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Abstract. Android devices, handling sensitive data like call records and
text messages, are prone to privacy breaches. Existing information 昀氀ow
tracking systems face di昀케culties in detecting these breaches due to two
main challenges: the multi-layered Android platform using di昀昀erent pro-
gramming languages (Java and C/C++), and the complex, event-driven
execution 昀氀ow of Android apps that complicates tracking, especially
across these language barriers. Our system, DryJIN, addresses this by
e昀昀ectively tracking information 昀氀ow within and across both Java and
native modules. Utilizing symbolic execution for native code data 昀氀ows
and integrating it with Java data 昀氀ows, DryJIN enhances existing static
analysis techniques (Argus-SAF, JuCify, and FlowDroid) to cover pre-
viously unaddressed information 昀氀ow patterns. We validated DryJIN’s
e昀昀ectiveness through a comprehensive evaluation on over 168k apps, in-
cluding malware and real-world apps, demonstrating its superiority over
current state-of-the-art methods.

Keywords: System Security · Mobile Security · Static Analysis.

1 Introduction

Mobile devices handle a large amount of sensitive information, such as users’
privacy-sensitive data (e.g., pictures, SMS messages, 昀椀nancial information, med-
ical records, etc.) [38], imposing a substantial privacy and security threat [39].
Speci昀椀cally, sensitive information can be leaked through malicious or benign
software exploited by malicious attackers. Over the years, we have witnessed
devastating consequences of information leaks such as national-wide high-pro昀椀le
data breaches [6, 16, 35]. Despite various tracking techniques proposed for An-
droid [6,16,20,29,30,34,35,39], e昀昀ectively detecting leaks remains a challenge.
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Table 1. Comparison of sensitive information 昀氀ows that can be detected by DryJIN
and by other related work. Data 昀氀ow types (F1–F6) are illustrated in Figure 1.

Source Proxy Sink FlowDroid [6] Argus-SAF [34] JuCify [30] DryJIN

Java
- Java (F5) 3 3 3 3

Native Java (F2) 7 3 3 3

Native Native (F1) 7 3 7 3

Native
- Native (F6) 7 7 7 3

Java Native (F4) 7 7 7 3

Java Java (F3) 7 7 7 3

Taint analysis, tracking information from a source (where sensitive informa-
tion is created) to a sink (where it can leak to adversaries) [6,14], comes in two
forms: dynamic and static. Dynamic taint analysis [33,36,37] examines runtime
but faces limitations from input quality and coverage issues [17], making worse
by evasive techniques [2, 19]. Static taint analysis [6, 28, 34, 35], free from these
issues, favored for tasks like malware detection and information leak detection.
However, Android’s complexity poses unique challenges to static analysis [31]:
1. Cross-language Modules: Android’s modules implement by Java and C/C++,
complicating data 昀氀ow tracking across languages [24]. Most static analysis meth-
ods [6,16,30,34,35] struggle with inter-language module data 昀氀ows.
2. Event-driven Execution: Android’s event-driven model, using intents [10]
and broadcast receivers [8], invokes handlers by the system [12]. While existing
tools like FlowDroid [6], Argus-SAF1 [34], and JuCify [30] address these 昀氀ows,
they often overlook critical ones (e.g., types F3, F4, and F6), leading to unde-
tected leaks in real-world apps [26], as shown in Table 1.

In this paper, we present DryJIN, a system that comprehensively tracks all
types of information 昀氀ows in Android, as depicted in Figure 1. Speci昀椀cally, we
昀椀rst obtain data 昀氀ows from the native code (i.e., implemented by C/C++) by
using a symbolic execution engine, angr [31], and collecting instructions that are
dependent on sensitive information. These processes are subsequently converted
into Jimple IR using the SOOT framework [21]. We also create Jimple IR for
Java modules and integrate them. Finally, we employ Flowdroid’s [6] data 昀氀ow
analysis to the uni昀椀ed Jimple IR from the native and Java modules.

