Traffic Flow Prediction Using Uber Movement
Data

Daniele Cennil[0000_0002_9761_911” and Ql Han2[0000_0002_5856_383X]

! University of Florence, Florence, Italy
daniele.cenni@unifi.it
2 Department of Computer Science, Colorado School of Mines, Golden, CO, USA
ghan@mines.edu

Abstract. The smart city paradigm is closely related to the orderly and
sustainable use of the services it provides, on the efficiency of intercon-
nections and communications that take place in an urban context. In this
regard, one of the biggest challenges for smart city development relates
to the prediction of traffic conditions. In fact, the city’s road system has
a decisive impact on air pollution, the management of public events, and
in general on the efficiency of services offered to people, and thus strongly
affects the city’s economic development. In recent years, the development
of increasingly effective machine learning and deep learning techniques
has made a significant contribution to the definition of predictive mod-
els in the smart city domain. Deep learning techniques provide efficient
results, but need significant computational resources to deal with huge
and constantly updating datasets. Very often, however, the traffic data
provided by cities are incomplete and insufficient to implement effective
deep-learning models. In this paper, a novel solution for defining predic-
tive models of traffic conditions is presented, based on road segmentation
and urban traffic-related data, with the aim of dealing with the inherent
complexity of geographical datasets. The obtained model has an average
accuracy of 94.8%. The proposed architecture is able to reduce the inher-
ent complexity of traffic related data, is easily scalable, can be quickly
applied to any urban context.

Keywords: Crowdsourcing - Urban Traffic Dataset - Traffic Prediction
- Data Processing.

1 Introduction

Traffic congestion refers to an excess of vehicles on a portion of the roadway
at a particular time, resulting in speeds that are lower than normal (or free
flow) speeds. Analyzing the primary causes of traffic congestion, we find that it
depends on seven factors that often condition on each other, which can be divided
into traffic incidents, work zones, weather; fluctuations in normal traffic, special
events; physical road features, traffic control devices, physical bottlenecks.

The rapid emergence of deep learning techniques has enabled the definition
of increasingly sophisticated models for traffic prediction, and numerous services

2 D. Cenni, Q. Han

have been proposed in this regard. Commercial providers of traffic-related ser-
vices include Google Maps Platform, Waze, TomTom’s Traffic RESTful APIs,
HERE Real-Time Traffic, ArcGIS Traffic Service REST APIs, and PTV Traf-
fic Data. Google Maps analyzes historical traffic patterns for roads over time,
but do not provide direct traffic forecasts for specific time horizons in terms of
congestion metrics [1]. Waze collects information on traffic, accidents, and jams
from its users every 2 minutes, which can be accessed via XML, JSON and Geo
RSS data feeds [2]. However, this information is only useful if there is a sufficient
number of vehicles in the area of interest, and traffic predictions are not pro-
vided. TomTom provides access to historical and real-time traffic incidents and
traffic flow data that is updated every 30 seconds and provides predictions up to
24-hours ahead. HERE collects data every minute from various incident moni-
toring services and provides predictions for the next 12 hours, based on historical
and real-time data [3]. ArcGIS allows visualization of traffic conditions that is
updated every 5 minutes and provides traffic predictions for the next 4 hours
shown in web maps [4]. PTV provides short-term traffic predictions, up to 60
minutes [5]. Each of these solutions has some advantages, but none can provide
real-time traffic predictions with different time horizons, and more specifically
they do not provide predictions with medium to long time horizons. In order to
build efficient predictive models that can generalize well to any geographic scale
with highly detailed time resolutions, it is necessary to deal with large amounts
of data and the issues that come with it (e.g., noise from spurious data, data
imputation, data reconciliation, use of data from different sources with different
time resolutions).

