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ABSTRACT the modeling paradigm because it can support heterogeneity to a

degree that is typically precluded by analytical approaches, while
also incorporating the theoretical foundation of modern portfolio
theory. Although predictive models have been effective for tasks
like price prediction in computational finance, our key focus here
is performing interventions, such as introducing shocks and evalu-
ating their effects. Additionally, we want the model to engage in a
dialogue with the existing economic theory. These objectives not
only justify our modeling approach but also set this study apart
from prior studies.

Our study is motivated by Robert Lucas’s famous critique of
macroeconomic models [23]. Lucas makes the case that when poli-
cymakers change the economic environment, they need to consider
how agents will respond to their changes. For example, if we make
policies based on some statistical relationship we observe within
an economic environment, the relationship itself will be affected by
our policies due to the reaction by the agents. Our study captures
the dynamics between the economic environment and agent be-
haviors in the context of asset markets by going beyond traditional
restrictive assumptions like belief homogeneity and the absence of
noise traders [13].

ABMs have a long history in economics (see [16, 22, 28, 34] for
surveys). Despite this, Farmer and Axtell [14] state that "at present
KEYWORDS ABM[s] are not widely used in mainstream economics." It is hard
to pinpoint exactly why this is the case, but we believe there is
ample opportunity at the intersection of economics and multiagent
systems.
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1 INTRODUCTION Closest to ours is the Santa Fe artificial market study [21], whose
designers investigate the effect of multiple trading strategies on
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with respect to inter-asset pricing dynamics. Other works focus on
the effect of specific trading strategies through a game-theoretic
analysis of Nash equilibria within a market [33, 35]. Nash equilibria
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Although predictive Al models have grown to dominate compu-
tational finance, they are often limited in their applications when
it comes to studying interventions and explaining behavioral out-
comes. Financial economics, on the other hand, has a rich history
of analytical approaches to asset-pricing theory, often requiring
sweeping assumptions. In this paper, we construct an agent-based
model of asset markets that is able to dispense with onerous re-
strictions on agent behaviors and beliefs, while having analytical
validity and providing insights into the functioning of asset markets.
In particular, we evaluate our models with respect to several tradi-
tional financial economic theories like Tobin’s separation theorem
and the capital asset pricing model (CAPM). We devise a network
representing trades to show the emergence of different roles played
by the agents. We study interventions, such as shocks, and explain
the outcomes using our model. Finally, we investigate the effects
of noise trading and show that noisy agents converge to different
equilibrium points due to their differences in beliefs. Put together,
this paper presents an agent-based model that can be used to study
the effects of heterogeneous beliefs and risks of the agents and
shocks to assets at a systemic level, thereby connecting localized
agent and asset characteristics to global or collective outcomes.

Agent-Based Modeling, Computational Finance, Multi-Agent Simu-
lation, Asset Market, Risk, Portfolio, Shocks, Noise Trading

We present an agent-based model (ABM) of asset markets grounded
in financial economic theory with the goals of studying agent
behaviors—e.g., the emergence of behavioral roles—and examining
and explaining the effects of interventions. An ABM is chosen as
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even local fish markets [19, 20, 31]. While these may be compelling
applications, the models are too stylized to adapt here.

We demonstrate the utility of ABMs in the study of finance by
reexamining standard financial economic theory using an ABM.
The aim is to achieve a more comprehensive understanding of the
implications of economic theory than could be achieved by analytic
approaches alone. The capital asset pricing model (CAPM) is a
prime candidate to demonstrate the power of ABMs in analyzing
theoretical conclusions. Not only is it amenable at a large scale due
to modern computational power, but it also has significant potential
for increased insight. Representing an equilibrium with equations,
for example, obscures any inter-agent interactions that might occur
in arriving at that equilibrium. These interactions could be revealed
and analyzed with an ABM.

Beyond connecting with the modern financial economic theory,
we perform simulations to study what roles agents play in an as-
set market. For this, we devise a network representation of trades,
which we call asset-flow networks. We show interesting outcomes,
such as the emergence of the role of “dealers” due to agent charac-
teristics. To our knowledge, prior ABMs on asset markets did not
investigate the emergence of roles.