We evaluated DryJIN using three datasets: (1) publicly available bench-
marks [26,30,35], (2) 104,734 real-world malware obtained from VirusShare [15],
and (3) 64,554 benign apps from AndroZoo [4]. The evaluation results using the
benchmarks show that DryJIN outperforms state-of-the-art static taint analysis
techniques. DryJIN detects all 46 true-positive cases, whereas Arugs-SAF [34]
and JuCify [30] identify only 22 and 15, respectively. Moreover, we use DryJIN
to detect information leaks on real-world malware and benign datasets collected
in the wild from 2021 to 2022. Our results demonstrate DryJIN’s advantage over
existing techniques by identifying 268 cases of sensitive information leak among

1 Originally JN-SAF, now integrated with Amandroid and known as Argus-SAF.
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Fig. 1. Possible information 昀氀ows in an Android app. Except for the type F5, the other
types of information 昀氀ows go through the native code [36].

247 real-world apps. In contrast, the state-of-the-art techniques like Argus-SAF
failed to detect any, while JuCify detects only 2 leak of them.

Our work develops DryJIN, a system that leverages static taint analysis to de-
tect sensitive information 昀氀ows in Android apps, including those involving cross-
language modules. Our approach integrates data 昀氀ows from both native and Java
code, using tools like angr and SOOT, and analyzes them with Flowdroid. Eval-
uation results demonstrate DryJIN’s performance in detecting information leaks
over existing techniques, proving e昀昀ective across extensive real-world datasets.
Our main contributions are summarized as follows.
1. We propose DryJIN that comprehensively detects information 昀氀ows in An-
droid, focusing on data 昀氀ows between Java and native modules. All code and data
will be available for future research at https://github.com/ssu-csec/DryJIN.
2. We measure and identify weaknesses of state-of-the-art static data 昀氀ow track-
ing techniques for six information 昀氀ow types between Java and native modules.
3. We revisit and improve information leak detection test suites for extensive cov-
erage of information 昀氀ows across Java and native modules and evaluate DryJIN
using these suites and real-world datasets of 104,734 malicious and 64,554 benign
apps from VirusShare and AndroZoo, respectively.

The paper is structured as follows: Section 2 covers the background on An-
droid apps, Section 3 addresses the problems of existing approaches, while Sec-
tion 4 provides a design overview of DryJIN. Section 5 discusses the evaluation
results, Section 6 covers key discussion points, and Section 7 concludes the paper.

2 Background

In this section, we outline key concepts and information 昀氀ow types for DryJIN.
Cross-language Support of Android. In Android development, Java/Kotlin
and C/C++ components interact via the Java Native Interface (JNI). This inter-
face, supported by the Native Development Kit (NDK) [9], allows Java modules
to execute native code, crucial for high-performance tasks and hardware-speci昀椀c
functions. Functions in native modules can exchange data with Java compo-
nents through JNI, ensuring e昀케cient interoperability between these di昀昀erent
languages. However, this integration poses security challenges. Data transfer be-
tween Java and native code can potentially lead to sensitive data leaks in the
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Table 2. The usage of native code in Android apps (h/ = have, i/ = invoke).

# of Apps h/ native library i/ native method

VirusShare 2020 104,954 89,765 (85.5%) 47,267 (45.0%)
(Malicious 2021 110,549 93,011 (84.1%) 50,480 (45.7%)

apps) 2022 71,500 59,043 (82.6%) 54,254 (75.9%)
Total 287,003 241,819 (84.3%) 152,001 (53.0%)

AndroZoo 2020 174,737 93,988 (53.8%) 76,014 (43.5%)
(Benign 2021 93,126 58,472 (62.8%) 52,481 (56.4%)

apps) 2022 17,363 12,866 (74.1%) 12,073 (69.5%)
Total 285,226 165,326 (58.0%) 140,568 (49.3%)