This paper presents an effective solution for dealing with huge amounts of
traffic data, to overcome all the above-mentioned issues, with the aim of pro-
viding fast and reliable traffic predictions at large geographical scales. Section 2
discusses the main techniques implemented for solving the traffic prediction task.
Section 3 introduces the dataset used for this study, and various pre-processing
strategies implemented to mitigate the complexity of the problem, clean the
data, speed up the training time, and build a scalable solution. Section 4 de-
scribes the proposed model’s architecture and setup. Section 5 describes the
experiments and the obtained results, with relevant performance metrics. Sec-
tion 6 describes a web application implemented to visualize traffic predictions in
an easy and usable manner. Section 7 reports the conclusions with a sketch of
future development.

2 Related Work

Traffic prediction is a problem that has benefited greatly from the introduc-
tion of low-cost deep-learning techniques. Generally, traffic prediction models
are based on classical or deep learning methods. Classical methods include sta-
tistical methods and traditional machine learning methods, while deep learning
methods include CNN, RNN, GCN, and attention mechanism. Some approaches
make use of graph neural networks (GNNs) to model spatial dependencies, or

Traffic Flow Prediction Using Uber Movement Data 3

recurrent neural networks (RNNs) to capture temporal dependencies. However,
in general RNNs are not effective tools in the case of temporal sequences, as
they cannot capture their sequentiality, but are capable of modeling the peri-
odicity and seasonality of the series. GNNs have limitations in terms of traffic
prediction, since they model spatial dependencies statically, and thus have a
limited capacity to learn dynamic traffic patterns. Often, they only consider
short-range spatial dependencies and cannot capture long-range ones. In gen-
eral, GNNs do not consider that traffic conditions propagate with a time delay
between locations. To overcome some of these problems a novel Propagation
Delay-aware dynamic long-range transformer was proposed, for accurate traffic
flow prediction, designed with a self-attention module to capture the dynamic
spatial dependencies [6].

Since the spatial dependence is usually treated as a static graph, a Dynamical
Spatial-Temporal Graph Neural Network model (DSTGNN), creating a spatial
dependence graph based on the stability of node’s spatial dependence, to cap-
ture the dynamical relationship. The changing demand process is modeled using
a Poisson process to address the interpretability and build a spatial-temporal
embedding network (integrating the diffusion convolution neural network and
a modified transformer) that can infer the intensity [7]. Other algorithms often
used for traffic prediction are Historical Average (HA), Auto-Regressive Inte-
grated Moving Average (ARIMA), and Vector AutoRegressive (VAR). However,
these techniques are only applicable to datasets of small size, while time-varying
traffic data is huge. In order to avoid the problem of dealing with high dimen-
sionality and to capture complex nonlinear relationships, other approaches such
as Support Vector Regression (SVR) [8] and Random Forest Regression [9] have
been proposed. Using geospatial dependencies introduces high complexity into
the model, which makes it difficult to scale. State-of-the-art solutions for process-
ing geospatial dependencies require not inconsiderable computational resources
and, despite the application of distributed computing techniques (e.g., Dask
and multi-GPU multi-node architectures), do not allow the training phase of
the model to scale effectively. Our solution consists of a platform for processing
geospatial data, which aims to reduce their complexity, so that models can be
built to perform the learning phase in reasonable time, and accurate predictions,
enabling the big data domain in the field of traffic data.

3 Data and Architecture

With the aim of avoiding the use of complex datasets that do not provide data
over time and that require using metrics that are not easily measured, we chose
to model traffic intensity using the average speed of vehicles in each road seg-
ment. A road segment (osm_way_id in the OpenStreetMap’s notation) is the
specific representation of a road’s portion with uniform characteristics. Vehicle
speed, being a direct metric for measuring traffic intensity, is representative when
calculated as an average value over a given time interval. For this reason, traffic
related data used in this study were retrieved from Uber Movement, (c¢) 2023

