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Abstract

Addressing the fundamental challenge of signal estimation from noisy data is a crucial aspect of sig-

nal processing and data analysis. Existing literature offers various estimators based on distinct observa-

tion models and criteria for estimation. This paper introduces an innovative framework that leverages

topological and geometric features of the data for signal estimation. The proposed approach introduces

a topological tool – peak-persistence diagram (PPD) – to analyze prominent peaks within potential solu-

tions. Initially, the PPD estimates the unknown shape, incorporating details such as the number of internal

peaks and valleys. Subsequently, a shape-constrained optimization strategy is employed to estimate the

signal. This approach strikes a balance between two prior approaches: signal averaging without align-

ment and signal averaging with complete elastic alignment. Importantly, the proposed method provides

an estimator within a statistical model where the signal is affected by both additive and warping noise.

A computationally efficient procedure for implementing this solution is presented, and its effectiveness is

demonstrated through simulations and real-world examples, including applications to COVID rate curves

and household electricity consumption curves. The results showcase superior performance of the pro-

posed approach compared to several current state-of-the-art techniques.

Keywords: signal estimation, peak persistence, elastic alignment, dynamic time warping, shape-constrained

signal, shape estimation.

1 Introduction

Analyzing noisy data to estimate underlying signals is a central problem in signal processing and data

processing. One observes an underlying true signal in form of curves that are corrupted by noise, and the
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goal is to use curve data to estimate that signal. The choice of an estimator depends on the observation

model, the noise distribution, the data structure, and the optimization criterion. The classical approach

to signal estimation is identifying a signal space (typically a Hilbert space with an orthonormal basis),

imposing an objective function, and optimizing it over the function space. We take a different approach.

We will focus on the shape of the signal and introduce a novel topological feature, the peak-persistence diagram

(PPD), to s earch for the estimate. This PPD enables us to estimate the shape of an unknown signal first,

followed by a shape-constrained signal estimation.

We start the discussion from a traditional perspective and later make a case for a novel shape-based

estimation. A simple, traditional model for signal estimation is the additive noise model: fi(t) = aig(t) +

ϵi(t) , i = 1, 2, . . . , n, for t ∈ I, where g ∈ F is a deterministic, unknown signal, ϵi ∈ F is the zero mean,

independent noise and ai ∈ R+ is an independent random variable with mean one. Also, I is a compact

observation interval. Here F denotes a signal space of interest; most commonly, F is the Hilbert space

of square-integrable functions on an interval. In a simple case, with dense time samples, an estimate of g

is given by the cross-sectional mean f̄ = 1
n ∑n

i=1 fi, because 1
n ∑n

i=1 ϵi → 0 and 1
n ∑n

i=1 ai → 1. The top left

part of Fig. 1 shows a pictorial illustration of this estimation. Plot (a) shows the data { fi} and the true

function g (in red), and (b) shows their cross-section mean superimposed in blue. In case of sparse data or

other challenges, one can utilize a smooth basis for g or add a roughness penalty to modify the traditional

least-squares criterion ([17, 8]).

Figure 1: Illustration of different mean estimators on interval I = [0, 1]: Bold red lines denote the actual
signal g, blue lines in (b),(f) denote the cross-sectional mean f̄ , and blue lines in (d),(g) denote the aligned
mean h̄. Functions in (a) have additive noise only, and those in (c) have phase noise only. Functions in (e)
contain both additive and phase noises. The estimations in (b) and (d) perform well, but not the ones in (f)
and (g).

In recent years, there has been a growing recognition of a different kind of noise or random variability
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in observed signals; it is the so-called phase or warping noise. The observation model for this noise is given

by the phase noise model: fi(t) = g(γi(t)), i = 1, 2, . . . , n, tinI, where γis are random warpings of the

time domain. (A precise mathematical definition of time-warping is presented later.) To have identifiable g,

one assumes that the phase noise has identity mean, i.e., 1
n ∑n

i=1 γi(t) → t. One can verify that, in this case,

the cross-sectional mean f̄ does not directly estimate g. This is because 1
n ∑n

i=1 g(γi(t)) does not converge

to g(t), in general, despite the fact that ( 1
n ∑n

i=1 γi(t)) 7→ t. The quantity limn→∞
1
n ∑n

i=1 g(γi(t)) can be

approximated by
∫

g(t+ x)π(x) dx, where π is a normal density, and thus, the result is a Gaussian blurring

of g. A better solution comes from solving for the γis explicitly and then performing an alignment of given

data according to { f̃i = fi ◦ γ̂−1
i }. This alignment is also called phase-amplitude separation in the literature

([23]). Several past signal processing approaches have used dynamic time warping or DTW to perform this

separation. One can then estimate g using cross-sectional averaging of the aligned signals 1
n ∑n

i=1 f̃i ( [11]).

We will call this average quantity the fully-elastic mean. The bottom left part of Fig. 1 shows a pictorial

illustration of this estimation. Plot (c) shows the data { fi} and the true function g (in red), and (d) shows

the aligned functions { f̃i} and their mean superimposed in blue. While several DTW approaches exist in

the literature for signal alignment, a particularly efficient method is based on the nonparametric Fisher-Rao

metric ([23]). It uses a square-root representation of signals and a dynamic programming (DP) algorithm to

estimate {γ̂i} and is remarkably successful in aligning peaks and valleys of fis. The example shown in (d)

uses this method.

The current paper focuses on a more general problem where both additive and phase noise are present

in the observation. The data is now given by the additive and phase noise model:

fi(t) = ai(g ◦ γi)(t) + ϵi(t), i = 1, 2, . . . , n, and t ∈ I . (1)

The components of the model remain the same as earlier. Next, we discuss the current state-of-the-art in

handling this model.

1.1 Past Methods Including DTW

In signal processing literature, dynamic time warping, or DTW, is a classical technique for handling phase

variability across datasets, especially where one expects periodic or cyclostationary observations. Sakoe

and Chiba [19] popularized the use of DTW in speech recognition. [15] introduced a preprocessing tool for

enhancing signal denoising, improving time-warping algorithm efficacy, and [9] estimated time-warping

functions to transform irregularly cyclical data to regular form. [21] applied DTW for genomic signal align-

ment, while [24] used a Bayesian dynamic time warping to address Doppler-distorted signals in multipath
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channels. Additionally, [14] characterized time-warping effects in almost-cyclostationary signals, focusing

on periodic data. [13] employed DTW as a preprocessing method to align signals from individual trials

to the averaged event-related potentials (ERPs) in electroencephalography (EEG) analysis. [16] introduced

Progressive DTW for arterial blood pressure analysis as a solution to the limitations of traditional DTW,

which struggles with noninvasive, continuous blood pressure estimation. [22] introduced a version of DTW

that is robust to noise and outliers; it uses trend estimation and time warping in a multi-level framework

for down-sampling and up-sampling.