Total 572,229 407,145 (71.2%) 292,569 (51.1%)

alternate language module. Thus, closely monitoring JNI communication is key
to safeguarding data in Android apps.
Native Code Usage in Android Apps. To understand how commonly is
the native code used in real-world Android apps, we study apps interacting with
native code. We collect two kinds of datasets. First, we download 285,226 benign
apps listed in AndroZoo [4] from Google Play [23]. Second, we collect 287,003
malware apps from VirusShare [15]. From the datasets, we inspect every apps
including any “ELF” 昀椀les, which are native library binaries. After then, we count
declarations and invocations related to the identi昀椀ed native libraries. Table 2
shows the result of our study. First, a signi昀椀cant number of Android apps contain
native libraries: 71.2% in total, 84.3% from malware apps, and 58.0% from benign
apps. Second, we observe that native code is more frequently used in malicious
apps than benign ones. Third, we note a constant increase in the number of
benign apps leveraging native code [1]. Fourth, we 昀椀nd 51.1% of the apps call
a native method at least once. This reveals a 20.1% gap between apps that
include native libraries and invoke native methods. Our manual inspection shows
that the majority of them are heavily obfuscated apps, where static analysis
techniques [5,6,30,34] failed to identify the native method invocations.
Information Flows in Android Apps. In Android apps, the 昀氀ow of informa-
tion between di昀昀erent languages modules (Java/Kotlin and C/C++) is crucial.
Taint analysis is designed to track signi昀椀cant information 昀氀ows, starting from a
source API to a sink API. For example, sensitive data such as the IMEI (Inter-
national Mobile Equipment Identity) is obtained via a source API and processed
in both Java and C/C++ modules before being sent out through a sink like
a network socket API. Data 昀氀ows in Android often include argument passing
in functions like ’memcpy’ instead of assignment directly and are complicated
by event-driven mechanisms such as JNI functions, making tracking these 昀氀ows
challenging. Figure 1 depicts these information 昀氀ows within an Android app.
Unfortunately, missing even a single information 昀氀ow leads to a failure in de-
tecting sensitive information leak. To comprehensively capture information 昀氀ow
between heterogeneous modules, it is critical to precisely model information 昀氀ow
between them. However, previous approaches have limited analysis scopes (which
we demonstrate in Section 5), and thus, missing sensitive data leaks.
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3 Problem Statement of Existing Approaches
In this section, we discuss the challenges of detecting information leaks in An-
droid, focusing on the limitations of existing techniques.
Existing Taint Analysis Approaches. In recent years, various taint analysis
techniques like FlowDroid [6] and Amandroid [35] have been developed for An-
droid app leaks, targeting Java/Kotlin apps with 昀氀ow and context sensitivity.
FlowDroid manages transitions with a dummy main model, whereas Amandroid
uses environment modeling for data 昀氀ows. Other studies [3, 27, 30, 33, 34] apply
static analysis to cross-language (i.e., C/C++) Android apps. JN-SAF [34] leads
this 昀椀eld by modeling JNI functions and native activities for JNI/NDK-aware
analysis. Unlike JN-SAF, JuCify [30] uni昀椀es these by abstracting native code into
Java-level Jimple IR for integrated analysis. Dynamic analysis tools like Tain-
tART [33] and NDroid [36] assess JNI-related 昀氀ows in native code. TaintART
targets OAT-compiled code, missing external libraries, while NDroid includes
native libraries. However, both are bound to real execution paths, unlike static
analysis’s broader coverage. In this paper, we will focus solely on static analysis.
Limitations of Existing Approaches. FlowDroid [6], Argus-SAF [34], and
JuCify [30] are the three state-of-the-art information leak detection techniques
in Android. FlowDroid [6] handles various event handlers in the Android frame-
work and conducts context, 昀氀ow, 昀椀eld, and object-sensitive data 昀氀ow analysis.
However, it does not extend its analysis to native code and JNI functions. Argus-
SAF [34] is an inter-language static analysis framework utilizing JNI function
and NDK library models. However, it fails to capture data 昀氀ows when Java
methods, that are neither sources nor sinks, are invoked from native functions.
JuCify [30] is a uni昀椀ed framework leveraging Jimple IR for native method data
昀氀ow analysis. However it encounters three limitations: (1) it does not track data
昀氀ows through native APIs, (2) it only reconstructs behaviors of native methods
directly invoked via Java calls, restricting its coverage to only F2 in Figure 1,
and (3) it struggles with inferring the return or parameter values in data 昀氀ows,
due to the opaque prediction approach.
Lack of Empirical Evaluation and Comparison. There is a lack of bench-
marks that can provide a fair comparison among these techniques. Each static
analysis framework is e昀昀ective with its own benchmarks, while not for the others.