4 D. Cenni, Q. Han

Uber Technologies, Inc. [10], for the city of San Francisco, US. Uber provides
hourly time series data with historical speeds (mph), for various cities, and travel
times, and allows for a detailed dataset to produce traffic predictions with high
spatial resolution. This dataset provides the average hourly speed on a given road
segment for each day of January 2019, including only road segments with at least
5 unique trips in that hour. Preliminarily a osm file for the region of interest
was retrieved with the aim of OpenStreetMap API [11], and then converted to a
ESRI shapefile. The bounding box used was [-122.514, 37.716, -122.372, 37.859).
In OpenStreetMap, bounding boxes are expressed as four comma-separated num-
bers, in this order: left, bottom, right, top ([min longitude, min latitude, mazx
longitude, max latitude]). Latitude and longitude are expressed in decimal de-
grees (north latitude is positive, south latitude is negative, west longitude is
negative, east longitude is positive). The dataset is reported in Table 1, with
the geometry column using EPSG:4326 (WGS84) as a geodetic system. Feature
osm_way_id was renamed from to osm_id, in order to merge this dataset with
the above built shapefile. Then, the speed movements’ dataset was merged with
the road segments’ dataset, based on the common column osm_id. In this way
we got a dataset with the fields reported in Table 2 including the geometries
of each road segment. After merging, data rows with null values were removed
from the resulting dataset. The geometry column was then reprojected to the
EPSG:3857 projected system, and a new column was created, representing the
weekday for each row.

The use of a projected system does not result from the need to map coordi-
nates in the plane to deal with euclidean distance metrics, but only for calculating
the centroid of each road segment, for visualization purposes. The advantage of
using road segments instead of road geometries is that the traffic model can also
be trained for large geographical areas, covering different projected systems, and
traffic data are analyzed at a high geographical resolution. Timestamp was also
converted to the local timezone of interest (US/Eastern), and a datetime-index
was built on the dataset, to further resample the data with time slots of [2, 3, 4,
6, 8, 12, 24] hours. For this goal, data were grouped by segment_id and resampled
by datetime, taking the mean of speed_mph_mean in the time period of interest,
and removing null speed values. Columns [day, hour, week, weekday] were also
extracted from the timestamp, converted to categorical (as well as segment_id),
and included in the dataset. In this way the temporal component is taken into
account, without the need to handle the inherent complexity of time sequences.
Once completed this pre-processing phase, each dataset’s row was reporting a
traffic event, including the average speed value (mph) for a particular road seg-
ment, at a particular time (year, month, day, hour). With the goal of reducing the
task to a classification problem, speed values were converted to classes, labeling
as low speed values in the range [0, 25] mph, medium speed values in the range
(25, 45] mph, and high speed values in the range above 45 mph. Low speed max-
imum threshold is derived from the definition of low speed vehicle, as reported
in the rule 63 FR 33194 (Federal Motor Vehicle Safety Standards), published by
the National Highway Traffic Safety Administration. Columns [day, hour, week-

Traffic Flow Prediction Using Uber Movement Data 5

day, segment_id] were considered as dataset features. Data were split into train
and test sets with a 80/20 ratio, preserving the majority /minority classes ratio.
To avoid the curse of dimensionality and to further reduce the complexity of the
problem, features were encoded using target encoding [12], since using one-hot
encoding would create a sparse matrix and increase the number of dimensions.
Using target encoding, the labels are directly correlated with the target. For
instance, in mean target encoding, the feature label is calculated by averaging
the values of the target variables, for each category. In the case of the categorical
target, features are replaced with a blend of posterior probability of the target,
given a categorical value and the prior probability of the target over all the
training data. This technique is particularly useful in the present case, because
it does not increase the size of the data and allows for shorter training time.
Regularized target encoding outperforms traditional encoding methods, in the
case of high cardinality features [13]. For target encoding, different combinations
of smoothing and min_samples_leaf parameters were tested with no significant
changes in the accuracy of the resulting model. The general architecture of the
proposed solution is depicted in Fig. 1.