Furthermore, we investigate and explain the effects of interven-
tions, such as shocks to an asset. Interestingly, we show that a large
enough shock to an asset can cause a ripple effect that moves the
other assets in the same direction as the shocked asset. This may
be counter-intuitive but can be reasoned using our ABM.

We also study the effect of heterogeneous beliefs in light of the
literature on noise trading [5, 11, 29]. We show that noise trading
may lead to multiplicity of equilibria.

Broadly speaking, our study is an attempt to return to the first
principles that drive asset pricing. We exclusively implement the
principles of agent behavior that underpin modern portfolio the-
ory [24-26] and CAPM [13] to establish a dialogue between our
models and modern economic theories and to enhance our un-
derstanding of what exactly happens when one relaxes certain
underlying assumptions in a systematic manner.

2 PRELIMINARIES

We will frequently use the terms return and risk. Broadly speaking,
return represents the percentage gain or loss on an investment.
It is treated as a random variable. Risk, usually measured as the
standard deviation of returns, represents the uncertainty associated
with future returns.

2.1 The Capital Asset Pricing Model (CAPM)

The CAPM is grounded in a series of assumptions regarding in-
vestors (agents), and their relationship to financial capital [13].
Agents trade assets (stocks and bonds). Their decisions are guided
by two fundamental asset attributes: risk and return. Asset returns
are stochastic in nature, with an expected return, and an associated
standard deviation of return that represents their risk. Agents wish
to maximize the amount of return they achieve, while minimizing
the amount of associated risk.

The real world contains many assets. The question agents must
answer is what combination of assets will maximize their utility
(i-e., provide more return at less risk). Consider a two-asset world
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Expected Return (ER) of Portfolio
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Standard Deviation (o) of
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Figure 1: Three different worlds in which assets a and b are
in a portfolio. Red line: a and b are perfectly positively corre-
lated; blue: imperfectly correlated (positively or negatively);
black: perfectly negatively correlated. In any world, given
the proportions of a and b in a portfolio, we can compute
the o of the portfolio return, which gives us the ER of the
portfolio. Notably, on the blue and black curves, it is possible
to increase the ER while reducing o (by going left).

in which agents wish to determine a set of portfolio weights that
will maximize their utility. Figure 1 illustrates how portfolio risk
and expected return depend on the correlation between the as-
sets: the two assets can be perfectly positively correlated, perfectly
negatively correlated, or imperfectly correlated. Perfect positive
correlation (i.e., prices of the two assets change identically) results
in risk and expected return increasing one-for-one, represented by
the straight red line. Perfect negative correlation (i.e., a decrease
in the price of one asset is perfectly matched by an increase in
the other) makes it possible to eliminate all risk by choosing the
apporpriate portfolio weights. This is signified by the piece-wise
linear black line. Finally, imperfect correlation results in something
akin to the curved blue line: portfolio risk can be reduced but not
eliminated via diversification.

Asset returns being stochastic, a portfolio of assets is a weighted
function of stochastic variables [13]. To determine the standard
deviation of a portfolio of assets, we must know the covariance
between each pair of assets. Suppose o, and o}, are the standard
deviations in return of assets a and b, respectively. The standard
deviation op in return of a portfolio P containing assets a and b
can be represented by the following equation:

1)

Here, 0 < w < 1 is the weight parameter dictating the convex
combination of assets a and b in portfolio P (i.e., w fraction of P is
a and 1 — w fraction b), and Cov(a, b) represents the covariance in
return of assets a and b.

Additionally, we know that covariance can be represented in
terms of the correlation between two variables and their respec-
tive standard deviations as follows, where p, 5, is the correlation
between two assets a and b:

op = \/wzag +(1- W)ZO'Z +2w(1 — w)Coo(a, b).