4 Our Approach
In this paper, we propose DryJIN that handles the limitations of the existing
approaches to comprehensively detect the diverse types of information leaks.
The design goal of DryJIN is to accurately detect all data 昀氀ow types shown in
Figure 1, by synthesizing the strengths and mitigating the weaknesses of Argus-
SAF [34], JuCify [30], and FlowDroid [6]. DryJIN targets data 昀氀ows overlooked
by previous techniques, especially those originating from native sources or ter-
minating at native sink APIs. It models control and data 昀氀ow of native code via
JNI/NDK functions as in Argus-SAF [34] with JuCify’s [30] uni昀椀ed IR approach.
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Fig. 2. Overview of DryJIN analysis process.

4.1 Resolving Native Methods

This task involves mapping method signatures to function addresses of native
methods in libraries, initiating code abstraction will be discussed in Section 4.2.
The Android runtime links native methods to Java code either by following the
JNI naming convention or through the “RegisterNatives” JNI function [25].

DryJIN identi昀椀es methods following the JNI naming convention by search-
ing for functions with names starting with “Java_”. Then, DryJIN resolves the
function names according to the JNI naming convention to derive the associ-
ated class names, Java method names, and parameters. These enable locating
the corresponding method de昀椀nitions in the ’classes.dex’ 昀椀le compiled code from
Java source codes. Lastly, DryJIN records the native methods’ addresses in na-
tive libraries for subsequent steps (Section 4.2). For native methods registered
through the RegisterNatives function, typically invoked in the JNI_OnLoad
method, DryJIN leverages the provided Java class object and an array contain-
ing Java method names, signatures, and native function pointers [11]. Key to this
process is extracting the Java method signature and native function pointer from
the array, which enables linking each native method to its Java counterpart.

In Android, native activity facilitates app development in native code for
Android API access. The default entry point of native activity is android_main
or ANativeActivity_onCreate [34]. Identifying sensitive information 昀氀ows, es-
pecially through Inter-Component Communication (ICC) in Android’s event-
driven framework, is also essential. To tackle method linking and native activity,
we employ JN-SAF’s [34] symbolic execution, which models JNI functions and
native activity for e昀昀ective resolution of native methods. DryJIN captures the
addresses of these methods to analyze native code data 昀氀ows.
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4.2 Abstracting Data Flows in Native Code

After identifying the addresses of native methods (including native activities),
DryJIN starts the symbolic execution from each address to analyze data 昀氀ows in
the native code. DryJIN then abstracts these data 昀氀ows into Jimple IR. For this
step, we enhance two approaches proposed by Argus-SAF [34] and JuCify [30]
with angr [31] for the symbolic execution engine.

We utilize Argus-SAF’s [34] JNI functions and NDK library model for NDK/JNI-
aware data 昀氀ow analysis within symbolic execution. However, Argus-SAF’s model
lacks support for many native APIs as sources and sinks, only recognizing the
android_log_print API. To address this, we manually added native sink and
source APIs from the NDK API list [7] including libc and system call. Addi-
tionally, we enhanced JuCify [30] to transform Jimple IR, capturing abstracted
data 昀氀ows in native code. DryJIN annotates data (e.g., symbolic variable) with
types and originated from JNI functions and native source APIs, enabling pre-
cise tracking during symbolic execution. This overcomes JuCify’s limitations
in inferring method parameters. Furthermore, DryJIN captures ICC links from
argument data of invoking ICC-related methods, 昀椀lling gaps in handling ICC
overlooked by JuCify and pass into FlowDroid as will be discussed in Section 4.3.