Table 1: Road Segments Data

Column Name |Description Type
osm_id Year (local city time) int
name Road’s name text
highway Highway’s type (e.g, residential, motorway, service) text
waterway Waterway’s type (e.g., stream, dam, ditch, drain) text
aerialway Aerialway’s type (e.g., gondola) text
barrier Barrier’s type (e.g., retaining_wall, fence, wall, kerb, hedge) |text
man_made e.g. breakwater, reservoir_covered, pipeline, tower, sign text
railway e.g. rail, subway, light_rail, tram text
z_order attribute to model the above/below relat. btw elements int
other_tags other unused tags text
geometry the roads’ geometry with a LINESTRING shape object

4 Traffic Model

Prediction tasks are related to flow (i.e., number of vehicles passing through a
given point on the road at a certain time), vehicle speed, demand (i.e., the num-
ber of start or end in a region at a certain time), travel time, occupancy (i.e., the
extent to which vehicles occupy the road). A system for computing traffic met-
rics based on road segments saves time in dataset setup and training, because
it avoids computing geographic clusters within which to measure traffic, and it

6 D. Cenni, Q. Han

Table 2: Speed Movements Data

Column Name |Description Type
year Year (local city time) int
month Month 1-12 (local city time) int
day Day 1-31 (local city time) int
hour Hour 0-23 (local city time) int
utc_timestamp |[Unix time for start of hour (UTC) int
segment_id Replaced by OSM value ”osm_way_id.” Movement ID that|text

maps to a specific road segment.

start_junction_id |Replaced by OSM value ”osm_start_node_id.” Movement 1D |text
that maps to start intersection of traversal.

end_junction_id |Replaced by OSM value ”"osm_end_node_id.” Movement ID |text
that maps to end intersection of traversal.

osm_way-id Corresponding OpenStreetMap Way ID for this segment.|bigint
Note that one OpenStreetMap Way may contain multiple
Movement segments.

osm_start_node_idCorresponding OpenStreetMap Node ID for this junction. |bigint

osm_end_node_id |Corresponding OpenStreetMap Node ID for this junction. |bigint

speed_mph_mean |Average speed of Uber vehicles on this road segment in mph.|float

speed_mph_stdev |Standard deviation of speeds on this road segment in mph. |float

makes it unnecessary to work with geographic features that introduce nonlin-
ear patterns and are difficult to manage. Statistical techniques are not suitable
for very large datasets, while deep learning models are often used to deal with
big data. Though, in many cases you have to deal with some cities providing
large amounts of data (i.e., for many years with a daily time resolution), and
others providing few data with a different time range. Deep learning models are
computationally expensive, often require the use of GPU clusters, and have high
memory requirements that increase rapidly with dataset size, which could make
the problem unmanageable. The development of scalable solutions capable of
handling large amounts of data (i.e., implementing efficient traffic prediction for
large geographical areas and time intervals), and able to update quickly, requires
reducing the dimensional complexity of the dataset and using an approach that
eliminates the criticality of the various techniques reported. For these reasons, in
order to build a scalable solution we chose to implement both a Random Forest
model and a gradient boosting model, using the XGBoost library [14], with a
multi:softprob objective function (to get class probabilities as model’s predic-
tions). Model’s outputs are probabilities for each traffic congestion related class
(i.e., low, medium and high speed), which are suitable to show the prediction’s
confidence with a color gradient scale on the map. Tree-based models are partic-
ularly well suited to be used in this context, since they outperform deep learning
approaches on tabular data [15]. The model works as a probabilistic classifier
that generalizes the notion of classifiers. Thus, for a given xeX, it assigns prob-

Traffic Flow Prediction Using Uber Movement Data 7

N\

GeoJSON fetching

,\" ich convert to .
‘etch osm) al
OpenStreetMap ESRI Shapefile rl
-4 —{Gradient Boosting
) Model 4= GPU
File
data cleanin "1 | Random Forest
Movement Speeds 9 ;
~— :
datafetching | ¥ 1 T Flask API 4= GPU

Movement Data Toolkit

Speeds
@ (Node.JS) Data
.

