] to compute ap-
proximations of Wasserstein barycenters for sets of empirical
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probability measures. The free support barycenter algorithm (
[19], Algorithm 2) seeks to minimize Eq. (2) with respect to
the support points of the barycenter (for some fixed weight
vector a) by minimizing a local quadratic approximation of
the gradient of the transport cost. Given an estimate of the
barycenter v* with weights a and locations X?, and letting
Y* be a matrix containing the locations of a measure /i,
with weights b¢, £ = 1,..., N, with 7; € U(a,b") an optimal
coupling of v and y, one uses the update rule [19]

N
X = % Z diag(a)~*y'Y*.
=1

Given a set of measures pg, £ = 1,..,N, and a 2-
Wasserstein barycenter of those measures v, the sample
Fréchet variance of the pys is given by

N

_ 1

Varwy = ~ Z W3 (v, ).
=1

The sample Fréchet variance provides a way to quantify the
dispersion of data in metric spaces, where standard definitions
of variance/covariance cannot necessarily be applied. Figure 1
shows a schematic illustration of Wasserstein barycenter of
empirical measures pp, £ =1,...,N.

C. Linear Optimal Transport

Many standard statistical methods (e.g., Regression, Prin-
cipal Components Analysis (PCA), Support Vector Machines
(SVM), etc.) are naturally designed for Euclidean data. When
working with non-Euclidean data, the typical approach is to
linearize the data and then apply standard statistical methods.
In the Riemannian setting, a standard pipeline used to linearize
data is to (1) calculate a Fréchet mean of the data, and (2)
apply the logarithmic map (calculated with respect to the
Fréchet mean) to get tangent vector representations of the data,
at which point statistical methods for Euclidean data can be
applied (for examples, see [30], [46]).

Linear Optimal Transport (LOT) [53] is an analogous
pipeline for linearizing data in a Wasserstein space with
respect to a template measure (for which a natural choice is
the Wasserstein barycenter). In order to linearize measure data,
LOT uses barycentric projection.

Definition 3: (See [3, Def. 5.4.2]) Let v = Z?:I @0z,
w= Z;n:l b;d,,; be empirical probability measures on R?, and
let v be an optimal coupling of v and p. Then the barycentric
projection map induced by ~y, T : supp(v) — RY, is defined
to be

7n7

. Vi .
J
and the barycentric projection of  w.rt. v is given by

T#I/ = Za’iéT(xi)' (3)
i=1

One can use barycentric projection maps to define a vector
field on supp(v) as follows. We first identify supp(r) with

Barycentric
Projection of i,
w.rt. v

Barycentric
Projection of 1,
W.rt. v

0
TtV

Fig. 1. Illustration of empirical measures p1, pt2,.., 4y and their barycenter
v. The measures T#ul denote the barycentric projections of v towards ;.
The vectors V' represent the Euclidean translations from v to Ty vl

a matrix z € R™*?, Then the vector associated with the ith
support point of v is given by

Vi=T(z;) —z; €RY, i=12,....n. @)

Importantly, for a template measure v with n support points,
the vector fields calculated for any p, = Z;":"I bjd,e will

be of fixed dimension; i.e., the size of V¢ € R™*4 will not
depend on my. Thus, one can vectorize the V*s and apply
standard statistical methods to these vector representations of
the measures. We refer to the V*s as LOT embeddings of the
es.

The fact that Wasserstein spaces are not Riemannian mani-
folds leads to some issues with the analogy to the pipeline for
linearizing data in the Riemannian setting. As noted in [12],
barycentric projection with respect to an empirical probability
measure is a lossy process in general. Thus, a natural question
is - “How well do LOT embeddings describe the original
data?”. In the next section, we show that, for measures
supported on Euclidean spaces, one can quantify exactly the
percentage of Fréchet variance explained by LOT embeddings
for three popular OT distances.

III. FRECHET VARIANCE DECOMPOSITIONS WITH LOT

In this section, we present conditions under which Linear
Optimal Transport can be used to decompose Fréchet variance
with respect to the Wasserstein, Gromov-Wasserstein, and
Fused Gromov-Wasserstein distances.

A. Decomposition of Wasserstein Distance

We begin with a proposition first presented in [2].

Proposition 1: Let v = 31| a;0,;, and p = >0, b;dy,
be empirical probability measures supported on R, let v €
U(a,b) be an optimal coupling of v and pu, and let T' be the
barycentric projection map induced by ~ as defined in Eq. 3.
Then

W3 (v, ) = W3(v, Tyv) + Y v 1T (i) —ysl>. (5

ij
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Although this result was derived in [2], for the sake of
completeness, and due to its correspondence with the proof of
Theorem 1, we include a proof of Proposition 1 in Appendix
??. Because the terms on the RHS of Eq. (5) correspond
to the transport cost of a deterministic coupling (of v and
Tyv) and a probabilistic coupling (of Txv and u), we refer
to these as the deterministic and probabilistic components
of the decomposition, respectively. More on that later. The
proof of the proposition shows that one can find a similar
decomposition into deterministic and probabilistic components
for any coupling v € U(a,b); however, for non-optimal
couplings, the first term in (5) will no longer be a squared
Wasserstein distance.