Cou(a,b) = 040ppgp-
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We can then define the standard deviation, op, of the return of a
given portfolio in terms of the standard deviation of and correlation
between its two constituent assets, a and b.

op= \/wzafZ +(1- w)zoi +2w(1 — W)0oa0ppap-

Economists [7, 15] as well as Al and multiagent systems re-
searchers [18], [30, p. 26] are fond of saying that there is no such
thing as a free lunch. However, the nature of the standard-deviation
equation above suggests otherwise. Notably, the standard deviation
of a portfolio is not linearly related to the standard deviations of its
constituent assets. If we were to find assets that are anything but
perfectly positively correlated, we can achieve a greater expected
return while reducing the total quantity of risk we “pay” in terms
of the standard deviation for such return (please refer to the blue
and black curves in Figure 1). Therefore, diversifying non-perfectly
positively correlated assets is indeed a free lunch [9].

Agents can achieve a portfolio with higher return at a lower
level of risk simply by diversifying their portfolio. Therefore, in
a multi-asset world, there must be some optimal portfolio. This
is the portfolio that maximizes expected return relative to risk.
Put another way, this is the most “cost effective” portfolio, in the
sense that risk is the cost that investors pay for return, and this
portfolio maximizes the return-risk ratio. At this point, it is worth
considering another type of asset that is present within the market:
the risk-free asset.

The risk-free asset occupies a special role in the theory of finan-
cial economics. The standard deviation of the risk-free return is
zero (hence the name risk-free)—therefore it is fixed. It helps reduce
investor optimization to a much simpler exercise, as we will see
next.

2.2 Tobin’s Separation Theorem

Tobin’s separation theorem tells us how agents build their optimal
portfolio [32]. Each agent first determines an optimal risky portfolio
(i.e., optimal weights on all risky assets). They then optimize their
own utility function by dividing their holdings into two potentially
unequal parts: one part is invested in the optimal portfolio and
the other part in the risk-free asset. Individuals with varying risk
preferences will vary in their proportion of risky versus risk-free
asset holdings. For example, risk-averse agents will allocate more
towards the risk-free asset than risk-tolerant agents will. However,
the relative proportions of individual risky assets will be the same for
all agents, even if different agents invest different amounts in risky
assets overall. The optimal proportions of risky assets is known as
the market portfolio because it is the same for all agents.

Tobin’s separation theorem is interesting for a handful of reasons.
The first is that agent preferences about risk have no bearing on
the composition of the optimal portfolio; individual stock picking
has no place in a world in which agents are optimizing according to
the theorem. In fact, to stock-pick would be to adopt a higher-risk
and lower-return portfolio, thereby leaving money on the table.
Another interesting conclusion is that independent of an asset’s
particular characteristics, it might still be worth including in one’s
portfolio for the purpose of diversification.
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2.3 Connecting Tobin to CAPM

Tobin’s separation theorem brings us back to CAPM. Consider a
world in which all agents have the same beliefs about the assets.
Such information symmetry is a common presumption in many
economic models. If each agent has the same belief about the risk
and return characteristics of an asset, then for each agent, the
optimal risky-asset portfolio will be the same. If each agent holds
the same risky-asset portfolio, then the market capitalization of
the assets will correspond to their proportions within the optimal
portfolio. We can use this to derive the CAPM formula for the
expected return of an asset i [13]:

ER; =Ry + Bi(ERyp —Rf). (2)
Here, ER; is the expected return on asset i, R f is the risk-free rate
of return, ERy; is the expected return of the market portfolio, and
Bi, typically known as the “beta” of asset i, is defined as

Cou(Ri, Ryp)
pi=——
oM

= p(Ry, RM);’—A;. (3)

Above, o; and o) denote the standard deviation of the return of
i and the market portfolio M, respectively, and p(R;, Ryr) denotes
the correlation between i and M. That is, §; represents the volatility
of i with respect to M. Positive ff; means i’s expected return moves
in tandem with M’s, whereas negative means it goes in the oppo-
site direction. The magnitude of f; signifies how much i’s return
amplifies M’s.

Looking back at Equation 2, the expected return of i is composed
of two components: the risk-free return Ry and the market risk
premium (ERy — Ry) multiplied by ;.