4.3 Detecting Sensitive Data Leaks

To detect sensitive information leaks, DryJIN employs FlowDroid [6] with the
Jimple IR statements and ICC links generated from the analysis result of data
昀氀ows. To this end, we modify FlowDroid as follows. First, FlowDroid uses the
dummy main method to generate a call graph, emulating the lifecycle of Java
components excepting for native activities. Therefore, DryJIN’s FlowDroid adds
nodes for callbacks of native activities and link edges from the dummy main
method. By doing so, FlowDroid performs data 昀氀ow analysis including native
activities. Next, to handle the invocation of native APIs, DryJIN creates a
new class called “DummyNative” contains native APIs as its methods. Lastly,
DryJIN’s FlowDroid loads the Jimple IR statements into native methods and
the ICC links to identify the data passing through ICC-related method invo-
cations. Consequently, the output of FlowDroid includes sensitive information
leaks from a source API to a sink API located in both native and Java modules.

5 Evaluation

We evaluate DryJIN on the following research questions:

RQ 1. How does DryJIN perform on benchmark test suites?
RQ 2. Can DryJIN be used for analyzing real-world apps?
RQ 3. When and why did DryJIN encounter di昀케culties in analyzing apps?

Implementation. We implement DryJIN according to the design as discussed
in Section 4 by employing Argus-SAF [34], JuCify [30], and FlowDroid [6]. In
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Table 3. Evaluation results on benchmark test suites. Blue represents true positives
and negatives, red indicates false negatives, and green denotes false positives.

Category (Information Flow Type in Figure 1) Benchmark # of Leaks Tool (# of Leaks detected)
(# of Benchmarks = 51) (# of Total leaks = 46) Argus-SAF [34] JuCify [30] DryJIN

Argus-SAF [34]

(F1) icc_javatonative.apk 1 1 0 1
(F2) icc_nativetojava.apk 1 1 0 1
(F1) native_complexdata.apk 1 1 0 1
(N/A) native_complexdata_stringop.apk 0 0 0 0
(F1) native_dynamic_register_multiple.apk 1 1 0 1
(F2) native_heap_modify.apk 1 1 0 1
(F1) native_leak.apk 1 1 0 1
(F1) native_leak_array.apk 1 1 0 1
(F1) native_leak_dynamic_register.apk 1 1 0 1
(N/A) native_method_overloading.apk 0 0 0 0
(F1) native_multiple_interactions.apk 1 1 0 1
(F1) native_multiple_libraries.apk 1 1 0 1
(N/A) native_noleak.apk 0 0 0 0
(N/A) native_noleak_array.apk 0 0 0 0
(N/A) native_nosource.apk 0 0 0 0
(F1) native_pure.apk 1 1 0 1
(F1) native_pure_direct.apk 1 1 0 1
(F1) native_pure_direct_customized.apk 1 1 0 1
(F2) native_set_昀椀eld_from_arg.apk 2 2 1 2
(F2) native_set_昀椀eld_from_arg_昀椀eld.apk 2 2 0 2
(F2) native_set_昀椀eld_from_native.apk 2 2 0 2
(F2) native_source.apk 1 1 1 1
(N/A) native_source_clean.apk 0 0 0 0

Jucify [30]

(F2) delegation_imei.apk 1 0 1 1
(F2) delegation_proxy.apk 1 0 4 1
(F2) getter_imei.apk 1 0 1 1
(F2) getter_imei_deep.apk 1 0 1 1
(F2) getter_leaker.apk 1 0 2 1
(F2) getter_proxy_leaker.apk 1 0 2 1
(N/A) getter_string.apk 0 0 1 0
(F2) leaker_imei.apk 1 0 2 1
(N/A) leaker_string.apk 0 0 2 0
(F2) proxy.apk 1 0 1 1
(F2) proxy_double.apk 1 0 1 1