We also provide here an interpretation of the decomposition
which is novel, to the best of our knowledge. Given an
arbitrary coupling v € U(a,b), one obtains a collection of
m vector fields on supp(v): the vectors W}, ... W/ based
at the point x; are given by

Wij =i - (yj

We say that the coupling v is deterministic if there is exactly
one nonzero vector based at each z;. On the opposite end of
the spectrum, we say that v is purely probabilistic if, for each

i,
m

Intuitively, a deterministic couphng acts on the density v by
moving its points around in the ambient space—in fact, it is
clear from the definition that a coupling is deterministic if and
only if it is induced by a transport map. On the other hand,
a purely probabilistic coupling acts on v by completely redis-
tributing its mass; it has no component which acts by moving
any point in the ambient space. The Eq. (5) decomposes an
optimal coupling  into a deterministic coupling between v
and T and a purely probabilistic coupling v between Txv
and p. To see the latter point, observe that

Z Wj = Z%J( = T(z;)) = Z’Yijyj = T(;) Z’Yij
=D Vil ~

—LCZ').

ai:O.

o

B. Wasserstein Variance Decomposition

Note that, since Eq. (5) applies to a single squared 2-
Wasserstein distance, it also works for averages of squared
2-Wasserstein distances. In particular, the sample Fréchet
variance of a set of measures ug, £ = 1,...,N calculated
with respect to a fr free support barycenter v" w1th n support
points, denoted VarW, can be decomposed into deterministic
and probabilistic components.

Definition 4: Let j; = E;Wl bg%é (=1,.
cal probability measures with v" 2?21 aiézi a free support
barycenter of the js with n support points, 4* an optimal
coupling of »™ and iy, and T the barycentric projection map
induced by ‘. Then

., N be empiri-

N
Vary = ZWS(V”,M)
=1
1N
LS W T + L S S S -
(=1 2 1 g
(6)

Note that the deterministic component (the first term on the
RHS of Eq. (6)) corresponds to the sample Fréchet variance
of the barycentric projections of the p,’s w.r.t. v™, and thus
can be used to quantify the percentage of the variance in the
es that is explained by the LOT embedding.

It is worth noting that the Law of Total Variance [11]
can be seen as a special case of this decomposition, where
d=1,n=1and N > 2, or in other words, a ‘Law of
Total Fréchet Variance’ defines a Pythagorean-like theorem
in the 2-Wasserstein space for empirical probability measures
supported on R¢ . This decomposition thus also relates to the
F-statistic used in One-Way Analysis of Variance [9], [26]:
observe that if the py € P(R) (treated as sample data rather
than measures) all have uniform weights, and we take n = 1,
one can calculate an F'-statistic as

N XYoo WRm T )
N
Z[:l Zz] 71_7“1—%(‘%1) y_f”Z

This trivially extends to a weighted ANOVA if the puys
have non-uniform weights. However, this formula can also be
used for n > 1 (testing for equality of n-support barycentric
projection) and/or d > 1 (multivariate data). In an intuitive
sense, the statistic can be seen as testing for equality of cluster
means across data sets; the numerator captures the average
‘between group’ variation of cluster means T(x;) about
+ SO, T*(x;), while the denominator captures the average
‘within group’ variance of all clusters across all datasets.
In this interpretation, standard one-way ANOVA would be
a special case where the datasets are all assumed to have 1
cluster. To be a bit more rigorous, note that F™¢ will equal
zero if all of the couplings v’ are purely probabilistic and will
increase without bound as the percent of Frechet Variance
explained by the deterministic component increases, being
undefined if all of the couplings are deterministic.

Although the question of how the values n and d affect
the distribution of the statistic is quite interesting, deriving
the distribution of F™¢ for n > 1 and/or d > 1 is beyond
the scope of this work. Instead, in section IV-A, we present
examples of how one can conduct a permutation test for
equality of n-support barycentric projection using F™%.

In the following sections, we extend the decomposition of
Fréchet Variance presented in (6) to two other popular OT
distances.

(o, me) —
N -1

Frd = . (D

C. Gromov-Wasserstein Variance Decomposition

The Gromov-Wasserstein distance [15], [36], [37] is an
optimal transport-based distance between measure networks,
as we now recall.
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Definition 5: A measure network is a triple (X,wx,v),
where X is a Polish space, v is a Borel probability measure
on X, and wx is a square integrable function on X x X (w.r.t
v @ v). The 2-Gromov-Wasserstein distance is given by

GW3(X,Y)
/ (wx (z,2") — wy (y,y))?
(X xY)?

v(dw, dy)y(da’, dy')