3 OUR MARKET MODEL

Our model consists of agents whose interactions comprise the mar-
ket. There are no "market makers" or other explicit roles. In our
market model, agents trade assets.

3.1 Assets

Our model consists of a set of agents that trade assets. Our assets
have two fundamental characteristics: payoff and variance.

P; : Expected payoff of asset i in dollars.

O'i2 : Variance of payoff of asset i in dollars squared.

Payoff is distinct from the expected return of an asset. Payoff
denotes the final dollar value of the asset at the end of the trading
period. The expected return of the asset at any one point is the
payoff of the asset divided by the current market price. Payoff is
intended to represent the value of the given asset at the end of
the trading period. Included in this value is any sort of temporal
discounting or dividends paid to the asset.

Our conception of payoff and variance is integral to examining
the functioning of our market simulation. By denoting these charac-
teristics in dollar values, we allow for the expected return on assets
to be determined entirely by the market; return will adjust based on
the prices that agents are willing to pay for assets. If prices increase,
because payoff is held constant, expected return will decrease, or
vice-versa.
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3.2 From Agents to a Market

Our model of agent behavior entails very few presumptions about
the nature of agents. A brief thought experiment demonstrates the
fundamental thinking that undergirds the agents in our model.

Consider a world that has no active market: there are merely
two agents who might wish to trade with each other. Agent A has
a portfolio that consists exclusively of the risky asset, and agent
B has lots of cash but no risky assets whatsoever. They both are
subject to some utility function for which risk and return are inputs.
A wants to receive a high price for their risky asset. B wishes to
pay a low price, to maximize expected return. Each makes an offer.
If the prices overlap, they trade; otherwise they recalculate their
utilities with new prices and make new offers. If no trades occur at
an initial ask price, agent A will revise down their price, recalculate
utility, and determine whether they still wish to trade. A similar
process occurs for agent B; if no trades occur at a given bid, B will
revise up their bid and recalculate their utility.

Our model makes no presumptions about whether agents will
trade, nor does it characterize orders as a distribution of some kind.
It simply confers upon agents the ability to evaluate assets, and
trade according to their preferences. We define (investor) agents as
agents who are subject to a utility function of the following form.

U(o,p) = p— %roz.

Above, p represents the expected return of the agent’s portfolio,
r represents the risk coefficient, and o represents the standard
deviation of the portfolio’s return. Utility is positively related to
expected return, and negatively related to risk. The risk coefficient
r represents an agent’s relationship with risk. Increasing values
of r make agents more risk averse, while lower values make them
more risk tolerant. We presume in our market that no agent is
“risk-seeking” (i.e., having a negative value of r).

We can use Tobin’s separation theorem and agent utility func-
tions to determine the optimal allocation between the market port-
folio and the risk-free asset. We know that by Tobin’s separation
theorem, any utility maximizing bundle U will consist of some com-
bination of the risk-free asset and the market portfolio, in which
the market portfolio will have weight w, and the risk-free asset will
have weight 1 — w. We can then characterize U as follows.

ERy = wERp + (1 — W)Rf, and
oy = wWop.

Recall that Ry is risk-free, so o = 0. We can plug these constraints
into the agent utility function, take the derivative with respect to
w to maximize, and solve for the optimal weight of the market
portfolio as a function of ERys and op:

1
U(o, pt) = WERp + (1 — w)Rp — 5r(waM)Z.
U o ERy R 2
— = - —rwoy,.
ow M f M
Setting % =0, we get
ERy — Ry
w=—".

2
raM
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Here, w represents the fraction of an agent’s total holdings (the
sum of the value of their risky asset holdings, and the risk-free
asset) that they ought to allocate towards the market portfolio.

Consider again our single asset world with agents A and B. Each
agent calculates their optimal value of w, and then compares w
to the current fraction of their holdings comprised by the risk-
free asset. For agent A, w is less than 1; therefore, to achieve their
utility-maximizing bundle U4 they must sell off some of the risky
asset. Conversely, agent B determines by a similar process that
achieving their optimal bundle Up requires purchasing the risky
asset. They both submit limit orders at the prices that each used in
their calculation of w. If their limit orders do not overlap, then they
must adjust their prices and reevaluate whether, at the adjusted
prices, the optimal w still differs from the current allocation within
their portfolio. If it does, then they will continue to adjust limit
order prices until either trades occur or the expected return changes
as a function of the price offered to satisfy the current weight of
the asset within their portfolio.