&
‘;‘9'

Vel
Do —=>

create centroids
from street's
geometries

time series
resampling

‘ EPSG.4326 to
@ EPSG:3857

abilities to all yeY', and probabilities sum to one. Standard classification can be
obtained using the optimal decision rule § = arg max, Pr(y = Y|X), where X
and Y are respectively the features’ set and the model’s output. Model’s train-
ing took place on a Nvidia Titan XP GPU, featuring 3840 CUDA Cores, 12 GB
GDDRA5X. XGBoost model has the advantage, over a Random Forest model, of
being incrementally updatable, for example with traffic data from previously un-
tracked areas. In this regard, an incremental scheme was implemented, to further
train the model with new data without the need of training from scratch every
time. At the end of training the model is saved to a file and can be loaded later
for further training. In this way the proposed architecture is able to seamlessly
scale up without the need of training from the beginning in case of new data.
The model can automatically cope with class imbalance, by taking into account
class weights if appropriate. At this regards, it was preferred not to implement
strategies to mitigate class imbalance (e.g., SMOTE [16]), since such approaches
are computationally expensive, increase the size of the dataset and consequently
the training time, and most importantly add additional noise to the dataset. The
described solution supports using parallel computing frameworks (e.g. Dask) to
leverage multi-nodes and multi-GPUs for faster training.

Fig. 1: General Architecture

5 Experiments and Discussion

Training was performed for various time slots (i.e., [1, 2, 3, 4, 6, 8, 12, 24]
hours). A n-hour time slot is defined as a time period spanning all the day with
time slots of n-hours each. For example, 8-hour includes time slots [00:00-08:00),

8 D. Cenni, Q. Han

[08:00-16:00), [16:00-00). Relevant training parameters for gradient boosting in-
clude learning rate (0.3), maximum number of discrete bins to bucket continuous
features (256), grow policy (depthwise), L2 regularization term on weights (1),
minimum loss reduction required to make a further partition on a leaf node of the
tree (0), maximum depth of a tree (6), maximum number of nodes to be added
(6). Random Forest model was trained defining the fraction of randomly selected
features used to train each tree (80%), learning rate (1), maximum depth (5),
number of parallel trees (100), the fraction of the randomly selected training
samples used to train each tree (80%). For each training, performance metrics
were calculated for the best iteration number, and they are reported in Table 3.
By averaging each model’s accuracy, calculated for each time slot, we get an ac-
curacy of 94.78%, with the XGBoost model, which generally outperforms other
machine learning or deep learning approaches (e.g., CNN, RNN) [17-19], and
94.81% with the Random Forest model. Training times for each model highlight
the efficiency of the model, which is able to scale easily with large amounts of
real-time data. (31.1 s for 1H model, 13.5 s for 2H model, 10.4 s for 3H model,
7.06 s for 4H model, 5.32 s for 6H model, 4.18 s for 8H model, 3.05 s for 12H
model, 1.74 s for 24H model). Classification metrics for the worst and best cases
are reported in Table 4. Confusion matrixes for the worst and best cases are
reported respectively in Fig. 2. In the worst and best cases, training times were
respectively 31.1 s and 1.74 s, with the traffic dataset of the whole area of San
Francisco (4,771,410 rows in the training set and 1,192,853 rows in the test set).

These metrics are reported only for the XGBoost model, since Random For-
est showed comparable results. Features’ importances, calculated for 1-hour and
24-hours models (XGBoost), show the features’ impact on the model’s output
magnitude, with road segment’s by far the most important feature). The im-
portance was calculated using the cover strategy, thus calculating the average
coverage of splits that use the feature, where coverage is defined as the num-
ber of samples affected by the split. Results indicate that segment_id has the
biggest impact on the model’s output, and hour is of course useless for the 24-
hour model (i.e., the bigger the model’s time slots, the lesser the importance of
time-dependent features). The impact on city traffic is thus affected more by the
structure of arterial roads than by the time related features, which can exac-
erbate critical issues arising from bottlenecks generated by poorly sized roads.
Among the temporal components, the greater importance of hour is highlighted,
as opposed to day or weekday. In general, temporal features with fine-grained
resolution (i.e., hour, minutes) have a greater impact on the traffic predictions,
but models with such features are noisier and have worse performance in terms of
accuracy. Despite its relative importance, weekday is an important feature that
deserves consideration. In the present experiments, the relevance of this feature
is limited, having considered one month, whereas for larger time intervals it is
an indicator of the seasonality of traffic trends.