Gromov-Wasserstein optimal couplings always exist [15, The-
orem 2.2], so that the infimum in the definition is actually
a minimum. We are particularly interested in finite mea-
sure networks, where we assume that X = {xy,...,2,},
Y = {y1,...,ym} and that the measures are given by
v = 3 @by, b= > 7%, bjdy,. We adopt the notation
Ajp = wx (xi, xk.) and Bj; = wY(yj, yl), so that GWQQ(X, y)
can be written as

GWi(X,Y) =

= inf
yEI(v,p)

min

k| Aik — Byl
WeU(a’b)Z%ﬂm ik i

ijkl
One can define a natural notion of barycentric projection in
the GW setting as follows (see [40, Definition 1]).
Definition 6: Let X = (X,wx,v) and Y = (Y,wy, u) be
two finite measure networks. Let v be a Gromov-Wasserstein
optimal coupling of v and p, and define

Yij Ykl
Wc(xiaxk) = 2= 1
— G Qf
gl
Then the GW barycentric projection of Y with respect to X
is given by

T = (X,we,v).

Using this notion of barycentric projection, one can extend
the decomposition in Eq. (5) to the Gromov-Wasserstein
setting.

Theorem 1: Let X = (X,wx,v) and Y = (Y,wy,p)
be two finite measure networks, v = 2?21 a;04,, and
Ho= Z;ﬁ:lbjéyj. Let v be a Gromov-Wasserstein opti-
mal coupling of X and ), define B;; = wy(y;,y;) and
Cir =3, i %Z—’:Bﬂ, and let 7 denote the GW barycentric
projection of Y with respect to X. Then

GW3(X,Y) = GW3(X,T)+ Y vijywil Cir — Biul?
ijkl
= GW3(X,T) + (diams(Y)? — diamy(T)?), (8)

where

diamy(X) = < / /X XXwX(x,x’)Qu(da:)V(dx’))l/2. ©)

Note that C;, is the evaluation of we on the pairs (z;, x).

The 2-diameter of a measure network, as defined in (9),
gives a natural notion of its size, and appears in certain
estimates of GW distances (see [15], [37]). The proof of the
theorem is provided in Appendix ??. The proof shows that an
optimal coupling of & and 7T is given by the identity coupling
(idx x idx)xv. Additionally, it shows that any coupling
~ separates into deterministic and probabilistic components,
though, again, the first term will only necessarily be GW3 if
v is optimal.

D. Fused Gromov-Wasserstein Variance Decomposition

The Fused Gromov-Wasserstein distance [51] is an optimal
transport distance between ‘structured data objects’ - measure
networks whose nodes are elements of the same metric space.
For the purposes of defining a variance decomposition, we are
only interested in the special case of the Fused 2-Gromov-
Wasserstein distance.

Definition 7: Let (2, d) be a metric space, X = (X,wx, V)
and Y = (Y,wy, ) be two measure networks with X, Y C
Q, and a € [0,1]. Then the squared o-Fused 2-Gromov-
Wasserstein distance is given by

inf

FGWE,(X,Y) = / lad(z, )?
YEM(v,p) JX Y x X xY

+ (1 - a)(wX (ZL’, ZL'/) - wY(ya yl))2] W(dla dy)PY(dx/a dy/)

Using Definitions 3 and 6, it is straightforward to define
a notion of barycentric projection in the FGW setting, for
measure networks supported on R? (see [40, Definition 1]).
Definition 8: Let X = (X,wyx,v) and Y = (Y,wy, )
be two finite measure networks with X = {x; € R% i =
L.,n}h,Y={y; eRYj=1,....m} v=>" a,,, and
H= Z;nzl b;o,,. Let v be an a-Fused 2-Gromov-Wasserstein
optimal coupling of X and Y, define T'(z;) = >, %jyj,
T(X) € RnXd such that T(X)Z = T(.’,EZ), le = wy(yj,yl)
and we (@, k) = >, 1—]’;—’;‘3]1 Then the FGW barycentric

projection of ) with respect to X" is given by
T :=(T(X),wc, Tyv)

Given equations (5) and (8), it is easy to see that one can define
a decomposition of the squared 2-FGW distance for structured
data objects supported on R? as well. For notational simplicity,
we define transport cost functions as follows.

Definition 9: Let X = (X,wx,v) and Y = (Y,wy, u) be
two measure networks with X, Y C RY, v = Z?Zl a;0,, and
w = Z;nzl b;o,,. Let v be any coupling of v and p. Then
the squared 2-Wasserstein transport cost of v € Il(v, u) is
defined to be

Cw(v) =Y vijllai —y;?
ij

the squared 2-Gromov-Wasserstein transport cost of ~ is
defined to be

Cow(7) = Z%ﬂkl(wx(xi,xk) — wy (5, w))*
ijkl
and the squared a-Fused 2-Gromov-Wasserstein transport cost
of ~v is defined to be

Crow () = aCw(y) + (1 — )Cow (7)

Due to the fact that the separability of the decompositions
given in Eq. (5) and Eq. (8) do not depend on the optimality
of v (see the comments following each result), we get the
following corollary.