Having outlined the basic asset evaluation process, we may now
offer a comprehensive picture of all of the attributes that comprise
an agent in our model. Each agent has the following attributes,
denoted here as attributes of agent A:

o 04 = {aop, a1, az, ...an }, where © 4 signifies agent A’s portfo-
lio, and contains integers representing the number of shares
held by the agent of assets 0 through N.

o ¢4 = {po, p1, p2...pN}, where ¢4 represents agent A’s cur-
rent beliefs about asset prices. For any asset i, ¢4 (i) reflects
A’s belief about the price of i. After i is traded, @4 (i) reflects
the market price of i.!

o r4, the risk coefficient of agent A.

o 74, the quantity of risk-free asset held by agent A.

There are some minor details regarding the simulation. We define
the “refresh rate” of agents to be the interval of time they wait
to reevaluate their trades. Additionally, we set a “step size” for
the agents. The step size determines the amount by which each
agent increments their limit orders if they do not execute a trade.
It primarily influences the rate of convergence and how stable the
eventual market equilibrium is.

Next, we give a high-level pseudocode of our simulation scheme
in Algorithms 1, 2, and 3. Please note that the pseudocode is meant
for an overall understanding only. We omit many details, including
the multi-threaded implementation of our simulation.

Algorithm 1 Outline of the overall simulation

1: while Simulation running do

2 for each agent A do

3 Opt < Optimal portfolio as calculated in Section 4.1
4 if ©4 # Opty then

5 Trade according to Algorithm 2

6 Update ¢4 according to Algorithm 3

!Note that prices in our model emerge endogenously through trading.



Full Research Paper

Algorithm 2 An arbitrary agent A’s Trading Behavior

1: for each asset i in ® 4 do

2 if ©4(i) < Opta(i) then > Buy because Opt4 (i) is greater
3: Buy asset i

4 else if ©4(i) > Opt4 (i) then

5 Sell asset i

Algorithm 3 Updating ¢4

1: if Trade of asset i occurs then
¢4 (i) = trade price
else if Order times out then
if Order was a buy order then
Increase ¢4 (i) according to Section 3.2
cancel order for asset i > Cancel order, not relevant
else > Must be a sell order
Decrease ¢4 (i) according to Section 3.2
cancel order for asset i

4 MULTIAGENT SIMULATION

We run a series of simulations to study interventions, noise, and im-
portantly, to establish a dialogue with standard financial economic
theory. We programmed our simulations on MAXE, a message-
based multi-agent simulation platform designed for designing and
implementing agent-based models [3]. It supports a variety of agent
classes (as in object-oriented programming) relevant to financial
modeling. More generally, it is a system that allows one to specify
agents that exchange messages with each other.

MAXE stands in contrast to ABIDES, an alternative agent-based
modeling system with the goal of modeling the NASDAQ exchange
as closely as possible [8]. We found MAXE’s framework to be more
general purpose, which suited our goals. Additionally, MAXE’s
implementation in C++ allows for greater speed at the agent mes-
saging level [3]. We used the ProRata exchange algorithm of MAXE
and implemented our agents in Python.

We simulate a market at two different scales: 30 agents trading
three assets and 500 agents trading 10 assets. The larger scale is
particularly useful for validating the model. The smaller scale is
useful for visualization. The simulations were performed on a high-
performance computing (HPC) grid.

4.1 The CAPM World: Homogeneous Beliefs

It might be the case that we inadvertently dictate the outcome of
the simulation. Therefore, some method of verification is necessary.
We adopt a two-pronged approach to validating the results of
the model. We know that CAPM and Tobin’s separation theorem
are beyond analytic reproach. We argue that if we construct a sim-
ulation that adheres to the fundamental presumptions of Tobin’s
separation theorem and CAPM, and the data resulting from run-
ning the simulation confirms these theorems, then our choice of
mechanism does not influence the final equilibrium price (at least
in a manner unaccounted for by these well-understood theories of
asset-pricing), and can be used to relax presumptions and move
beyond the basic world in which these presumptions apply.
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We follow a standard procedure for computing CAPM efficient
portfolios [39][Ch 12.5].