From a statistical perspective, a seemingly natural idea to estimate the signal g is a penalized least-

square solution:

argmin
g∈F

(
n

∑
i=1

min
ai∈R,γi∈Γ

(
∥ fi − ai(g ◦ γi)∥2 + κR(γi)

))
, (2)

where ∥ f ∥ =
√∫

I f (t)2 dt denotes the L2 norm and R denotes a roughness penalty on γis. This solution,

when discretized and solved using the Dynamic Programming algorithm [2], closely relates to the classical

DTW algorithm. However, this optimization has several problems. Firstly, for κ = 0, the optimization

over γis is degenerate; this phenomenon is called the pinching effect ([17, 23]). While adding a penalty term

(setting κ > 0) may avoid degeneracy, it does not entirely solve the problem. It only limits the search space

for a solution and can have unintended consequences. Different values of κ may lead to widely different

solutions.

Several papers have used Eqn. 2 but with a focus on aligning signal data and not necessarily estimating

underlying signal. Others have studied a statistical mixed-effects model by adding a random effect term

to Eqn. 1 ([17, 4]). A similar problem has been investigated in the registration of images ([1, 20]), albeit

with focus on preserving visual features. Almost all these papers on DTW use the L2 objective function

and must balance the two terms in Eqn. 2. Also, some papers have pursued a Bayesian approach for the

alignment of given data { fi} by imposing a prior on γis ([10]).

In a classical DTW (as formulated in Eqn. 2), there are two main issues: (1) The problem is degenerate for

κ = 0, giving rise to the pinching effect, and (2) How should one set the value of κ to avoid over smoothing

and pinching? Although there are several ideas in the literature on choosing the smoothing parameter,

pinching makes this selection complicated. One typically needs higher values of κ to avoid pinching but

that can result in over smoothing. We illustrate this with an example using the first order roughness penalty

R(γi) =
∫

I(1−
√

γ̇i(t))2dt. (The detailed algorithm is presented in [23].) Fig. 2 (a) displays the observed

signals { fi} and their cross-sectional mean f̄ (in blue). The red curve represents the ground truth, g, and

the blue curves in plots (b)-(e) denote the cross-section mean of aligned curves, hereon referred to as ĝL2 .

At κ ∈ (0, 1), one can see the pinching effect in the estimate, but as κ increases, the estimate gets smoother.
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This example shows that a carefully chosen κ is critical to avoid pinching and to reach a good estimate of g.

The difficulty lies in finding the right κ from the data automatically.

(a) (b) (c)

Figure 2: Data alignment and signal estimation according to Eqn. 2. (a) The original data and their sample
mean f̄ (blue). (b,(c) The true g (red), the partially-aligned set, and the mean estimates (blue curves) for
different κ.

1.2 Our Approach

Our approach is motivated by the fact that additive and phase noise models are special cases of Eqn. 1, and

good solutions exist for each case individually. For additive noise only, direct or non-elastic averaging is

optimal. For phase noise only, the fully elastic average is optimal. Under both types of noise, neither of

these solutions is satisfactory or optimal. The cross-sectional mean over-smooths the data, while the fully

elastic mean aligns even the noise artifacts, resulting in spurious peaks and valleys in the estimate. The right

part of Fig. 1 shows an example: For the data in (e), plot (f) shows the non-elastic mean, and plot (g) shows

the elastic mean. We argue that a good solution lies between these two extremes, and the balance should

be adaptive to the data. To achieve this, we propose using partial alignments that control the elasticity of

the signals during alignment via a parameter λ ∈ R+ (similar to κ mentioned above but under a different

metric). The resulting partially-aligned signals are denoted by f̃λ,i, and their mean is ĝλ = ∑n
i=1 f̃λ,i. An

important consideration is making λ adaptive to the given data.

Additionally, we must address the issue of degeneracy or the pinching effect. Our approach differs from

Eqn. 2 in that the formulation is based on the Fisher-Rao distance rather than the L2 distance, thus avoiding

the pinching problem altogether. However, the issue of choosing the smoothing parameter remains, and

we tackle it using a novel topological feature defined next. Our approach has two main steps.

1. Peak-Persistence Diagram (PPD): The objective of this stage is twofold: to find an optimal λ and

to estimate the shape of the unknown signal g. We introduce a novel topological tool called a Peak

Persistence Diagram (PPD). When we change the parameter λ, the topological features, such as the

number of peaks and valleys, in the average function ĝλ change. Therefore, one can estimate λ by

studying the persistence of the internal peaks of ĝλ versus λ and selecting the most persistent peaks.
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A display of this persistence is called a Peak Persistence Diagram or PPD. This process yields three

quantities: an optimal λ∗, the number m of persistent internal peaks, and { f̃λ,i, i = 1, 2, . . . , n}, the set

of partially-aligned signals under the optimal weight λ∗.

2. Shape-Constrained Function Estimation: In the second step, we find an optimal estimate of g by

constraining it to have precisely m internal peaks and utilize a geometric approach to perform a shape-

constrained estimation of g. The estimation process involves minimizing the squared error over the

appropriate constraint space Fm, using the data f̃λ̂,i. Here, Fm refers to the set of all elements of F

with m internal peaks.

This paper focuses on only the internal peaks and valleys of g. The potential peaks at the boundaries are also

relevant, but they can be detected separately using simple tests and are ignored here. For the remainder

of this paper, we will assume that signal data is defined on a compact time interval I and F is the set of

all absolutely-continuous, real-valued functions on I. We will consider the model stated in Eqn. 1, with

following independent components: (1) Scaling noise: ai ∈ R+ ∼ N(1, σ2
a ); (2) Additive noise: ϵi ∈ F , a

random function with mean E[ϵi(t)] = 0 for all t ∈ I; (3) Phase noise: γi ∈ Γ (where Γ is defined below),

with the mean E[γi(t)] = γid(t) = t. Given a set of independent observations { fi}, our goal is to estimate

the number of internal peaks in g and the function g itself.

2 Proposed Method Step 1: Shape Estimation Using PPDs

In this step, we estimate the shape of g, i.e., estimate the number of internal peaks and valleys in g, from the

given data { fi} and form an initial estimate of g.