Corollary 1: Let X = (X,wx,v) and Y = (Y,wy, 1) be
two measure networks, as in Definition 8. Let o € [0,1] and
let v be an a-Fused 2-Gromov-Wasserstein optimal coupling
of vand p, T(x;) = 3°; 72y, and m = (T'idy )47, where
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p-values of permuation test for F2

Scatter Plot of Groups as a function of n

Permutation Test n=1 p-value=0.904 Permutation Test n=5 p-value=0.004

Group 1 (transformed)
Group 2
Group 3
Group 4
Group 5

151

I3
3

104

°
Y

o
ks

°
o

p-value for permuation test for F™ 2

°
o

-15 -0 -5 15 2 3 6 8 10

Number of support points in barycenter, n

601

Count

10 1

o

10 15 20

F-statistic

25 40

F-statistic

50 60

Fig. 2. Left: Sample data from 5 groups; Middle Left: p-values for permutations test for different values of n; Middle Right: Permutation distribution and
observed F statistic for n=1; Right: Permutation distribution and observed F statistic for n=5.

(T,idy) : X XY — T(X)xY is the map (z,y) — (T(x),y).
Then
FGWS ,(X,Y) = FGW3 (X, T) + Cfgw ()

Proof. We verify this by direct calculation, using the Fréchet
variance decompositions Proposition 1 and Theorem 1:
FGW; o(X,Y) = aCw(7) + (1 — a)Caw (7)
= a(Cw(T) + Cw (7)) + (1 — a)(Cow (T) + Caw (7))
= Craw(T) + Craw(T)
= FGWQQ,a(XvT) + Craw (1),
O

where the last equality holds by [40, Lemma 1, part 1].

Thus, given a data set of structured data objects pp, ¢
1,..., N, the sample a-Fused 2-Gromov-Wasserstein Fréchet
variance can be decomposed as

N

_——n 1

VarFGWg,’a = N ZFGWQ%Q(X7J}€)
(=1

1

2|2

N N
_adl
;FGWQ%Q(X,TM ¥ ;CFGW(WZ)

IV. APPLICATIONS TO DATA ANALYSIS

In this section, we demonstrate the theoretical tools de-
veloped in section III to represent and analyze datasets of
measures and measure networks.

A. Illustrating F™® Using Simulated Data

Here we present results for permutation tests of equality
of n-support barycentric projection, for d = 2. Specifically,
we generate sample data (with sample size m = 100) from
standard Gaussians (on R?) for N = 5 groups, and apply
the transformation T'(x,y) = (22,y) to one of the Gaussian
samples. The left panel of Figure 2 presents a scatter plot
of the data. We then calculate the test statistic F™2 for
this data, and estimate the permutation distribution of F™?2
with k=250 permutations, for n = 1, ..., 10. Importantly, this
transformation does not change the expected value of the mean

of the transformed data (ie. E[T(X,Y)] = E[(X,Y)] = 0),
and so the expected value of the 1-support barycenter of the
sample should be unchanged. The second panel from the left
presents the p-values of a permutation test of the F™? statistic
on the data, for different values of n. As expected, the test fails
to reject the hypothesis of 1-support barycentric projection,
but rejects the hypothesis of equality of n-support barycentric
projection for n > 1. The third and fourth panels from the left
present the estimated permutation distributions of F'12 and
F52 calculated on the data.

B. Decompositions

In the following sections, we study the behavior of the
decompositions presented in Section III, as well as the accu-
racy of machine learning classifiers applied to LOT embedded
data, as a function of the number of support points in a Free
Support barycenter. In section IV-C, we present results for
digit classification on the MNIST handwritten digits dataset,
in section IV-D we present results for sentiment analysis on the
IMDB-50000 dataset, and in section IV-E, we present results
on gender classification on DTMRI data from the HCP-YA
dataset.

C. MNIST Data

We begin with experiments studying the variance decom-
position using the MNIST handwritten digits dataset. The
dataset is a set of grayscale images of handwritten digits,
with classes 0, ..., 9. We represent each image as an empirical
measure network in R?, using pixel locations as support
points/nodes, Euclidean distances between support points as
edge weights, and pixel intensities (normalized to sum to
1) as weights. Using these representations, we use the free
support Wasserstein barycenter algorithms [19], [43] to calcu-
late barycenters with different numbers of support points, and
calculate LOT embeddings with respect to these barycenters,
for a = 0,0.25,0.5,0.75, 1. These LOT embeddings have di-
mensions that depends on the number of support points/nodes
in the free support barycenter, and this allows us to choose
the dimension of the LOT embedded data.
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Fig. 3. Top Row: Gaussian Kernel Reconstructions and graph representations for free support Fused Gromov-Wasserstein barycenters (o = 0.5) of MNIST
5 digit, with n = 150, 50, and 20 nodes; Bottom Rows: Original Data, Gaussian Kernel Reconstructions of Barycentric projections, and graph representations

for two 5 digits from the MNIST data set.