Convergence of Mean-Variance Characteristics

Recall Tobin’s separation theorem: There is a single optimal portfo-
lio, and agents ought to act on their beliefs about asset returns to
determine the exact weights of this portfolio (the market portfolio),
and allocate their total holdings between this market portfolio and
the risk free asset.

One presumption of CAPM is that each agent holds the same
beliefs. Given homogenous belief and Tobin’s separation theorem,
agents will converge to the same market portfolio.

We can use this conclusion to verify the validity of our simulation,
given a market in which agents have homogeneous beliefs. If we
run the simulation and all agents converge on the same portfolio,
then we can conclude that our market design is in fact a mere
extension of analytic presumption.

To confirm this, we recorded the mean-variance (return-risk)
characteristics of each agent’s current portfolio immediately after
they complete a transaction over the course of the simulation. We
then color each data-point to indicate its temporal position: blue
for earlier and red for later.

Expected Portfolio Return

104

30 40 50 60
Portfolio Variance

Figure 2: The mean-variance characteristics of 500 different
agents’ portfolios over the course of a trading period. Color
represents timeline: blue to red. Agents converge on roughly
the same market portfolio (circled in magenta), as predicted
by CAPM and Tobin’s separation theorem.

The mean-variance characteristics shown in Figure 2 demon-
strates that the agents do in fact converge to a single portfolio.
Additionally, because we have specified the homogeneous beliefs
of each agent, and because we know that each agent is optimiz-
ing their portfolio in the same manner as prescribed by Tobin’s
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Figure 3: Effect of the proportion of initial endowment and
risk coefficient on trade flow. Higher risk-coefficient indi-
cates less risk tolerance and more risk averseness. Green
nodes are net buyers and red net sellers.

theorem, we can conclude that these agents have converged upon
the optimal market portfolio. This is a strong piece of evidence
supporting the validity of our simulation.

To evaluate whether the equilibrium achieved by our simulation
is the same equilibrium predicted by CAPM, we first calculate what
CAPM would predict and compare it with the expected returns at
an equilibrium in our simulation. We have found that these two val-
ues are approximately equal, with any variation easily attributable
to frictions stemming from the lack of fractional share ownership.
This is significant additional evidence of our model’s validity.

Asset-Flow Networks: The Visible Hand

We devise an asset-flow network, where each node represents an
agent in the market, and each edge represents a trade that occurs
between two agents; edge width is determined by the volume of
trade. Asset-flow networks show the exchanges between agents
of a single asset within the multi-asset market. Visualizations are
done using the 30-agent model.

Figure 3 shows an asset-flow network for asset 0. We have similar
networks for assets 1 and 2 that are not shown. Agents with higher
proportions of a given risky asset tend to sell the risky asset to other
agents within the market. Some notable outliers include agent 2
in the market for asset 2, and agents 22 and 12 in the market for
asset 1 (not shown). Upon investigation, the cause of these outliers
is initialization. For example, asset 2 was initialized with a higher
price than assets 0 and 1, and also appears to have comprised a
significant proportion of agent 2’s portfolio. This gives agent 2 an
apparently high initial endowment of asset 2, but it is somewhat
artificial as this is not reflective of the asset’s final equilibrium price.

We also generate asset-flow networks to check whether the vol-
umes of agents’ initial endowments affected the flow of assets in
the market. Figure 4 does not show any strong evidence for this.
The proportion of an asset in the initial endowment seems to be
the factor that matters most.
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Figure 4: Effect of Asset 0’s proportion in the initial endow-
ment and the total initial endowment on trade flow. The
edges and node colors have the same meaning as in Figure 3.