Background Material: We summarize a recent framework for partial elastic alignments of signals under

the Fisher-Rao metric and refer the reader to the book [23] for details. For alignment purposes, a signal

f ∈ F is represented by its square-root velocity function (SRVF): q(t) = sign( ḟ (t))
√
| ḟ (t)|. Let Γ denote

the group of all boundary-preserving diffeomorphisms of I. Any element γ ∈ Γ is a smooth function with

a smooth inverse and preserves the boundaries of I. The set Γ forms a group under composition, i.e., for

any γ1, γ2 ∈ Γ, we have γ1 ◦ γ2 ∈ Γ. This group has an identity element γid(t) = t. Let a signal f ∈ F be

time-warped by a γ ∈ Γ, resulting in f ◦ γ. The SRVF of the f ◦ γ is given by (q ◦ γ)
√

γ̇, and denoted by

q ⋆ γ for brevity.

With this setup, we can solve for elastic alignment of any two signals f1, f2 ∈ F as follows. Let q1, q2

denote the SRVFs of f1, f2, respectively. Then, the optimal time warping to align f2 to f1 is given by:

γ∗ = argminγ∈Γ ∥q1 − (q2 ⋆ γ)∥2. (Recall that ∥ · ∥ denotes the L2 norm.) However, if we want to penalize
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the level of elasticity in their alignment, we can do so using: argminγ∈Γ
(
∥q1 − (q2 ⋆ γ)∥2 + λR(γ)

)
. The

term R(γ) denotes a penalty on the roughness of γ and forces it to be close to the identity element γid. In

this paper, we have chosen the first-order penaltyR = ∥1−
√

γ̇∥2, but one can use other penalties instead.

The constant λ > 0 controls the amount of elasticity in the alignment: λ = 0 is fully elastic and λ = ∞ is

fully non elastic. To align multiple signals, say f1, f2, . . . , fn, let q1, q2, . . . , qn denote their respective SRVFs.

Then, a joint alignment of these signals is performed using the following optimization:

min
q∈L2

[
n

∑
i=1

(
min
γi∈Γ

(
∥q− (qi ⋆ γi)∥2 + λR(γi)

))]
. (3)

We can rearrange this equation using the facts that ∥q1 − q2 ⋆ γ∥ = ∥q1 ⋆ γ−1 − q2∥, for all q1, q2 ∈ L2 and

γ ∈ Γ, and that Γ is a group. This results in:

min
q∈L2

[
n

∑
i=1

(
min
γi∈Γ

(
∥qi − (q ⋆ γi)∥2 + λR(γi)

))]
,

which can be directly compared to Eqn. 2. We ignore the optimization over ais here as their average con-

verges to one and disappears in any mean-based estimation. The main difference between this solution

and Eqn. 2 (or other DTW approaches) lies in the use of SRVFs and the invariance properties of the elastic

metric. Fundamentally, the difference comes from the fact that ∥q∥ = ∥q ⋆ γ∥, for all q ∈ L2 and γ ∈ Γ,

while ∥ f ∥ ̸= ∥ f ◦ γ∥ in general.

The SRVF-based optimization (Eqn. 3) does not provide an estimate of g directly but results in several

quantities of interest: (1) If γ̂λ,i denotes the optimal time warping inside the summation, for each i, then

f̃λ,i = fi ◦ γ̂λ,i are the resulting partially-aligned functions; (2) Let ĝλ be the cross-sectional mean of these

f̃λ,i. Algorithm 1 summarizes the main steps in this partial elastic alignment. Fig. 3 shows an illustration

of the output of Algorithm 1. It offers several results, each showing partially-aligned signals and their

cross-sectional mean for a different value of λ. The original data is shown in the bottom right panel. On

one extreme, λ = 0 results in a perfect alignment of peaks and valleys. Conversely, λ = ∞ provides no

alignment at all. Importantly, note that there is no pinching effect in the alignment for any value of λ. Note

that ĝin f ty = f̄ , the cross-sectional mean mentioned earlier.

2.1 Peak Persistence Diagrams

Given this context, the subsequent task involves discovering an automated method to select the best λ from

the available data. This is achieved via a topological approach, by utilizing the concept of peak persistence

diagrams. As λ changes from 0 to ∞, some peaks and valleys in ĝλ start to diminish and even disappear
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Algorithm 1 Signal-Alignment Algorithm
Require: Data { f1, f2, . . . , fn}

1: for i = 1, . . . , n do

2: qi ← sign( ḟi)
√
| ḟi|

3: end for
4: q̄← argminq∈{q1,...,qn}

∥∥∥q− 1
n ∑n

i=1 qi

∥∥∥
5: while ϵ > tol do
6: for i = 1, 2, . . . , n do
7: γ̂λ,i ← arg infγ∈Γ

(
∥q̄− (qi ⋆ γ)∥2 + λR

)
8: f ∗i ← fi ◦ γ̂λ,i, and q∗i ← sign( ḟ ∗i )

√
| ḟ ∗i |

9: end for
10: q̄∗ ← 1

n ∑n
i=1 q∗i , ϵ← ∥q̄− q̄∗∥2

11: if ϵ > tol then
12: q̄← q̄∗

13: end if
14: end while
15: γ̄−1 ← ( 1

n ∑n
i=1 γ̂λ,i)

−1, q̄∗ ← (q̄∗ ⋆ γ̄−1)
16: for i = 1, 2, . . . , n do
17: γ̂λ,i ← arg infγi∈Γ

(
∥q̄∗ − (qi ⋆ γi)∥2 + λR

)
18: f̃λ,i ← fi ◦ γ̂λ,i
19: end for
20: return ĝλ = 1

n ∑n
i=1 f̃λ,i

altogether. Sometimes new peaks may also be formed. We propose to analyze this behavior using a peak

persistence diagram.

Definition 1 The peak persistence diagram (PPD) of a set of signals { fi, i = 1, 2, . . . , n} is a visual presentation

of the significant, internal peaks of their partial elastic mean ĝλ plotted versus λ. Essentially, a PPD serves to

identify the existence, magnitudes, and positions of significant internal peaks of ĝλ.

A PPD can be displayed in several ways. Plotting only the peak indicators across the range of λ, we obtain

a PPD bar chart. If we are also interested in peak locations versus λ, we obtain a PPD surface. A vital

issue to address is what qualifies as a significant peak, which we discuss in the next section. The idea of

tracking significant peaks has been previously utilized in density estimation ([3]), although in the context

of bandwidth selection for kernel-based methods. A PPD is akin to persistence homology in topological

data analysis ([25]), where one traces topological features at different data resolutions. In contrast, a PPD

tracks peaks of registered signals.