The top row of Fig. 3 presents Gaussian kernel reconstruc-
tions (reconstructed using the algorithm described in appendix
??) of free support barycenters and their nodes, for the digit
“5”, for n = 150, 50,20 and a = 0.5. The bottom two rows
of Fig. 3 present the original images, and Gaussian kernel
reconstructions of the barycentric projections (and the node
locations) for two particular observations from the dataset,
calculated with respect to the barycenter in the top row of
the corresponding column. This plot motivates the use of free
support barycenters with reduced support sizes in the LOT
pipeline. For example, we see little degradation of the recon-
structions going from a 150-point barycenter to a 50-point
barycenter. While there is noticeably more degradation when
we use a 20-support barycenter, the barycentric projections
still appear to maintain their fundamental structure.

Fig. 4 presents a more quantitative exploration of the
embedding, based on the decomposition in Corollary 1, for
different values of n and «. Specifically, we calculate a free
support barycenter on a training set of 5000 randomly selected
digits for n = 1,...,50, and then calculate and plot the
components of the decomposition, as functions of n, on a
(seperate) test set of 20000 randomly selected digits. The
leftmost panel presents these results; the z-axis corresponds to
n, the number of support points in the free support barycenter,
and the y-axis corresponds to the different components of the
decomposition. A consequence of Corollary 1 is that one can
quantify not just the percentage of variance explained by LOT
embeddings, but also the percentage of variance explained by
the node and edge components of the embedding separately.
The left panel of Figure 6 presents these components of the
decomposition as a function of number of support points, for
a = 0.5. The middle panel of Figure 6 presents the percentage
of variance explained by the deterministic component, for
a = 0,0.25,0.5,0.75,1. Importantly, for o = 0,1, we use the
Wasserstein and GW barycentric projections - though one
could technically use an FGW barycentric projection (i.e., one

could still calculate the edge component of the barycentric
projection for o = 0 or the node location component for o =
1). Interestingly, the percentage of variance explained is nearly
identical for all values of a. Considering the left panel of
Figure 4, we observe that Varr;GWQYa decreases as the number
of support points increases. This makes sense; more support
points should give you more degrees of freedom with which
to describe variation, thus resulting in shorter geodesics. The
deterministic components, on the other hand, tends to increase
with the number of support points. This also makes sense, and
mirrors the previous observation; more support points in the
barycenter means more of the variation can be described with
transport maps.

The middle panel presents an elbow plot of the percentage
of VarZGW,a described by the deterministic component; it
is the pointwise ratio of the orange curve to the blue curve
presented in the left panel. First, note that the percentage
of variance explained generally increases with n, but it’s
not strictly non-decreasing (in particular, note the spike at
n = 8,9 for the percentage of variance explained for higher
values of a (purple and red curves)). This is likely due
(at least in part) to the fact that the barycenters are only
approximations, though it is an open question whether the
deterministic component should be strictly non-decreasing in
n. We also note that barycentric projections describe more than

87.5% of Var ey, With other values of a slightly higher.
Somewhat surprisingly, the percentage of variance explained
is almost identical for all of the distances.

In the right panel, we present the results of an experiment
studying the average 5-fold cross validation classification
accuracy of a multiclass LightGBM [32] gradient boosted tree
trained on LOT embeddings (with respect to a free support
barycenter built on the training set of 5000 digits) of 20000
digits from the MNIST dataset for different values of n and
«. In order to linearize our measure networks, we vectorize
FGW barycentric projections using the mapping
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Vece(T(X))
- Vec(triu(2C — diag(C)))

where T'(X) and C are defined as in Definition 8). Note, for
o = 0 or 1, we only vectorize the nodes or edges, respectively.

We find that a gradient boosted tree trained on LOT em-
beddings with @ = 0.5, calculated with respect to a free
support barycenter with 7 support points achieves an average
of 96.23% test set accuracy, while the performance for 50
support points achieves only a slight improvement of 97.76%.
This is a promising result, suggesting that LOT embeddings
with respect to a barycenter with a low number of support
points can explain a large proportion of information relevant
to classification in some datasets.

Despite the fact that there appears to be little difference
between the FGW and Wasserstein decompositions in terms of
percentage of variance explained, we find that FGW LOT em-
beddings outperform Wasserstein LOT embeddings in terms
of classification accuracy for lower numbers of support points.
However, this comparison is a bit misleading, since the dimen-
sion of the embeddings depends on «. For a template measure
network with n nodes on R?, the dimension of the lineariza-
tions is given by I(a < 1)nd + I(a > 0)(n + n(n —1)/2).

Thus, to compare performance in terms of the dimension
of the embedding rather than the number of support points,
one would have to compare, for example, the o = 0.5,n =7
embedding to the o = 0,n = 21 embedding. In this case,
the 5-fold accuracy for the @ = 0,7 = 21 embeddings is
97.09%, which is slightly better than the « = 0.5,n = 7
embeddings, which achieved just 96.61%. This suggests that
LOT embeddings with o = 0 can be more efficient in terms
of dimension than embeddings with o > 0.