Emergence of Roles
These networks offer interesting insights on the emergence of roles.
One example is the role of agent 2 within the market for asset 0.
We can see that agent 2 sells an incredible amount of asset 0 to
agent 10. Note that agent 2 has a high tolerance for risk but little
wealth, while agent 10 has a comparatively low tolerance for risk
but higher initial wealth. This might indicate the role of a “dealer”
for agent 2 because agent 10 must purchase a massive volume of
asset 0 as agent 10 is quite wealthy but has a very low proportion of
asset 0 in their initial portfolio. Furthermore, consider the scenario
of agents with high proportions of the risky asset in their portfolios
submitting ask limit orders to the market. Because agent 2 has a
higher risk tolerance, they will accept a lower return (i.e., higher
price) than agent 10. Therefore, agent 2 will purchase shares of asset
0 before agent 10 will. Agent 2 ends up selling said shares, as agent
10 eventually bids the price high enough to justify the trade-off,
and the comparative attractiveness of other assets compels agent 2
to decrease the proportion of asset 0 in their portfolio.

Once again, we see the value of ABM because it would be impos-
sible to model such asset flows from data generated by a predictive
model that does not model agent behavior or market mechanisms.

Price Convergence

We observe significant variations in price at the beginning of the
trading period, which generally settles into an equilibrium path as
time goes on. As shown in Figure 5, the price for asset 1 exhibits a
sort of “bouncing” about a range of prices (asset 0 and 2 show similar
behavior). This is a reflection of the step size and the inability to
trade fractional shares of assets.

4.2 Interventions

So far we have proceeded with a static conception of asset returns.
However, real markets are dynamic and intended to reflect changes
in the risk or return of assets. We rerun previous experiments
to establish the behavior of agents in response to shocks, and to
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Figure 5: Convergence of asset 1 price. There is some “bounc-
ing,” especially at the beginning, as agents search within a
range to make trades. It later converges to an equilibrium.

determine the effect that noise traders have in changing the market
equilibrium in response to shocks. We use the 30-agent model.

In this experiment, we implemented a negative payoff shock of
10% to asset 2 at timestamp 5000, and a positive payoff shock of
11.11% at timestamp 10000. Figure 6 presents interesting results
on cross-asset price dynamics. We can see the returns of assets
0 and 1 undergo an increase in expected return (i.e., their price
falls) timed exactly to the negative shock to asset 2 (the opposite
happens for positive shocks). We observe across other simulations a
coordination of returns across assets in the market in response to the
payoff shocks to a single asset, much as we can still observe in the
three asset case. In this case, notably, the returns of all three assets
move in the same direction, which may seem counter-intuitive.

Using our model, we can explain the effects of interventions.
Intuitively, one would hypothesize an increase in the return of the
asset whose payoff is negatively shocked (e.g., price falls due to bad
news) and a decrease in the return of the other assets in the market
(i.e., price increases). This hypothesis is driven by the intuition
that assets are fundamentally competing against other assets in
the market for buyers. By shocking the payoff of one asset in the
market, we made one asset less competitive, thereby lowering the
competitive pressure on the other assets and making them more
attractive. Another intuition about market behavior also supports
this hypothesis. Prices in the market are a function of agents’ re-
lationship with risk; if agents are extremely risk tolerant, prices
will be high and returns low, and vice versa if they are extremely
risk-averse. Because we see no shift in the agent composition of
the market, we would expect no fundamental change in the risk
premium present in the market after shocking the payoff of an asset
in the market. To hold the risk premium constant, the returns of
the other assets in the market would have to fall to make up for the
rise in the return of shocked asset. In short, this argument would
also lead us to believe that the returns of other assets in the market
should fall in response to a negative shock to the payoff of one
asset. However, this is not what we observe.

To explain this, we have to resort to agents’ risk-return opti-
mization in our simulation. Agents ought to purchase the optimal
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portfolio. However, changes to payoff characteristics also change
the market portfolio. Large enough shocks will also affect the frac-
tion of their total holdings that agents wish to allocate to the market
portfolio overall. Consider what happens when we substantially
decrease the payoff of an asset. First, the total amount of possible
payoff decreases. This makes the market less attractive relative to
the risk-free rate. If the fraction of our total holdings that we ought
to devote to the market portfolio decreases, then agents will sell
off all assets. The effect of this slight decrease might reasonably
be enough to counteract the increase in price we would otherwise
observe, holding the fraction of the market portfolio within our
total holdings constant.