Figure 4 displays PPD charts for the data shown in panel (a). Panel (b) plots the PPD bar chart indicating

detected peaks for different values of λ. The x axis represents λ, while the y axis indicates peak labels. The

black color denotes significant peaks, and grey regions denotes insignificant peaks. Panels (c) and (d) show

a 3D surface plot, where the values of ĝλ(t) are represented by colors ranging from blue to yellow, based
8



(a) (b) (c) (d) (e)

Figure 3: Partial elastic alignments for different values of λ according to Eqn. 3. Each plot shows the true g
(red), the partially aligned set { f̃λ,i}, and their cross-sectional mean ĝλ (blue curve). Compare with Fig. 2
for a visual comparison of results.

(a) (b) (c) (d)

Figure 4: (a) The original signalal data, (b) the PPD barchart, and (c), (d) PPD surface generated by interpo-
lating ĝλ’s for different λ and the movements of the peaks.

on their height. The y axis is λ, the x axis is the time t, and the labeled black lines indicate the t positions of

the peaks as λ varies. At λ = 0, ĝλ exhibits four internal peaks, but as λ increases the peaks labeled 2 and 4

disappear. Only those labeled 1 and 3 persist throughout indicating two dominating peaks.

2.2 Defining Peak Significance and Persistence

Peak Significance Parameter τ: Several reasons, including noise or numerical errors, can introduce small

peaks in ĝλ. This can happen, for example, in parts of the domain where g is constant and an alignment of

noise results in spurious peaks. Our goal is to keep only those peaks that are significant in some way. The

question is: When is a peak considered significant? We define the strength of a peak located at t0 ∈ I to be

the value −ĝ′′λ(t0)

maxt∈I −ĝ′′λ(t)
. This quantity measures the curvature of ĝλ at point t0, normalized appropriately. If

this quantity is less than a predetermined value, say τ, then the peak at t0 is considered insignificant, and

we discard it. Otherwise, it is significant, and we include it in PPD. To determine the value of cutoff τ

from the data, we measure the strengths
{

− f ′′i (ti,j)

maxt∈I − f ′′i (t)

}
, at all the peaks located at {ti,j} of all the original

signals { fi, i = 1, . . . , n}. We then create an empirical distribution (a histogram) to assess the variability of

strengths in the original data. We then set τ as the 15th percentile of the histogram. We have found the

results robust for this choice – a range from 10 to 40 percentile works well in all case studies.
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Peak Persistence Parameter λ∗: The next challenge is to decide when a peak is labeled as persistent. We

define the persistence measure of a peak to be the range of λ-values in which that peak is significant, i.e.,

pk = |{λ ≥ 0 | peak k in ĝλ is significant}|. Strong peaks in the signal g should appear in ĝλ over a large

range of λ. One can label a peak k as persistent if its persistence measure pk exceeds a threshold λ∗, but how

should one determine λ∗? Since persistence and non-persistence are the only two available labels for any

peak, we use a clustering method to divide the set {pk} into two groups: one with large values is labeled

persistence, and the other is non-persistent. (We use Ward’s method for hierarchical clustering.) Then,

we select the smallest value of λ that results in those persistent peaks in ĝλ and call it λ∗. This choice is

motivated by the observation that extrema of ĝλ typically diminish as λ increases. The number of persistent

peaks is denoted by m.

Fig. 5 shows these steps with a simulated dataset. Plot (a) shows the data, its cross-sectional mean

(dotted blue line), and the ground truth g (solid red line). Plot (b) shows a histogram of strengths of peaks

in the given data { fi}, with the 15th percentile located at τ = 0.186 (indicated by a vertical dotted line).

Plot (c) shows the PPD bar chart of peak indicators with significance (black) and insignificance (grey) color

coded. From PPD, we compute persistence values, p1, ..., p6 for all the six peaks and we cluster them into

two groups. This identifies peaks numbered 2, 4, and 5 as persistent, resulting in m = 3 and λ∗ = 0.05. For

this λ∗, we also compute the cross-sectional mean ĝλ∗ =
1
n ∑n

i=1 f̃i,λ∗ . Finally, plot (d) shows the variation

in the estimated number of significant peaks versus τ, highlighting this estimate’s robustness.

(a) (b) (c) (d)

Figure 5: (a) The original signals, their mean (dotted blue line), and the underlying g (red line). Plot (b) The
histogram of strengths of all peaks in the original dataset { fi}. The vertical line shows the 15th percentile,
and the corresponding τ at 0.186. (c) The resulting PPD plot with gray denoting insignificant peaks and
black denoting significant peaks. (d) The plot of the number of peaks selected by PPD for different values
of τ, underscoring the robustness of results to τ.

2.3 Experimental Results on PPD-Based Peak Estimation

Now we present examples of PPD-based shape estimation on a simulated and a real dataset. Note that

additional experimental results are presented in the Supplementary Material.
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Example 1: Here we generate data from a bimodal signal, labeled as g1 (red curve), which we corrupt by

adding a few tri-modal curves g2 (magenta curve), and randomly time warpg them and add some noise.

The complete data consists of 80 random perturbations of g1 and 20 of g2. The objective is to estimate m

from this noisy data.

(a) (b) (c) (d) (e)

Figure 6: Example 1: Data consists of 80 and 20 signals generated from bimodal g1 and tri-modal g2, respec-
tively. Plots (a), (b), and (c) display ĝ∞, ĝ0, and ĝλ∗ , respectively. PPDs in (d) and (e) suggest two peaks (1
and 2) are significant and persistent. Figure Key: Solid Red - g1, Solid Magenta - g2, Dotted Blue - ĝ∞, Solid
Blue - ĝ0, Dashed Blue - ĝλ∗ .

Figure 6 presents PPD outputs of this data. Plot (a) shows the original data, and (b) shows the full

elastic alignment with the mean, ĝ0, drawn in blue. This mean curve has three peaks: two dominant and a

minor third peak. Plot (c) shows the outcomes of partial-elastic alignment with λ∗ = 0.01 chosen via PPDs

displayed in panels (d) and (e). The bar chart in (d) indicates two significant and persistent peaks (1 and 2),

consistent with g1. This example suggests that the PPD method can successfully estimate the shape of the

underlying signal even when the data is contaminated by a differently shaped signal.

Example 2: Birth Rate Changes in European Countries: Here, we study historical records of birth rate

changes in 50 European countries during 1950− 2021 [18]. The response variable here is the yearly birth

rate, defined as the count of live births per 1000 individuals each year. We smooth the raw data first using a

window size of 15 years. As shown in Fig. 7, the PPD finds that m = 4 peaks are significant and persistent.

The optimal parameter for this peak is λ∗ = 0.09. Plot (b) shows that ĝ0 exhibits five peaks, but the fifth

peak disappears quickly as the value of λ increases. On the other hand, (a) and (d) show that ĝ∞ has four

shallow peaks. However, (c) shows ĝλ∗ with four significant peaks.