(T(X), [~ 112, €)

D. IMDB-50000 Data
Here, we explore an application of LOT to the task of

sentiment analysis in the IMDB-50000 dataset. The dataset is
made up of 50000 movie reviews (paragraphs of text, ranging
from 10-1200 words) from the International Movie Database
website, each associated with either a positive or negative
sentiment. After training a Word2Vec embedding on the full
dataset (with embedding dimension 100), we represent each
review as a point cloud in the embedding space. Treating
these points as the nodes of a measure network allows us
to apply LOT to the data. Interestingly, in this context, LOT
can be seen as a sort of linear document embedding of
the reviews. Specifically, we represent each review as an
empirical measure network (X, B, 1), where X contains the
locations of the vector embeddings of the words in the review,
Bj; = |l — j| captures the number of words separating X
and X; in the review (note, the indices reflect the order of
the words in the review, i.e., yf corresponds to the vector
embedding of the jth word in review ¢), and p corresponds
to a uniform measure supported on X. Similar to the MNIST
experiment, we calculate barycenters on a training set of 5000
randomly selected reviews, and then calculate the variance
decomposition and conduct 5-fold cross validation with a
gradient boosted tree classifier on a test set of 20000 randomly
selected reviews.

Figure 5 contains the results of the experiment. Specifi-
cally, we calculate the variance decomposition and build a
gradient boosted tree on LOT embeddings with respect to
barycenters with n = 1, 5,10, 25,50, 100 support points, for
a = 0,0.0000005,0.0000025,1. These values of a were
chosen to balance the percent variance explained by the node
versus edge components. The middle panel in Figure 5 shows
the percentage of variance explained by the LOT embedding
for different values of a. We see that the two lower values
of o (which weigh the Wasserstein component more heavily)
show much slower growth in percent variance explained than
the two higher values. This comes down to 1) the difference in
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scale between the node and edge components of our measure
networks and 2) the fact that the edge matrices all have fairly
similar structure in terms of the GW distance, leading to little
GW variance in the data for our choice of edge weights.
The rationale behind our choice of edge weights was that
the graph components of the barycentric projections might
capture information about consistent sequences of words
across reviews, that could not be captured in the ‘bag-of-
words’ information contained in just the node locations. Our
classification results, presented in right panel of Figure 5,
suggest that this is not the case, with models built only on
node locations (o« = 0) outperforming models for all other
values of a. Somewhat surprisingly, the 5-fold cross validation
accuracy of a model built on LOT embeddings with respect to
just 1 support point (corresponding to simply averaging all the
points in the point cloud for o = 0) achieves greater than 68%
accuracy. However, we also find that there is an increase in
classification accuracy for higher numbers of support points,
for « < 1. The « = 0,n = 100 LOT embedding performs
the best, achieving just over 80% accuracy. Note that the
dimension of this embedding is rather high at nd = 10000.
These results suggest that our edge matrices do not contribute
much to the classification accuracy; even when we select an «
that balances the W and GW components, we see no benefit
in using structured data object representations over simple
point clouds - though other edge weights might produce better
results. In any case, our results do illustrate that LOT can be
used to effectively embed and classify natural language data.

E. Diffusion Tensor MRI - Human Connectome Project

DTMRI is an approach to MRI that measures the diffusion
of water molecules in tissue, such as white matter fiber tracts
in the brain. The most common data representations of DTMRI
images of white matter fiber tracts are based on ‘tractography’
methods, which seek to reconstruct white matter fiber tracts

as sets of curves in R3. Tractography datasets can be quite
large, and only implicitly contain diffusion information in the
tangent directions of the individual curves.

Tract density images (TDI), first proposed in [10], offer
another data representation for modeling white matter fiber
tracts. Instead of representing the tract as a set of 3-d curves,
one counts the number of curves passing through each voxel
in the image, and represents the tract by associating with each
voxel the number of curves that pass through it - effectively
representing the tract as an empirical measure on R3. As the
number of curves estimated is often much larger than the
number of voxels they pass through, these TDI representations
can produce datasets with smaller memory requirements than
those produced by tractography methods. Optimal Transport
methods for both representations have previously been ex-
plored in [25].

An additional benefit of TDI representations is that they
offer a natural way to explicitly include diffusion information
in their data representations. Different approaches have been
developed to add diffusion information to TDIs, such as ‘di-
rectionally encoded” TDIs [41], or ‘Tract Orientation Density
Images’ (TODI) [21]. The approach taken here is to associate
with each voxel in a TDI a diffiusion tensor, i.e., a covariance
matrix constructed from the main fiber directions and frac-
tional anisotropy values (as determined by DSI studio [23])
associated with that voxel. We refer to these representations as
Covariance TDIs (CTDI). While these CTDIs will contain less
information about diffusivity than TODIs, a benefit is that we
are able to represent tracts as empirical probability measures
on the space R? x Sym3 (where Sym} corresponds to the set
of symmetric positive definite matrices), which allows us to
run statistical analyses via LOT. While one could run a similar
experiment comparing models built on LOT embeddings with
different values of «, because the DTMRI target measures
often have 1000’s of support points, this ends up being very
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Fig. 6. Points represent locations in R3, (r, g, b) values correspond to (normalized) diagonal elements of covariance matrices. Left: free support barycenter
of ’Fornix L’ in HCP data (200 support points); Middle: Subject 100307’s *Fornix L’ in the HCP data (6980 support points); Right: Barycentric Projection
of Subject 100307’s "Fornix L’ with respect to calculated barycenter (200 support points).

computationally expensive. Thus, we choose to study only the
Wasserstein LOT embeddings.