Traffic Flow Prediction Using Uber Movement Data

Table 3: Model’s performance metrics XGBoost (Random Forest)

9

Accuracy
Score

Score

Balanced
Accuracy

F1 Score

Geom.
Mean
Score

Cohen
Kappa
Score

Matth.
Corr.
eff.

Co-

Model

0.971

0.971)|0.931

0.931

0.940

0.940

0.930

0.930

0.902

0.903

0.902 (0.903

0.961

0.962)|0.936

0.937

0.937

0.937

0.934

0.936

0.880

0.881

0.880 (0.881

0.954

0.955)(0.922

0.922

0.924

0.925

0.920

0.921

0.865

0.866

0.865 (0.866

0.948

0.949

0.917

0.919

0.915

0.918

0.849

0.852

0.849 (0.852

0.944

0.915

0.915

0.941

0.941)|0.909

0.909

0.913

0.913

0.908

0.908

0.842

0.842

0.842 (0.842

0.936

0.936)|0.910

0.909

0.909

0.909

0.908

0.907

0.831

0.832

0.832 (0.832

0.926

| DN | || —

(
(
(
(
(0.945
(
(
(

0.927)|0.902

(
(
(
0.917 (0.919
(
(
(
(

0.902

| NN — | —

0.900

(
(
(
(
0.915 (0.917
(
(
(

0.901

N [— |

0.900

(
(
(
(
0.914 (0.914
(
(
(

0.900

|| || — | =

0.813

(
(
(
(
0.846 (0.848
(
(
(

0.813

NN | — |

(
(
(
(
0.846 (0.848
(
(
(

0.813 (0.813

NN — |

Table 4: Model’s Classification report 1-hour (24-hour) (XGBoost)

precision |recall fl-score |support
low speed 0.94 (0.98) |0.96 (0.99) [0.95 (0.98) [901925 (63914)
medium speed |0.84 (0.92) |0.78 (0.90) [0.81 (0.91) |257554 (12414)
high speed 0.89 (0.95) |0.93 (0.91) |0.91 (0.93) |33374 (1457)
accuracy 0.92 (0.97) |1192853 (77785)
macro avg 0.89 (0.95) |0.89 (0.94) |0.89 1192853 (77785)
weighted avg |0.92 (0.97) |0.92 (0.97) |0.92 1192853 (77785)

6 Web Map

To visualize traffic predictions in an easy way, we developed a web application
by converting the dataset with predictions in a GeoJSON format. GeoJSON is a
text-based format that uses a simple data structure and is ideal both for accessing
and creating geospatial data. The conversion process was automated with a
Python script that reads the original dataset and builds the GeoJSON structure,
for each date (i.e., day, month, year). The dataset was built using the features
day, hour, weekday, segment id, geometry, with three class labels (0: low traffic,
1: medium traffic, 2: high traffic). Predictions provide an array with [y_prob-0,
y_prob_1, y_prob_2], where prob_x represents the probability of class x .
traffic layer is represented as a GeoJSON FeatureCollection, with LineString
geometries representing the roads. Speed related classes were converted to colors,
dark red for low speed (high traffic), red for medium speed (medium traffic),
orange for high speed (low traffic). For the purpose of visualizing traffic data
on the map, the road’s geometries were converted to the EPSG:4326 geodetic
system. The web application is structured as an interactive map, built with
OpenStreetMap and the Javascript library Leaflet, allowing to zoom and drag.