DroidBench [26]

(F2) JavaIDFunction.apk 1 0 0 1
(F1) NativeIDFunction.apk 1 0 1 1
(F2) SinkInNativeCode.apk 1 0 0 1
(F1) SinkInNativeLibCode.apk 1 0 0 1
(F2) SourceInNativeCode.apk 1 1 1 1

Our Benchmarks

(F2) ArgToSetField.apk 1 0 0 1
(F2) CopyRegion.apk 1 0 1 1
(F2) GetFieldToCallMethod.apk 1 0 1 1
(F2) InterNativeMethod.apk 1 0 0 1
(F4) JavaProxy.apk 1 0 0 1
(F1) JavaToNative.apk 1 1 0 1
(F2) NativeProxy.apk 1 0 0 1
(F3) NativeSourceToCallMethod.apk 1 0 0 1
(F3) NativeSourceToSetField.apk 1 0 0 1
(F3) NativeToJava.apk 1 0 0 1
(F6) NativeToNative.apk 1 0 0 1
(F3) SourceInNativeLibCode.apk 1 0 0 1

# of True-positives 22 15 46
# of False-positives 0 9 0

# of False-negatives 24 31 0

our implementation, we make enhancements totaling 2,661 SLoC in Python for
Argus-SAF and 603 SLoC for JuCify, along with 890 SLoC in Java for FlowDroid.

Experimental Setup. Analysis run on Intel Xeon CPU server with 256 GB
RAM, enforcing a one-hour limit per app (30 mins each for symbolic execution
and FlowDroid) and a 32 GB memory cap. Exceeding these limits led DryJIN
to halt the current step but continue with the next, using accumulated results.
Dataset. We evaluate DryJIN using three datasets: (Benchmarks) open test
suites from previous work like DroidBench [26], Argus-SAF [34], and JuCify [30],
along with 12 new benchmarks we developed; (Malware) 104,734 malicious apps
from 2021 and 2022, sourced from VirusShare [15]; and (Benign Apps) 64,554
benign apps from the same period, collected from AndroZoo [4].
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Table 4. Evaluation results on real-world apps. Information 昀氀ow patterns are in Fig-
ure 1. An app can obtain multiple 昀氀ow types of information leaks.

Malware Benign-ware
2021 2022 2021 2022

DryJIN
# of Apps Used 50,480 54,254 52,481 12,073

# of Apps Successfully Analyzed 7,984 10,419 24,727 6,757
(%) (16%) (19%) (47%) (56%)

# of Detected Apps Leaking Information 3,865 4,635 7,947 3,205
(# of Apps generating the type F1 leak) 85 94 34 5
(# of Apps generating the type F2 leak) 4 6 0 0
(# of Apps generating the type F3 leak) 2 5 0 1
(# of Apps generating the type F4 leak) 0 0 0 0
(# of Apps generating the type F5 leak) 3,763 4,512 7.905 3,198
(# of Apps generating the type F6 leak) 9 14 8 1

Argus-SAF
# of Apps Used 92 106 42 7

(# of Apps generating the F1, F2, F3, F4, and F6 type leaks)
# of Detected Apps Leaking Information 0 0 0 0
(# of Apps generating the type F1 leak) 0 0 0 0
(# of Apps generating the type F2 leak) 0 0 0 0
(# of Apps generating the type F3 leak) 0 0 0 0
(# of Apps generating the type F4 leak) 0 0 0 0
(# of Apps generating the type F6 leak) 0 0 0 0

JuCify
# of Apps Used 92 106 42 7

(# of Apps generating the F1, F2, F3, F4, and F6 type leaks)
# of Detected Apps Leaking Information 0 2 0 0
(# of Apps generating the type F1 leak) 0 0 0 0
(# of Apps generating the type F2 leak) 0 2 0 0
(# of Apps generating the type F3 leak) 0 0 0 0
(# of Apps generating the type F4 leak) 0 0 0 0
(# of Apps generating the type F6 leak) 0 0 0 0