Specifically, we apply our framework to the task of clas-
sifying gender in the Human Connectome Project - Young
Adult (HCP-YA) dataset. The HCP-YA data set is composed
of 1200 young adults (aged 22-35) from 300 families. This
means the dataset contains many siblings and twins, including
identical twins. Clearly, if subjects ¢ and j are identical twins,
then P(gender; = M|gender; = M) =~ 1. However, by
removing 1 of each pair of identical twins from the dataset,
we believe it is reasonable to assume that P(gender; =
M|gender; = M, Family; = Family;) ~ .5 Vi,j sat-
isftying Family; = Family; (and ¢ # j), i.e. that the
gender of one sibling is independent of the gender of their
other siblings. While one might expect dependence of CTDIs
between siblings, given the assumption that the gender of
siblings is independent, we expect any differences learned by
our model to be due to differences in CTDIs alone. Thus,
while our results don’t necessarily represent the performance
of the model on a true i.i.d. sample from the population,
the classification accuracy should still depend on our model’s
ability to measure differences in the CTDIs (and hopefully,
therefore, in the underlying white matter microstructure).

1) Data Representation: Fiber orientation maps for 1065
subjects from the Human Connectome Project (produced using
the pipeline presented in [55]) were obtained from the DSI
Studio website'. After preprocessing the data (including re-
moving one of each pair of identical twins), we were left with
a dataset with 908 subjects. TDIs for each region of interest
(ROI) of each subject were produced using DSI studio, and
converted to empirical probability measures as follows; given
the TDI of a particular ROI for subject ¢, we represent it as
an empirical measure on R3

my
/JE = E wjézja
J=1

Thttps://brain.labsolver.org/hcp_ya.html, FIB 1.25-mm MNI space

where € R™¢*3 represents the voxel locations that make
up the ROI of subject ¢ (as determined by DSI Studio),
and w; denotes the number of curves present in the voxel
at x;. We then produce a covariance matrix 3; for each
x;, using the fiber orientations uj € R3*1 and fractional
anisotropy FA;J, € R* (obtained from the fiber orientation
map) associated with that voxel

5
;= Projsym; (Z FA;ju;j (u;J )T> :
r=1

Often, these covariances are not full rank, so we project them
into the set of symmetric positive definite matrices Sym:‘,f by
replacing any non-positive eigenvalues with a small positive
value. Thus, letting 6; = (z;,X;), and normalizing the TDI
weights as b; = w;/(372, w;), we represent the ROI of
subject £ as an empirical probability measure on R x Sym;

my
pe =Y _bjb;.
j=1

For the purposes of calculating the decomposition, we conduct
our statistical analysis by equipping R?® and Symg" with their
respective Euclidean metrics. While, at this point, one could
choose other Riemannian metrics on R3 and Sym}' [45], we
choose to use the Euclidean metrics because it enables us to
isometrically embed the locations 6 into R? (and thus easily
calculate the percentage of variance explained by the LOT
embedding) using the mapping

U1 Vg Us Vg
( V2|, |VUs U7 Ug >
U3 Vs Ug Vg

T
— ['Ul,'U27'U3,'U472U5,2U6,U772U87U9] . (10)

2) Calculating the LOT Embedding: Given a set of empir-
ical measures ug, ¢ = 1,..., N, each representing a particular
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barycenter.

ROI in a subject, we calculate a free support barycenter v
using the algorithm described in [19] (initialized with uniform
weights, points in R? generated from a Standard Normal
distribution, and 3-d covariances generated from a log-uniform
distribution [38] over Symg). The free support barycenter
calculated for the tract ‘Fornix L’ (with n = 200 support
points) is presented in the left panel of Fig. 6.

Next, given ¢, £ = 1, ..., N, and the free support barycenter
v = Z:‘L:l a;0;, we calculate matrix representations of the
vector fields of each subject V¢ € R™"*? as in Eq. (3). The Vs
can be vectorized as Z;, = Vec(V*) € R™, at which point,
standard statistical methods (i.e. PCA, Regression, SVM) can
be applied to the LOT embedded dataset Z € RN The
original data and the barycentric projection representation for
a particular subject (calculated with respect to the barycenter
presented in the left panel of Fig. 6) are presented in the middle
and right panels of Fig. 6, respectively.