Each

10 D. Cenni, Q. Han

low speed 1H medium speed 1H high speed 1H

0 237826

o
|

896534

o
'

1155779

True label
True label
True label

864909 1 201357

=

g i
0 1 0 1 0 1
Predicted label Predicted label Predicted label

low speed 24H

medium speed 24H high speed 24H

True label
True label
True label

" |
0 1 0 1 0 1
Predicted label Predicted label Predicted label

Fig.2: Confusion Matrixes [1, 24 hours] (XGBoost)

The user is able to select a date and then the traffic data is asynchronously loaded
and shown on the map, using a color for each road segment, depending on the
traffic intensity. In this way, it is possible to give an insight into traffic conditions
at first glance. Users can select and switch between dates and time resolutions
with their respective select menus, and browse different traffic maps in a seamless
way, by clicking on appropriate arrow buttons. Since large amounts of data can
be handled with GeoJSON, depending on the portion of the displayed map, a
spinning wheel is shown as the layers with traffic data are loaded, to warn the
user to wait for the completion of asynchronous data loading. Clicking of each
road segment will pop up the probabilities of each predicted class. Predictions
can be obtained from a Flask REST API that exposes the traffic model, or are
read from a batch generated file. The use of a traffic heatmap is a valuable

aid in getting an immediate perception of traffic conditions, and allows for easy
identification of traffic jams.

7 Conclusion

In this paper we introduced a solution for processing and managing traffic re-
lated data, with the goal of providing accurate predictions of city-related traffic
intensities. In general, traffic predictions can be derived from statistical, machine

Traffic Flow Prediction Using Uber Movement Data 11

learning or deep learning based models, but dealing with geographical features is
often a complex task that prevents the model’s architeture to scale up efficiently.
Statistical approaches allow to identify traffic patterns at different time scales,
and are easier to implement, though they are less accurate and are not best
suited to deal with multivariate data. Deep learning models are more complex,
but they are difficult to handle when the size of the dataset grows exponentially,
which is the case with real-time traffic data covering large geopraphical areas.
With the goal of mitigating the curse of dimensionality, without reducing the
information content of the traffic datasets, this paper implemented a strategy for
creating a compact predictive model that can be trained on clusters of GPUs,
even incrementally so as to update as new traffic data arrives (both histori-
cal and real-time traffic data can be used to generate valuable traffic related
predictions with our platform). The proposed solution turns out to be easily
scalable, upgradeable with new data to take into account larger geographical
areas, and has an average accuracy of 94.7% (i.e., calculated by averaging the
models’ accuracies at various time slots). These results outperform traditional
machine learning or deep learning approaches, with the clear advantage of con-
stituting a streamlined and efficient solution that can be easily implemented
at large scales with reasonable hardware resources. Cities can make use of this
platform to curb critical traffic event issues, with a clear benefit from a pollution
and energy-saving perspective, benefiting the productivity and economic devel-
opment of urban settings. Future directions include taking into account external
data (e.g., weather data, social media) and using transfer learning techniques to
perform spatio-temporal predictions.

Acknowledgment

Traffic data used for this study were retrieved from Uber Movement, (c¢) 2023
Uber Technologies, Inc. This work is supported in part by the NSF project
CNS-1932482.

References

1. “Google Maps Platform,” https://developers.google.com/maps/documentation/
javascript /trafficlayer, 2023, [Online; accessed 25-Jun-2023].

2. “Waze,” https://support.google.com/waze/partners/answer/106180357hl=en,
2023, [Online; accessed 25-Jun-2023].

3. “HERE,” https://www.here.com/platform/traffic-solutions/
real-time-traffic-information, 2023, [Online; accessed 25-Jun-2023].

4. “ArcGIS,” https://developers.arcgis.com/rest /network /api-reference/
traffic-service.htm, 2023, [Online; accessed 25-Jun-2023].