5.1 RQ 1. How does DryJIN perform on benchmark test suites?

We utilized benchmarks consisting of 12 cases: 5 test cases illustrating infor-
mation 昀氀ows F1 to F6 (excluding F5, which is identi昀椀able through Java anal-
ysis alone) and 7 cases addressing previously neglected information 昀氀ows via
JNI functions. Table 3 shows DryJIN’s evaluation, successfully detecting leaks
across 51 benchmarks with no false positives. We compared DryJIN with Argus-
SAF [34] and JuCify [30] for accuracy. Argus-SAF detected leaks in its bench-
marks but missed JuCify’s, 昀椀nding only one leak in DroidBench and our tests.
JuCify found leaks in its benchmarks with nine false positives but only two in
Argus-SAF’ s, DroidBench, and ours. DryJIN outperformed these techniques,
particularly in DroidBench and our benchmarks, highlighting our design’s e昀昀ec-
tiveness in identifying Android information leaks. Yet, the issue of evaluation
discrepancies, as highlighted by Pauck et al. [26], persists in this 昀椀eld.

Answer to RQ1: DryJIN successfully detects 100% of information leaks in
51 benchmarks that cover information 昀氀ows types without any false positive,
48% and 63% higher than Argus-SAF and JuCify, respectively.
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5.2 RQ 2. Can DryJIN be used for analyzing real-world apps?

To evaluate DryJIN against real-world Android apps, we tested 104,734 malicious
and 64,554 benign apps from 2021 and 2022, that invokes native methods at least
once, as listed in Table 2. Table 4 shows DryJIN identi昀椀ed sensitive information
leaks in 19,652 of the 167,488 apps tested, categorizing them into six types
as depicted in Figure 1. Among information 昀氀ow patterns, F5, not involving
native methods, is most common. DryJIN e昀昀ectively identi昀椀ed leaks in all types
except F4, with F3, F4, and F6 being previously overlooked. This highlights
the necessity of covering all information 昀氀ows for comprehensive leak detection.
Argus-SAF and JuCify detected zero and two leaks, respectively, in 247 apps
with leaks (excluding F5-only leaks), suggesting potential 昀氀aws in their detection
capabilities (Table 4). The reason for DryJIN’s outperforming results lies in its
adoption of a uni昀椀ed IR approach and comprehensive handling of native source
sink APIs. However, DryJIN analyzed only 18% of malicious and 52% of benign
apps, often due to obfuscation. Further details will be discussed in Section 5.3.
Case Study. In our real-world malware analysis, DryJIN detected 23 malicious
apps leaking sensitive information through the F6-type data 昀氀ow. We discuss a
case study where a malicious app2 that leaks the IMEI number. The malware
contains libgoogleapi.so library in which invokes a JNI function to obtain a
device’s IMEI number. Then, it writes the data on a socket to send it over the
network. Note that this case cannot be detected by the previous work because
such data 昀氀ow type (i.e., F6 type) has not been considered in previous studies. We
manually reverse-engineered the malware to check the behavior and con昀椀rmed
that DryJIN correctly detected the leak.

Answer to RQ2: DryJIN can cover a wide range of information 昀氀ow patterns
in real-world apps, including F3 and F6, previously not considered in other
research e昀昀orts. In contrast, Argus-SAF fails to identify any leaks, and JuCify
only detects a single pattern (F2). However, DryJIN is currently unable to
analyze a signi昀椀cant portion of real-world apps.

5.3 RQ 3. When and why did DryJIN encounter di昀케culties in
analyzing apps?

During our evaluation, we observe that DryJIN failed in analyzing 82% of ma-
licious apps while it successfully analyzed more than 50% of benign apps. We
discuss why DryJIN failed to analyze apps in the wild.
Root Cause Analysis. To 昀椀nd the root causes of failure cases, we inspected
the analysis processes of each step. As Table 5 shows, DryJIN failed to analyze
most benign and over half of malicious apps in Step 1 (Section 4.1), mainly due
to failure in 昀椀nding native methods (74%) in malicious apps. Given apps invoke a
native method at least once, we suspect they employ anti-analysis or obfuscation
techniques to evade detection. Our investigation into randomly selected samples
revealed they were obfuscated with tools like DexProtector [22]. For benign apps,
2 SHA256: b062e6c65c08830297c39ce054ce457d3dfd26eab7f5cb53606ca2df17938322
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Table 5. Analysis results on apps failed to analyze with DryJIN at each analysis step.