3) DTMRI Classification Results: Fig. 7 presents results
of numerical experiments applied to the DTMRI data, similar
to those presented in Fig. 4. The left panel corresponds to
the components of the variance decomposition specifically for
the ‘Fornix L. The middle panel presents elbow plots for
all ROI (in the left hemisphere). Notably, we see that for all
regions, the large majority of variation is explained by LOT
embeddings calculated with respect to free support barycenters
with just 25 — 75 support points. Given that most regions have
on the order of 1000’s of support points, this corresponds to a
significant reduction of dimensionality. The right panel corre-
sponds to the performance of SVM classifiers built on only the
covariance components (we include results for classifiers built
on other combinations of location and covariance components
in appendix ??) of the LOT embeddings with respect to an n
support barycenter, for n = 1,10, 20, 50, 100, 200. For most
regions, we see a large jump in performance going from 1
support point to 10 support points, with most models hitting

maximum performance (relative to choice of n) by about
n = 50 support points.

Table I presents the results of Leave-One-Out (LOO) cross
validation for an SVM classifier applied to only the covari-
ance components of the vector representations of the LOT
embedded measures, for different values of n (number of
support points in barycenter). We also compare our method to
a ‘baseline’ model that is often used in DTMRI analysis, which
simply involves comparing the average FA value for each
region of each subject [31], [47], [49]. Notably, our results
suggest that our model outperforms the baseline for all values
of n, and that SVMs built on LOT embedded data achieve near
maximum classification accuracy (relative to other choices of
parameters) for free support barycenters with just 10 support
points, with little to no improvement for larger values of n,
both for individual regions and for a soft voting classifier built
on class probabilities of the SVMs built on the individual
regions, presented in the bottom row of Table I.

V. CONCLUSION

This paper presents a decomposition of the Fused 2-
Gromov-Wasserstein Fréchet variance of measures supported
on Euclidean spaces using Linear Optimal Transport. The
decomposition gives data scientists a tool that aids in param-
eter selection when working with FGW distances and helps
them better interpret the quality of LOT embeddings. It also
suggests connections to other methods for calculating Free
Support barycenters [34]. The decomposition also suggests a
generalization of the F-statistic used in ANOVA, which allows
one to test a data set of empirical probability measures for
equality of n support barycenter. Furthermore, our methods
have provided promising results for the statistical modeling of
DTMRI images, using Linear Optimal Transport to naturally
fold dimensionality reduction and non-linear image registra-
tion into standard machine learning pipelines. This applica-
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Clasl\?iﬁcation of Gender in HCP-YA

Region Accuracy (%)

Average FA n=1 n=10 n=50 n=100 n=200
Cingulum Frontal Parahippocampal L | 513 63.93 64.52 6296 62.18  62.57 62.77
Cingulum Frontal Parahippocampal R | 476 63.22 65.76 6555 6576  64.29 65.13
Cingulum Frontal Parietal L 786 53.06 59.29 6692 66.28  66.92 65.9
Cingulum Frontal Parietal R 785 59.49 63.69 6854 6854  68.15 68.03
Cingulum Parahippocampal L 786 67.17 68.45 7125 7252  73.03 72.39
Cingulum Parahippocampal R 786 63.36 64.76 70.1 70.74  69.59 69.85
Cingulum Parahippocampal Parietal L. | 770 63.38 63.38 6597 674 66.1 66.49
Cingulum Parahippocampal Parietal R | 779 57.38 64.57 6727 67.39 66.5 65.85
Cingulum Parolfactory L 786 56.85 617 6781 67.81 65.27 65.39
Cingulum Parolfactory R 786 57.88 5827 60.81 6234  62.72 62.34
Fornix L 771 65.36 66.67 6693  68.09 69.0 68.35
Fornix R 768 63.16 6445 6732 6771  68.49 68.75
Uncinate Fasciculus L 786 55.99 5649 6323 63.61 64.38 64.38
Uncinate Fasciculus R 786 53.80 5344 6399 6489 65.01 64.76
All* Regions Combined 739 64.95 69.14  75.10 7523 7496  75.10

*Cingulum Frontal Parahippocampal L & Cingulum Frontal Parahippocampal R excluded due to Tower sample sizes

TABLE I

LEAVE ONE OUT CROSS VALIDATION ACCURACY FOR SVM BUILT ON COVARIANCE COMPONENTS OF LOT EMBEDDINGS OF DTMRI DATA WITH
RESPECT TO n-SUPPORT BARYCENTERS. N DENOTES SAMPLE SIZE - THERE IS MISSINGNESS DUE TO ISSUES IN DATA PREPROCCESSING.

tion suggests many directions for future research, such as
increasing the complexity of the data representations by using
other Riemannian metrics on SPD matrices [45] or ‘orientation
distribution functions’ rather than covariances [21], scaling OT
with convolutions and/or Sinkhorn [18], [25] to build models
on larger regions or the whole brain, and/or implementing
partial/unbalanced LOT methods [6].
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