5. “PTV,)” https://www.ptvgroup.com/en/solutions/products/ptv-maps-data/

traffic/real-time-traffic-data/, 2023, [Online; accessed 25-Jun-2023].

6. Jiang, J., Han, C., Zhao, W. X., and Wang, J., “Pdformer: Propagation delay-aware
dynamic long-range transformer for traffic flow prediction,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 37, no. 4, pp. 4365—4373, Jun. 2023.
[Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view /25556

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Cenni, Q. Han

Huang, F., Yi, P., Wang, J., Li, M., Peng, J., and Xiong, X., “A
dynamical spatial-temporal graph neural network for traffic demand prediction,”
Information Sciences, vol. 594, pp. 286-304, 2022. [Online]. Available:
https://doi.org/10.1016/j.ins.2022.02.031

Chen, R., Liang, C.-Y., Hong, W.-C., and Gu, D.-X., “Forecasting holiday
daily tourist flow based on seasonal support vector regression with adaptive
genetic algorithm,” Applied Soft Computing, vol. 26, pp. 435-443, 2015. [Online].
Available: https://doi.org/10.1016/j.as0c.2014.10.022

Johansson, U., Bostrom, H., Lofstrém, T., and Linusson, H., “Regression conformal
prediction with random forests,” Machine Learning, vol. 97, no. 1, pp. 155-176,
Oct 2014. [Online]. Available: https://doi.org/10.1007/s10994-014-5453-0

“Uber Movement,” https://movement.uber.com, 2023, [Online; accessed 25-Jun-
2023].

OpenStreetMap, “OpenStreetMap APIL” https://wiki.openstreetmap.org/wiki/
API, 2023, [Online; accessed 25-Jun-2023].

Micci-Barreca, D., “A preprocessing scheme for high-cardinality categorical
attributes in classification and prediction problems,” SIGKDD FEzxplor. Newsl.,
vol. 3, no. 1, p. 27-32, jul 2001. [Online]. Available: https://doi.org/10.1145/
507533.507538

Pargent, F., Pfisterer, F., Thomas, J., and Bischl, B., “Regularized target
encoding outperforms traditional methods in supervised machine learning with
high cardinality features,” Computational Statistics, vol. 37, no. 5, pp. 2671-2692,
Nov 2022. [Online]. Available: https://doi.org/10.1007/s00180-022-01207-6

Chen, T. and Guestrin, C., “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 785-794. [Online]. Available:
https://doi.org/10.1145/2939672.2939785

Grinsztajn, L., Oyallon, E., and Varoquaux, G., “Why do tree-based models still
outperform deep learning on typical tabular data?” in Thirty-sizth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022.
[Online]. Available: https://openreview.net/forum?id=Fp7__phQszn

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P., “Smote:
Synthetic minority over-sampling technique,” J. Artif. Int. Res., vol. 16, no. 1, p.
321-357, jun 2002. [Online]. Available: https://dl.acm.org/doi/10.5555/1622407.
1622416

Liu, Y. and Wu, H., “Prediction of road traffic congestion based on
random forest,” in 2017 10th International Symposium on Computational
Intelligence and Design (ISCID), vol. 2, 2017, pp. 361-364. [Online]. Available:
https://doi.org/10.1109/I1SCID.2017.216

Kurniawan, J., Syahra, S. G., Dewa, C. K., and Afiahayati, “Traffic
congestion detection: Learning from cctv monitoring images using convolutional
neural network,” Procedia Computer Science, vol. 144, pp. 291-297, 2018,
iNNS Conference on Big Data and Deep Learning. [Online]. Available:
https://doi.org/10.1016/j.procs.2018.10.530

Ma, X., Yu, H., Wang, Y., and Wang, Y., “Large-scale transportation
network congestion evolution prediction using deep learning theory,” PLOS
ONE, vol. 10, no. 3, pp. 1-17, 03 2015. [Online]. Available: https:
//doi.org/10.1371/journal.pone.0119044

	Traffic Flow Prediction Using Uber Movement Data