(a) (b) (c) (d) (e)

Figure 7: Example 2: The estimated number of peaks by PPDs is four (peaks 1,2, 3, and 4). Figure Key:
Solid Red - g1, Solid Magenta - g2, Dotted Blue - ĝ∞, Solid Blue - ĝ0, Dashed Blue - ĝλ∗ .
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3 Proposed Method Step 2: Peak-constrained Curve Estimation

So far, we have partially aligned observations, and their sample mean ĝλ∗ . While this may be a candidate

for estimating g, it does not have any optimality criterion attached to it. Therefore, we introduce a second

step of the framework that involves searching over a pre-defined shape class, i.e., having m peaks under

a penalized maximum-likelihood criterion. The objective here is to limit the exploration only to signals

with m peaks and determine the optimal element of that class through geometric search. This technique

adapts the shape-constrained density estimation method suggested in [5] and has been customized for our

signal estimation. It involves altering an initial estimate ĝinit while maximizing a penalized log-likelihood

function. (We use the peaks and valleys, including locations and heights, in ĝλ∗ and smooth interpolations

between them to form an initial estimate, ĝinit.) The optimization is conducted over all signals with m

peaks.

3.1 Constrained Signal Estimation using Penalized-MLE

Let M be the number of extrema points of ĝinit, which comprises interior peaks, valleys, and the two end-

points. M lies between 2m + 1 to 2m + 3 (inclusive), where m is the estimated number of interior peaks. For

instance, if both endpoints are minima and there are m− 1 interior valleys, then M = 2m + 1.

Set of Shape-Constrained Signals: Define Fm ⊂ F as the set of all signals with m internal peaks on I.

Any two elements of Fm differ in the locations and heights of their extrema points. Correspondingly, we

are going to define two sets of variables. Locations: We will use the time-warping functions – elements

of Γ – to vary the locations of the extrema points. That is, the composition ĝinit ◦ γ, for a γ ∈ Γ, changes

the locations of the extrema points while maintaining their heights and order. Heights: We also define

s = {s1, s2, . . . , sM} as the heights of the extremal points in ĝinit. There are some natural constraints on the

values of s. A valley’s height should be less than the heights of its neighboring peaks. Let S be the set of

all vectors s that satisfy these constraints. We will use fs ∈ Fm to denote a signal that has s as the height

vector of its extrema.

Starting with the initial estimate ĝinit, we adjust the locations and the heights of the extrema points in

order to explore the set Fm. The final estimate is given by: ĝ = ( fs∗ ◦ γ∗), where

(γ∗, s∗) = argmin
γ∈Γ,s∈S

(
n

∑
i=1

∫ 1

0
( fs(γ(t))− f̃λ∗ ,i(t))2dt + ρ

∫ 1

0
f̈s(γ(t))2dt

)
(4)

Here ρ > 0 is an infinitesimal weight (∼ 10−8) for favoring smooth functions. This solution differs from
12



Eqn. 2 in several ways. Here we optimize over only one γ while Eqn. 2 uses a γi for each observation. Also,

we use the partially aligned data that favors m peaks rather than using the original data.

The optimization problem in Eqn. 4 is solved using the fmincon function in Matlab. However, since

Γ is a nonlinear manifold of infinite dimension, direct optimization poses a challenge. To overcome this,

we employ an SRVF map followed by an inverse exponential map to represent the warping functions in a

vector space, and use an orthogonal basis to represent γ by its coefficients. Interested readers can find the

optimization details in [6]. Algorithm 2 outlines the steps for shape-constrained estimation of g and Fig. 8

shows an example. The gray dotted points represent the partially-aligned signals { f̃λ∗ ,i}, while the initial

estimate ĝinit is shown in cyan, and the outcome of Algorithm 2 is depicted in green.

Figure 8: Two examples of shape-constrained signal estimation: In each case, the dotted points represent the
partially-aligned functions { f̃λ∗ ,i}. The cyan and the green lines are the initial and final function estimates
of g.

Algorithm 2 Peak-constrained Curve Estimation

Require: Data: { f̃λ∗ ,i}n
i=1, initial shape estimate ĝinit(t)

1: Initialize the heights of the extrema points of ĝinit: {s1, s2, ..., sM},
2: Initialize γ← γid.
3: Obtain γ∗ and s∗ by solving Eqn. 4 by fmincon.
4: return ĝ(t) = fs∗(γ

∗(t))

3.2 Bootstrapping for Estimating Confidence Bands

To evaluate the performance of the signal estimate ĝ, we compute pointwise confidence bands for our

estimator and display them with the estimation results. In the case of simulated data, we check if these

estimated confidence bands contain the ground truth and validate the results. Algorithm 3 lays out the

steps for computing these confidence bands.
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Algorithm 3 Constructing Pointwise Confidence Band
Require: { fi}n

i=1, Initial shape estimate, ĝinit, Estimated smoothing parameter, λ∗

1: for j = 1, 2, . . . , B do
2: Resample n observations with replacement to obtain a bootstrapped set of functions, { f (j)

i }
n
i=1.

3: Obtain partially aligned data with smoothing parameter, λ∗, { f̃ (j)
λ∗ ,i}

n
i=1

4: Given ĝinit and { f̃ (j)
λ∗ ,i}

n
i=1, obtain the best estimate of g by Algorithm 2: ĝ(j)

5: end for
6: With {ĝ(j)}B

j=1, return (α/2) and (1− α/2) quantiles to set the lower and upper bound of the confidence
bound point-wisely.

4 Experimental Results: Shape and Signal Estimation

This section demonstrates and evaluates the performance of our proposed method using a range of simu-

lated and real datasets. We primarily compare our estimate ĝ with two prior solutions, which include (1) the

mean of unaligned functions, f̄ = ĝ∞, and (2) the fully-elastic mean, ĝ0. In addition, we study the results

obtained using Eqn. 2 (denoting DTW solutions) in the case of simulated data for several κ values. We use

RMSE as the metric for comparing the estimation errors and provide 95% pointwise bootstrap confidence

bands to visualize the variability of our estimator.

4.1 Simulation Studies

First, we try two simulation scenarios on the domain I = [0, 1]. (Additional experimental results are pre-

sented in the Supplementary Material). In each experiment, we choose a different signal g and generate

n = 100 samples according to Eqn. 1. To compute and compare different solutions, we use 50 independent

replications of each scenario and compute statistics of RMSEs of the estimators.