Malware Benign-ware
2021 2022 2021 2022

# of Apps Used 50,480 54,254 52,481 12,073
# of Apps Failed to Analyze 42,496 43,835 27,754 5,316

# of Apps Failed in Step 1 25,983 28,072 14,224 3,070
(# of Apps failed to load a native library) 3,440 7,388 5,251 1,113
(# of Apps failed to 昀椀nd a native method) 20,369 19,686 4,270 1,518

(# of Apps failed to run in time) 2,174 998 4,703 439

# of Apps Failed in Step 2 11,608 9,010 9,605 1,379
(# of Apps occurred errors in angr) 6,439 1,539 6,373 434

(# of Apps occurred the path explosion) 5,169 7,471 3,232 945

# of Apps Failed in Step 3 4,905 6,753 3,925 867
(# of Apps failed in loading a dex 昀椀le) 1,366 1,798 204 83

(# of Apps failed to generate a call graph) 764 782 271 100
(# of Apps failed to run in time) 2,775 4,173 3,450 684

36% halted due to timeouts from large native libraries. Android apps are eas-
ier to reverse-engineer than other binaries due to Java decompilation by tools
like jadx [32], prompting extensive use of obfuscation like string encryption and
dynamic code loading [13]. Malicious apps often use these techniques to avoid
static analysis, making obfuscation handling crucial in app analysis [18].

In Step 2 (Section 4.2), apps faced angr errors or time-outs due to the path
explosion, a common issue with symbolic execution-based static analysis frame-
works [31]. In Step 3 (Section 4.3), timeouts were the main failure reason (67%)
for both malicious and benign apps, often due to their large sizes exceeding our
set time limits. Additionally, dex 昀椀le loading failures and call graph generation
issues occurred, similar to Step 1, often caused by obfuscation techniques.
Answer to RQ3: The main reasons for analysis failure of many apps are: (i)
applied anti-analysis or obfuscation techniques (Step1, Step3), (ii) time-outs
caused by the large size of native libraries or apps (Step1, Step3), and (iii)
path explosion problem of symbolic execution (Step2).

6 Discussion

Limitations. Despite DryJIN’s advancement over existing methods, it has areas
for improvement in real-world app analysis. Our prototype has limited coverage
of ICC methods, missing leaks via certain ICC methods like implicit intents.
Future enhancements will incorporate approaches like IccTA and RAICC to
model ICC links [20,29]. Additionally, DryJIN’s reliance on symbolic execution
faces challenges like path explosion, common to similar techniques [30, 34]. We
plan to mitigate this by modeling well-known native libraries.
Threats to Validity. To verify DryJIN’s accuracy, we manually inspected 50
malicious apps identi昀椀ed for leaks with tools like Jadx and IDA Pro, validat-
ing the abstracted data 昀氀ows and the actual information leaks. While not all
reported leaks by DryJIN were manually veri昀椀ed, we hypothesized that DryJIN
had produced accurate results based on our evaluation result of the test suites.
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7 Conclusion

In this paper, we observe that state-of-the-art detection techniques of informa-
tion leak are largely missing the data 昀氀ow tracking on native modules, and thus,
we propose a system that can comprehensively trace information 昀氀ows in An-
droid, covering both Java and native modules. We revisited existing benchmark
test suites and our evaluation results show DryJIN’s e昀昀ectiveness to detect sen-
sitive information leaks in real-world apps compared to previous approaches. In
future work, we plan to mitigate inherent challenges in symbolic execution by
modeling of well-known native libraries.
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