In short, when we negatively shock the payoff of an asset, it
decreases the size of the “pie” we call market portfolio. Then, even
if some other asset’s slice of the pie (i.e., its payoff) increases as
a result, due to the size of the whole pie decreasing, the newly
increased slice may still be smaller than than the previous slice. For
small enough shocks, the overall size of the pie may not decrease so
much, and the opposite might be observed. In either case, we can do
model-based calculations to explain the outcome. Explanations like
this are yet another reason to use agent-based models to interrogate
underlying modeling components and assumptions.

4.3 Noise Trading: Heterogeneous Beliefs

A noise trader is an individual with imperfect information about
the true value of the assets they are trading [5, 11, 29]. Shleifer
and Summers [29] discuss noise traders and offer a very general
definition of noise traders. They define a noise trader as one who
deviates from so-called “rational” trading behavior in a systematic
way (not randomly). We use this definition to implement such
traders and observe their effect on the market in a variety of ways,
from portfolio convergence to the asset-flow patterns.

Using the 30-agent model, we first generate an alternative set of
beliefs in which asset 0 has a payoff that is 10% higher than in the
original (rational”) asset characteristic set. We then set the beliefs
of five agents within the market to this alternative set and rerun
the simulation, generating similar graphs in an effort to tease out
what effect noise traders have on asset pricing. Let us first examine
the mean-variance plot.

As we can see in Figure 7, the addition of optimistic noise traders
results in two equilibrium market portfolios. This violates the pre-
sumption that undergirds CAPM, as we would expect it to, given
that we have relaxed the premise that agents have homogeneous
beliefs about asset characteristics. We can see that there is a smaller
equilibrium cluster with higher expected return representing the
portfolio that the noise traders converge on. In addition to observ-
ing the higher-return portfolio of the noise traders, we also observe
the agents allocate a higher proportion of their holdings to the asset
for which they had optimistic beliefs.

We next examine the asset-flow networks to evaluate how noise
traders affect asset movement. Agents 0-4 being the designated
noise traders, Figure 8 demonstrates the asset-flow networks for
asset 0 (the subject of the noise traders’ optimism) within the same
market as before. Comparison with the previous asset-flow net-
works for asset 0 in the non-noisy simulation shows that there is a
significant shift in the relationship between specific agents in the
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Figure 7: The mean-variance characteristics of portfolios
of 30 agents, five of whom are noise traders. There are two
distinct equilibria.

simulation as a result of adding noise traders. In particular, agent 2
appears to have lost their previous dealer role (shown in Figure 3),
becoming rather an unremarkable net buyer of risky asset 0. Agent
0 also has a shift in its role, appearing to play a significant role for
asset movement across the market. Interestingly, the proportion in
the initial endowment is still an overriding determinant of agent
behavior, even compared with a shift in payoff belief of 10%.

This experiment provides some insight into how slight changes
to the presumptions of CAPM can have drastic and immediate
effects not only on market equilibria but also on agent roles.

5 CONCLUSION

Proceeding from the predominant analytic theory of asset pricing,
we have been able to achieve two goals: to verify that our model is
able to engage in a dialogue with the existing economic theory and
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Asset 0 Trade Flow

Proportion of Asset 0 In Initial Endowment

Agent Risk Coefficient

Figure 8: Asset-flow network of asset 0 in the noisy simula-
tion. Node 2 is no longer a dealer as they were in Figure 3.

to expand beyond the original set of assumptions that undergird
the predominant asset-pricing theory. We demonstrated a vari-
ety of ways of understanding the functioning of the market and
inter-agent interaction. There are many promising avenues for fu-
ture research, including a systematic investigation of noise-trading
strategies, examining the change in agent-owner composition due
to shocks, and more broadly, accounting for myriad types of assets.
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