1. Simulated Dataset 1: We set the true signal g as:g(t) = −4+ 6ϕ(t,−0.05, 0.14) + 1.5ϕ(t, 0.25, 0.075) +

5.8ϕ(t, 0.59, 0.195), where ϕ(t, µ, σ) denotes the Gaussian probability density function evaluated at

t ∈ I with mean µ and standard deviation σ. Figure 9 (top) shows results from this experiment. The

original data is shown in panel (a), with the true function g drawn in red. Plots (a) and (b) show

the alignment of functions under the extreme values of λ: ∞ and 0, respectively. The cross-sectional

means are shown in blue in each case. The PPD bar chart in (c) estimates two significant and persistent

internal peaks. The optimal parameter λ∗ = 0.11 is shown in the magenta. Plot (d) is the PPD surface

displaying gradual changes in ĝλ when λ increases. The black lines on this surface are traces of

significant peaks. Next, we use these quantities to estimate the signal g as described in Section 3. The

green dashed curve in (e) is the final estimate ĝ. We also display a pointwise bootstrap confidence

band using a gray region. We can see that both the function estimate (in green) and the band (in gray)
14



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: (Sumlated Data), top row is Datset 1 and bottom row is Datset 2. In each row, (a) and (b) are
aligned functions at λ = ∞ and λ = 0. These figures also show ĝ0 (bold blue), ĝ0.05 (bold dotted-line
blue) and ĝ∞ (bold dotted blue). The ground truth g and the final estimate ĝ are drawn in red and green,
respectively. Plot (c) is the PPD with λ∗ = 0.11. Plot (d) shows the evolution of ĝλ versus λ. The black lines
on the surface indicate the interior peaks. Panel (e) compares different estimates with the ground truth g.
A 95% bootstrap confidence band is drawn using gray regions. Figure Key: Solid Red - g, Dotted Blue - ĝ∞,
Solid Blue - ĝ0, Dashed Blue - ĝλ∗ , Dashed Green: ĝ.

differ from ĝ0 and ĝ∞. Furthermore, ĝ is the closest function to the ground truth g in terms of the L2

distance. A detailed quantitative evaluation of the results is presented later.

2. Simulated Dataset 2: In this example, the signal g is g(t) = sawtooth(6(t− 0.07)π), where the matlab

function ′sawtooth′ generates a sawtooth wave pattern. To handle the non-differentiability at the

sawtooth wave’s interior extrema, we employ a locally weighted scatterplot smoothing (LOWESS)

with a span of 12 data points to smooth the data. This helps to eliminate any sharp spikes or dips

in the signal and provides a smoother signal. The data is presented in Fig. 9(f). The PPD bar chart

in (h) successfully detects two significant internal peaks, labeled 2 and 4, and estimates λ∗ = 0.14.

The evolution of peaks is seen in bottom (i with PPD surface plot. Plot (j) shows the final estimate ĝ

(in green) with a bootstrap confidence band in gray. As shown, the elastic mean, ĝ0 (solid blue), has

spurious peaks while ĝ∞ (dotted blue) underestimates the heights of peaks and valleys. Our estimate

ĝ (in green) provides an excellent estimate of g.

Performance Quantification: So far we have visualized estimates from different methods. To quantify and

compare estimation performances, we generate 50 replications of each experiment (discussed above) and

calculate the L2-based RMSE
√∫

I(g(t)− ĝ(t))2 dt for each replication. Each row in Fig. 10 shows results

for a simulation experiment. The left two panels display boxplots of the mean and standard deviations of

the RMSE for different estimators. The first plot shows boxplots for ĝ∞, ĝ0, and ĝ. As expected, ĝ has the
15



L2 errors elastic L2 errors DTW vs. κ Total Peak in ĝ0 Total Peak in ĝλ∗ Est. Peak from PPD

Figure 10: Figure summarises results from two simulation experiments using 50 replicates. Each row shows
a different simulation, from left to right: (1) the boxplots of the RMSE of three elastic estimators, (2) the
boxplots of RMSE for the penalized-L2 estimators (for three different values of κ), (3) histograms of total
peak counts in ĝ0, (4) histograms of total estimated peak counts (both insignificant and significant) in ĝλ∗ ,
and (5) histograms of dominant (persistence and significant) peaks detected using PPD.

smallest error as λ∗ is estimated from the data. This also supports the prior observation that ĝ∞ underesti-

mates signal structure (peaks and valleys and their heights), and ĝ0 tends to overestimate structures. The

second column shows the error statistics for the DTW technique under three values of κ, at 1, 10, and 100.

The boxplots of both cases highlight the difficulty in choosing an optimal κ.

To emphasize the role of shapes, we also display the histograms of the estimated number of peaks for

each experiment. The first histogram shows the total number of peaks in fully aligned mean, ĝ0. The second

histogram shows the total number of peaks (both significant and insignificant) in the partially aligned mean,

ĝλ∗ . The third shows the number of the significant and persistent peaks selected by PPD. In both simulation

cases, the ground truth has two peaks. As these results show, the PPD approach is better able to estimate

the correct number of peaks in g than ĝλ∗ which, in turn, is better than ĝ0. This partly explains the improved

performance of the proposed shape-constrained function estimator.

Finally, we analyze the computational cost of the past and proposed methods. Table 1 lists the time to

perform different algorithmic steps. This cost is computed on a CPU (Intel(R)) i7-11800H @ 2.30GHz. We

omit the cost of unaligned mean as it does not require any signal alignment. The cost for computing the

fully elastic mean averaged over 50 replications is in the first column. The costs associated with different

steps of our method – partial alignment, computing PPD, and function estimation – are listed in the three

right columns. A majority of time is consumed in partial alignment of functions for different values of λ.
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λ = 0 λ > 0

Align Alig
(1st Step)

Form PPD
(1st Step)

Estimate
(2nd Step)

Sim 1 15.29 1868.4 0.13 17.87
Sim 2 17.12 2021.6 0.12 18.92

Table 1: Computational time (in seconds) for various steps in our procedure.

4.2 Real Data Studies

In this section, we estimate signals underlying real datasets using our framework. However, in these cases,

we lack ground truth to evaluate performance. Therefore, the results must be interpreted and compared to

other estimators in order to assess their performance. One can also use plausibility of solutions as a merit

criterion for comparing different estimators.

COVID-19 Data Analysis for Europe: There is a great interest in analyzing COVID-19 pandemic data

and associated surges, the so-called waves, in infection rates. While different communities experienced

COVID peaks at different times, some common patterns underlying COVID-19 incidences and outcomes

emerged. For instance, if we focus on COVID-19 outcomes for different states or countries in a region, there

is arguably an overall common pattern of waves during the pandemic period. We aim to discover such

patterns using raw COVID-19 data from OWID [12].

• Daily Hospitalization Rate Curves: We consider the daily hospitalization counts associated with

COVID-19 in 25 European countries during the period from April 2020 to July 2021 ([12]).

The top row in Fig. 11 (a) and (b) display the original infection rate data and their fully-elastic align-

ments, respectively. These plots also show their cross-sectional means, ĝ∞ and ĝ0, respectively. These

means differ in the heights of peaks and valleys, and ĝ0 also shows some small spurious peaks. PPD

surface plot in (d) shows the gradual changes in ĝλ for λ ∈ [0, 0.6], and the bar chart in (c) selects

λ∗ = 0.1 with three persistent peaks (1, 3 and 4). The 95% pointwise confidence band (in gray) in

(e) is quite broad, which can be attributed to a small sample size n = 25. Why is ĝ a better esti-

mator than other choices? When we consider individual curves in (a), the curves have well-defined

peaks (and valleys) and mostly have three peaks. Our final estimate (in green) in panel (e) finds three

well-defined peaks and strikes a good balance between the two extremes. More importantly, it better

matches individual shapes than the other estimators and, thus, seems more plausible as a pattern

common to the 25 countries.

• Daily Infection Rate Curves: The daily infection rate curves of COVID-19 can be used to study the

rate of spread of a variant or the effectiveness of a vaccine. Next, we study the infection rate curves
17
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(a) (b) (c) (d) (e)

Figure 11: Top row: Daily hospitalization rate curves – PPD in suggests three peaks (1,3 and 4) are signifi-
cant and persistent with λ∗ = 0.1. Top Middle row: Daily infection rate curves – PPD in (labels four peaks
(1, 4, 5, and 7) as significant. Bottom row: Daily death rate curves – PPD suggests that five peaks (1, 2, 4, 6,
and 7) are significant. The final estimation (in green) differs from ĝ∞ and ĝ0 in all three cases.
Figure Key: Dotted Blue - ĝ∞, Solid Blue - ĝ0, Dashed Blue - ĝλ∗ , Dashed Green: ĝ.

in the same 25 European countries from April 2020 to March 2022. The middle row of Fig. 11 shows

the results: (a) and (b) show the original data and the fully-aligned signals, respectively. A simple

averaging, ĝ∞, irons out most of the peaks in the first half of data. On the other hand, some of the

peaks in ĝ0 appear weak and need a closer look. Indeed, the PPD method rejects peak number 2

as insignificant and keeps the other four peaks (1, 4, 5, and 7). Plot (e) shows our final estimate (in

green), and it shows a broad, shallow wave in the first half, and three significant and quick waves in

the second half. The most damaging wave (peak 5) was during the outbreak of the delta variant in

the Summer of 2021. It also discovers a prominent peak around January 2022, which is unclear from

a quick inspection. The number of peaks in ĝ is same as in ĝin f ty, but the heights of the peaks are

stronger in ĝ.

• Daily Death Rate Curves: We also studied the daily death rates of COVID-19 in these 25 European

countries from April 2020 to March 2022. The results are shown in the bottom row of Fig. 11. The

standard estimates ĝ∞ (dotted blue) and ĝ0 (solid blue) in (a) and (b) offer very different results: ĝ0

has several sharp prominent peaks whereas ĝ∞ has broad and shallow peaks. A small peak in January

2021 in ĝ0 seems artificial as no country has a peak at that time in the original data. The PPDs in (c)
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and (d) estimate λ∗ = 0.025, and the peaks labeled 3, 5, and 8 disappear immediately. Plot (e) shows

that our estimate ĝ (in green) differs significantly from the other estimates: ĝ∞ and ĝ0. Although the

partial alignment of functions is not too different from the original data, our estimate ĝ picks up three

distinct peaks in the early stage of COVID before January 2021.

Household Electricity Consumption Data: The objective here is to analyze the weekday electricity con-

sumption data in domestic households [7]. This study focuses on two subsets of the data, corresponding to

the months of January and July, consisting of 968 and 1, 219 households, respectively. In Fig. 12, the top row

of (a) and (b) present the original and aligned curves of the January data. The PPD barchart reveals that five

peaks (2, 6, 8, 9, and 10) are significant, with λ∗ = 0.235. The upper panel (e) shows that there are vast dif-

ferences among different estimators: ĝ (in green), ĝ0 (in solid blue), and ĝ∞ (in dotted blue). Our estimateĝ

seems more plausible as a typical household electricity usage pattern due to its ups and downs nature. The

full aligned mean ĝ0 lumps the daily usage into a large peak during mid-day, and ĝ∞ oversimplifies the

usage variations by ironing them out. The bottom row of Fig. 12 presents results for the July consumption

data. The PPD barchart reveals two prominent peaks (2 and 5) with λ∗ = 0.18, while ĝ0 overestimates the

peaks (it suggests 1, 2 and 3) and ĝ∞ underestimates the peaks (it suggests only one peak (2)). As shown in

(e), ĝ captures the important mid-afternoon peak, reflecting sustained air conditioning demand due to high

temperatures, even when homes are unoccupied.

Original Data + Mean Fully Aligned PPD Bar Chart PPD Surface Signal Estimate

(a) (b) (c) (d) (e)

Figure 12: Top row: January electricity consumption curves – PPD in suggests five peaks (2,6,8,9 and 10)
are significant and persistent with λ∗ = 0.235. Bottom row: July electricity consumption curves – PPD
suggests that two peaks (2 and 5) are significant. The final estimation (in green) differs from ĝ∞ and ĝ0 in
all three cases.
Figure Key: Dotted Blue - ĝ∞, Solid Blue - ĝ0, Dashed Blue - ĝλ∗ , Dashed Green: ĝ.
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5 Discussion

The experimental results presented in this paper prove that our approach is successful in (1) estimating the

number of peaks in noisy signals and (2) estimating the underlying unknown signal in a shape-constrained

manner. A vital accomplishment is the automated tuning of parameter λ using PPDs. PPD, a topological

feature of the data, is intuitive and effective in determining the number and locations of peaks in g, allowing

for the selection of a reasonable value for the smoothing parameter, λ. Moreover, shape-constrained signal

estimation further refines the initial estimate by maximizing the likelihood.

A pertinent question here is: Why not define the concept of PPDs in the original signal space? Why use

the SRVF representation instead? We have provided the mathematical reasoning earlier. The L2 norm is

invariant to the action of Γ in SRVF space but not in the original Hilbert space. Fig. 13 illustrates an example

of the problem. It tries to form a PPD on one of the previously studied simulated data and concludes that

κ = 0 is optimal. This result is unsatisfactory as the pinching effect is visible at κ = 0. We know that under

the SRVF representation, the pinching effect is completely avoided, even for λ = 0.

(a) (b) (c)

Figure 13: (PPD in the original signal space): (a) Sawtooth dataset with the cross-sectional mean (in dotted
blue) and ground truth g (in red). (b) Signal alignment using Eqn. 2 with mean (in blue) and optimal κ∗ = 0.
(c) The PPD plot in the original signal space, with κ∗ = 0.

6 Conclusion

Estimating a mean signal g underlying a population of random observation is a classic signal processing

problem. In many cases, the number, locations, or heights of extrema in g may be of direct interest them-

selves. In the presence of phase and additive noise, the classical unaligned mean ĝ∞ loses the geometric

features, while fully elastic mean ĝ0 can generate spurious features. This paper presents a geometric ap-

proach that explores the solution space by studying the geometry of ĝλ, for a range of smoothing parameter

λ ∈ [0, ∞). It introduces a novel topological tool peak persistence diagram (PPD) for investigating this solution

space and focusing on dominant peaks. This persistence of peaks helps us to discard insignificant peaks,

estimate the shape of g, and reach an optimal λ∗. The latter two quantities feed into a shape-constrained es-
20



timation of g. This estimation refines ĝλ∗ and produces an optimal estimate, ĝ, under penalized MLE. Most

importantly, the heights, the locations, and the number of extrema in ĝ are interpretable and supported by

data. In contrast, ĝ∞ often blurs the peaks, and ĝ0 overestimates heights and the number of extrema.

References

[1] S. Allassonniére, Y. Amit, and A. Trouvé. Towards a coherent statistical framework for dense de-

formable template estimation. Journal of the Royal Statistical Society (B), 69(1):3–29, 2007.

[2] D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.

[3] P. Chaudhuri and J. S. Marron. Sizer for exploration of structures in curves. Journal of the American

Statistical Association, 94(447):807–823, 1999.

[4] G. Claeskens, E. Devijver, and I. Gijbels. Nonlinear mixed effects modeling and warping for functional

data using b-splines. Electronic Journal of Statistics, 15, 2021.

[5] S. Dasgupta, D. Pati, I. H. Jermyn, and A. Srivastava. Modality-constrained density estimation via

deformable templates. Technometrics, 63(4):536–547, 2021.

[6] S. Dasgupta, D. Pati, and A. Srivastava. A two-step geometric framework for density modeling. Sta-

tistica Sinica, 30(4):2155–2177, 2020.

[7] S. Dasgupta, A. Srivastava, J. Cordova, and R. Arghandeh. Clustering household electrical load pro-

files using elastic shape analysis. In 2019 IEEE Milan PowerTech, pages 1–6, 2019.

[8] J. Fan and I. Gijbels. Local polynomial modelling and its applications. Chapman & Hall/CRC, 1996.

[9] W. A. Gardner. Statistically inferred time warping: extending the cyclostationarity paradigm from reg-

ular to irregular statistical cyclicity in scientific data. EURASIP Journal on Advances in Signal Processing,

2018(1):59, 2018. Article 59.

[10] S. Kurtek. A geometric approach to pairwise Bayesian alignment of functional data using importance

sampling. Electronic Journal of Statistics, 11(1):502 – 531, 2017.

[11] S. Kurtek, A. Srivastava, and W. Wu. Signal estimation under random time-warpings and nonlinear

signal alignment. In Advances in Neural Information Processing Systems, volume 24, 2011.

[12] E. Mathieu, H. Ritchie, L. Rodés-Guirao, C. Appel, C. Giattino, J. Hasell, B. Macdonald, S. Dattani,

D. Beltekian, E. Ortiz-Ospina, and M. Roser. Coronavirus-19 pandemic. Our World in Data, 2020.
21



[13] M. Molina, L. J. Tardón, A. M. Barbancho, I. De-Torres, and I. Barbancho. Enhanced average for event-

related potential analysis using dynamic time warping. Biomed. Sig. Proc. and Control, 87, 2024.

[14] A. Napolitano. Time-warped almost-cyclostationary signals: Characterization and statistical function

measurements. IEEE Transactions on Signal Processing, 65(20):5526–5541, 2017.

[15] U. Ozertem and D. Erdogmus. Signal denoising using principal curves: Application to timewarping.

In 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, pages 3709–3712, 2008.

[16] A.-G. Pielmus, M. Klum, T. Tigges, R. Orglmeister, and . Urban. Progressive dynamic time warping

for noninvasive blood pressure estimation. Current Directions in Biomed. Engg., 6(3):579–582, 2020.

[17] J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer series in statistics. Springer, 1997.

[18] M. Roser, H. Ritchie, E. Ortiz-Ospina, and Lucas Rodés-Guirao. World population growth. Our World

in Data, 2013.

[19] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word recognition.

IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(1):43–49, 1978.

[20] I. Simpson, J. A. Schnabel, A. R. Groves, J. Andersson, and M. W. Woolrich. Probabilistic inference of

regularisation in non-rigid registration. NeuroImage, 59(3):2438–2451, 2012.

[21] H. Skutkova, M. Vitek, P. Babula, R. Kizek, and I. Provaznik. Classification of genomic signals using

dynamic time warping. BMC Bioinformatics, 14(10):S1, 2013. S1.

[22] X. Song, Q. Wen, Y. Li, and Li. Sun. Robust time series dissimilarity measure for outlier detection and

periodicity detection. In 31st ACM Conf. on Info. & Know. Management, pages 4510–4514, 2022.

[23] A. Srivastava and E.P. Klassen. Functional and Shape Data Analysis. Springer Series in Statistics. Springer

New York, 2016.

[24] S. Yang and A. C. Singer. Hb-dtw: Hyperdimensional bayesian dynamic time warping for non-uniform

doppler. In 2021 29th European Signal Processing Conference (EUSIPCO), pages 2020–2024, 2021.

[25] A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational Geometry,

33:249–274, 02 2005.

22


	Introduction
	Past Methods Including DTW
	Our Approach

	Proposed Method Step 1: Shape Estimation Using PPDs
	Peak Persistence Diagrams
	Defining Peak Significance and Persistence
	Experimental Results on PPD-Based Peak Estimation

	Proposed Method Step 2: Peak-constrained Curve Estimation
	Constrained Signal Estimation using Penalized-MLE
	Bootstrapping for Estimating Confidence Bands

	Experimental Results: Shape and Signal Estimation
	Simulation Studies
	Real Data Studies

	Discussion
	Conclusion

